JP5148352B2 - Canister - Google Patents

Canister Download PDF

Info

Publication number
JP5148352B2
JP5148352B2 JP2008115659A JP2008115659A JP5148352B2 JP 5148352 B2 JP5148352 B2 JP 5148352B2 JP 2008115659 A JP2008115659 A JP 2008115659A JP 2008115659 A JP2008115659 A JP 2008115659A JP 5148352 B2 JP5148352 B2 JP 5148352B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
canister
adsorption chamber
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008115659A
Other languages
Japanese (ja)
Other versions
JP2009264273A (en
Inventor
隆司 小杉
正孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2008115659A priority Critical patent/JP5148352B2/en
Priority to US12/426,377 priority patent/US7922797B2/en
Publication of JP2009264273A publication Critical patent/JP2009264273A/en
Application granted granted Critical
Publication of JP5148352B2 publication Critical patent/JP5148352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0415Beds in cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4516Gas separation or purification devices adapted for specific applications for fuel vapour recovery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

本発明は、燃料タンクから発生する蒸発燃料が大気中へ放散されることを防止する蒸発燃料処理装置のキャニスタに関し、特に、蒸発燃料を吸着・脱離可能な吸着材と共に、潜熱を利用して吸着材の温度変化を抑制する蓄熱材が、吸着室内に収容されているキャニスタに関する。   The present invention relates to an evaporative fuel processing apparatus canister that prevents evaporative fuel generated from a fuel tank from being released into the atmosphere, and in particular, by utilizing latent heat together with an adsorbent capable of adsorbing and desorbing evaporative fuel. The heat storage material which suppresses the temperature change of an adsorbent is related with the canister accommodated in the adsorption chamber.

従来から、車両停止中等に燃料タンク内に貯留されたガソリン燃料が揮発して生じた蒸発燃料を活性炭等からなる吸着材に吸着捕捉し、蒸発燃料が大気中に放散されることを防止する蒸発燃料処理装置のキャニスタがある。当該キャニスタには、燃料タンクの上部に連通するタンクポートと、先端が大気に開放している大気ポートと、吸着材から脱離(パージ)された蒸発燃料が流動していくパージポートとが設けられている。エンジン駆動時や車両停止時等に燃料タンクが昇温することで発生した蒸発燃料は、タンクポートからキャニスタ内に流入して大気ポートへ向けて流動していく間に吸着材に吸着されることで、蒸発燃料が大気中へ放散されることが防止される。吸着材に吸着された蒸発燃料は、エンジン駆動時の吸気管負圧やエンジン駆動とは別個独立して駆動制御される吸引ポンプによって大気ポートから大気が導入されることで脱離(パージ)され、吸着材が再生される。   Conventionally, evaporative fuel generated by volatilization of gasoline fuel stored in a fuel tank while the vehicle is stopped, etc. is adsorbed and captured by an adsorbent made of activated carbon, etc., to prevent the evaporated fuel from being released into the atmosphere. There is a canister for the fuel processor. The canister is provided with a tank port communicating with the upper part of the fuel tank, an atmospheric port whose tip is open to the atmosphere, and a purge port through which evaporated fuel desorbed (purged) from the adsorbent flows. It has been. Evaporated fuel generated when the temperature of the fuel tank rises when the engine is driven or when the vehicle is stopped is adsorbed by the adsorbent while flowing from the tank port into the canister and flowing toward the atmospheric port. Thus, the evaporated fuel is prevented from being released into the atmosphere. The evaporated fuel adsorbed by the adsorbent is desorbed (purged) by introducing air from the air port by an intake pipe negative pressure when the engine is driven and a suction pump that is driven and controlled independently of the engine drive. The adsorbent is regenerated.

このとき、キャニスタ内において燃料蒸気は吸着材に吸着される際に液化し、吸着材から脱離されると再度気化する。したがって、蒸発燃料が吸着される際には発熱反応である凝縮熱により吸着材の温度が上昇し、蒸発燃料が脱離される際には吸熱反応である気化熱により吸着材の温度が下がる。これに対し、多孔質体である吸着材は、温度が低いほど吸着容量が多くなり、温度が高いほど吸着容量が低下する特性を有する。したがって、吸着材の吸着・脱離性能を向上するためには、蒸発燃料の相変化に伴う発熱・吸熱を抑制して吸着材の温度変化を抑制することが望まれる。   At this time, the fuel vapor is liquefied when adsorbed on the adsorbent in the canister, and vaporizes again when desorbed from the adsorbent. Therefore, when the evaporated fuel is adsorbed, the temperature of the adsorbent increases due to condensation heat that is an exothermic reaction, and when the evaporated fuel is desorbed, the temperature of the adsorbent decreases due to vaporization heat that is an endothermic reaction. On the other hand, the adsorbent that is a porous body has a characteristic that the adsorption capacity increases as the temperature decreases, and the adsorption capacity decreases as the temperature increases. Therefore, in order to improve the adsorption / desorption performance of the adsorbent, it is desired to suppress the temperature change of the adsorbent by suppressing the heat generation / endotherm accompanying the phase change of the evaporated fuel.

そこで、潜熱を利用して吸着材の温度変化を抑制する蓄熱材を、吸着材と共に吸着室に収容したキャニスタとして特許文献1がある。特許文献1の蓄熱材は、相変化物質を内包した複数のマイクロカプセルが、バインダによってペレット(短寸の円柱状)に成形されており、当該ペレット状の蓄熱材が、同じくペレット状に造粒された吸着材と共に、吸着室内に混合収容されている。これにより、蒸発燃料が吸着される際の吸着材の温度上昇が、蓄熱材中の相変化物質が固相から液相へ変化する際の潜熱(融解熱)によって抑制される一方、蒸発燃料が脱離される際の吸着材の温度低下が、蓄熱材中の相変化物質が液相から固相へ変化する際の潜熱(凝固熱)によって抑制されることで、吸着材の吸着・脱離性能が向上する。   Therefore, Patent Document 1 discloses a canister in which a heat storage material that suppresses a temperature change of an adsorbent using latent heat is accommodated in an adsorbing chamber together with the adsorbent. In the heat storage material of Patent Document 1, a plurality of microcapsules enclosing a phase change material are formed into pellets (short cylindrical shape) by a binder, and the pellet-shaped heat storage material is also granulated into a pellet shape. Along with the adsorbed material, the adsorbent is mixed and accommodated. Thereby, the temperature rise of the adsorbent when the evaporated fuel is adsorbed is suppressed by the latent heat (melting heat) when the phase change material in the heat storage material changes from the solid phase to the liquid phase, while the evaporated fuel Adsorption / desorption performance of the adsorbent is achieved by suppressing the temperature drop of the adsorbent during desorption by the latent heat (heat of solidification) when the phase change material in the heat storage material changes from the liquid phase to the solid phase. Will improve.

一方、所定形状の蓄熱材が吸着室内に保持固定されているキャニスタとして特許文献2及び特許文献3がある。これらの蓄熱材は、吸着材より熱伝導率及び比熱(熱容量)が大きい素材からなり、顕熱によって吸着材の温度変化を抑制している。具体的には、特許文献2の蓄熱材は、主として鉄などの金属からなるメタルプレートが使用されており、複数枚のメタルプレートを組み合わせたり、一枚のメタルプレートを所定の形状に加工することで、吸着室を区画する対向する2つの面の間で保持されている。なお、メタルプレートからなる蓄熱材は、蒸発燃料の流動方向に交差する(蒸発燃料の流路を遮蔽する)状態で配されることから、通気性を確保するために蓄熱材に多数の細孔が穿設されている。特許文献3では、アルミニウム製の金網が渦巻状に巻かれた状態で吸着室内に保持されている。   On the other hand, Patent Documents 2 and 3 are canisters in which a heat storage material having a predetermined shape is held and fixed in an adsorption chamber. These heat storage materials are made of a material having a higher thermal conductivity and specific heat (heat capacity) than the adsorbent, and suppress the temperature change of the adsorbent by sensible heat. Specifically, the heat storage material of Patent Document 2 uses a metal plate mainly made of metal such as iron, and combines a plurality of metal plates or processes a single metal plate into a predetermined shape. Thus, it is held between two opposing surfaces that define the adsorption chamber. Since the heat storage material made of a metal plate is arranged in a state that intersects the flow direction of the evaporated fuel (shields the flow path of the evaporated fuel), a large number of pores are formed in the heat storage material to ensure air permeability. Is drilled. In Patent Document 3, an aluminum wire mesh is held in an adsorption chamber in a spiral state.

特開2005−233106号公報JP-A-2005-233106 特開昭63−246462号公報JP-A 63-246462 特開平8−4605号公報Japanese Patent Laid-Open No. 8-4605

ところで、蓄熱材による吸着材の温度変化抑制効果は、吸着材から蓄熱材への熱伝達の良し悪しに大きく左右される。すなわち、吸着材の温度変化が蓄熱材に良好に伝達されなければ、これに応じた蓄熱材における潜熱の吸収・放出量が低減し、吸着材の温度変化を良好に抑制できなくなる。そして、吸着材から蓄熱材への熱伝達性に関して、吸着材と蓄熱材との距離が常に略一定であることが重要な要素の1つである。   By the way, the temperature change suppression effect of the adsorbent by the heat storage material is greatly influenced by the quality of heat transfer from the adsorbent to the heat storage material. That is, if the temperature change of the adsorbent is not transmitted well to the heat storage material, the amount of absorption and release of latent heat in the heat storage material corresponding to this is reduced, and the temperature change of the adsorbent cannot be suppressed well. One of the important factors regarding the heat transferability from the adsorbent to the heat storage material is that the distance between the adsorbent and the heat storage material is always substantially constant.

しかし、特許文献1では、ペレット状に造粒された複数の蓄熱材が吸着材と共に吸着室内に混合分散状に収容されているだけである。これでは、走行時の振動などによって蓄熱材が移動し、吸着室内において蓄熱材が偏在して分布が不均一となるおそれがある。そうすると、吸着材と蓄熱材との距離にもバラツキが生じるので、効率的に吸着材の温度変化を抑制できなくなってしまう。しかも、蓄熱材の分布が不均一となれば、吸着室内において温度変化抑制効果の高い部位とそうでない部位とが形成されてしまい、吸着材全体の温度変化を均等に抑制できなくなってしまう。   However, in Patent Document 1, a plurality of heat storage materials granulated in a pellet form are only contained in a mixed and dispersed state in the adsorption chamber together with the adsorbent. In this case, the heat storage material moves due to vibration during traveling, etc., and the heat storage material is unevenly distributed in the adsorption chamber, which may cause uneven distribution. As a result, the distance between the adsorbent and the heat storage material also varies, and it becomes impossible to efficiently suppress the temperature change of the adsorbent. In addition, if the distribution of the heat storage material becomes non-uniform, a portion having a high temperature change suppressing effect and a portion not having the temperature change suppressing effect are formed, and the temperature change of the entire adsorbent cannot be uniformly suppressed.

これに対し特許文献2や特許文献3では、所定形状に形成された蓄熱材が吸着室内で保持されているので走行時の振動などによって蓄熱材が大きく移動することはなく、蓄熱材と吸着材との距離は常に略一定に保たれる。しかし、特許文献2や特許文献3の蓄熱材は、物質の相変化を伴わずに温度を変化させるために費やされる顕熱を利用しているのみなので、物質の相変化に伴う潜熱を利用した蓄熱材と比べて吸着材の温度変化抑制効果が大きく劣る。また、特許文献2や特許文献3の蓄熱材は金属製なので成形性には限界があり、特にハニカム形状など複雑な形状とするには適さない。しかも、特許文献2のように複数枚のメタルプレートを所定形状に組み立てたり、特許文献3のように金網を渦巻状に巻くなどの作業が煩雑であり、生産性にも劣る。   On the other hand, in Patent Document 2 and Patent Document 3, since the heat storage material formed in a predetermined shape is held in the adsorption chamber, the heat storage material does not move greatly due to vibration during traveling, and the heat storage material and the adsorbent. The distance between and is always kept substantially constant. However, since the heat storage materials of Patent Document 2 and Patent Document 3 only use sensible heat consumed to change the temperature without causing a phase change of the substance, the latent heat accompanying the phase change of the substance is used. Compared to the heat storage material, the temperature change suppression effect of the adsorbent is greatly inferior. Moreover, since the heat storage material of patent document 2 and patent document 3 is a metal, there exists a limit in a moldability and it is not suitable for making it complicated shapes, such as a honeycomb shape especially. Moreover, operations such as assembling a plurality of metal plates into a predetermined shape as in Patent Document 2 and winding a wire mesh in a spiral shape as in Patent Document 3 are complicated and inferior in productivity.

そこで、本発明は上記課題を解決するものであって、その目的とするところは、振動が加わっても蓄熱材の分布に不均一が生じず、蓄熱材と吸着材との距離を略一定に保つことができ、かつ生産性の高いキャニスタを提供する。   Therefore, the present invention solves the above-mentioned problems, and the object of the present invention is to make the distribution of the heat storage material non-uniform even when vibration is applied, and to make the distance between the heat storage material and the adsorbent substantially constant. A canister that can be maintained and is highly productive.

吸着室内に蒸発燃料を吸着・脱離する吸着材と、温度変化に応じて潜熱の吸収・放出を生じる蓄熱材とが収容されているキャニスタにおいて、前記蓄熱材は、相変化物質を内包した複数のマイクロカプセルが、バインダによって所定形状に一体成形された成形体とされており、該蓄熱材は、前記吸着室を区画する対向する2つの面に近接ないし接触する寸法を有し、該対向する2つの面の間で保持されていることを特徴とする。前記吸着室を区画する対向する2つの面としては、吸着室の上下面や、前後又は左右側面が相当する。これらの面のうち、少なくとも1対の面の間で保持されていればよい。   In a canister in which an adsorbent that adsorbs / desorbs evaporative fuel in an adsorption chamber and a heat storage material that absorbs / releases latent heat according to a temperature change are accommodated, and the heat storage material includes a plurality of phase change substances. The microcapsule is a molded body integrally formed into a predetermined shape by a binder, and the heat storage material has a size that is close to or in contact with two opposing surfaces that define the adsorption chamber. It is characterized by being held between two surfaces. The two opposing surfaces that define the adsorption chamber correspond to the upper and lower surfaces of the adsorption chamber, the front and rear sides, and the left and right side surfaces. Of these surfaces, it may be held between at least one pair of surfaces.

このとき、前記蓄熱材は蒸発燃料の流動方向に沿って配設しておくことが好ましい。   At this time, it is preferable that the heat storage material is disposed along the flow direction of the evaporated fuel.

前記蓄熱材は、例えば前記吸着室を区画する対向する2つの側面、すなわち前後面又は左右側面の間で保持可能な板状に成形することができる。この場合、複数枚の前記蓄熱材を前記吸着室内に等間隔で並設することが好ましい。   The said heat storage material can be shape | molded in the plate shape which can be hold | maintained between two opposing side surfaces which divide the said adsorption | suction chamber, ie, the front-and-back surface, or a right-and-left side surface, for example. In this case, it is preferable that a plurality of the heat storage materials are arranged in parallel in the adsorption chamber at equal intervals.

また、前記蓄熱材は、前記吸着室を区画する上下面の間で保持可能な高さ寸法を有し、かつ蒸発燃料が流動可能な高さ方向に延びる空間を有する柱状に形成することもできる。蒸発燃料が流動可能な高さ方向に延びる空間を有する柱状としては、典型的には円筒状や四角筒状が挙げられるが、その他にも多数の細長い細孔を有するハニカム状、複数枚の板が中心軸から360°周方向に等間隔で並んだ矢羽根状なども挙げられる。   The heat storage material may be formed in a column shape having a height dimension that can be held between upper and lower surfaces that define the adsorption chamber, and having a space extending in a height direction in which the evaporated fuel can flow. . The columnar shape having a space extending in the height direction in which the evaporated fuel can flow is typically a cylindrical shape or a rectangular tube shape, but in addition, a honeycomb shape having a number of elongated pores, a plurality of plates Also, an arrow-blade shape is arranged at regular intervals in the 360 ° circumferential direction from the central axis.

さらに、前記蓄熱材を蒸発燃料が流動可能な高さ方向に延びる空間を有する柱状に形成したうえで、該蓄熱材を前記吸着室内に収容したとき、前記蓄熱材が前記吸着室の側面に接触する寸法を有することがより好ましい。   Further, the heat storage material is formed in a column shape having a space extending in a height direction in which the evaporated fuel can flow, and when the heat storage material is accommodated in the adsorption chamber, the heat storage material contacts the side surface of the adsorption chamber. It is more preferable to have a dimension to

本発明によれば、相変化物質の相変化に伴う潜熱の吸収・放出を生じる蓄熱材を使用しているので、顕熱を利用した蓄熱材を使用した場合に比べて吸着材の温度変化抑制効果が高い。当該蓄熱材は、複数のマイクロカプセルをバインダによって一体成形しているので、形状の設計自由度及び生産性が高い。そのうえで、蓄熱材が吸着室内で保持されていることで、キャニスタに振動が加わっても蓄熱材が大きく位置ズレすることがない。これにより、蓄熱材が偏在することなく、蓄熱材と吸着材との距離を常に略一定に保つことができる。   According to the present invention, since the heat storage material that absorbs and releases latent heat accompanying the phase change of the phase change material is used, the temperature change of the adsorbent is suppressed compared to the case where the heat storage material using sensible heat is used. High effect. Since the heat storage material is formed by integrally forming a plurality of microcapsules with a binder, the degree of freedom in design and productivity are high. In addition, since the heat storage material is held in the adsorption chamber, the heat storage material is not greatly displaced even if vibration is applied to the canister. Thereby, the distance between the heat storage material and the adsorbent can be kept substantially constant without the heat storage material being unevenly distributed.

蓄熱材を蒸発燃料の流動方向に沿って配設しておけば、キャニスタの通気性が阻害されることを避けてキャニスタの吸着・脱離能力が低下することがないと共に、通気性を確保するために蓄熱材を二次加工等する必要もない。   If the heat storage material is arranged along the flow direction of the evaporated fuel, the air permeability of the canister is prevented from being obstructed, the adsorption / desorption ability of the canister is not lowered, and the air permeability is ensured. Therefore, there is no need for secondary processing of the heat storage material.

蓄熱材が板状の場合、複数枚の蓄熱材を等間隔で並設しておけば、吸着室内の全体に亘って蓄熱材を均等に配設できると共に、吸着材と蓄熱材との距離も近くなる。これにより、効率良く吸着材の温度変化を抑制でき、延いてはキャニスタ性能も向上する。   In the case where the heat storage material is plate-shaped, if a plurality of heat storage materials are arranged side by side at equal intervals, the heat storage material can be arranged uniformly over the entire adsorption chamber, and the distance between the adsorption material and the heat storage material is also Get closer. Thereby, the temperature change of an adsorbent can be suppressed efficiently and canister performance can also be improved.

柱状の蓄熱材が、吸着室の上下面で保持可能な高さ寸法を有していれば、吸着室内の全体に亘って蓄熱材を均等に配設できると共に、上下方向への位置ズレが確実に防止される。さらに、蓄熱材が吸着室の側面にも接触していれば、左右方向への位置ズレも確実に防止される。   If the columnar heat storage material has a height dimension that can be held by the upper and lower surfaces of the adsorption chamber, the heat storage material can be evenly distributed throughout the adsorption chamber and the vertical displacement is reliable. To be prevented. Furthermore, if the heat storage material is also in contact with the side surface of the adsorption chamber, displacement in the left-right direction is reliably prevented.

以下、適宜図面を参照しながら本発明の各種実施例について説明するが、これに限られず本発明の要旨を逸脱しない範囲で種々の変更が可能である。なお、以下の説明において、説明の便宜上図示状態を基準としてキャニスタの上下左右方向を規定するが、キャニスタの設置方向に応じてこれらの方向も変化する。
(実施例1)
図1に、本発明の実施例1に係るキャニスタ1の縦断側面図を示し、図2に、本発明の実施例1に係るキャニスタ1の横断平面図を示す。本実施例1のキャニスタ1は、自動車の燃料タンクから発生する蒸発燃料処理装置に設置されるものであって、図1及び図2に示されるように、合成樹脂製で中空な四角筒状のキャニスタケース10と、該キャニスタケース10の底面開口を閉塞する合成樹脂製のカバー11とを有する。キャニスタケース10とカバー11とはナイロン等の同じ素材で形成されており、それぞれのフランジ10aと11aとを突き合せた状態で、例えば振動溶接や接着などによって接合されている。キャニスタケース10の上面には、蒸発燃料の導入部となる円筒形のタンクポート13と、脱離された蒸発燃料が流動していく円筒形のパージポート14とが、それぞれ内外貫通状に一体形成されている。一方、タンクポート13等と反対側のカバー11に、大気と連通して大気(空気)の出入口となる円筒形の大気ポート15が、内外貫通状に一体形成されている。これにより、キャニスタ1の内部には、タンクポート13及びパージポート14と大気ポート15との間に亘る略直線状の流路が形成される1つの吸着室21を有することになる。図示していないが、タンクポート13は燃料タンクの上部と連通しており、パージポート14は、エンジン(内燃機関)の吸気管に連通されているか、エンジンの駆動とは独立して駆動制御される吸引ポンプを介して燃料タンクと連通している。
Hereinafter, various embodiments of the present invention will be described with reference to the drawings as appropriate. However, the present invention is not limited thereto, and various modifications can be made without departing from the scope of the present invention. In the following description, for convenience of explanation, the vertical and horizontal directions of the canister are defined based on the illustrated state, but these directions also change depending on the installation direction of the canister.
Example 1
FIG. 1 shows a longitudinal side view of a canister 1 according to Embodiment 1 of the present invention, and FIG. 2 shows a cross-sectional plan view of the canister 1 according to Embodiment 1 of the present invention. The canister 1 according to the first embodiment is installed in an evaporative fuel processing apparatus generated from a fuel tank of an automobile. As shown in FIGS. 1 and 2, the canister 1 is made of a synthetic resin and has a hollow square cylindrical shape. A canister case 10 and a synthetic resin cover 11 that closes a bottom opening of the canister case 10 are provided. The canister case 10 and the cover 11 are formed of the same material such as nylon, and are joined by, for example, vibration welding or adhesion in a state where the flanges 10a and 11a are abutted. On the upper surface of the canister case 10, a cylindrical tank port 13 serving as an evaporative fuel introduction portion and a cylindrical purge port 14 through which the desorbed evaporative fuel flows are integrally formed so as to penetrate inside and outside. Has been. On the other hand, a cylindrical atmosphere port 15 that communicates with the atmosphere and serves as an inlet / outlet of the atmosphere (air) is integrally formed in the cover 11 on the side opposite to the tank port 13 and the like so as to penetrate inside and outside. Thus, the canister 1 has one adsorption chamber 21 in which a substantially straight flow path extending between the tank port 13 and the purge port 14 and the atmospheric port 15 is formed. Although not shown, the tank port 13 communicates with the upper part of the fuel tank, and the purge port 14 communicates with the intake pipe of the engine (internal combustion engine) or is driven and controlled independently of the engine drive. The fuel tank communicates with the suction pump.

キャニスタケース10内の上部及び下部には、それぞれ通気性を有する金属製のプレート19u・19lが配されていると共に、上下の両プレート19u・19lの内側に、それぞれ通気性を有するフィルタ17u・17lが配されている。そして、キャニスタケース10の側壁10bと上下のフィルタ17u・17lとで区画される空間が吸着室21となっており、当該吸着室21内に、蒸発燃料を吸着・脱離可能な吸着材18と、温度変化に応じて潜熱の吸収・放出を生じる蓄熱材22が収容されている。すなわち、吸着室21の前後及び左右面が側壁10bで区画されており、吸着室21の上下面が上下のフィルタ17u・17lで区画されている。上部のプレート19uは、キャニスタケース10の側壁10bの上部に設けられた段部10cで受け止められる。一方、下部のプレート19lは、カバー11との間に配されたコイルスプリング20によって常時タンクポート13側へ付勢されている。これにより、吸着材18がバラツクことなく収容保持されている。フィルタ17には、合成樹脂製の不織布や発泡ウレタンなどが使用される。プレート19は、多数の細孔を有する板やメッシュなどが使用される。   Metal plates 19u and 19l having air permeability are arranged on the upper and lower sides in the canister case 10, respectively, and filters 17u and 17l having air permeability are provided inside the upper and lower plates 19u and 19l, respectively. Is arranged. A space defined by the side wall 10b of the canister case 10 and the upper and lower filters 17u and 17l serves as an adsorption chamber 21, and an adsorbent 18 capable of adsorbing and desorbing evaporated fuel in the adsorption chamber 21 A heat storage material 22 that accommodates absorption / release of latent heat in response to a temperature change is accommodated. That is, the front and rear and left and right surfaces of the adsorption chamber 21 are defined by the side walls 10b, and the upper and lower surfaces of the adsorption chamber 21 are defined by the upper and lower filters 17u and 17l. The upper plate 19u is received by a step portion 10c provided on the upper portion of the side wall 10b of the canister case 10. On the other hand, the lower plate 19l is always urged toward the tank port 13 by a coil spring 20 disposed between the lower plate 19l and the cover 11. Thereby, the adsorbent 18 is accommodated and held without variation. The filter 17 is made of a synthetic resin nonwoven fabric or urethane foam. The plate 19 is a plate or mesh having a large number of pores.

吸着材18は、蒸発燃料分子を吸着保持可能な多数の細孔を有する多孔質体が使用され、典型的には活性炭が使用される。そして、実施例1の吸着材18は、複数の微細な粉末状の活性炭がバインダによってペレット状(短寸な円柱状)に造粒成形されており、吸着室21内の全体に亘って分散収容されている。ペレット状の吸着材18は、直径1〜3mm程度で長さ1〜5mm程度とすればよい。吸着材18がペレット状となっていることで、当該吸着材18を吸着室21内に収容したときに、各吸着材18同士の間に適宜な空隙が確保されるので、良好な通気性が確保されて圧力損失や吸着・脱離作用が損なわれることが避けられる。吸着材18は、吸着室21内に収容したときに空隙が確保されるような形状であれば、ペレット状のほか、球状、多角形状、扁平状などとすることもできる。   As the adsorbent 18, a porous body having a large number of pores capable of adsorbing and holding evaporated fuel molecules is used, and activated carbon is typically used. The adsorbent 18 of Example 1 is formed by granulating and molding a plurality of fine powdery activated carbon into a pellet (short cylindrical shape) with a binder, and is dispersedly accommodated throughout the adsorption chamber 21. Has been. The pellet-shaped adsorbent 18 may be about 1 to 3 mm in diameter and about 1 to 5 mm in length. Since the adsorbent 18 is in the form of a pellet, when the adsorbent 18 is accommodated in the adsorption chamber 21, an appropriate gap is secured between the adsorbents 18. It is ensured that the pressure loss and the adsorption / desorption action are not impaired. The adsorbent 18 may be in the form of a pellet, as well as a spherical shape, a polygonal shape, a flat shape, etc., as long as the adsorbent 18 has a shape that can secure a void when accommodated in the adsorption chamber 21.

蓄熱材22は、相変化物質24を内包した複数の微細なマイクロカプセル23が、バインダによって扁平な平板状に成形されている。マイクロカプセル23は、図3に示すように、中空球形の外殻25(マイクロカプセル)内に、温度変化に応じて潜熱の吸収・放出を生じる相変化物質24が封入されており、相変化物質24を芯材料として、コアセルベーション法、in−situ法(界面反応法)等の公知の方法により製造される。相変化物質24としては、吸着材18の温度変化に応じて固相と液相との間で相変化可能な物質であれば特に限定されず、融点が10〜80℃程度の有機化合物や無機化合物を使用できる。具体的には、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘンイコサン、ドコサンなどの直鎖の脂肪族炭化水素や、天然ワックス、石油ワックス、LiNO3・3H2O、Na2SO4・10H2O、Na2HPO4・12H2Oなどの無機化合物の水和物、カプリン酸、ラウリル酸等の脂肪酸、炭素数が12から15の高級アルコール、及びバルミチン酸メチル、ステアリン酸メチル等のエステル等が挙げられる。中でも、融点が20℃程度の相変化物質を用いることが好ましい。このような相変化物質24としては、融点が18℃のヘキサデカンや融点が22℃のヘプタデカン等がある。これら相変化物質24は、1種のみを単独で用いてもよいし、2種類以上を混合使用してもよい。外殻25は、メラミン樹脂、スチレン樹脂、ポリオルガノシロキサン、ゼラチンなどによって形成できる。中でも、メラミン樹脂が好ましい。バインダとしては種々の熱硬化性樹脂を用いることができるが、最終的なキャニスタとして要求される温度や強度の点から、フェノール樹脂やアクリル樹脂が好適である。 In the heat storage material 22, a plurality of fine microcapsules 23 including a phase change material 24 are formed into a flat plate shape by a binder. As shown in FIG. 3, the microcapsule 23 includes a hollow spherical outer shell 25 (microcapsule) in which a phase change material 24 that absorbs and releases latent heat according to a temperature change is enclosed. It is manufactured by a known method such as a coacervation method or an in-situ method (interface reaction method) using 24 as a core material. The phase change material 24 is not particularly limited as long as it is a material that can change between a solid phase and a liquid phase in accordance with the temperature change of the adsorbent 18, and is not limited to an organic compound or inorganic material having a melting point of about 10 to 80 ° C. Compounds can be used. Specifically, linear aliphatic hydrocarbons such as tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eicosan, heicosan, docosan, natural wax, petroleum wax, LiNO 3 3H 2 O, Na 2 SO 4・ Hydrates of inorganic compounds such as 10H 2 O and Na 2 HPO 4 · 12H 2 O, fatty acids such as capric acid and lauric acid, higher alcohols having 12 to 15 carbon atoms, methyl valmitate, methyl stearate, etc. And the like. Among them, it is preferable to use a phase change material having a melting point of about 20 ° C. Examples of the phase change material 24 include hexadecane having a melting point of 18 ° C. and heptadecane having a melting point of 22 ° C. These phase change materials 24 may be used alone or in combination of two or more. The outer shell 25 can be formed of melamine resin, styrene resin, polyorganosiloxane, gelatin or the like. Among these, melamine resin is preferable. As the binder, various thermosetting resins can be used, but a phenol resin and an acrylic resin are preferable from the viewpoint of temperature and strength required as a final canister.

そして、蓄熱材22は、上記複数のマイクロカプセル23をバインダと混練して平板状に押出成形した後、所定寸法毎に切断して得られる。蓄熱材22は、吸着室21の左右幅寸法と略同じ幅寸法を有し、その左右両端が、キャニスタケース10の左右両側壁10bの内面に一体形成された一対のレール状溝部10dに嵌合されることで、キャニスタ1の長手方向に沿って配されている。すなわち、蓄熱材22は、吸着室21を区画する対向する2つの側面の間で、蒸発燃料の流動方向に沿って保持されている。また、蓄熱材22の長さ寸法は吸着室21の高さ寸法と同じ寸法となっており、蓄熱材22の上下端はそれぞれ上下のフィルタ17u・17lと接触して保持されている。これにより、キャニスタ1に振動が加わっても、蓄熱材22が上下や左右方向等に位置ズレすることがない。レール状溝部10dは、複数対(本実施例1では3対)が等間隔で並設されており、各レール状溝部10dにそれぞれ1枚の蓄熱材22が嵌合されていることで、吸着室21内には複数枚(本実施例1では3枚)の扁平な蓄熱材22が等間隔で併設されている。そして、扁平な各蓄熱材22を取り囲むように、多数の吸着材18が吸着室21内に密に収容されている。   The heat storage material 22 is obtained by kneading the plurality of microcapsules 23 with a binder and extruding it into a flat plate shape, and then cutting it into predetermined dimensions. The heat storage material 22 has substantially the same width as the left and right width of the adsorption chamber 21, and both left and right ends thereof are fitted into a pair of rail-shaped grooves 10 d that are integrally formed on the inner surfaces of the left and right side walls 10 b of the canister case 10. As a result, the canisters 1 are arranged along the longitudinal direction. That is, the heat storage material 22 is held along the flow direction of the evaporated fuel between two opposing side surfaces that define the adsorption chamber 21. Further, the length of the heat storage material 22 is the same as the height of the adsorption chamber 21, and the upper and lower ends of the heat storage material 22 are held in contact with the upper and lower filters 17u and 17l, respectively. Thereby, even if a vibration is applied to the canister 1, the heat storage material 22 is not displaced in the vertical and horizontal directions. A plurality of pairs of rail-shaped grooves 10d (three pairs in the first embodiment) are arranged in parallel at equal intervals, and one heat storage material 22 is fitted to each of the rail-shaped grooves 10d. A plurality of (three in the first embodiment) flat heat storage materials 22 are provided in the chamber 21 at equal intervals. A large number of adsorbents 18 are densely accommodated in the adsorption chamber 21 so as to surround each flat heat storage material 22.

次に、実施例1のキャニスタ1の作用について説明する。車両停止時の高温雰囲気や車両走行時のエンジン駆動熱などによって燃料タンクが昇温されると、燃料タンク内に貯留されているガソリンも昇温して蒸発燃料が多量に発生する。この燃料タンクにおいて発生した蒸発燃料は、タンクポート13からキャニスタ1内へ導入されて大気ポート15へ向けて直線状に吸着室21内を流動していき、その間に吸着室21内に収容されている吸着材18に吸着されていく。このとき、蒸発燃料は吸着材18に吸着される際に液化する。すると、蒸発燃料の凝固熱によって吸着材18が昇温し、そのままでは吸着容量(吸着能力)が低下してしまう。しかし、吸着室21内に蓄熱材22が吸着材18と共に収納されていることで、吸着材18の温度上昇により蓄熱材22中の相変化物質24が固相から液相へ相変化して潜熱による吸熱が生じることで、吸着材18の温度上昇が抑制される。   Next, the operation of the canister 1 according to the first embodiment will be described. When the temperature of the fuel tank is raised due to the high temperature atmosphere when the vehicle is stopped or the engine drive heat when the vehicle is running, the temperature of the gasoline stored in the fuel tank is also raised and a large amount of evaporated fuel is generated. The evaporated fuel generated in the fuel tank is introduced into the canister 1 from the tank port 13 and flows in the adsorption chamber 21 linearly toward the atmospheric port 15, and is accommodated in the adsorption chamber 21 in the meantime. The adsorbent 18 is adsorbed. At this time, the evaporated fuel is liquefied when adsorbed on the adsorbent 18. Then, the temperature of the adsorbent 18 rises due to the heat of solidification of the evaporated fuel, and the adsorption capacity (adsorption capacity) decreases as it is. However, since the heat storage material 22 is accommodated in the adsorption chamber 21 together with the adsorbent 18, the phase change material 24 in the heat storage material 22 undergoes a phase change from the solid phase to the liquid phase due to the temperature rise of the adsorbent 18, and the latent heat. As a result, the temperature rise of the adsorbent 18 is suppressed.

吸気管負圧や吸引ポンプによってキャニスタ1内が負圧になると、大気ポート15から大気(外気)が吸入され、吸着材18に吸着されていた蒸発燃料が脱離(パージ)されて、上記とは逆の方向に流動してパージポート14から排出されていく。このとき、蒸発燃料は、吸着材18から脱離される際に気化する。すると、蒸発燃料の気化熱によって吸着材18の温度が低下し、そのままでは吸着容量(吸着能力)が低下してしまう。しかし、この吸着材18の温度低下により蓄熱材22・23中の相変化物質が液相から固相へ相変化して潜熱による発熱が生じることで、吸着材18の温度上昇が抑制される。   When the inside of the canister 1 becomes negative pressure by the intake pipe negative pressure or the suction pump, the atmosphere (outside air) is sucked from the atmosphere port 15 and the evaporated fuel adsorbed by the adsorbent 18 is desorbed (purged). Flows in the opposite direction and is discharged from the purge port 14. At this time, the evaporated fuel is vaporized when it is desorbed from the adsorbent 18. Then, the temperature of the adsorbent 18 decreases due to the heat of vaporization of the evaporated fuel, and the adsorption capacity (adsorption capacity) decreases as it is. However, the temperature change of the adsorbent 18 is suppressed because the phase change material in the heat storage materials 22 and 23 changes from the liquid phase to the solid phase due to the temperature drop of the adsorbent 18 to generate heat due to latent heat.

このように、蓄熱材22によって吸着材18の温度変化が抑制されるが、このとき、蓄熱材22の左右側端がキャニスタケース10の側壁10bに設けられたレール状溝部10dによって確り保持されていると共に、蓄熱材22の上下端も上下のフィルタ17u・17lによって保持されていることで、キャニスタ1に振動が加わっても蓄熱材22が吸着室21内で位置ズレすることはない。したがって、蓄熱材22と吸着材18との距離が常に略一定に保たれていることで、温度抑制効果が良好に発揮される。   As described above, the temperature change of the adsorbent 18 is suppressed by the heat storage material 22, but at this time, the left and right ends of the heat storage material 22 are firmly held by the rail-shaped groove 10 d provided on the side wall 10 b of the canister case 10. In addition, since the upper and lower ends of the heat storage material 22 are also held by the upper and lower filters 17u and 17l, the heat storage material 22 is not displaced in the adsorption chamber 21 even if vibration is applied to the canister 1. Therefore, since the distance between the heat storage material 22 and the adsorbent 18 is always kept substantially constant, the temperature suppression effect is satisfactorily exhibited.

(実施例2)
図4に、本発明の実施例2に係るキャニスタ1の縦断側面図を示し、図5に、第2形状の蓄熱材52の正面図を示す。上記実施例1のキャニスタ1には、平板状に成形された蓄熱材22を使用していたが、表裏面に凹凸を有する板状の蓄熱材52を使用することもできる。具体的には、図4、5に示すごとく、扁平な板状の蓄熱材52の表裏面に、複数本の突条52aが一体形成されている。これにより、蓄熱材52の表面積が増大することで、温度変化抑制機能が向上する。突条52aの向きは左右方向でも構わないが、通気性を阻害しないように、蒸発燃料の流動方向に沿う上下方向が好ましい。突条52aの本数は特に制限されず1本以上あればよいが、できるだけ多い方が好ましい。複数本の突条52aを並設する場合、等間隔で並設することが好ましい。
(Example 2)
FIG. 4 shows a vertical side view of the canister 1 according to the second embodiment of the present invention, and FIG. 5 shows a front view of the second shape heat storage material 52. In the canister 1 of the first embodiment, the heat storage material 22 formed in a flat plate shape is used, but a plate-shaped heat storage material 52 having irregularities on the front and back surfaces can also be used. Specifically, as shown in FIGS. 4 and 5, a plurality of protrusions 52 a are integrally formed on the front and back surfaces of a flat plate-shaped heat storage material 52. Thereby, the temperature change suppression function improves because the surface area of the heat storage material 52 increases. The direction of the protrusion 52a may be the left-right direction, but the vertical direction along the flow direction of the evaporated fuel is preferable so as not to impair air permeability. The number of the protrusions 52a is not particularly limited and may be one or more, but is preferably as many as possible. When arranging the plurality of protrusions 52a in parallel, it is preferable to arrange them at regular intervals.

本実施例2のキャニスタ1で使用している蓄熱材52は、複数の微細なマイクロカプセル23をバインダと混練し、射出成形により一体成形している。または、若干厚い平板状に押出成形した後、プレス成形することで凹凸(突条52a)を形成することもできる。さらに、各突条52aが蓄熱材52の上下端に亘って形成されているような形状として、押出成形してもよい。蓄熱材52の保持構造や作用など、その他は先の実施例1と同様なので、同じ部材に同じ符号を付してその説明を省略する。   In the heat storage material 52 used in the canister 1 of the second embodiment, a plurality of fine microcapsules 23 are kneaded with a binder and integrally formed by injection molding. Alternatively, the protrusions and protrusions (projections 52a) can be formed by extrusion molding into a slightly thick flat plate, followed by press molding. Furthermore, you may extrusion-mold as each ridge 52a in the shape where it is formed over the upper and lower ends of the thermal storage material 52. FIG. Since the holding structure and operation of the heat storage material 52 are the same as those of the first embodiment, the same members are denoted by the same reference numerals and the description thereof is omitted.

(実施例3)
図6に、本発明の実施例3に係るキャニスタ3の縦断正面図を示し、図7に、本発明の実施例3に係るキャニスタ3の横断平面図を示す。本実施例3は、内部に2つの吸着室38・39を有し、U字状の流路が形成されるキャニスタ3に、蓄熱材を配したものである。具体的には、図6及び図7に示されるように、本実施例3のキャニスタ3は、合成樹脂製で中空筒状のキャニスタケース30と、該キャニスタケース30の底面開口を閉塞する合成樹脂製のカバー31とを有する。キャニスタケース30とカバー31とはナイロン等の同じ素材で形成されており、それぞれのフランジ30aと31aとを突き合せた状態で、例えば振動溶接や接着などによって接合されている。本実施例3のキャニスタ3では、キャニスタケース30の上面に、タンクポート33、パージポート34、大気ポート35が、それぞれこれの順で一体形成されている。パージポート34と大気ポート35との間には、キャニスタケース30の上面からカバー31近傍まで上下に延びる長寸の隔壁37が一体形成されている。当該隔壁37によって、キャニスタ3の内部はタンクポート33側の第1の吸着室38と大気ポート35側の第2の吸着室39とに区画されている。これにより、キャニスタ3内には、タンクポート33及びパージポート34と大気ポート35とが隔壁37の下方を介して連通するU字状の流路が形成されている。なお、タンクポート33とパージポート34との間にも、キャニスタケース30の上面からカバー31に向けて延びる短寸の補助隔壁40が一体形成されている。
(Example 3)
FIG. 6 shows a longitudinal front view of a canister 3 according to Embodiment 3 of the present invention, and FIG. 7 shows a cross-sectional plan view of the canister 3 according to Embodiment 3 of the present invention. In the third embodiment, a heat storage material is arranged in a canister 3 having two adsorption chambers 38 and 39 therein and having a U-shaped flow path. Specifically, as shown in FIGS. 6 and 7, the canister 3 according to the third embodiment includes a canister case 30 that is made of a synthetic resin and has a hollow cylindrical shape, and a synthetic resin that closes the bottom opening of the canister case 30. And a cover 31 made of metal. The canister case 30 and the cover 31 are formed of the same material such as nylon, and are joined by, for example, vibration welding or adhesion in a state where the flanges 30a and 31a are abutted. In the canister 3 of the third embodiment, a tank port 33, a purge port 34, and an atmospheric port 35 are integrally formed on the upper surface of the canister case 30 in this order. A long partition wall 37 extending vertically from the upper surface of the canister case 30 to the vicinity of the cover 31 is integrally formed between the purge port 34 and the atmospheric port 35. By the partition wall 37, the inside of the canister 3 is partitioned into a first adsorption chamber 38 on the tank port 33 side and a second adsorption chamber 39 on the atmospheric port 35 side. As a result, a U-shaped flow path in which the tank port 33, the purge port 34 and the atmospheric port 35 communicate with each other via the lower side of the partition wall 37 is formed in the canister 3. A short auxiliary partition 40 extending from the upper surface of the canister case 30 toward the cover 31 is also integrally formed between the tank port 33 and the purge port 34.

キャニスタケース30内の上部及び下部には、それぞれ通気性を有する金属製のプレート41u・41lが配されていると共に、上下の両プレート41u・41lの内側に、それぞれ通気性を有するフィルタ42u・42lが配されている。これにより、第1の吸着室38及び第2の吸着室39は、これの側面が側壁30bと隔壁37とで区画されており、上下面が上下のフィルタ42u・42lで区画されている。上部のプレート41uは、キャニスタケース30の側壁30bの上部に設けられた段部30cで受け止められる。一方、下部のプレート41lは、カバー31との間に配されたコイルスプリング43によって常時タンクポート33側へ付勢されている。これにより、吸着材18がバラツクことなく収容保持される。上記実施例1や2と同様に、フィルタ42には合成樹脂製の不織布や発泡ウレタンなどが使用される。また、プレート41は、多数の細孔を有する板やメッシュなどが使用される。   Metal plates 41u and 41l having air permeability are arranged at the upper and lower portions in the canister case 30, respectively, and filters 42u and 42l having air permeability are provided inside the upper and lower plates 41u and 41l, respectively. Is arranged. Thus, the first adsorption chamber 38 and the second adsorption chamber 39 are partitioned by the side walls 30b and the partition walls 37, and the upper and lower surfaces are partitioned by the upper and lower filters 42u and 42l. The upper plate 41 u is received by a step portion 30 c provided on the upper portion of the side wall 30 b of the canister case 30. On the other hand, the lower plate 41 l is constantly urged toward the tank port 33 by a coil spring 43 disposed between the lower plate 41 l and the cover 31. Thereby, the adsorbent 18 is accommodated and held without variation. As in the first and second embodiments, the filter 42 is made of synthetic resin nonwoven fabric or urethane foam. The plate 41 is a plate or mesh having a large number of pores.

第1の吸着室38は略四角柱形の空間となっており、当該第1の吸着室38内に上記実施例2と同様の複数(本実施例3では3枚)の蓄熱材52が等間隔で並設されていると共に、各蓄熱材52を取り囲むように、ペレット状の吸着材18が密に収容されている。本実施例3の蓄熱材52も、キャニスタケース30の側壁30bと隔壁37とに一体形成されたレール状溝部30dに嵌合されている。また、蓄熱材52の下端は下部のフィルタ42lと接触しているが、蓄熱材52の上端は、補助隔壁40の下端と接触している。   The first adsorption chamber 38 is a substantially quadrangular prism-shaped space, and a plurality of (three in this embodiment) heat storage materials 52 as in the second embodiment are stored in the first adsorption chamber 38. The pellet-shaped adsorbents 18 are densely accommodated so as to be arranged in parallel at intervals and to surround each heat storage material 52. The heat storage material 52 of the third embodiment is also fitted in a rail-shaped groove 30 d formed integrally with the side wall 30 b and the partition wall 37 of the canister case 30. The lower end of the heat storage material 52 is in contact with the lower filter 42 l, but the upper end of the heat storage material 52 is in contact with the lower end of the auxiliary partition wall 40.

一方、第2の吸着室39は円柱形の空間となっており、当該第2の吸着室39内には、蒸発燃料が流動可能な高さ方向に延びる空間を有する柱状に形成された第3形状の蓄熱材53が収容されている。具体的には、蓄熱材53は、複数枚(本実施例3では6枚)の平板53aが中心軸から360°周方向に等間隔で並んだ矢羽根状などを呈し、各平板53aの間の空間に吸着材18が密に充填されている。蓄熱材53は、第2の吸着室39と同じ高さ寸法を有し、第2の吸着室39の上下面を区画する上下のフィルタ42u・42lと接触して、上下方向へ位置ズレすることないよう保持されている。また、蓄熱材53の外径は第2の吸着室39の内径と略同じ寸法であり、蓄熱材53の外面(各平板53aの先端)が第2の吸着室39の内面に接触して、水平方向へ位置ズレすることないよう保持されている。第3形状の蓄熱材53も、複数の微細なマイクロカプセル23をバインダと混練して押出成形し、所定寸法毎に切断して得られる。本実施例3における作用は、先の実施例1や実施例2と基本的に同様なので、その説明を省略する。   On the other hand, the second adsorption chamber 39 is a cylindrical space, and a third column formed in the second adsorption chamber 39 has a column shape having a space extending in a height direction in which the evaporated fuel can flow. A shape heat storage material 53 is accommodated. Specifically, the heat storage material 53 has a plurality of (six in the third embodiment) flat plates 53a in the shape of arrow feathers arranged at equal intervals in the 360 ° circumferential direction from the central axis, and between the flat plates 53a. The adsorbent 18 is closely packed in the space. The heat storage material 53 has the same height as the second adsorption chamber 39 and is in contact with the upper and lower filters 42 u and 42 l that define the upper and lower surfaces of the second adsorption chamber 39 and is displaced in the vertical direction. Not to be held. The outer diameter of the heat storage material 53 is substantially the same as the inner diameter of the second adsorption chamber 39, and the outer surface of the heat storage material 53 (the tip of each flat plate 53 a) is in contact with the inner surface of the second adsorption chamber 39, It is held so as not to be displaced in the horizontal direction. The heat storage material 53 having the third shape is also obtained by kneading a plurality of fine microcapsules 23 with a binder, extrusion molding, and cutting into predetermined dimensions. Since the operation in the third embodiment is basically the same as that in the first and second embodiments, the description thereof is omitted.

(その他の変形例)
このように、略四角柱形の吸着室や円柱形の吸着室に収容できる代表的な形状の蓄熱材について説明したが、その他にも種々の形状の蓄熱材を使用できる。具体的には、上記実施例3では6枚の平板53aからなる蓄熱材53を使用したが、矢羽根状の蓄熱材を成す平板の数は特に限定されず、3枚以上あればよい。好ましくは、図8に示す第4形状の蓄熱材54のように、8枚程度の平板54aを有する矢羽根状とする。平板の数が増えることで、蓄熱材と吸着材との接触面積が増大して、温度変化抑制機能が向上する。
(Other variations)
As described above, the heat storage material having a typical shape that can be accommodated in the substantially square columnar adsorption chamber or the columnar adsorption chamber has been described, but various other shapes of the heat storage material can be used. Specifically, in the third embodiment, the heat storage material 53 including the six flat plates 53a is used. However, the number of flat plates forming the arrow-shaped heat storage material is not particularly limited, and may be three or more. Preferably, it is in the shape of an arrow blade having about eight flat plates 54a like the fourth shape heat storage material 54 shown in FIG. By increasing the number of flat plates, the contact area between the heat storage material and the adsorbent increases, and the temperature change suppression function is improved.

また、図9に示す第5形状の蓄熱材55や、図10に示す第6形状の蓄熱材56のように、上下面が開口する中空な円筒形や四角筒形とすることもできる。円柱形の吸着室には円筒形の蓄熱材55を収容し、四角柱形の吸着室には四角筒形の蓄熱材56を収容することが好ましい。また、図11に示す第7形状の蓄熱材57や、図12に示す第8形状の蓄熱材58のように、円筒又は四角筒形の中空空間が、複数枚の板57a・58aによって仕切られたものを使用することもできる。これによれば、蓄熱材と吸着材との接触面積が増大して温度変化抑制機能が向上すると共に、均一に温度変化を抑制可能となる。さらに、図13に示す第9形状の蓄熱材59や、図14に示す第10形状の蓄熱材60のように、円筒又は四角筒形の中空空間が、格子状に仕切られた多数の細長い細孔59a・60aを有するハニカム状のものを使用することもできる。これによれば、蓄熱材と吸着材との接触面積がさらに増大して温度変化抑制機能がより向上すると共に、より均一に温度変化を抑制可能となる。なお、ハニカム状の蓄熱材59・60を使用する場合は、小径の吸着材18を充填する。また、図15に示す第11形状の蓄熱材61や、図16に示す第12形状の蓄熱材62のように、内外に複数の円筒又は四角筒を有するような形状とすることもできる。蓄熱材61や蓄熱材62では、各筒同士が連結片61a・62aによって連結されている。これら筒状の蓄熱材55〜62も、多数の微細なマイクロカプセルをバインダと混練し、押出成形によって得られる。なお、四角柱形の吸着室に四角筒形の蓄熱材を収容する場合は、レール状溝部は不要である。   Moreover, it can also be set as the hollow cylinder shape and square cylinder shape which upper and lower surfaces open like the 5th shape heat storage material 55 shown in FIG. 9, and the 6th shape heat storage material 56 shown in FIG. It is preferable that a cylindrical heat storage material 55 be accommodated in the columnar adsorption chamber, and a square cylindrical heat storage material 56 be accommodated in the square columnar adsorption chamber. Further, as in the seventh shape heat storage material 57 shown in FIG. 11 and the eighth shape heat storage material 58 shown in FIG. 12, a cylindrical or square cylindrical hollow space is partitioned by a plurality of plates 57a and 58a. Can also be used. According to this, the contact area between the heat storage material and the adsorbent is increased, the temperature change suppression function is improved, and the temperature change can be uniformly suppressed. Further, like the ninth shape heat storage material 59 shown in FIG. 13 and the tenth shape heat storage material 60 shown in FIG. 14, a cylindrical or square cylindrical hollow space is divided into a large number of elongated thin cells. A honeycomb-shaped member having holes 59a and 60a can also be used. According to this, the contact area between the heat storage material and the adsorbent is further increased, the temperature change suppression function is further improved, and the temperature change can be more uniformly suppressed. In addition, when using the honeycomb-shaped heat storage materials 59 and 60, the small diameter adsorbent 18 is filled. Moreover, it can also be set as a shape which has a some cylinder or square cylinder inside and outside like the 11th shape heat storage material 61 shown in FIG. 15, and the 12th shape heat storage material 62 shown in FIG. In the heat storage material 61 and the heat storage material 62, the cylinders are connected to each other by connecting pieces 61a and 62a. These cylindrical heat storage materials 55 to 62 are also obtained by kneading many fine microcapsules with a binder and extrusion molding. In addition, when accommodating a square cylinder-shaped heat storage material in a quadrangular columnar adsorption chamber, a rail-shaped groove is not necessary.

第3〜第12形状の蓄熱材53〜62のように、大きな意味で柱状の蓄熱材を使用する場合は、少なくとも吸着室を区画する上下面の間で保持可能な高さ寸法を有していれば、その外径は吸着室の内径よりも小さくてもよい。このような場合でも、蓄熱材の上下端が吸着室を区画する上下面で保持されているので、振動により水平方向へ位置ズレし難い。   In the case of using a columnar heat storage material in a large sense like the third to twelfth shape heat storage materials 53 to 62, it has at least a height dimension that can be held between the upper and lower surfaces defining the adsorption chamber. If so, the outer diameter may be smaller than the inner diameter of the adsorption chamber. Even in such a case, since the upper and lower ends of the heat storage material are held by the upper and lower surfaces that define the adsorption chamber, it is difficult to shift the position in the horizontal direction due to vibration.

実施例1のキャニスタの縦断側面図である。1 is a longitudinal side view of a canister according to Embodiment 1. FIG. 実施例1のキャニスタの横断平面図である。1 is a cross-sectional plan view of a canister according to Embodiment 1. FIG. マイクロカプセルの一部破断正面図である。It is a partially broken front view of a microcapsule. 実施例2のキャニスタの横断平面図である。6 is a cross-sectional plan view of a canister according to Embodiment 2. FIG. 第2形状の蓄熱材の正面図である。It is a front view of the 2nd shape heat storage material. 実施例3のキャニスタの縦断正面図である。6 is a longitudinal front view of a canister according to Embodiment 3. FIG. 実施例3のキャニスタの横断側面図である。6 is a cross-sectional side view of a canister according to Embodiment 3. FIG. 第4形状の蓄熱材の斜視図である。It is a perspective view of the 4th shape heat storage material. 第5形状の蓄熱材の斜視図である。It is a perspective view of the 5th shape heat storage material. 第6形状の蓄熱材の斜視図である。It is a perspective view of the 6th shape heat storage material. 第7形状の蓄熱材の平面図である。It is a top view of the 7th shape heat storage material. 第8形状の蓄熱材の平面図である。It is a top view of the 8th shape heat storage material. 第9形状の蓄熱材の平面図である。It is a top view of the 9th shape heat storage material. 第10形状の蓄熱材の平面図である。It is a top view of the 10th shape heat storage material. 第11形状の蓄熱材の平面図である。It is a top view of the 11th shape heat storage material. 第12形状の蓄熱材の平面図である。It is a top view of the 12th shape heat storage material.

符号の説明Explanation of symbols

1・3 キャニスタ
10・30 キャニスタケース
10a・30a フランジ
10b・30b 側壁
10c・30c 段部
10d・30d レール状溝部
11・31 カバー
11a・31a フランジ
13・33 タンクポート
14・34 パージポート
15・35 大気ポート
17・42 フィルタ
18 吸着材
19・41 プレート
20・43 コイルスプリング
21 吸着室
22・52・53・54・55・56・57・58・59・60・61・62 蓄熱材
23 マイクロカプセル
24 相変化物質
25 外殻
37 隔壁
38 第1の吸着室
39 第2の吸着室
40 補助隔壁
52a 突条
53a・54a 平板
57a・58a 板
59a・60a 細孔
61a・62a 連結片

1.3 Canister 10/30 Canister case 10a / 30a Flange 10b / 30b Side wall 10c / 30c Step 10d / 30d Rail-shaped groove 11/31 Cover 11a / 31a Flange 13/33 Tank port 14/34 Purge port 15/35 Atmosphere Port 17/42 Filter 18 Adsorbent 19/41 Plate 20/43 Coil spring 21 Adsorption chamber 22, 52/53/54/55/56/57/58/59/60/61/62 Heat storage material 23 Microcapsule 24 Phase Change material 25 Outer shell 37 Partition 38 First adsorption chamber 39 Second adsorption chamber 40 Auxiliary partition 52a Projection 53a / 54a Flat plate 57a / 58a Plate 59a / 60a Fine pore 61a / 62a Connecting piece

Claims (4)

吸着室内に蒸発燃料を吸着・脱離する吸着材と、温度変化に応じて潜熱の吸収・放出を生じる蓄熱材とが収容されているキャニスタにおいて、
前記蓄熱材は、相変化物質を内包した複数のマイクロカプセルがバインダによって所定形状に一体成形された、キャニスタケースから独立した成形体とされており、
該蓄熱材は、前記吸着室を区画する対向する2つの面に接触ないし近接する寸法を有し、該対向する2つの面の間で保持されており、
前記バインダは熱硬化性樹脂であり、
前記蓄熱材は、蒸発燃料の流動方向に沿って配設されていることを特徴とするキャニスタ。
In a canister in which an adsorbent that adsorbs / desorbs evaporated fuel in an adsorption chamber and a heat storage material that absorbs / releases latent heat according to temperature changes are accommodated.
The heat storage material is a molded body independent of a canister case , in which a plurality of microcapsules enclosing a phase change material are integrally molded into a predetermined shape by a binder,
The heat storage material has a size in contact with or close to two opposing surfaces that define the adsorption chamber, and is held between the two opposing surfaces,
The binder Ri der thermosetting resin,
The canister characterized in that the heat storage material is disposed along the flow direction of the evaporated fuel .
前記蓄熱材は、前記吸着室を区画する対向する2つの側面の間で保持可能な板状に成形されており、
複数枚の前記蓄熱材が前記吸着室内に等間隔で並設されている、請求項1に記載のキャニスタ。
The heat storage material is molded into a plate shape that can be held between two opposing side surfaces that define the adsorption chamber,
The canister according to claim 1, wherein a plurality of the heat storage materials are arranged in parallel in the adsorption chamber at equal intervals.
前記蓄熱材は、前記吸着室を区画する上下面の間で保持可能な高さ寸法を有し、かつ蒸発燃料が流動可能な高さ方向に延びる空間を有する柱状に形成されている、請求項1に記載のキャニスタ。   The heat storage material has a height dimension that can be held between upper and lower surfaces that define the adsorption chamber, and is formed in a column shape having a space extending in a height direction in which evaporated fuel can flow. The canister according to 1. 前記蓄熱材は、蒸発燃料が流動可能な高さ方向に延びる空間を有する柱状に形成されており、
該蓄熱材を前記吸着室内に収容したとき、前記蓄熱材が前記吸着室の側面に接触している、請求項1または請求項3に記載のキャニスタ。

The heat storage material is formed in a column shape having a space extending in a height direction in which the evaporated fuel can flow,
The canister according to claim 1 or 3, wherein when the heat storage material is accommodated in the adsorption chamber, the heat storage material is in contact with a side surface of the adsorption chamber.

JP2008115659A 2008-04-25 2008-04-25 Canister Active JP5148352B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008115659A JP5148352B2 (en) 2008-04-25 2008-04-25 Canister
US12/426,377 US7922797B2 (en) 2008-04-25 2009-04-20 Canisters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008115659A JP5148352B2 (en) 2008-04-25 2008-04-25 Canister

Publications (2)

Publication Number Publication Date
JP2009264273A JP2009264273A (en) 2009-11-12
JP5148352B2 true JP5148352B2 (en) 2013-02-20

Family

ID=41213717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008115659A Active JP5148352B2 (en) 2008-04-25 2008-04-25 Canister

Country Status (2)

Country Link
US (1) US7922797B2 (en)
JP (1) JP5148352B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7841321B2 (en) * 2005-01-28 2010-11-30 Aisan Kogyo Kabushiki Kaisha Canister and method of manufacturing the same
US7909919B2 (en) * 2008-03-10 2011-03-22 Aisan Kogyo Kabushiki Kaisha Vaporized fuel treatment apparatus
JP5005613B2 (en) * 2008-05-27 2012-08-22 愛三工業株式会社 Canister
JP5242360B2 (en) * 2008-12-11 2013-07-24 愛三工業株式会社 Evaporative fuel processing equipment
DE102009020703B4 (en) * 2009-05-11 2017-07-13 A. Kayser Automotive Systems Gmbh Activated carbon filter for an internal combustion engine
JP5638298B2 (en) 2010-07-08 2014-12-10 愛三工業株式会社 Granulated heat storage material and evaporative fuel processing device
JP5744427B2 (en) * 2010-07-13 2015-07-08 愛三工業株式会社 Granulated heat storage material and evaporative fuel processing device
JP5627948B2 (en) * 2010-07-30 2014-11-19 愛三工業株式会社 Evaporative fuel processing equipment
JP5770040B2 (en) * 2011-07-28 2015-08-26 愛三工業株式会社 Evaporative fuel processing equipment
JP2013032737A (en) * 2011-08-02 2013-02-14 Aisan Industry Co Ltd Evaporated fuel treating device
FR2979832B1 (en) * 2011-09-13 2015-11-13 Renault Sas ACTIVE CHARCOAL FILTER WITH STORAGE VOLUME FOR FUEL TANK
EP2689952B1 (en) * 2012-07-26 2017-05-17 Kautex Textron GmbH & Co. Kg Fuel vapor storage and recovery apparatus
JP2014118896A (en) * 2012-12-18 2014-06-30 Mahle Filter Systems Japan Corp Evaporation fuel treatment device
JP2015078650A (en) * 2013-10-17 2015-04-23 愛三工業株式会社 Heat storage material for canister
US9145051B2 (en) 2013-12-09 2015-09-29 Ford Global Technologies, Llc Systems and methods for managing bleed emissions in plug-in hybrid electric vehicles
US9050885B1 (en) 2013-12-09 2015-06-09 Ford Global Technologies, Llc Systems and methods for managing bleed emissions in plug-in hybrid electric vehicles
KR101684097B1 (en) * 2015-04-13 2016-12-20 현대자동차주식회사 Filter unit for Canister
JP6594758B2 (en) * 2015-12-10 2019-10-23 株式会社マーレ フィルターシステムズ Canister heater
WO2018079447A1 (en) * 2016-10-24 2018-05-03 大阪ガスケミカル株式会社 Canister
JP6591955B2 (en) * 2016-12-12 2019-10-16 フタバ産業株式会社 Canister
JP7071324B2 (en) * 2019-12-27 2022-05-18 フタバ産業株式会社 Canister
JP7303241B2 (en) * 2021-04-16 2023-07-04 フタバ産業株式会社 canister
JP7381516B2 (en) * 2021-04-16 2023-11-15 フタバ産業株式会社 canister

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246462A (en) 1987-04-01 1988-10-13 Aisan Ind Co Ltd Canister for preventing discharge of vaporizing fuel
JPH084605A (en) 1994-06-16 1996-01-09 Honda Motor Co Ltd Evaporated fuel processing device
US5861050A (en) * 1996-11-08 1999-01-19 Store Heat And Produce Energy, Inc. Thermally-managed fuel vapor recovery canister
EP1536128B1 (en) * 2002-06-18 2012-02-15 Osaka Gas Co., Ltd. Adsorbent of latent-heat storage type for canister and process for producing the same
JP2005233106A (en) 2004-02-20 2005-09-02 Mahle Tennex Corp Canister
US7323041B2 (en) * 2004-03-30 2008-01-29 Mahle Filter Systems Japan Corporation Gas storage canister
JP2006207485A (en) * 2005-01-28 2006-08-10 Aisan Ind Co Ltd Canister
US7841321B2 (en) * 2005-01-28 2010-11-30 Aisan Kogyo Kabushiki Kaisha Canister and method of manufacturing the same
KR20070049425A (en) * 2005-11-08 2007-05-11 대기산업 주식회사 The vehicle canister
JP4708283B2 (en) * 2006-08-03 2011-06-22 トヨタ自動車株式会社 Canister
US7909919B2 (en) * 2008-03-10 2011-03-22 Aisan Kogyo Kabushiki Kaisha Vaporized fuel treatment apparatus
JP5005613B2 (en) * 2008-05-27 2012-08-22 愛三工業株式会社 Canister
JP5227084B2 (en) * 2008-05-27 2013-07-03 愛三工業株式会社 Granulated heat storage material and manufacturing method thereof
JP5242360B2 (en) * 2008-12-11 2013-07-24 愛三工業株式会社 Evaporative fuel processing equipment

Also Published As

Publication number Publication date
JP2009264273A (en) 2009-11-12
US20090266236A1 (en) 2009-10-29
US7922797B2 (en) 2011-04-12

Similar Documents

Publication Publication Date Title
JP5148352B2 (en) Canister
JP5583609B2 (en) Canister
JP4173065B2 (en) Evaporative fuel processing equipment
US8177893B2 (en) Fuel vapor processing apparatus
JP5638298B2 (en) Granulated heat storage material and evaporative fuel processing device
US5861050A (en) Thermally-managed fuel vapor recovery canister
US10221812B2 (en) Canister
JP2013151875A (en) Trap canister
JP2008303846A (en) Canister
US8506691B2 (en) Shaped heat storage materials including heat transfer members
EP3530930B1 (en) Canister
US11896949B2 (en) Adsorbent, canister and method for producing adsorbent
JP2006207485A (en) Canister
JP4795386B2 (en) Canister
KR101761548B1 (en) Assembling support for canister of vehicle
JP5627948B2 (en) Evaporative fuel processing equipment
JP7381516B2 (en) canister
JP4471700B2 (en) Canister
JP2005282481A (en) Canister
JP5179965B2 (en) Canister
JP2018084195A (en) Adsorbent and canister using the same
JP4795387B2 (en) Canister and manufacturing method thereof
JP2017089499A (en) Canister
JP2011214444A (en) Canister
CN116122997A (en) Filter pot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120223

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Ref document number: 5148352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250