JP5148124B2 - Method for manufacturing substrate for electron emitter and method for manufacturing electron emitter - Google Patents

Method for manufacturing substrate for electron emitter and method for manufacturing electron emitter Download PDF

Info

Publication number
JP5148124B2
JP5148124B2 JP2007027745A JP2007027745A JP5148124B2 JP 5148124 B2 JP5148124 B2 JP 5148124B2 JP 2007027745 A JP2007027745 A JP 2007027745A JP 2007027745 A JP2007027745 A JP 2007027745A JP 5148124 B2 JP5148124 B2 JP 5148124B2
Authority
JP
Japan
Prior art keywords
electron emitter
graphite
film forming
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007027745A
Other languages
Japanese (ja)
Other versions
JP2008192534A (en
Inventor
宏興 王
佳子 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pureron Japan Co Ltd
Original Assignee
Pureron Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pureron Japan Co Ltd filed Critical Pureron Japan Co Ltd
Priority to JP2007027745A priority Critical patent/JP5148124B2/en
Publication of JP2008192534A publication Critical patent/JP2008192534A/en
Application granted granted Critical
Publication of JP5148124B2 publication Critical patent/JP5148124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

本発明は、電子エミッタ用基材の製造方法および電子エミッタの製造方法に関するものである。 The present invention relates to a manufacturing method and manufacturing method of the electron emitter electron emitter substrate.

従来、真空成膜室に導入した炭素含有ガスを直流プラズマで分解して基材表面に電界放射により電子を放出する電界電子放出性能を有するサイズnmオーダーの炭素膜を成膜して電子エミッタを作製する作製プロセスが知られる。この電子エミッタ作製プロセスでは、上記炭素膜成膜前には、真空成膜室内部に配置した基材表面にバッファ層を作製して成膜条件を整えておくことが必要である。しかしながら、このバッファ層の作製プロセスには数十分という多大な時間を要するために、従来では電子エミッタの量産化は困難とされていた。   Conventionally, a carbon-containing gas introduced into a vacuum film-forming chamber is decomposed by DC plasma, and a carbon film of size nm order having a field electron emission performance of emitting electrons by field emission is formed on the surface of the substrate to form an electron emitter. Manufacturing processes for manufacturing are known. In this electron emitter manufacturing process, before the carbon film is formed, it is necessary to prepare a buffer layer on the surface of the substrate disposed in the vacuum film forming chamber and to adjust the film forming conditions. However, since this buffer layer manufacturing process takes a long time of several tens of minutes, it has heretofore been difficult to mass-produce electron emitters.

なお、特表2002−509339公報に電子エミッタの製造方法として、ワイヤ上に黒鉛粒子およびガラスを含む複合層を形成しこの黒鉛粒子をウィスカに形成するものが提案されている。
特表2002−509339公報
JP 2002-509339 A proposes a method for producing an electron emitter in which a composite layer containing graphite particles and glass is formed on a wire and the graphite particles are formed into whiskers.
Special Table 2002-509339

本発明により解決すべき課題は、上記電子エミッタ作製プロセスが含む、成膜の前に予め基材表面にバッファ層を生成するプロセスを省略可能とすることである。   The problem to be solved by the present invention is to make it possible to omit the process of generating the buffer layer on the surface of the substrate in advance before the film formation, which is included in the above-mentioned electron emitter manufacturing process.

本発明による電子エミッタ用基材の製造方法は、表面が導電性の基体を多数同時に黒鉛含有ペースト溶液に浸漬して、上記基体の導電性表面に黒鉛含有ペーストを付着させる工程と、上記付着した黒鉛含有ペーストを焼成して、上記基体の導電性表面に直流プラズマによる炭素膜成膜の条件に適合したバッファ層としての黒鉛含有膜を生成する工程と、を含むことを特徴とする。上記黒鉛含有ペースト中に直流プラズマ中の炭素成分に接触作用して炭素膜生成を促進する触媒を含むことが好ましい。上記付着には種々のコーティングや印刷を含むものであり、例へば、スピン、吹付、浸漬、ウェブ、ダイもしくは蒸発コーティング、無電解付着、インクジェット印刷、スクリーン印刷、マイクロコンタクト印刷、スタンピングもしくはソフトリソグラフィ、等が含まれる。また、上記ペーストはペースト状のものを含み、スラリ−状も含むことができる。 The method of manufacturing a substrate for an electron emitter according to the present invention includes a step of simultaneously immersing a large number of conductive bases in a graphite-containing paste solution and attaching the graphite-containing paste to the conductive surface of the base. And firing a graphite-containing paste to form a graphite-containing film as a buffer layer that conforms to the conditions for forming a carbon film by direct current plasma on the conductive surface of the substrate. It is preferable that the graphite-containing paste contains a catalyst that promotes carbon film formation by contacting the carbon component in the direct current plasma. The deposition includes various coatings and printing, such as spin, spraying, dipping, web, die or evaporation coating, electroless deposition, inkjet printing, screen printing, microcontact printing, stamping or soft lithography, etc. Is included. The paste includes a paste and can also include a slurry.

この基体はワイヤ状に延びる導電性ワイヤや、平面視矩形形状をなすフラットパネル形の基体でもよい。この基体は全体が導電性を有するものでも、内部絶縁性で表面が導電性を有するものでもよい。この基体は内部中実でも内部中空でもよい。内部絶縁性部材で構成されている場合、その表面の導電性材は、例えば吹付、浸漬、ウェブもしくはスピンコート、あるいは液体コーティングにより付着、あるいは真空蒸着もしくは蒸着してもよい。上記黒鉛含有ペーストは粉末状活物質である黒鉛と金属表面と付着性のある高分子結合剤等との混合物から調製したものでもよい。   The substrate may be a conductive wire extending in a wire shape or a flat panel substrate having a rectangular shape in plan view. This substrate may be entirely conductive, or may be internally insulating and have a conductive surface. This substrate may be solid inside or hollow inside. In the case of an internal insulating member, the conductive material on the surface may be attached by, for example, spraying, dipping, web or spin coating, or liquid coating, or vacuum deposition or vapor deposition. The graphite-containing paste may be prepared from a mixture of graphite, which is a powdered active material, a metal surface, and an adhesive polymer binder.

本発明による電子エミッタ用基材の製造方法では、例えば黒鉛含有ペーストを含む溶液中に導電性ワイヤ等の多数の基体を一度に浸漬することによりそれら表面に黒鉛含有ペーストを一度に付着させ、次いで例えば焼成炉で焼成することにより表面にペースト中の他の含有成分が気化して黒鉛含有純度が高い黒鉛含有膜を有する電子エミッタ用基材を大量に生産することができる。   In the method for producing a substrate for an electron emitter according to the present invention, for example, by immersing a large number of substrates such as conductive wires in a solution containing a graphite-containing paste at a time, the graphite-containing paste is adhered to the surface at a time, For example, by firing in a firing furnace, other components in the paste are vaporized on the surface, and a large amount of electron emitter base materials having a graphite-containing film having a high graphite-containing purity can be produced.

本発明では、電子エミッタ用基材の製造方法にて製造した電子エミッタ用基材を用いると、真空成膜室内で基材表面にバッファ層を作製する必要がないので、電子エミッタ作製プロセスに要するプロセス時間を大幅に短縮化することができる。
本発明による電子エミッタ製造方法は、真空成膜室と、上記真空成膜室内に設けられ対向する一対の半筒状電極を複数連設してなる筒状電極と、上記真空成膜室内に成膜ガスを導入するガス導入系と、上記筒状電極に直流負電圧を印加する直流電源とを備えた直流プラズマ成膜装置を用いて、上記の電子エミッタ用基材の製造方法により製造した電子エミッタ用基材を上記筒状電極の各半筒状電極間に配置し、上記真空成膜室内に上記ガス導入系から成膜ガスを導入すると共に上記筒状電極に直流負電圧を印加してこの成膜ガスをプラズマ化し、各電子エミッタ用基材の表面に電界電子放出性能を有する炭素膜を成膜することを特徴とする。
In the present invention, when the electron emitter base material manufactured by the method for manufacturing an electron emitter base material is used, it is not necessary to prepare a buffer layer on the surface of the base material in the vacuum film forming chamber. Process time can be greatly reduced.
An electron emitter manufacturing method according to the present invention comprises a vacuum film forming chamber, a cylindrical electrode formed by connecting a plurality of opposing semi-cylindrical electrodes provided in the vacuum film forming chamber, and a vacuum film forming chamber. Electrons manufactured by the above-described electron emitter substrate manufacturing method using a DC plasma film forming apparatus having a gas introduction system for introducing a film gas and a DC power source for applying a DC negative voltage to the cylindrical electrode. An emitter base material is disposed between the semi-cylindrical electrodes of the cylindrical electrode, a film forming gas is introduced from the gas introducing system into the vacuum film forming chamber, and a DC negative voltage is applied to the cylindrical electrode. This film forming gas is converted into plasma, and a carbon film having field electron emission performance is formed on the surface of each electron emitter substrate.

この電子エミッタの製造方法では、電子エミッタ用基材表面には既にバッファ層が設けられているので真空成膜室内での直流プラズマによるバッファ層作製プロセスが省略することができ、製造時間を大幅に短縮化できる。   In this electron emitter manufacturing method, since the buffer layer is already provided on the surface of the electron emitter substrate, the buffer layer manufacturing process by direct current plasma in the vacuum film forming chamber can be omitted, and the manufacturing time is greatly reduced. Can be shortened.

本発明によれば、電子エミッタ作製プロセスが含む、成膜の前に予め基材表面にバッファ層を生成するプロセスを省略できるので上記電子エミッタ作製時間を大幅短縮することができ、電子エミッタの量産化が容易に実現可能となった。   According to the present invention, the process of generating a buffer layer on the substrate surface in advance of film formation, which is included in the electron emitter preparation process, can be omitted, so that the electron emitter preparation time can be greatly reduced, and mass production of electron emitters can be achieved. Can be easily realized.

以下、添付した図面を参照して、本発明の実施の形態に係る電子エミッタ用基材、電子エミッタ用基材の製造方法および電子エミッタの製造方法を説明する。   Hereinafter, an electron emitter substrate, an electron emitter substrate manufacturing method, and an electron emitter manufacturing method according to embodiments of the present invention will be described with reference to the accompanying drawings.

図1(a)(b)を参照して電子エミッタ用基材を説明する。図1(a)は電子エミッタ用基材の側面断面図、図1(b)は図1(a)のA−A線断面図である。この電子エミッタ用基材10は、基体をなす導電性ワイヤ11の表面に直流プラズマによる炭素膜成膜の条件に適合したバッファ層としての黒鉛含有膜12が付着して構成されている。上記基体は一例として導電性ワイヤ11であったが、フラットパネル形状等の平面視矩形形状の基材でもよい。   An electron emitter substrate will be described with reference to FIGS. 1A is a side sectional view of the electron emitter substrate, and FIG. 1B is a sectional view taken along line AA of FIG. The electron emitter base material 10 is configured by adhering a graphite-containing film 12 as a buffer layer that conforms to the conditions for forming a carbon film by direct current plasma on the surface of a conductive wire 11 forming the base. Although the said base | substrate was the electroconductive wire 11 as an example, the base material of planar view rectangular shapes, such as a flat panel shape, may be sufficient.

この黒鉛含有膜12は直流プラズマの炭素成分に接触作用して炭素膜生成を促進する触媒を含むことができる。この触媒は例えば鉄、ニッケル、コバルト、あるいはそれらの合金がある。   The graphite-containing film 12 may include a catalyst that promotes carbon film formation by contacting the carbon component of the direct current plasma. Examples of the catalyst include iron, nickel, cobalt, and alloys thereof.

黒鉛含有膜12は高純度、高密度な黒鉛からなる膜であることが好ましい。黒鉛は人工(人造)黒鉛でもよいが、例えば天然黒鉛のような高結晶性黒鉛が好ましい。天然黒鉛としては、特に制限はなく、F48C(日本黒鉛(株)製の商品名)、H−50(中越黒鉛(株)の商品名)等の市販品を用いることができる。黒鉛含有膜12中で黒鉛の形状には、球状等があるが、鱗状や鱗片状等、比較的鋭い端部を有する形状等に超微粒子化されていることが好ましい。この超微粒子化により直流プラズマ成膜装置での炭素膜成膜が促進することができて好ましい。   The graphite-containing film 12 is preferably a film made of high-purity and high-density graphite. The graphite may be artificial (artificial) graphite, but highly crystalline graphite such as natural graphite is preferred. There is no restriction | limiting in particular as natural graphite, Commercial products, such as F48C (brand name made from Nippon Graphite Co., Ltd.) and H-50 (brand name of Chuetsu Graphite Co., Ltd.), can be used. The shape of graphite in the graphite-containing film 12 includes a spherical shape and the like, but it is preferable that the shape is ultrafine particles such as a scale shape or a scale shape having a relatively sharp end. This ultrafine particle formation is preferable because the formation of the carbon film in the DC plasma film forming apparatus can be promoted.

図2ないし図4を参照して電子エミッタ用基材10の製造方法を説明する。 基体は表面が導電性を有すればその形状は何でもよいが、実施の形態では、説明の一例に導電性ワイヤ11を用いる。導電性ワイヤ11は図2(a)でその側面断面、図2(b)でそのB−B線断面で示すように全体が導電性を有する金属でよいが、これに限定されず、図3(a)でその側面断面、図3(b)でそのC−C線断面で示すように内部が円筒中実な絶縁体11aの表面に導電膜11bを備えた構成の基体、あるいは図4(a)でその側面断面、図4(b)でそのD−D線断面で示すように内部中空絶縁体11cでありその表面に導電膜11dを備えた構成の基体でもよい。実施の形態では基体全体が金属ワイヤ特に鉄系の導電性ワイヤ11で構成する。   A method for manufacturing the electron emitter substrate 10 will be described with reference to FIGS. The substrate may have any shape as long as the surface has conductivity, but in the embodiment, the conductive wire 11 is used as an example of the description. The conductive wire 11 may be a metal having conductivity as shown in FIG. 2A in its side cross section and in FIG. 2B in its BB line cross section, but is not limited to this. As shown in the sectional side view in FIG. 3 (a) and in the sectional view taken along the line CC in FIG. 3 (b), the substrate having the structure in which the conductive film 11b is provided on the surface of the insulator 11a having a solid inside, or FIG. The substrate may be a structure having an inner hollow insulator 11c and a conductive film 11d on the surface thereof as shown by a side cross section in a) and a DD cross section in FIG. 4B. In the embodiment, the entire base is composed of a metal wire, particularly an iron-based conductive wire 11.

この導電性ワイヤ11を図5で示すように黒鉛含有ペースト溶液18内に多数浸漬する。黒鉛含有ペースト20は、「蛍光表示管用黒鉛ペースト」として市販されている日立粉末冶金株式会社製ヒタゾルGA−263を用いた。この黒鉛含有ペースト中には黒鉛以外に珪酸カリウム、グリセリン、アルミナが混合されている。この黒鉛含有ペースト20は水に対してすべての割合で溶解するので水を入れてその粘度を任意に調製することが可能となっている。この黒鉛含有ペースト20は、その粘度を揮発性溶剤で調整可能としてもよい。そのため導電性ワイヤ11表面に所望の膜厚で黒鉛含有ペースト20を付着させることができる。この導電性ワイヤ11を黒鉛含有ペースト溶液18から引き上げると、導電性ワイヤ11の表面に黒鉛含有ペースト20が付着する。その黒鉛含有ペースト溶液18に対する浸漬時間、その溶液からの引き上げ時間、水が含む割合調節等により黒鉛含有ペースト20を導電性ワイヤ11表面に所望の膜厚で付着させることができる。   A number of the conductive wires 11 are immersed in the graphite-containing paste solution 18 as shown in FIG. As the graphite-containing paste 20, Hitachi GA-263 manufactured by Hitachi Powdered Metallurgy Co., Ltd., marketed as “graphite paste for fluorescent display tube” was used. In addition to graphite, potassium silicate, glycerin, and alumina are mixed in the graphite-containing paste. Since this graphite-containing paste 20 dissolves in all proportions with respect to water, it is possible to arbitrarily adjust the viscosity by adding water. The viscosity of the graphite-containing paste 20 may be adjustable with a volatile solvent. Therefore, the graphite-containing paste 20 can be attached to the surface of the conductive wire 11 with a desired film thickness. When the conductive wire 11 is pulled up from the graphite-containing paste solution 18, the graphite-containing paste 20 adheres to the surface of the conductive wire 11. The graphite-containing paste 20 can be attached to the surface of the conductive wire 11 with a desired film thickness by adjusting the immersion time in the graphite-containing paste solution 18, the lifting time from the solution, and adjusting the ratio of water.

上記黒鉛含有ペースト溶液18中に図6で示すように触媒22を微粒子状で混合してもよい。これは直流プラズマ成膜装置で導電性ワイヤ11表面にその触媒22を炭素膜の成長核とすることができるからである。ただし、後述する直流プラズマ成膜装置を用いることによりこの触媒は必須となるものではない。   Catalyst 22 may be mixed in the graphite-containing paste solution 18 as shown in FIG. This is because the catalyst 22 can be used as a carbon film growth nucleus on the surface of the conductive wire 11 in a DC plasma film forming apparatus. However, this catalyst is not indispensable by using a direct-current plasma film forming apparatus described later.

上記導電性ワイヤ11の表面に黒鉛含有ペースト20を付着させた後、図7で示すように焼成炉24に導電性ワイヤ11を投入することにより黒鉛含有ペースト20中に含まれている黒鉛以外の混合物を蒸発気化させて乾燥させる。この乾燥後、導電性ワイヤ11を焼成炉24から取り出すと、図8(図1と同様であるが再掲)で示すように、導電性ワイヤ11の表面に高純度な黒鉛からなる黒鉛含有膜12が生成された電子エミッタ用基材10を製造することができる。この焼成炉24の焼成温度、焼成時間等は適宜実験等により設定することができる。焼成炉24は、バッチ式でも可能であるが、連続式が電子エミッタ用基材10の量産性向上には好ましい。連続式には、ローラーハースキルンやキルンカー形式のトンネルキルンに代表される連続式焼成炉がある。これは、導電性ワイヤ11をその焼成炉の入口から出口に向かって炉内を搬送することにより焼成することができる。   After the graphite-containing paste 20 is attached to the surface of the conductive wire 11, the conductive wire 11 is put into a firing furnace 24 as shown in FIG. The mixture is evaporated to dryness. After the drying, when the conductive wire 11 is taken out from the firing furnace 24, as shown in FIG. 8 (similar to FIG. 1 but again), the graphite-containing film 12 made of high-purity graphite is formed on the surface of the conductive wire 11. Can be produced. The firing temperature, firing time, and the like of the firing furnace 24 can be set as appropriate through experiments and the like. The firing furnace 24 can be a batch type, but a continuous type is preferable for improving the mass productivity of the electron emitter substrate 10. The continuous type includes a continuous firing furnace represented by a roller kiln and a kiln car type tunnel kiln. This can be fired by transporting the conductive wire 11 through the furnace from the entrance to the exit of the firing furnace.

以上の製造方法では黒鉛含有ペースト溶液18中に大量の導電性ワイヤ11を一度に浸漬し、また、焼成炉24に大量の導電性ワイヤ11を一度に投入して焼成することができるので、電子エミッタ用基材10を安価に迅速に大量生産して次に述べる電子エミッタの製造に準備しておくことができる。   In the above manufacturing method, a large amount of the conductive wire 11 can be immersed in the graphite-containing paste solution 18 at a time, and a large amount of the conductive wire 11 can be put into the firing furnace 24 at a time and fired. The emitter base material 10 can be quickly and inexpensively mass-produced and prepared for the production of the electron emitter described below.

なお、ワイヤ状の電子エミッタ用基材10を量産する形式は単なる黒鉛含有ペースト溶液18に浸漬する形態に限定されるものではなく、同様に、焼成炉24で焼成したりして乾燥する形態に限定されるものではない。   The mass production of the wire-shaped electron emitter substrate 10 is not limited to the form of immersing in the graphite-containing paste solution 18, and similarly, the form of firing in the firing furnace 24 and drying. It is not limited.

また、上記では黒鉛含有ペーストを用いたが、導電性ワイヤ11表面に表面被覆用ペーストを塗布し、そのペースト上に、黒鉛を含有する黒鉛含有シートを乗せた状態で、硬化炉で熱処理を行い、冷却することにより導電性ワイヤ11表面に黒鉛含有膜12を付着(被覆を含む概念)した構成としてもよい。   Moreover, although the graphite containing paste was used in the above, a surface coating paste was applied to the surface of the conductive wire 11, and a heat treatment was performed in a curing furnace with a graphite containing sheet containing graphite placed on the paste. The graphite-containing film 12 may be attached to the surface of the conductive wire 11 by cooling (a concept including coating).

図9を参照して上記電子エミッタ用基材10を用いた電子エミッタの製造方法を説明する。図9は同電子エミッタの製造方法の実施に用いる直流プラズマ成膜装置30の概略構成を示す図である。真空成膜室32内に筒状電極34が配置されている。筒状電極34は、周壁を構成する部材が網目(メッシュ)状をなしている。筒状電極34内空間には成膜対象である電子エミッタ用基材10が配置されている。筒状電極34は断面ほぼ円形で一方向に延びてその内部空間は一方向に延びる円筒形のプラズマ発生/閉じ込め空間をなしている。電子エミッタ用基材10はこの筒状電極34内空間のほぼ中央に配置されて細長く延びるワイヤ状に配置されている。筒状電極34の内周面と電子エミッタ用基材10の外周面とはその延設方向に所要の空間を隔てて相対向している。筒状電極34一端側は電圧可変型の直流電源36の負極に接続されて直流負電圧が印加されている。   An electron emitter manufacturing method using the electron emitter substrate 10 will be described with reference to FIG. FIG. 9 is a diagram showing a schematic configuration of a DC plasma film forming apparatus 30 used for carrying out the manufacturing method of the electron emitter. A cylindrical electrode 34 is disposed in the vacuum film forming chamber 32. In the cylindrical electrode 34, the members constituting the peripheral wall have a mesh shape. An electron emitter base material 10 which is a film formation target is arranged in the space inside the cylindrical electrode 34. The cylindrical electrode 34 has a substantially circular cross section and extends in one direction, and its internal space forms a cylindrical plasma generation / confinement space extending in one direction. The electron emitter substrate 10 is arranged in the shape of an elongated wire that is arranged at substantially the center of the space inside the cylindrical electrode 34. The inner peripheral surface of the cylindrical electrode 34 and the outer peripheral surface of the electron emitter substrate 10 are opposed to each other with a required space in the extending direction. One end of the cylindrical electrode 34 is connected to the negative electrode of a voltage variable type DC power supply 36, and a DC negative voltage is applied thereto.

以上の構成を備えた直流プラズマ成膜装置30において、真空排気系38で真空成膜室32内を減圧しかつガス導入系39から炭化水素ガスと水素ガスとの混合ガスが処理用ガスとして導入され、直流電源36の負電圧が筒状電極34に印加されると、筒状電極34内空間に直流プラズマ40が発生する。この場合、電子エミッタ用基材10温度は例えば700℃以上である。この電子エミッタ用基材10の温度は電熱により達成するようにしてもよい。   In the DC plasma film forming apparatus 30 having the above-described configuration, the vacuum film forming chamber 32 is depressurized by the vacuum exhaust system 38 and a mixed gas of hydrocarbon gas and hydrogen gas is introduced as a processing gas from the gas introduction system 39. When a negative voltage of the DC power supply 36 is applied to the cylindrical electrode 34, DC plasma 40 is generated in the space inside the cylindrical electrode 34. In this case, the temperature of the electron emitter substrate 10 is, for example, 700 ° C. or higher. The temperature of the electron emitter substrate 10 may be achieved by electric heating.

上記により電子エミッタ用基材10表面には図10で示すように炭素膜42が成膜される。この場合、筒状電極34は、触媒金属を含有する電極が好ましく、例えば、Fe(鉄),Ni(ニッケル),Co(コバルト)あるいはこれらの合金を例示することができる。筒状電極34が上記のような触媒金属で構成されている場合、電子エミッタ用基材10表面の炭素膜42中には触媒金属を含有する必要は無いが、筒状電極34が触媒金属で構成されていない場合では、電子エミッタ用基材10表面の炭素膜42中には触媒金属を含有している必要がある。この場合、図5で示す黒鉛含有ペースト溶液18内には触媒金属の微粒子を混入させるとよい。   As described above, the carbon film 42 is formed on the surface of the electron emitter substrate 10 as shown in FIG. In this case, the cylindrical electrode 34 is preferably an electrode containing a catalyst metal, and examples thereof include Fe (iron), Ni (nickel), Co (cobalt), and alloys thereof. When the cylindrical electrode 34 is made of the above-described catalytic metal, the carbon film 42 on the surface of the electron emitter substrate 10 does not need to contain the catalytic metal, but the cylindrical electrode 34 is made of the catalytic metal. If not configured, the carbon film 42 on the surface of the electron emitter substrate 10 needs to contain a catalytic metal. In this case, fine particles of catalyst metal may be mixed in the graphite-containing paste solution 18 shown in FIG.

上記直流プラズマ40が発生すると筒状電極34が含有する触媒金属がスパッタリングされて、そのスパッタ金属粒子41が、電子エミッタ用基材10表面に付着する。この触媒金属粒子41が付着すると、この触媒金属粒子41の触媒作用により電子エミッタ用基材28表面に電界電子放出性能を持つ炭素膜42が成膜されて電子エミッタ44が製造される。   When the DC plasma 40 is generated, the catalytic metal contained in the cylindrical electrode 34 is sputtered, and the sputtered metal particles 41 adhere to the surface of the electron emitter substrate 10. When the catalyst metal particles 41 adhere, a carbon film 42 having a field electron emission performance is formed on the surface of the electron emitter substrate 28 by the catalytic action of the catalyst metal particles 41, and the electron emitter 44 is manufactured.

また、筒状電極34が触媒金属で構成されていない場合では、電子エミッタ用基材10表面の黒鉛含有膜12中の触媒金属微粒子の触媒作用により電子エミッタ用基材10表面に電界電子放出性能を持つ炭素膜42が成膜されて電子エミッタ44が製造される。   In the case where the cylindrical electrode 34 is not composed of a catalyst metal, the field electron emission performance on the surface of the electron emitter substrate 10 is caused by the catalytic action of the catalyst metal fine particles in the graphite-containing film 12 on the surface of the electron emitter substrate 10. The carbon film 42 having the above is formed, and the electron emitter 44 is manufactured.

以上の電子エミッタ44の製造方法では、電子エミッタ用基材10表面に炭素膜42成膜のためのバッファ層を形成する成膜プロセスを経る必要がなくなり製造時間を大幅に短縮化することができる。これは電子エミッタ用基材10表面には炭素膜42の成膜に必要な黒鉛含有膜12が形成されているからである。   In the manufacturing method of the electron emitter 44 described above, it is not necessary to go through a film forming process for forming a buffer layer for forming the carbon film 42 on the surface of the electron emitter substrate 10, and the manufacturing time can be greatly shortened. . This is because the graphite-containing film 12 necessary for forming the carbon film 42 is formed on the surface of the electron emitter substrate 10.

なお、このバッファ層無しで上記成膜操作を行った場合、炭素膜42は成膜されにくいか成膜されない。そのため従来では上記成膜プロセス中には500℃以下の低温で数十分かけて導電性ワイヤ11表面にバッファ層を形成し、それから700℃以上でバッファ層を利用して炭素膜を成膜することが行われていた。  When the film forming operation is performed without the buffer layer, the carbon film 42 is difficult to form or is not formed. Therefore, conventionally, during the film formation process, a buffer layer is formed on the surface of the conductive wire 11 over several tens of minutes at a low temperature of 500 ° C. or lower, and then a carbon film is formed using the buffer layer at 700 ° C. or higher. Things were going on.

以上の実施の形態による電子エミッタ製造方法は筒状電極を用いずに、真空成膜室に陰極と陽極とがそれぞれの互いの電極面を所定間隔隔てて平行に対向した状態で配置し、陽極を接地し、陰極に直流電源負極を接続する構造の直流プラズマ成膜装置でも実施することができる。この直流プラズマ成膜装置においては、真空成膜室にガスを導入し、陰極に直流負電圧を印加することにより陽極の電極面上にプラズマを発生させ、陽極の電極面上に配置した実施の形態の電子エミッタ用基材10表面に炭素膜を成膜することにより電子エミッタを製造することができる。   In the electron emitter manufacturing method according to the above embodiment, the cathode and the anode are arranged in the vacuum film forming chamber in a state where the electrode surfaces of the cathode and the anode face each other in parallel with a predetermined interval without using the cylindrical electrode. This can also be carried out by a DC plasma film forming apparatus having a structure in which a DC power source negative electrode is connected to the cathode. In this direct current plasma film forming apparatus, a gas is introduced into a vacuum film forming chamber, a direct current negative voltage is applied to the cathode to generate plasma on the electrode surface of the anode, and the plasma is disposed on the electrode surface of the anode. An electron emitter can be manufactured by forming a carbon film on the surface of the electron emitter substrate 10 in the form.

また、直流プラズマ成膜装置としては、図11で示すものでもよい。この装置は、筒状電極50が複数連設されると共にこれら複数の筒状電極50それぞれの供給口52と排出口54とが電子エミッタ用基材10の図中矢印で示す搬送方向に一列になって連通している。搬送機構の図示は略する。図11で供給口52入口では電子エミッタ用基材10であったものが排出口54からは電子エミッタ44として排出される。   Moreover, as a DC plasma film-forming apparatus, what is shown in FIG. 11 may be used. In this apparatus, a plurality of cylindrical electrodes 50 are connected in series, and the supply ports 52 and the discharge ports 54 of each of the plurality of cylindrical electrodes 50 are arranged in a line in the transport direction indicated by the arrows in the figure of the electron emitter substrate 10. And communicate. The illustration of the transport mechanism is omitted. In FIG. 11, the electron emitter base material 10 at the inlet of the supply port 52 is discharged as an electron emitter 44 from the discharge port 54.

筒状電極50は、互いの周方向両端部が所定の隙間を隔てて対向する2つ一対の半筒状電極50a,50bからなり、この2つ一対の半筒状電極50a,50bにおける、周方向一端側の対向隙間が上記供給口52に、また、周方向他端側の対向隙間が上記排出口54になっている。2つ一対の半筒状電極50a,50bは複数対連設されると共にこれら複数対の半筒状電極50a,50bそれぞれの対向隙間56は電子エミッタ用基材10搬送方向に一列になって連通している。2つ一対の半筒状電極50a,50bは互いの対向隙間56が成膜時に閉じ、搬送時に開くようになっている。   The cylindrical electrode 50 includes two pairs of semi-cylindrical electrodes 50a and 50b whose opposite ends in the circumferential direction face each other with a predetermined gap therebetween. The facing gap on one end side in the direction is the supply port 52, and the facing gap on the other end side in the circumferential direction is the discharge port 54. A plurality of pairs of two semi-cylindrical electrodes 50a and 50b are connected in series, and opposing gaps 56 of the plurality of pairs of semi-cylindrical electrodes 50a and 50b communicate with each other in a line in the direction of transport of the electron emitter substrate 10. doing. The pair of semi-cylindrical electrodes 50a and 50b are configured such that the opposing gap 56 is closed during film formation and opened during conveyance.

この真空成膜室58内部に成膜ガスを導入すると共に半筒状電極50a,50bに電圧を印加してこの成膜ガスをプラズマ化し、電子エミッタ用基材10表面に成膜することができるようになっている。   A film forming gas is introduced into the vacuum film forming chamber 58, and a voltage is applied to the semi-cylindrical electrodes 50a and 50b to turn the film forming gas into a plasma, which can be formed on the surface of the electron emitter substrate 10. It is like that.

上記装置では、複数の電子エミッタ用基材10を筒状電極50の開口を通じて該筒状電極50内部に対して順次に供給すると共に該筒状電極50の開口から順次に電子エミッタ44として排出することができるようになっているので、複数の電子エミッタ用基材10に筒状電極50の内部で順次に成膜処理を施して電子エミッタ44を製造することができるので、電子エミッタ44の量産性が大きく向上する。   In the above apparatus, a plurality of electron emitter base materials 10 are sequentially supplied to the inside of the cylindrical electrode 50 through the opening of the cylindrical electrode 50 and discharged as electron emitters 44 sequentially from the opening of the cylindrical electrode 50. Since the electron emitter 44 can be manufactured by sequentially forming a film forming process inside the cylindrical electrode 50 on the plurality of electron emitter base materials 10, the mass production of the electron emitters 44 can be performed. The characteristics are greatly improved.

図12(a)(b)に上記電子エミッタ製造方法により製造した電子エミッタ44を組み込んだフィールドエミッションランプ60を示す。図12(a)は側面からの断面図、図12(b)は図12(a)のE−E線断面図である。このフィールドエミッションランプ60ではガラス管62の管内面に陽極64と蛍光体66とを膜状に積層すると共に、ガラス管62内にワイヤ状の電子エミッタ44を空中架設した構成されている。   FIGS. 12A and 12B show a field emission lamp 60 incorporating the electron emitter 44 manufactured by the electron emitter manufacturing method. 12A is a cross-sectional view from the side, and FIG. 12B is a cross-sectional view taken along the line EE of FIG. In this field emission lamp 60, an anode 64 and a phosphor 66 are laminated in a film shape on the inner surface of a glass tube 62, and a wire-shaped electron emitter 44 is suspended in the glass tube 62 in the air.

図13にそのフィールドエミッションランプ60の発光写真を示す。この発光写真で示すように実施の形態の電子エミッタ44をワイヤ状に配置したフィールドエミッションランプ60では発光特性に実用的な明るさで発光している。   FIG. 13 shows a light emission photograph of the field emission lamp 60. As shown in the light emission photograph, the field emission lamp 60 in which the electron emitters 44 according to the embodiment are arranged in a wire shape emits light with a practical brightness in terms of light emission characteristics.

なお、フィールドエミッションランプは上記管タイプに限定されず、上下一対のフラットパネルを備え、一方のフラットパネルの内面にワイヤ状に実施の形態の電子エミッタ44を配置し他方のフラットパネルの内面に蛍光体付き陽極を設けたフラットタイプにも適用することができる。   The field emission lamp is not limited to the above tube type, and includes a pair of upper and lower flat panels. The electron emitter 44 of the embodiment is arranged in a wire shape on the inner surface of one flat panel, and the fluorescent light is disposed on the inner surface of the other flat panel. The present invention can also be applied to a flat type provided with a body-attached anode.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載した範囲内で、種々な変更ないしは変形を含むものである。   The present invention is not limited to the above-described embodiment, and includes various changes or modifications within the scope described in the claims.

図1(a)は、本発明の実施の形態に係る電子エミッタ用基材の断面構成を示す図、図1(b)は図1(a)のA−A線断面図である。FIG. 1A is a diagram showing a cross-sectional configuration of an electron emitter substrate according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AA of FIG. 図2(a)は、電子エミッタ用基材の他の例を示す断面図、図2(b)は図2(a)のB−B線断面図である。2A is a cross-sectional view showing another example of the electron emitter substrate, and FIG. 2B is a cross-sectional view taken along the line BB of FIG. 2A. 図3(a)は導電性ワイヤの側面断面図、図3(b)は図3(a)のC−C線断面図である。3A is a side sectional view of the conductive wire, and FIG. 3B is a sectional view taken along the line CC of FIG. 3A. 図4(a)は導電性ワイヤの他の例の側面断面図、図4(b)は図4(a)のD−D線断面図である。4A is a side cross-sectional view of another example of the conductive wire, and FIG. 4B is a cross-sectional view taken along the line DD of FIG. 4A. 図5は、電子エミッタ用基材の製造方法において黒鉛含有ペースト溶液内に導電性ワイヤを浸漬する状態を示す図である。FIG. 5 is a diagram showing a state in which a conductive wire is immersed in a graphite-containing paste solution in the method for manufacturing an electron emitter substrate. 図6は黒鉛含有ペースト溶液の他の例を示す図である。FIG. 6 is a view showing another example of a graphite-containing paste solution. 図7は電子エミッタ用基材の製造方法において焼成炉に黒鉛含有ペースト浸漬後の導電性ワイヤを焼成する状態を示す図である。FIG. 7 is a view showing a state in which the conductive wire after the graphite-containing paste is immersed in the firing furnace is fired in the electron emitter substrate manufacturing method. 図8は上記焼成により製造した電子エミッタ用基材の側面断面図である。FIG. 8 is a side cross-sectional view of the electron emitter base material manufactured by the firing. 図9は、電子エミッタの製造方法の実施に用いる直流プラズマ成膜装置の概略構成を示す図である。FIG. 9 is a diagram showing a schematic configuration of a direct-current plasma film forming apparatus used for carrying out an electron emitter manufacturing method. 図10は、直流プラズマ成膜装置で電子エミッタ用基材表面に炭素膜が成膜されてなる電子エミッタを拡大して示す断面図である。FIG. 10 is an enlarged cross-sectional view of an electron emitter in which a carbon film is formed on the surface of an electron emitter substrate with a DC plasma film forming apparatus. 図11は、直流プラズマ成膜装置の他の例を示す断面図である。FIG. 11 is a cross-sectional view showing another example of a DC plasma film forming apparatus. 図12(a)は直流プラズマ成膜装置で製造した電子エミッタの側面からの断面図、図12(b)は図12(a)のE−E線断面図である。12A is a cross-sectional view from the side of the electron emitter manufactured by the DC plasma film forming apparatus, and FIG. 12B is a cross-sectional view taken along the line EE of FIG. 図13はそのフィールドエミッションランプの発光写真を示す図である。FIG. 13 is a view showing a light emission photograph of the field emission lamp.

符号の説明Explanation of symbols

10 電子エミッタ用基材
11 導電性ワイヤ
12 黒鉛含有膜
10 Electron Emitter Base Material 11 Conductive Wire 12 Graphite-Containing Film

Claims (3)

表面が導電性の基体を多数同時に黒鉛含有ペースト溶液に浸漬して、上記基体の導電性表面に黒鉛含有ペーストを付着させる工程と、  Immersing a large number of electrically conductive substrates simultaneously in a graphite-containing paste solution, and attaching the graphite-containing paste to the conductive surface of the substrate;
上記付着した黒鉛含有ペーストを焼成して、上記基体の導電性表面に直流プラズマによる炭素膜成膜の条件に適合したバッファ層としての黒鉛含有膜を生成する工程と、  Firing the attached graphite-containing paste to produce a graphite-containing film as a buffer layer that conforms to the conditions of carbon film formation by direct current plasma on the conductive surface of the substrate;
を含むことを特徴とする電子エミッタ用基材の製造方法。  The manufacturing method of the base material for electron emitters characterized by including these.
上記黒鉛含有ペースト中に直流プラズマ中の炭素成分に接触作用して炭素膜生成を促進する触媒を含むことを特徴とする請求項に記載の電子エミッタ用基材の製造方法。 2. The method for producing a base material for an electron emitter according to claim 1 , wherein the graphite-containing paste contains a catalyst that promotes the formation of a carbon film by contacting the carbon component in the direct current plasma. 真空成膜室と、上記真空成膜室内に設けられ対向する一対の半筒状電極を複数連設してなる筒状電極と、上記真空成膜室内に成膜ガスを導入するガス導入系と、上記筒状電極に直流負電圧を印加する直流電源とを備えた直流プラズマ成膜装置を用いて、  A vacuum film forming chamber; a cylindrical electrode provided in the vacuum film forming chamber and provided with a plurality of opposed semi-cylindrical electrodes; and a gas introduction system for introducing a film forming gas into the vacuum film forming chamber; Using a DC plasma film forming apparatus provided with a DC power source for applying a DC negative voltage to the cylindrical electrode,
請求項1または2に記載の電子エミッタ用基材の製造方法により製造した電子エミッタ用基材を上記筒状電極の各半筒状電極間に配置し、上記真空成膜室内に上記ガス導入系から成膜ガスを導入すると共に上記筒状電極に直流負電圧を印加してこの成膜ガスをプラズマ化し、各電子エミッタ用基材の表面に電界電子放出性能を有する炭素膜を成膜することを特徴とする電子エミッタ製造方法。  An electron emitter base material manufactured by the method for manufacturing an electron emitter base material according to claim 1 or 2 is disposed between the semi-cylindrical electrodes of the cylindrical electrode, and the gas introduction system is disposed in the vacuum film forming chamber. And forming a carbon film having field electron emission performance on the surface of each electron emitter substrate by applying a negative DC voltage to the cylindrical electrode to convert the film forming gas into plasma. A method of manufacturing an electron emitter.
JP2007027745A 2007-02-07 2007-02-07 Method for manufacturing substrate for electron emitter and method for manufacturing electron emitter Active JP5148124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027745A JP5148124B2 (en) 2007-02-07 2007-02-07 Method for manufacturing substrate for electron emitter and method for manufacturing electron emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027745A JP5148124B2 (en) 2007-02-07 2007-02-07 Method for manufacturing substrate for electron emitter and method for manufacturing electron emitter

Publications (2)

Publication Number Publication Date
JP2008192534A JP2008192534A (en) 2008-08-21
JP5148124B2 true JP5148124B2 (en) 2013-02-20

Family

ID=39752424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027745A Active JP5148124B2 (en) 2007-02-07 2007-02-07 Method for manufacturing substrate for electron emitter and method for manufacturing electron emitter

Country Status (1)

Country Link
JP (1) JP5148124B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367509B2 (en) 2009-08-27 2013-12-11 株式会社東芝 Photodetection device and paper sheet processing apparatus provided with the photodetection device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042735A (en) * 2000-07-28 2002-02-08 Mitsubishi Electric Corp Fluorescent lamp
JP4523713B2 (en) * 2000-11-14 2010-08-11 新日本無線株式会社 Method for producing carbon nanotube
JP2002270085A (en) * 2001-03-09 2002-09-20 Toshiba Corp Field electron emission element and its manufacturing method
JP2004362960A (en) * 2003-06-05 2004-12-24 Akio Hiraki Electron emitting element and manufacturing method of the same
JP2005048305A (en) * 2003-07-31 2005-02-24 Canon Inc Method for producing carbon fiber and method for producing electron emission element using the same, electron source and image display device
US7511415B2 (en) * 2004-08-26 2009-03-31 Dialight Japan Co., Ltd. Backlight for liquid crystal display device
JP4596878B2 (en) * 2004-10-14 2010-12-15 キヤノン株式会社 Structure, electron-emitting device, secondary battery, electron source, image display device, information display / reproduction device, and manufacturing method thereof
JP2006216482A (en) * 2005-02-07 2006-08-17 Noritake Co Ltd Manufacturing method of carbon nanotube cathode, and carbon nanotube cathode
JP2006286621A (en) * 2005-03-09 2006-10-19 Sonac Kk Electric field electron emitter and its manufacturing method

Also Published As

Publication number Publication date
JP2008192534A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US7648406B2 (en) Carbon nanotube array element and method for producing the same
CN101176181B (en) Method of synthesizing small-diameter carbon nanotubes with electron field emission properties
US20070103048A1 (en) Method for fabricating carbon nanotube-based field emission device
TWI385698B (en) Field emission device and method for fabricating cathode emitter and zinc oxide anode
JP2006073514A (en) Electron emission element and its manufacturing method
JP2003123623A (en) Carbon nano tube for electron emitting source and its manufacturing method
JP5420835B2 (en) Plasma generator and film forming method using the same
JP2010192245A (en) Method of manufacturing emitter, emitter, method of manufacturing field emission light emitting element, field emission light emitting element, and lighting device
JP5148124B2 (en) Method for manufacturing substrate for electron emitter and method for manufacturing electron emitter
US9142376B2 (en) Method for fabricating field emission cathode, field emission cathode thereof, and field emission lighting source using the same
JP2006306704A (en) Method of forming carbon film and carbon film
TW201435127A (en) Diamond like film and method for fabricating the same
Wang et al. Enhanced field emission properties of graphene-based cathodes fabricated by ultrasonic atomization spray
JP2006278103A (en) Manufacturing method of coating getter film for electron tube
JP5213099B2 (en) Carbon nanotube growth method and carbon nanotube emitter on carbon fiber sheet
JP5549028B2 (en) Method for producing flaky nanocarbon material, electron-emitting device, and surface-emitting device
JP2008166154A (en) Method of manufacturing electron emitter
US20060103287A1 (en) Carbon-nanotube cold cathode and method for fabricating the same
US20040189183A1 (en) Method for making a field emission display
JP2005521217A (en) Field electron emission materials and equipment
JP2006305554A (en) Method of forming catalyst and method of manufacturing carbon film using the same
TWI411006B (en) Method for manufacturing field emission cathode
JP5549027B2 (en) Method for producing particulate nanocarbon material, electron-emitting device, and surface-emitting device
US20100056009A1 (en) Method for fabricating field emission display
CN1876898A (en) Electronic emission source preparation method by batch electrophoresis deposition of carbon nanotube

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Ref document number: 5148124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250