JP5147633B2 - Method for producing fluorapatite - Google Patents
Method for producing fluorapatite Download PDFInfo
- Publication number
- JP5147633B2 JP5147633B2 JP2008263687A JP2008263687A JP5147633B2 JP 5147633 B2 JP5147633 B2 JP 5147633B2 JP 2008263687 A JP2008263687 A JP 2008263687A JP 2008263687 A JP2008263687 A JP 2008263687A JP 5147633 B2 JP5147633 B2 JP 5147633B2
- Authority
- JP
- Japan
- Prior art keywords
- titania
- fluorapatite
- apatite
- fluorine
- faa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 title claims description 65
- 229910052587 fluorapatite Inorganic materials 0.000 title claims description 36
- 229940077441 fluorapatite Drugs 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 82
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 33
- 238000010298 pulverizing process Methods 0.000 claims description 31
- 229910052586 apatite Inorganic materials 0.000 claims description 27
- 229910052731 fluorine Inorganic materials 0.000 claims description 27
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 26
- 239000011737 fluorine Substances 0.000 claims description 26
- 150000001875 compounds Chemical class 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 150000002894 organic compounds Chemical class 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 9
- 210000000988 bone and bone Anatomy 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- NRKYWOKHZRQRJR-UHFFFAOYSA-N 2,2,2-trifluoroacetamide Chemical compound NC(=O)C(F)(F)F NRKYWOKHZRQRJR-UHFFFAOYSA-N 0.000 claims description 2
- 125000003277 amino group Chemical group 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical group OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 claims description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallyl group Chemical group C1(=C(C(=CC=C1)O)O)O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000000227 grinding Methods 0.000 description 16
- 239000002131 composite material Substances 0.000 description 12
- 239000011941 photocatalyst Substances 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 12
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 11
- 239000004810 polytetrafluoroethylene Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- 229910004261 CaF 2 Inorganic materials 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 239000012855 volatile organic compound Substances 0.000 description 8
- 238000009837 dry grinding Methods 0.000 description 7
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 7
- 238000004438 BET method Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 238000002329 infrared spectrum Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- 239000003463 adsorbent Substances 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 4
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 4
- 230000001699 photocatalysis Effects 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- 238000001238 wet grinding Methods 0.000 description 4
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005349 anion exchange Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 239000011246 composite particle Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000010303 mechanochemical reaction Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Catalysts (AREA)
Description
本発明は、フッ素アパタイトの製造方法に関し、特にヒドロキシアパタイト粉体からのフッ素アパタイトの製造に適用して有効な技術である。 The present invention relates to a method for producing fluorapatite, and is a technique that is particularly effective when applied to the production of fluorapatite from hydroxyapatite powder.
ヒドロキシアパタイト系ナノ粒子および多孔質体は、吸着剤等の環境浄化材料として広く用いられているが、耐酸性が低いため酸性雨にさらされる屋外等では使用できない。そのため、耐酸性の高いフッ素アパタイトが代替物として用いられる。フッ素アパタイトは例えば、種々のカルシウム化合物を前駆体としたアパタイト合成時に化学量論比に合うようにフッ化カルシウムを添加して得られる。 Hydroxyapatite-based nanoparticles and porous materials are widely used as environmental purification materials such as adsorbents, but cannot be used outdoors or the like exposed to acid rain due to their low acid resistance. Therefore, fluorapatite with high acid resistance is used as an alternative. Fluoroapatite can be obtained, for example, by adding calcium fluoride so as to meet the stoichiometric ratio at the time of synthesizing apatite using various calcium compounds as precursors.
また、良質なフッ素アパタイトを得るために、例えば特許文献1および2では、フッ化カルシウム粉末、炭酸カルシウム粉末、さらにはリン酸水素カルシウム二水和物を原料としてメカノケミカル法でフッ素アパタイトを合成する方法が提案されている。 In order to obtain good quality fluorapatite, for example, in Patent Documents 1 and 2, fluorapatite is synthesized by a mechanochemical method using calcium fluoride powder, calcium carbonate powder, and calcium hydrogen phosphate dihydrate as raw materials. A method has been proposed.
特許文献3では、CaHPO4・2H2O粉末、CaCO3粉末およびCaF2粉末を、水懸濁状態で70℃以上に加温かつ保持して反応させる方法でフッ素アパタイトを合成する方法が提案されている。 Patent Document 3 proposes a method for synthesizing fluorapatite by a method in which CaHPO 4 .2H 2 O powder, CaCO 3 powder and CaF 2 powder are heated and held at 70 ° C. or higher in a water suspension state and reacted. ing.
アパタイトのカルシウム原子がチタンに置き換わったチタンアパタイトは、光触媒として機能する。また、チタニアにフッ素と窒素がともにドープされた場合には、高い活性の可視光応答型光触媒となる。 Titanium apatite in which the calcium atom of apatite is replaced with titanium functions as a photocatalyst. Further, when both titania and fluorine and nitrogen are doped, a highly active visible light responsive photocatalyst is obtained.
チタンアパタイトの合成方法としては、例えば特許文献4および5で、共沈法や含浸法によりチタンアパタイトを合成する方法が提案されている。また、窒素をドープするドープチタニアのメカノケミカル法による合成法としては、例えば特許文献6で、窒素と硫黄によるメカノケミカルドープ法が提案されている。
しかしながら、特許文献1〜3に記載の提案は、原料とするのは水酸化カルシウムやリン酸カルシウム等のフッ素アパタイト前駆体であり、ヒドロキシアパタイトを原料とする合成方法ではない。つまり、既存のヒドロキシアパタイト、特に食肉からの産業廃棄物である生体骨に由来する天然骨由来アパタイトを原料とすることができず、溶媒や酸・アルカリ等の有害物質を使用する問題がある。 However, the proposals described in Patent Documents 1 to 3 use fluorapatite precursors such as calcium hydroxide and calcium phosphate as raw materials, and are not a synthesis method using hydroxyapatite as a raw material. That is, existing hydroxyapatite, in particular, natural bone-derived apatite derived from living bones, which are industrial waste from meat, cannot be used as a raw material, and there is a problem of using harmful substances such as solvents, acids and alkalis.
また、特許文献4および5に記載の提案は、粒子の比表面積の増加を伴い得るようなメカノケミカル法による手法ではない。また、チタニアとアパタイトを単純に粉砕しただけでは、カルシウムとチタンによる置換(カチオン交換)は進行しない。さらに、特許文献6の提案は、チタニアへの窒素とフッ素がともにドープされることにより得られる方法ではない。 Further, the proposals described in Patent Documents 4 and 5 are not a mechanochemical method that can be accompanied by an increase in the specific surface area of the particles. Moreover, substitution with calcium and titanium (cation exchange) does not proceed by simply grinding titania and apatite. Furthermore, the proposal of Patent Document 6 is not a method obtained by doping both titania with nitrogen and fluorine.
本発明の目的は、高い活性の可視光応答型光触媒が得られるように、ヒドロキシアパタイト粉体からフッ素アパタイトを製造することにある。 An object of the present invention is to produce fluorapatite from hydroxyapatite powder so that a highly active visible light responsive photocatalyst can be obtained.
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.
すなわち、ヒドロキシアパタイト粉体をフッ素含有化合物と共粉砕する。 That is, the hydroxyapatite powder is co-ground with the fluorine-containing compound.
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
すなわち、ヒドロキシアパタイト粉体をフッ素含有化合物と共粉砕する。 That is, the hydroxyapatite powder is co-ground with the fluorine-containing compound.
つまり、ヒドロキシアパタイト粉体とフッ素含有化合物との共粉砕により、ヒドロキシアパタイト粉体からフッ素アパタイトを製造することができるので、例えばチタニアをさらに共粉砕すれば、高い活性の可視光応答型光触媒を得ることができる。 In other words, fluorapatite can be produced from hydroxyapatite powder by co-grinding hydroxyapatite powder and a fluorine-containing compound. For example, if titania is further co-ground, a highly active visible light responsive photocatalyst is obtained. be able to.
また、ヒドロキシアパタイト粉体からフッ素アパタイトを製造することができるので、例えば天然骨等の廃棄物を原料に、有機溶媒、酸、アルカリ等の危険および有害な薬品を使用せずに簡便かつ安全に製造することができる。 In addition, since fluorapatite can be produced from hydroxyapatite powder, it is easy and safe to use, for example, wastes such as natural bones as raw materials, without using dangerous and harmful chemicals such as organic solvents, acids, and alkalis. Can be manufactured.
本発明の一実施の形態であるフッ素アパタイトの製造方法では、天然骨由来のヒドロキシアパタイト粉体としての骨灰(エクセラ 焼成骨粉 平均粒径500nm)3gを遊星ボールミル(Fritch Premum mill P-7)を用い回転数800rpmでフッ素含有化合物とともに3時間共粉砕する。 In the method for producing fluorapatite according to one embodiment of the present invention, 3 g of bone ash (Excella calcined bone powder with an average particle size of 500 nm) as hydroxyapatite powder derived from natural bone is used in a planetary ball mill (Fritch Premum mill P-7). Co-grinding with a fluorine-containing compound for 3 hours at 800 rpm.
湿式粉砕の場合には粉砕時に蒸留水1mLを添加し、乾式粉砕の場合には添加しない。乾式粉砕と湿式粉砕との双方を行う場合には、90分間乾式粉砕した後、蒸留水1mLを加えてさらに90分間湿式粉砕する。 In the case of wet pulverization, 1 mL of distilled water is added during pulverization, and in the case of dry pulverization, it is not added. When both dry pulverization and wet pulverization are performed, after dry pulverization for 90 minutes, 1 mL of distilled water is added and wet pulverization is further performed for 90 minutes.
フッ素含有化合物は、化合物粉体を骨灰に対して10重量%(本形態で例では0.3g)添加して粉砕を行う。チタニアを添加する場合は、骨灰とチタニアとを任意の割合で共存させて粉砕する。回収した粉体は真空乾燥する。 The fluorine-containing compound is pulverized by adding 10% by weight (in this embodiment, 0.3 g in this embodiment) of the compound powder to bone ash. When adding titania, bone ash and titania coexist in an arbitrary ratio and pulverized. The collected powder is vacuum dried.
これにより、ヒドロキシアパタイト粉体からフッ素アパタイトが製造できる。得られたフッ素アパタイトは例えば、窒素吸着による吸脱着等温線の測定、SEM(走査型電子顕微鏡)を用いた形態観察、EDX(エネルギー分散型蛍光X線分析装置)による元素分析、真空拡散反射赤外分光(IR)スペクトルを用いた表面水酸基の分析などにより確認できる。 Thereby, fluorine apatite can be produced from the hydroxyapatite powder. The obtained fluorapatite is, for example, measurement of adsorption / desorption isotherm by nitrogen adsorption, morphological observation using SEM (scanning electron microscope), elemental analysis by EDX (energy dispersive X-ray fluorescence spectrometer), vacuum diffuse reflection red This can be confirmed by analysis of surface hydroxyl groups using external spectroscopy (IR) spectra.
粉砕方法としては、乾式粉砕と湿式粉砕との双方を行うことが好ましい。IRスペクトルおよびBET法による比表面積によれば、乾式粉砕と湿式粉砕との双方を行った場合には、高いF(フッ素原子)置換率を維持したまま、比表面積低下を押さえることができる。 As a pulverization method, it is preferable to perform both dry pulverization and wet pulverization. According to the IR spectrum and the specific surface area by the BET method, when both dry pulverization and wet pulverization are performed, it is possible to suppress a decrease in specific surface area while maintaining a high F (fluorine atom) substitution rate.
フッ素含有化合物としては、無機化合物として例えば、フッ化カルシウム(CaF2)、有機化合物として例えば、ポリテトラフルオロエチレン(PTFE)、トリフルオロアセトアミド(FAA)が挙げられる。 Examples of the fluorine-containing compound include an inorganic compound such as calcium fluoride (CaF 2 ), and examples of the organic compound include polytetrafluoroethylene (PTFE) and trifluoroacetamide (FAA).
これらのフッ素含有化合物の中でも、有機化合物が好ましい。IRスペクトルによれば、有機物であるPTFEやFAAではFの置換が速やかである。また、有機化合物は、焼成や洗浄により不純物となる未反応添加物や副生成物を簡単に除去できる点でも有利である。 Of these fluorine-containing compounds, organic compounds are preferred. According to the IR spectrum, substitution of F is quick in organic PTFE and FAA. The organic compound is also advantageous in that it can easily remove unreacted additives and by-products that become impurities by baking and washing.
さらに、有機化合物の中でも、アミノ基、カルボキシル基、水酸基、フェノール基、カテコール基およびピロガロール基の少なくともいずれかを有する有機化合物を用いると、上述したいずれの粉砕方法によっても、フッ素化合物を添加しない場合と比較して、得られた粒子のBET法による比表面積が増大するので、より好ましい。つまり、例示したフッ素含有化合物の中では、FAAが特に好ましい。 Further, among organic compounds, when an organic compound having at least one of an amino group, a carboxyl group, a hydroxyl group, a phenol group, a catechol group, and a pyrogallol group is used, no fluorine compound is added by any of the above-described pulverization methods. Since the specific surface area of the obtained particles by the BET method increases, it is more preferable. That is, among the exemplified fluorine-containing compounds, FAA is particularly preferable.
骨灰とチタニアとFAAとを共粉砕すると、フッ素と窒素のアニオン交換(ドープ)が同時に起こり、カルシウムとチタンの置換をすることができる。このことは、例えば、アパタイト[002]面の格子定数の変化、UV-Visスペクトルに現れた600〜800nmの吸収により確認できる。また、UV-Visスペクトルの400〜500nm付近の吸収によれば、チタニアを可視光応答型光触媒にできるとともに、アパタイトとチタニアの粒子のナノレベルでの微細化および複合化が達成できる。 When bone ash, titania and FAA are co-ground, fluorine and nitrogen anion exchange (doping) occurs simultaneously, and calcium and titanium can be replaced. This can be confirmed, for example, by a change in the lattice constant of the apatite [002] plane and absorption at 600 to 800 nm appearing in the UV-Vis spectrum. Moreover, according to absorption of 400-500 nm vicinity of a UV-Vis spectrum, while being able to make titania into a visible light responsive photocatalyst, refinement | miniaturization and compounding of the apatite and titania particle | grains at the nano level can be achieved.
共粉砕により得られたフッ素アパタイトとチタニアとの複合体のBET法による比表面積は最大で168m2/gまで増大し、1〜10nm程度のミクロ孔とメソ孔とを有する多孔質なアパタイト−可視光応答型光触媒チタニア複合粒子とすることができる。 The specific surface area by the BET method of the composite of fluorapatite and titania obtained by co-grinding is increased up to 168 m 2 / g, and porous apatite having micropores and mesopores of about 1 to 10 nm-visible Photoresponsive photocatalytic titania composite particles can be obtained.
これにより、フッ素アパタイト、チタンアパタイトおよび可視光型光触媒チタニアの3つの機能性材料の製造を、チタニアとアパタイト、特に安価で大量廃棄されている天然骨を由来とするアパタイトを原料に、メカノケミカル反応の制御で単一の工程で達成し、さらにそれらをナノレベルで複合化した材料を得ることができる。 As a result, the production of three functional materials such as fluorapatite, titanium apatite, and visible light photocatalytic titania, and the mechanochemical reaction using titania and apatite, especially apatite derived from natural bone, which is abundantly disposed of at low cost, are used as raw materials. It is possible to obtain a material that is achieved in a single step by controlling the above and further composited at a nano level.
このように、骨灰をフッ素含有化合物フッ素と共粉砕してフッ素アパタイトを製造し、さらにチタニアを共粉砕してアパタイト-可視光応答光触媒チタニア複合体を製造するに至ったのは、以下の知見が得られたからである。 In this way, bone ash was co-pulverized with fluorine-containing compound fluorine to produce fluorapatite, and titania was co-ground to produce an apatite-visible light responsive photocatalytic titania composite. Because it was obtained.
つまり、ヒドロキシアパタイト材料は、タンパク質、ウイルス、花粉、揮発性有機化合物(VOC)などの吸着剤として多く用いられる。吸着剤が効果的に機能するためには、大きな比表面積を有し、かつ大きな容積の細孔が形成されていることが必要である。特に、排気処理や空気清浄機などの流通空気下で吸着剤として用いるためには、直径数nmのミクロ孔およびメソ孔を有していることが好ましい。また、屋外での利用にはフッ素化による耐酸性の向上が望まれる。さらに、揮発性有機化合物(VOC)などの有害成分を除去および分解するためには、光触媒とのナノレベルでの複合化が望まれ、太陽光をエネルギー源とするためには可視光応答型光触媒との複合化が望まれる、という知見である。 That is, the hydroxyapatite material is often used as an adsorbent for proteins, viruses, pollen, volatile organic compounds (VOC), and the like. In order for the adsorbent to function effectively, it is necessary that pores having a large specific surface area and a large volume be formed. In particular, in order to use as an adsorbent under flowing air such as exhaust treatment or an air purifier, it is preferable to have micropores and mesopores with a diameter of several nm. For outdoor use, it is desired to improve acid resistance by fluorination. Furthermore, in order to remove and decompose harmful components such as volatile organic compounds (VOC), it is desired to combine with a photocatalyst at the nano level, and in order to use sunlight as an energy source, a visible light responsive photocatalyst. It is the knowledge that the combination with is desired.
そして、これまで述べてきた廃棄骨を原料とした多孔質フッ素アパタイト、およびフッ素アパタイト-可視光応答型チタニア光触媒複合体では、合成ナノアパタイト以上の細孔容積を有することから、揮発性有機化合物(VOC)などの吸着剤として高い性能を発揮することができる。また、添加したチタニアは、フッ素と窒素のドープにより可視光応答型光触媒になる。さらに、フッ素アパタイトは耐酸性を獲得し、それ自体が光触媒として機能して揮発性有機化合物(VOC)などの有害成分を分解できるようになる。 Since the porous fluorapatite and the fluorapatite-visible light responsive titania photocatalyst composite made from waste bone as described above have a pore volume larger than that of synthetic nanoapatite, volatile organic compounds ( High performance as an adsorbent such as VOC). The added titania becomes a visible light responsive photocatalyst by doping with fluorine and nitrogen. Furthermore, fluorapatite acquires acid resistance, and it functions as a photocatalyst itself and can decompose harmful components such as volatile organic compounds (VOC).
以下、実施例によって、本発明をさらに説明する。なお、本発明は、これらの実施例によって限定されない。
(フッ素アパタイトの調製および性状分析)
Hereinafter, the present invention will be further described by way of examples. In addition, this invention is not limited by these Examples.
(Preparation and characterization of fluorapatite)
「発明を実施するための最良の形態」の欄で説明した条件で、骨灰を遊星ボールミルにより、フッ素含有化合物としてCaF2、PTFEまたはFAAを添加し、共粉砕してフッ素アパタイトをそれぞれ得た。なお、フッ素含有化合物を添加しないアパタイトも同様にして得た。また、乾式粉砕の代わりに湿式粉砕を行い、同様に4種のフッ素アパタイトおよびアパタイトをそれぞれ得た。さらに、乾式粉砕と湿式粉砕との双方を行い、フッ素含有化合物として、CaF2またはFAAを添加したフッ素アパタイトを、同様にしてそれぞれ得るとともに、フッ素含有化合物を添加しないアパタイトも得た。これらのアパタイトを真空乾燥して性状分析用の試料を調製した。 Under the conditions described in the “Best Mode for Carrying Out the Invention” column, bone ash was added by a planetary ball mill with CaF 2 , PTFE or FAA as a fluorine-containing compound and co-ground to obtain fluorapatite. In addition, the apatite which does not add a fluorine-containing compound was obtained similarly. Further, wet pulverization was performed instead of dry pulverization, and four types of fluorapatite and apatite were obtained in the same manner. Furthermore, both dry pulverization and wet pulverization were performed, and as the fluorine-containing compound, fluorine apatite to which CaF 2 or FAA was added was obtained in the same manner, and apatite to which no fluorine-containing compound was added was also obtained. These apatites were vacuum-dried to prepare samples for property analysis.
調製した試料について、EDXによる元素分析、IRスペクトルを用いた表面水酸基の分析、BET法による比表面積および平均細孔径の測定を行った。
(1)まず、乾式粉砕によりFAAと共粉砕し、500℃で焼成した試料のEDXによる元素分析を行った。結果を図1に示す。FAAは350℃付近で燃焼するため、図1より、粉砕および焼成後の試料から検出されたフッ素は、アパタイト構造中のものであることが分かる。つまり、フッ素アパタイトが得られていることが確認できた。
About the prepared sample, the elemental analysis by EDX, the analysis of the surface hydroxyl group using IR spectrum, the measurement of the specific surface area and average pore diameter by BET method were performed.
(1) First, elemental analysis by EDX of a sample co-ground with FAA by dry pulverization and calcined at 500 ° C. was performed. The results are shown in FIG. Since FAA burns in the vicinity of 350 ° C., it can be seen from FIG. 1 that the fluorine detected from the crushed and fired sample is in the apatite structure. That is, it was confirmed that fluorapatite was obtained.
(2)次に、乾式粉砕による場合および湿式粉砕による場合のそれぞれにおける、CaF2、FAA、PTFEを添加した試料と、乾式粉砕と湿式粉砕との双方による場合のFAAを添加した試料について、IRスペクトルを用いた表面水酸基の分析を行った。 (2) Next, in each of the cases of dry pulverization and wet pulverization, samples added with CaF 2 , FAA, PTFE, and samples added with FAA in both dry pulverization and wet pulverization, IR Surface hydroxyl groups were analyzed using spectra.
図2は乾式粉砕により調製した試料の結果であり、(a)はCaF2、(b)はFAA、(c)はPTFEを添加した試料のスペクトルを示す。図3は湿式粉砕により調製した試料の結果であり、(a)はCaF2、(b)はFAA、(c)はPTFEを添加した試料のスペクトルを示す。図4はFAAを添加した試料の結果であり、(a)は乾式粉砕によりFAAを添加して調製した試料、(b)は乾式粉砕と湿式粉砕との双方によりFAAを添加して調製した試料のスペクトルを示す。なお、図4(a)の試料は、乾式粉砕を1時間半のみ行って調製している。 FIG. 2 shows the results of a sample prepared by dry pulverization, where (a) shows CaF 2 , (b) shows FAA, and (c) shows the spectrum of the sample added with PTFE. FIG. 3 shows the results of a sample prepared by wet pulverization, where (a) shows CaF 2 , (b) shows FAA, and (c) shows the spectrum of the sample added with PTFE. FIG. 4 shows the results of a sample to which FAA was added. (A) is a sample prepared by adding FAA by dry grinding, and (b) is a sample prepared by adding FAA by both dry grinding and wet grinding. The spectrum of is shown. In addition, the sample of Fig.4 (a) is prepared by dry-grinding only for 1.5 hours.
また、全試料についてBET法による比表面積の測定を行うとともに、この比表面積に基く平均細孔径を測定した。結果を表1および表2に示す。 Moreover, while measuring the specific surface area by BET method about all the samples, the average pore diameter based on this specific surface area was measured. The results are shown in Tables 1 and 2.
図2〜図4の結果から、アパタイトの水酸基ピークのシフトと現象度合いとを指標に、フッ素(F)置換率を見積もったところ、湿式粉砕では約20%しかF置換が起こらないことが分かった。乾式粉砕ではほぼ100%近く円滑にF置換が進むが、表1に示したように比表面積の低下が顕著であった。一方、乾式粉砕と湿式粉砕との双方を行うと、高いF置換率を維持したまま、表2に示したように比表面積の低下を押さえることができ、F置換率が高いことと、大きな比表面積を維持できることとの双方の点で有効であった。 From the results shown in FIGS. 2 to 4, the fluorine (F) substitution rate was estimated using the shift of the hydroxyl peak of the apatite and the degree of phenomenon as an index, and it was found that only about 20% of the F substitution occurred in wet grinding. . In the dry pulverization, the F substitution smoothly progressed by almost 100%, but as shown in Table 1, the specific surface area was significantly reduced. On the other hand, when both dry pulverization and wet pulverization are performed, a decrease in specific surface area can be suppressed as shown in Table 2 while maintaining a high F substitution rate. This was effective both in terms of maintaining the surface area.
また、図2および図3の結果では、無機化合物のCaF2よりも有機化合物であるPTFEやFAAの方がFの置換が速やかであった。焼成や洗浄により不純物となる未反応添加物や副生成物を簡単に除去できる点も有機添加物を使用する利点となる。 Further, in the results of FIGS. 2 and 3, the substitution of F was quicker in the organic compound PTFE or FAA than in the inorganic compound CaF 2 . Another advantage of using organic additives is that unreacted additives and by-products that become impurities can be easily removed by baking and washing.
さらに、表1および表2に示したように、FAAを添加した場合には、フッ素含有化合物を添加しない場合と比較して、得られた粒子の比表面積は増大したが、CaF2やPTFEの場合は逆に減少することがあった。FAAを添加した場合には、一部表2に示したように、最終的に比表面積93m2/g、細孔容積0.17cm3/g、平均細孔径20nmのメソポーラス(多孔質)フッ素アパタイトを得ることができた。 Furthermore, as shown in Tables 1 and 2, when FAA was added, the specific surface area of the obtained particles was increased compared to the case where no fluorine-containing compound was added, but CaF 2 or PTFE On the contrary, the case may have decreased. When FAA is added, as shown in Table 2, some mesoporous fluorapatite finally has a specific surface area of 93 m 2 / g, a pore volume of 0.17 cm 3 / g, and an average pore diameter of 20 nm. Could get.
(フッ素アパタイト-可視光応答型チタニア光触媒複合体の性状分析)
(1)まず、骨灰(アパタイト)とチタニアとFAAとを乾式粉砕と湿式粉砕との双方を行って共粉砕して得た粒子について、アパタイト[002]面の格子定数の変化と、UV−Visスペクトルに現れた600〜800nmの吸収とを調べた。図5に格子定数の変化の結果を、図6にUV−Visスペクトルの結果を、それぞれ示す。
(Property analysis of fluorapatite-visible titania photocatalyst composite)
(1) First, with respect to particles obtained by co-grinding bone ash (apatite), titania and FAA by both dry pulverization and wet pulverization, changes in the lattice constant of the apatite [002] plane and UV-Vis Absorption at 600 to 800 nm appearing in the spectrum was examined. FIG. 5 shows the results of changes in the lattice constant, and FIG. 6 shows the results of UV-Vis spectra.
なお、図5において、HAp−FAA−Cは共粉砕後に500℃で焼成した試料であり、NFTxApy−C(x、yは整数)はアパタイトの比率をx:yにし、共粉砕後に500℃で焼成した試料である。また、図6において、NFT−C500は共粉砕後に500℃で焼成した試料であり、NFTxApy−C(x、yは整数)はアパタイトの比率をx:yにし、共粉砕後に500℃で焼成した試料である。 In FIG. 5, HAp-FAA-C is a sample fired at 500 ° C. after co-grinding, and NFTxApy-C (x and y are integers) is an apatite ratio of x: y, and after co-grinding at 500 ° C. It is a calcined sample. In FIG. 6, NFT-C500 is a sample fired at 500 ° C. after co-grinding, and NFTxApy-C (x and y are integers) is an apatite ratio of x: y, and fired at 500 ° C. after co-grinding. It is a sample.
また、比較として、チタニアのみ、骨灰のみ、チタニアと骨灰とを共粉砕した試料についても、UV−Visスペクトルに現れた600〜800nmの吸収を調べた。結果を図7に示す。なお、図7において、(a)はチタニアと骨灰とを共粉砕した試料(TAp)、(b)はチタニア(TiO2)のみ、(c)は骨灰(Ap)のみのスペクトルである。 For comparison, absorption of 600 to 800 nm appearing in the UV-Vis spectrum was also examined for a sample obtained by co-grinding titania alone, bone ash alone, and titania and bone ash. The results are shown in FIG. In FIG. 7, (a) is a sample (TAp) obtained by co-grinding titania and bone ash, (b) is a spectrum of only titania (TiO 2 ), and (c) is a spectrum of bone ash (Ap) only.
図5〜図7の結果から、骨灰とチタニアとFAAとの共粉砕により、カルシウムとチタンの置換が起こっていることが確認された(Journal of Molecular Catalysis A: Chemical 267(2007) p.p79-85参照)。つまり、図7(a)に示したように、チタニアと骨灰のみを粉砕しただけでは600〜800nmの吸収はほとんど増加しないことから、カルシウムとチタンの置換がメカノケミカル法で進行するためには、フッ素や窒素のアニオン交換(ドープ)が同時に起こる必要があることが分かる。 From the results of FIGS. 5 to 7, it was confirmed that substitution of calcium and titanium occurred by co-grinding of bone ash, titania and FAA (Journal of Molecular Catalysis A: Chemical 267 (2007) p. P79-). 85). That is, as shown in FIG. 7 (a), absorption of 600 to 800 nm hardly increases only by pulverizing only titania and bone ash, so that the substitution of calcium and titanium proceeds by the mechanochemical method, It can be seen that anion exchange (doping) of fluorine or nitrogen must occur simultaneously.
また、図6のUV−Visスペクトルの400〜500nm付近の吸収の増大より、チタニアが可視光応答光触媒となっていることが確認できた。同時に、アパタイトとチタニアの粒子のナノレベルでの微細化および複合化が達成できること明らかになった。 Moreover, it has confirmed that the titania became a visible light responsive photocatalyst from the increase in absorption of 400-500 nm vicinity of the UV-Vis spectrum of FIG. At the same time, it became clear that nano-scale refinement and compounding of apatite and titania particles can be achieved.
(2)次に、共粉砕により得られたフッ素アパタイトとチタニアとの複合体のBET法による比表面積を行うとともに、比表面積に基く平均細孔径を測定した。チタニアとFAAとを共粉砕して得られた試料、骨灰とFAAとを共粉砕して得られた試料についても、同様にして比表面積と平均細孔径を測定した。結果を表3に示す。 (2) Next, the specific surface area of the composite of fluorapatite and titania obtained by co-grinding was measured by the BET method, and the average pore diameter based on the specific surface area was measured. The specific surface area and average pore diameter of the sample obtained by co-grinding titania and FAA and the sample obtained by co-grinding bone ash and FAA were measured in the same manner. The results are shown in Table 3.
表3に示したように、得られたフッ素アパタイトとチタニアとの複合体の比表面積は、骨灰やチタニアを個々に粉砕した場合に達成できる比表面積の約2倍である168m2/gまで増大した。また、平均細孔径10nmのミクロ孔とメソ孔とを有し、細孔容積0.218cm3/g(表3には掲載せず)の多孔質なアパタイト−可視光応答型光触媒チタニア複合粒子であることが明らかになった。このような複合体が得られたのは、チタニアのナノ研磨剤としての効果と、メカノケミカルなイオン交換反応とがナノ粒子化に効果的に寄与したためと考えられる。 As shown in Table 3, the specific surface area of the composite of fluorapatite and titania obtained increased to 168 m 2 / g, which is about twice the specific surface area that can be achieved when individual crushed bone ash and titania. did. Further, it is a porous apatite-visible light responsive photocatalytic titania composite particle having micropores and mesopores having an average pore diameter of 10 nm and having a pore volume of 0.218 cm 3 / g (not shown in Table 3). It became clear that there was. The reason why such a composite was obtained is thought to be that the effect of titania as a nano-abrasive and the mechanochemical ion exchange reaction effectively contributed to the formation of nanoparticles.
(3)最後に、得られたフッ素アパタイトとチタニアとの複合体について、SEMを用いて形態観察をした。図8に複合体のSEM像の1700倍の拡大写真、図9に複合体の22000倍の拡大写真を示す。 (3) Finally, the resulting fluorapatite / titania composite was observed for morphology using SEM. FIG. 8 shows an enlarged photograph of the SEM image of the composite at 1700 times, and FIG. 9 shows an enlarged photograph at 22000 times of the composite.
図8では数μmの球状粒子が観測されたが、これらの球状粒子を図9に示したように拡大すると、さらに細かいナノ粒子の集合体であることが分かった。 In FIG. 8, spherical particles having a size of several μm were observed. When these spherical particles were enlarged as shown in FIG. 9, it was found that the particles were aggregates of finer nanoparticles.
本発明は、ヒドロキシアパタイト粉体からのフッ素アパタイトの製造に有効に利用することができる。 The present invention can be effectively used for the production of fluorapatite from hydroxyapatite powder.
Claims (6)
前記ヒドロキシアパタイト粉体として天然骨を焼成して得られたアパタイトを用いることを特徴とするフッ素アパタイトの製造方法。 The hydroxyapatite powder method for manufacturing a full Tsu-containing apatite you co-milled with a fluorine-containing compound,
A method for producing fluorapatite, comprising using apatite obtained by firing natural bone as the hydroxyapatite powder .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008263687A JP5147633B2 (en) | 2008-10-10 | 2008-10-10 | Method for producing fluorapatite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008263687A JP5147633B2 (en) | 2008-10-10 | 2008-10-10 | Method for producing fluorapatite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010089040A JP2010089040A (en) | 2010-04-22 |
JP5147633B2 true JP5147633B2 (en) | 2013-02-20 |
Family
ID=42252285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008263687A Expired - Fee Related JP5147633B2 (en) | 2008-10-10 | 2008-10-10 | Method for producing fluorapatite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5147633B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5966754B2 (en) * | 2012-08-10 | 2016-08-10 | 富士通株式会社 | Photocatalyst, method for producing photocatalyst, and photocatalytic electrode |
CN106045495B (en) * | 2016-05-25 | 2018-07-03 | 西南科技大学 | A kind of porous fluor-apatite ceramic preparation of Adsorption of Radioactive nucleic |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02220669A (en) * | 1989-02-22 | 1990-09-03 | Mitsubishi Mining & Cement Co Ltd | Internal-external opening terminal of living body |
JPH0585710A (en) * | 1991-09-27 | 1993-04-06 | Olympus Optical Co Ltd | Production of fluorine apatite |
JPH0867609A (en) * | 1994-08-29 | 1996-03-12 | Shiseido Co Ltd | Treated powder and cosmetic containing the same |
JPH0940409A (en) * | 1995-07-27 | 1997-02-10 | Taihei Kagaku Sangyo Kk | Production of fluorapatite |
US6569396B1 (en) * | 1999-03-26 | 2003-05-27 | Nara Machinery Co., Ltd. | Method for producing calcium phosphate powder |
-
2008
- 2008-10-10 JP JP2008263687A patent/JP5147633B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010089040A (en) | 2010-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Carbon decorated In2O3/TiO2 heterostructures with enhanced visible-light-driven photocatalytic activity | |
Lin et al. | Synthesis and characterization of phosphor and nitrogen co-doped titania | |
Tian et al. | Enhanced photocatalytic activity of S-doped TiO2–ZrO2 nanoparticles under visible-light irradiation | |
Sun et al. | Efficient fabrication of ZrO2-doped TiO2 hollow nanospheres with enhanced photocatalytic activity of rhodamine B degradation | |
Xu et al. | 3D graphene aerogel composite of 1D-2D Nb2O5-g-C3N4 heterojunction with excellent adsorption and visible-light photocatalytic performance | |
Sambudi et al. | Porous hollow hydroxyapatite microspheres synthesized by spray pyrolysis using a microalga template: preparation, drug delivery, and bioactivity | |
Jin et al. | Hydrothermal synthesis and characterization of phosphorous-doped TiO2 with high photocatalytic activity for methylene blue degradation | |
Wang et al. | A novel preparation of three-dimensionally ordered macroporous M/Ti (M= Zr or Ta) mixed oxide nanoparticles with enhanced photocatalytic activity | |
Wang et al. | Mesoporous TiO2− xAy (A= N, S) as a visible-light-response photocatalyst | |
Tang et al. | Low temperature synthesis and photocatalytic properties of mesoporous TiO2 nanospheres | |
Marthi et al. | Role of stacking faults and hydroxyl groups on the lithium adsorption/desorption properties of layered H2TiO3 | |
JP2014024041A (en) | METHOD FOR PRODUCING TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE AND TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE | |
JP5147633B2 (en) | Method for producing fluorapatite | |
Yaemsunthorn et al. | Hydrogen production using economical and environmental friendly nanoparticulate hydroxyapatite and its ion doping | |
Wang et al. | Synthesis and characterization of iodine ion doped mesoporous TiO2 by sol–gel method | |
KR101420677B1 (en) | Titanium dioxide doped nitrogen and method of preparing the same | |
Adamu et al. | Synthesis and characterization of bismuth-doped hydroxyapatite nanorods for fluoride removal | |
Lannoy et al. | Block copolymer–cyclodextrin supramolecular assemblies as soft templates for the synthesis of titania materials with controlled crystallinity, porosity and photocatalytic activity | |
US10363553B2 (en) | Nanocomposite hollow sphere as a photocatalyst and methods thereof | |
Wickramaratne et al. | Ordered mesoporous carbon–titania composites and their enhanced photocatalytic properties | |
JP5486790B2 (en) | Porous apatite and method for producing the same | |
Yi et al. | A new perspective for effect of S and Cu on the photocatalytic activity of S, Cu-codoped nano-TiO 2 under visible light irradiation | |
Yao et al. | Highly crystalline and silica-embedded titania rhombic shaped nanoparticles with mesoporous structure and its application in photocatalytic degradation of organic compound | |
Son et al. | Functionalization-Mediated Preparation via Acid Precipitation and Photocatalytic Activity of In Situ Ag2WO4@ WO3. H2O Nanoplates | |
KR102096364B1 (en) | Method for preparation of mesoporous silica form from power plant fly ash, and carbon dioxide sorbents or rare earth metals ion collector based on mesoporous silica form prepared by the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5147633 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151207 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |