JP5147220B2 - Method for manufacturing polycrystalline semiconductor film - Google Patents

Method for manufacturing polycrystalline semiconductor film Download PDF

Info

Publication number
JP5147220B2
JP5147220B2 JP2006312509A JP2006312509A JP5147220B2 JP 5147220 B2 JP5147220 B2 JP 5147220B2 JP 2006312509 A JP2006312509 A JP 2006312509A JP 2006312509 A JP2006312509 A JP 2006312509A JP 5147220 B2 JP5147220 B2 JP 5147220B2
Authority
JP
Japan
Prior art keywords
side direction
polarized
rectangular
crystal grains
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006312509A
Other languages
Japanese (ja)
Other versions
JP2008130713A5 (en
JP2008130713A (en
Inventor
隆介 川上
健一郎 西田
紀仁 河口
みゆき 正木
淳 芳之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2006312509A priority Critical patent/JP5147220B2/en
Publication of JP2008130713A publication Critical patent/JP2008130713A/en
Publication of JP2008130713A5 publication Critical patent/JP2008130713A5/ja
Application granted granted Critical
Publication of JP5147220B2 publication Critical patent/JP5147220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Description

本発明は、液晶、半導体装置の製造分野において、基板上に成膜した半導体薄膜を改質して結晶化するレーザアニール方法及び装置に関する。   The present invention relates to a laser annealing method and apparatus for modifying and crystallizing a semiconductor thin film formed on a substrate in the field of manufacturing liquid crystal and semiconductor devices.

液晶や半導体装置の製造において基板上に薄膜トランジスタ(以下、TFT:Thin Film Transistorという)を形成する場合に、TFTが形成される半導体層としてアモルファスシリコン膜などの非晶質半導体膜を用いると、キャリアの移動度が小さいため高速動作ができない。そのため、通常、非晶質半導体膜を結晶化して多結晶半導体膜(例えば多結晶シリコン膜)に改質する必要がある。   When a thin film transistor (hereinafter referred to as TFT: Thin Film Transistor) is formed on a substrate in manufacturing a liquid crystal or a semiconductor device, if an amorphous semiconductor film such as an amorphous silicon film is used as a semiconductor layer on which the TFT is formed, a carrier Because of the low mobility, high speed operation is not possible. For this reason, it is usually necessary to crystallize an amorphous semiconductor film and modify it to a polycrystalline semiconductor film (for example, a polycrystalline silicon film).

非晶質半導体膜を多結晶半導体膜に改質する手段として、レーザアニール装置が知られており、例えば特許文献1、2に既に開示されている。   A laser annealing apparatus is known as means for modifying an amorphous semiconductor film into a polycrystalline semiconductor film, and has already been disclosed in Patent Documents 1 and 2, for example.

特許文献1の「半導体デバイスのレーザ処理方法」は、液晶ディスプレイ装置となるべき半導体のアニールの際に、周辺回路領域と画素領域とに配置される薄膜トランジスタを必要な特性に応じて作り分けることを目的としている。
またその手段として、特許文献1の発明では、半導体薄膜に対するレーザ光の照射によるアニール工程において、部分的にマスクを用いてレーザ光を選択的に照射する。例えば、アクティブマトリクス型の液晶表示装置の作製において、周辺回路領域と画素領域とに対して、それぞれ異なる条件でレーザ光を照射するために、マスクを用いて、必要とする照射エネルギー密度でレーザ光を照射し、必要とする結晶性を選択的に有する結晶性珪素膜を得るものである。
The “laser processing method of a semiconductor device” in Patent Document 1 describes that thin film transistors arranged in a peripheral circuit region and a pixel region are separately formed according to necessary characteristics when annealing a semiconductor to be a liquid crystal display device. It is aimed.
As the means, in the invention of Patent Document 1, in the annealing process by laser light irradiation to the semiconductor thin film, laser light is selectively irradiated partially using a mask. For example, in manufacturing an active matrix liquid crystal display device, a laser beam is emitted at a required irradiation energy density using a mask to irradiate a peripheral circuit region and a pixel region with laser light under different conditions To obtain a crystalline silicon film selectively having the required crystallinity.

特許文献2の「レーザ照射装置及び方法、並びにレーザアニール装置及び方法」は、複数のレーザ発振器から出射されるレーザ光を合成しても偏光方向が揃ったレーザ光を照射することができ、これにより、非晶質半導体のレーザアニールに適用した場合に、等方的な結晶粒を得ることができるとともに、処理効率を高め生産性を向上させることを目的としている。
またその手段として、特許文献2のレーザ照射装置は、パルスレーザ光を出射する複数のレーザ発振器と、複数のレーザ発振器のパルスタイミングがずれるように各々に制御信号を出力するパルス制御部と、複数のレーザ光を同軸光路上に合成する偏光ビームスプリッタと、合成したレーザ光の光路上に配置され入射するレーザ光中の互いに直交する偏光成分のうち揃えるべき偏光方向と異なるものの偏光方向を選択的に回転させて、被照射物に照射するレーザ光の偏光方向を揃える偏光変換光学系と、を備えたものである。
The “laser irradiation apparatus and method, and laser annealing apparatus and method” of Patent Document 2 can irradiate laser beams having the same polarization direction even when laser beams emitted from a plurality of laser oscillators are combined. Accordingly, it is an object to obtain isotropic crystal grains when applied to laser annealing of an amorphous semiconductor, and to improve the processing efficiency and productivity.
As the means, the laser irradiation apparatus of Patent Document 2 includes a plurality of laser oscillators that emit pulsed laser light, a pulse control unit that outputs a control signal to each of the pulse timings of the plurality of laser oscillators, and a plurality of laser oscillators. A polarization beam splitter that synthesizes the laser beam on the coaxial optical path, and a polarization direction that is different from the polarization direction to be aligned among the mutually orthogonal polarization components in the incident laser light that is arranged on the optical path of the synthesized laser light. And a polarization conversion optical system that aligns the polarization direction of the laser light applied to the irradiated object.

特開平8−227855号公報、「半導体デバイスのレーザ処理方法」JP-A-8-227855, “Laser processing method of semiconductor device” 特開2006−253571号公報、「レーザ照射装置及び方法、並びにレーザアニール装置及び方法」JP 2006-253571 A, “Laser irradiation apparatus and method, and laser annealing apparatus and method”

上述した特許文献1には、液晶および有機ディスプレイにおいて、画素部のトランジスタに加えて周辺回路部のトランジスタを同一ガラス基板内に作製する方法が提案されている。
一般に画素部のトランジスタには電気特性の均一性が必要とされ、結晶粒径の均一性を向上させる必要がある。一方、周辺回路部のトランジスタには高移動度が要求され、結晶粒径を増大させる必要がある。
Patent Document 1 described above proposes a method of manufacturing a transistor in a peripheral circuit portion in the same glass substrate in addition to a transistor in a pixel portion in a liquid crystal and an organic display.
In general, the transistor in the pixel portion needs to have uniform electrical characteristics, and it is necessary to improve the uniformity of the crystal grain size. On the other hand, high mobility is required for the transistor in the peripheral circuit portion, and the crystal grain size needs to be increased.

上記目的を達成するため、特許文献1では、周辺回路部と画素部を異なるエネルギーでレーザ照射する手段、及び金属元素を添加する手段が提案されている。
しかし異なるエネルギーでレーザ照射するためにはマスクが必要となる場合があり、また金属元素を添加することは工程及び装置を複雑化させる問題点がある。
In order to achieve the above object, Patent Document 1 proposes means for irradiating the peripheral circuit portion and the pixel portion with laser with different energy, and means for adding a metal element.
However, in order to irradiate laser with different energy, a mask may be necessary, and the addition of a metal element has a problem of complicating the process and the apparatus.

本発明は上述した問題点に鑑みて創案されたものである。すなわち、本発明の目的は、アモルファスシリコン膜などの非晶質半導体膜を有する同一のガラス基板内に、マスクを用いず、工程及び装置を複雑化することなく、電気特性を均一化するために画素部の結晶粒径の均一性を向上させ、周辺回路部のトランジスタの高移動度を達成するために結晶粒径を増大させることができるレーザアニール方法及び装置を提供することにある。   The present invention has been made in view of the above-described problems. That is, an object of the present invention is to make electrical characteristics uniform in a single glass substrate having an amorphous semiconductor film such as an amorphous silicon film, without using a mask and without complicating processes and apparatuses. An object of the present invention is to provide a laser annealing method and apparatus capable of increasing the crystal grain size in order to improve the uniformity of the crystal grain size in the pixel portion and achieve high mobility of the transistors in the peripheral circuit portion.

本発明によれば、液晶および有機ディスプレイ装置用のガラス基板上に成膜された非晶質半導体膜をレーザ光の照射により結晶化するレーザアニール方法であって、
偏光パルスレーザ光をガラス基板上の走査方向に短くその直交方向に長い矩形断面を有しかつ異なる偏光状態の2種以上の矩形偏光ビームに変換し、前記ガラス基板上の周辺回路部と画素部とで前記矩形偏光ビームを異なる偏光状態で照射する、ことを特徴とするレーザアニール方法が提供される。
According to the present invention, there is provided a laser annealing method for crystallizing an amorphous semiconductor film formed on a glass substrate for liquid crystal and organic display devices by laser light irradiation,
A polarized pulse laser beam is converted into two or more types of rectangular polarized beams having a rectangular cross section that is short in the scanning direction on the glass substrate and long in the orthogonal direction, and having different polarization states, and a peripheral circuit unit and a pixel unit on the glass substrate And irradiating the rectangular polarized beam in different polarization states.

本発明の好ましい実施形態によれば、前記周辺回路部に、電場が矩形偏光ビームの長辺方向に向く偏光状態の偏光パルスレーザ光を照射し、該偏光パルスレーザ光のエネルギー勾配により短辺方向に結晶粒を増大させる。   According to a preferred embodiment of the present invention, the peripheral circuit unit is irradiated with a polarized pulsed laser beam having an electric field oriented in the long side direction of the rectangular polarized beam, and the energy gradient of the polarized pulsed laser beam is applied in the short side direction. Increase the crystal grain.

また、前記画素部に、電場が矩形偏光ビームの短辺方向に向く偏光状態の偏光パルスレーザ光を照射し、短辺方向に発生する定在波により、結晶粒の短辺方向の伸長を抑制し、均一な結晶粒を成長させる。   In addition, the pixel portion is irradiated with polarized pulsed laser light in a polarization state in which the electric field is directed to the short side direction of the rectangular polarized beam, and the standing wave generated in the short side direction suppresses the elongation of the crystal grains in the short side direction. Then, uniform crystal grains are grown.

また、前記画素部に、電場が矩形偏光ビームの長辺方向に向く偏光状態の偏光パルスレーザ光と、電場が矩形偏光ビームの短辺方向に向く偏光状態の偏光パルスレーザ光とを交互に照射し、長辺方向及び短辺方向に発生する定在波により、長辺方向に結晶粒を均一化させかつ結晶粒の短辺方向の伸長を抑制し、均一な結晶粒を成長させてもよい。   In addition, the pixel unit is alternately irradiated with a polarized pulsed laser beam in a polarization state in which the electric field is directed in the long side direction of the rectangular polarized beam and a polarized pulsed laser beam in the polarization state in which the electric field is directed in the short side direction of the rectangular polarized beam. However, the standing waves generated in the long-side direction and the short-side direction may make the crystal grains uniform in the long-side direction and suppress the elongation of the crystal grains in the short-side direction, thereby growing uniform crystal grains. .

また本発明によれば、液晶および有機ディスプレイ装置用のガラス基板上に成膜された非晶質半導体膜をレーザ光の照射により結晶化するレーザアニール装置であって、
偏光パルスレーザ光を周期的に出射するレーザ出射装置と、
該レーザ出射装置からの偏光パルスレーザ光を、ガラス基板上の走査方向に直交する方向に電場が向く偏光状態と前記走査方向に電場が向く偏光状態とに変換可能な偏光変換光学系と、
該偏光変換光学系からの偏光パルスレーザ光を、ガラス基板上の走査方向に短くその直交方向に長い矩形断面の矩形偏光ビームに変換する形状変換光学系とを備え、
ガラス基板上の周辺回路部と画素部とで矩形偏光ビームを異なる偏光状態で照射する、ことを特徴とするレーザアニール装置が提供される。
According to the present invention, there is also provided a laser annealing apparatus for crystallizing an amorphous semiconductor film formed on a glass substrate for liquid crystal and organic display devices by laser light irradiation,
A laser emitting device for periodically emitting polarized pulsed laser light;
A polarization conversion optical system capable of converting the polarized pulsed laser light from the laser emitting device into a polarization state in which an electric field is directed in a direction orthogonal to a scanning direction on a glass substrate and a polarization state in which an electric field is directed in the scanning direction;
A shape conversion optical system that converts the polarized pulsed laser light from the polarization conversion optical system into a rectangular polarization beam having a rectangular cross section that is short in the scanning direction on the glass substrate and long in the orthogonal direction;
There is provided a laser annealing apparatus characterized in that a rectangular polarized beam is irradiated in different polarization states between a peripheral circuit portion and a pixel portion on a glass substrate.

本発明の好ましい実施形態によれば、前記レーザ出射装置は、偏光パルスレーザ光を周期的に出射する単一のレーザ共振器であり、
前記偏光変換光学系は、レーザ共振器と形状変換光学系の間の光路上に配置された1/2波長板と、該1/2波長板を光軸を中心に回転させる駆動部とからなる。
According to a preferred embodiment of the present invention, the laser emitting device is a single laser resonator that periodically emits polarized pulsed laser light,
The polarization conversion optical system includes a half-wave plate disposed on the optical path between the laser resonator and the shape conversion optical system, and a drive unit that rotates the half-wave plate about the optical axis. .

また、別の好ましい実施形態によれば、前記レーザ出射装置は、偏光パルスレーザ光を周期的に出射する複数のレーザ共振器と、該複数のレーザ共振器のパルスタイミングがずれるように各々に制御信号を出力するパルス制御部とからなり、
前記偏光変換光学系は、複数のレーザ光を同軸光路上に合成する偏光ビームスプリッタと、偏光ビームスプリッタと形状変換光学系の間の光路上に配置された1/2波長板と、該1/2波長板を光軸を中心に回転させる駆動部とからなる。
According to another preferred embodiment, the laser emitting device controls each of the plurality of laser resonators that periodically emit polarized pulsed laser light and the pulse timings of the plurality of laser resonators to be shifted from each other. It consists of a pulse controller that outputs signals,
The polarization conversion optical system includes a polarization beam splitter that synthesizes a plurality of laser beams on a coaxial optical path, a half-wave plate disposed on the optical path between the polarization beam splitter and the shape conversion optical system, and the 1 / It comprises a drive unit that rotates the two-wavelength plate around the optical axis.

また前記形状変換光学系は、円形断面のレーザ光をガラス基板上の走査方向に短くその直交方向に長い矩形断面の矩形偏光ビームに変換するビームエキスパンダーと、
前記矩形偏光ビームを短辺方向に集光しかつ焦点距離が可変な1対のシリンドリカルレンズアレイと、
該シリンドリカルレンズアレイを通過した前記矩形偏光ビームをガラス基板上に集光するコンデンサーレンズとからなる、ことが好ましい。
The shape conversion optical system includes a beam expander that converts a laser beam having a circular cross section into a rectangular polarized beam having a rectangular cross section that is short in the scanning direction on the glass substrate and long in the orthogonal direction.
A pair of cylindrical lens arrays for condensing the rectangular polarized beam in the short side direction and having a variable focal length;
It is preferable that the rectangular polarized beam that has passed through the cylindrical lens array is composed of a condenser lens that collects the light on a glass substrate.

上記本発明の方法及び装置によれば、液晶および有機ディスプレイ装置用のガラス基板上に成膜された非晶質半導体膜に、偏光パルスレーザ光をガラス基板上の走査方向に短くその直交方向に長い矩形断面を有しかつ異なる偏光状態の2種以上の矩形偏光ビームに変換し、前記ガラス基板上の周辺回路部と画素部とで前記矩形偏光ビームを異なる偏光状態で照射するので、周辺回路部と画素部とで偏光状態の相違により異なる結晶化を行うことができる。   According to the above-described method and apparatus of the present invention, the polarized pulsed laser beam is short in the scanning direction on the glass substrate and in the orthogonal direction on the amorphous semiconductor film formed on the glass substrate for liquid crystal and organic display devices. Since it converts into two or more kinds of rectangular polarized beams having a long rectangular cross section and different polarization states, the peripheral circuit portion and the pixel portion on the glass substrate are irradiated with the rectangular polarized beams in different polarization states. Different crystallization can be performed due to the difference in polarization state between the pixel portion and the pixel portion.

本発明の好ましい実施形態によれば、前記周辺回路部に電場が矩形偏光ビームの長辺方向に向く偏光状態の偏光パルスレーザ光を照射することにより、偏光パルスレーザ光のエネルギー勾配により短辺方向に結晶粒を増大させることができる。   According to a preferred embodiment of the present invention, the peripheral circuit unit is irradiated with a polarized pulsed laser beam having a polarization state in which the electric field is directed in the long side direction of the rectangular polarized beam, whereby the energy gradient of the polarized pulsed laser beam causes a short side direction. The crystal grains can be increased.

電場が長辺方向を向くとき短辺方向に結晶粒が伸びる理由は、短辺方向にレーザが元来もっているエネルギー分布があるからである。すなわち、固体レーザであればガウシアン形状に近いエネルギープロファイルとなる。   The reason why the crystal grains extend in the short side direction when the electric field faces in the long side direction is that there is an energy distribution that the laser originally has in the short side direction. That is, if it is a solid-state laser, the energy profile is close to a Gaussian shape.

また、前記画素部に電場が矩形偏光ビームの短辺方向に向く偏光状態の偏光パルスレーザ光を照射することにより、短辺方向に発生する定在波により、結晶粒の短辺方向の伸長を抑制し、均一な結晶粒を成長させることができる。   Further, by irradiating the pixel portion with polarized pulsed laser light in a polarization state in which the electric field is directed to the short side direction of the rectangular polarized beam, the standing wave generated in the short side direction causes the crystal grains to extend in the short side direction. It is possible to suppress and grow uniform crystal grains.

この特性も、半導体膜上に偏光方向である短辺方向に定在波が発生し、この定在波の周期的なエネルギーに対応する温度勾配が生じることによる。すなわち、この周期的エネルギーの谷の位置に結晶核が発生し、各結晶核は温度のより高い方向へ成長し互いにぶつかりあった箇所が結晶粒界となる。しかし短辺方向の照射範囲は狭く温度変化が大きいので、結晶粒の短辺方向の成長はこの温度分布により抑制される。従って、長辺方向及び短辺方向の両方向の結晶成長が制限され、全体として均一な結晶粒を成長させることができる。   This characteristic is also due to the fact that a standing wave is generated on the semiconductor film in the direction of the short side, which is the polarization direction, and a temperature gradient corresponding to the periodic energy of the standing wave is generated. That is, crystal nuclei are generated at the positions of the periodic energy valleys, and each crystal nucleus grows in a higher temperature direction, and a portion where the crystal nuclei collide with each other becomes a crystal grain boundary. However, since the irradiation range in the short side direction is narrow and the temperature change is large, the growth of crystal grains in the short side direction is suppressed by this temperature distribution. Therefore, crystal growth in both the long side direction and the short side direction is restricted, and uniform crystal grains can be grown as a whole.

また、前記画素部に、電場が矩形偏光ビームの長辺方向に向く偏光状態の偏光パルスレーザ光と、電場が矩形偏光ビームの短辺方向に向く偏光状態の偏光パルスレーザ光とを交互に照射することにより、長辺方向及び短辺方向に発生する定在波により、長辺方向に結晶粒を伸長させかつ結晶粒の短辺方向の伸長を抑制し、均一な結晶粒を成長させることができる。   In addition, the pixel unit is alternately irradiated with a polarized pulsed laser beam in a polarization state in which the electric field is directed in the long side direction of the rectangular polarized beam and a polarized pulsed laser beam in the polarization state in which the electric field is directed in the short side direction of the rectangular polarized beam. By using standing waves generated in the long side direction and the short side direction, the crystal grains are elongated in the long side direction and the elongation of the crystal grains in the short side direction is suppressed, and uniform crystal grains can be grown. it can.

この特性は、半導体膜上に偏光方向である長辺方向及び短辺方向に交互に定在波が発生し、この定在波の周期的なエネルギーに対応する温度勾配が生じることによる。すなわち、この周期的エネルギーの谷の位置に結晶核が発生し、各結晶核は温度のより高い方向へ成長し互いにぶつかりあった箇所が結晶粒界となる。従って、周期的な位置に発生した結晶核は、長辺方向及び短辺方向の同じ温度勾配の影響を受けて成長するので、長辺方向及び短辺方向の寸法が均一な結晶粒からなる多結晶半導体膜を形成することができる。   This characteristic is due to the fact that standing waves are alternately generated in the long-side direction and the short-side direction, which are polarization directions, on the semiconductor film, and a temperature gradient corresponding to the periodic energy of the standing wave is generated. That is, crystal nuclei are generated at the positions of the periodic energy valleys, and each crystal nucleus grows in a higher temperature direction, and a portion where the crystal nuclei collide with each other becomes a crystal grain boundary. Therefore, crystal nuclei generated at periodic positions grow under the influence of the same temperature gradient in the long-side direction and the short-side direction, so that many nuclei consisting of crystal grains having uniform dimensions in the long-side direction and the short-side direction are formed. A crystalline semiconductor film can be formed.

以下、本発明の好ましい実施例を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明の処理対象である液晶および有機ディスプレイ装置用のガラス基板1の上面図である。この基板上には、半導体層としてアモルファスシリコン膜などの非晶質半導体膜が全面に均一に成膜されている。また、ガラス基板1上には、映像を表示する矩形の画素部2と、画素を駆動するための「L」字型の周辺回路部3とが後工程において設けられる。   FIG. 1 is a top view of a glass substrate 1 for a liquid crystal and organic display device which is a processing target of the present invention. An amorphous semiconductor film such as an amorphous silicon film is uniformly formed on the entire surface of the substrate as a semiconductor layer. On the glass substrate 1, a rectangular pixel portion 2 for displaying an image and an “L” -shaped peripheral circuit portion 3 for driving the pixel are provided in a later process.

本発明のレーザアニール装置は、図1のガラス基板1上に成膜された非晶質半導体膜をレーザ光の照射により結晶化する装置である。このレーザ光には、ガラス基板上の走査方向4に短くその直交方向に長い矩形断面の矩形偏光ビーム9を使用する。
走査方向4は、この図に示すように、基板の長手方向に走査しても、短手方向に走査してもよい。
The laser annealing apparatus of the present invention is an apparatus for crystallizing an amorphous semiconductor film formed on the glass substrate 1 of FIG. 1 by laser light irradiation. As this laser light, a rectangular polarized beam 9 having a rectangular cross section which is short in the scanning direction 4 on the glass substrate and long in the orthogonal direction is used.
As shown in this figure, the scanning direction 4 may be scanned in the longitudinal direction of the substrate or in the lateral direction.

図2は、本発明によるレーザアニール装置の第1実施形態図である。
この図において、本発明のレーザアニール装置は、レーザ出射装置10、偏光変換光学系20、及び形状変換光学系30を備える。
FIG. 2 is a diagram showing a first embodiment of a laser annealing apparatus according to the present invention.
In this figure, the laser annealing apparatus of the present invention includes a laser emitting device 10, a polarization conversion optical system 20, and a shape conversion optical system 30.

レーザ出射装置10は、偏光パルスレーザ光5aを周期的に出射する装置であり、この例では単一のレーザ共振器12である。
偏光パルスレーザ光5aの偏光方向は、ガラス基板上の走査方向4に直交する方向(この図で紙面に平行な方向)に電場が向く偏光状態6と、走査方向4(この図で紙面に直交する方向)に電場が向く偏光状態7のどちらでもよい。
なお、この図において偏光状態6を上下方向の矢印、偏光状態7を二重丸で示す。
図1において、偏光状態6は、電場が矩形偏光ビーム9の長辺方向に向く偏光状態であり、偏光状態7は、電場が矩形偏光ビーム9の短辺方向に向く偏光状態である。
The laser emitting device 10 is a device that periodically emits the polarized pulsed laser light 5a, and is a single laser resonator 12 in this example.
The polarization direction of the polarized pulsed laser beam 5a is a polarization state 6 in which the electric field is directed in a direction orthogonal to the scanning direction 4 on the glass substrate (a direction parallel to the paper surface in this figure), and a scanning direction 4 (perpendicular to the paper surface in this figure). The polarization state 7 in which the electric field is directed in the direction of
In this figure, the polarization state 6 is indicated by a vertical arrow, and the polarization state 7 is indicated by a double circle.
In FIG. 1, the polarization state 6 is a polarization state in which the electric field is directed to the long side direction of the rectangular polarized beam 9, and the polarization state 7 is a polarization state in which the electric field is directed to the short side direction of the rectangular polarized beam 9.

偏光変換光学系20は、レーザ共振器12からの偏光パルスレーザ光5aを、偏光状態6と偏光状態7に交互に変換する機能を有する。
偏光変換光学系20は、この例ではレーザ共振器12と形状変換光学系30の間の光路上に配置された1/2波長板22と、1/2波長板22を光軸を中心に回転又は揺動させる駆動部24とからなる。
この構成により、駆動部24により1/2波長板22を回転又は揺動させることにより、45度回転毎に、1/2波長板22を通過する偏光パルスレーザ光5aを、偏光状態6と偏光状態7に交互に変換することができる。従って、1/2波長板22をどちらかの位置で停止することで、通過した偏光パルスレーザ光5bを常に偏光状態6又は偏光状態7に変換することができる。
The polarization conversion optical system 20 has a function of alternately converting the polarized pulsed laser light 5 a from the laser resonator 12 into a polarization state 6 and a polarization state 7.
In this example, the polarization conversion optical system 20 is a half-wave plate 22 disposed on the optical path between the laser resonator 12 and the shape conversion optical system 30, and the half-wave plate 22 is rotated about the optical axis. Alternatively, the driving unit 24 is configured to swing.
With this configuration, by rotating or swinging the half-wave plate 22 by the drive unit 24, the polarization pulse laser beam 5 a that passes through the half-wave plate 22 is changed into the polarization state 6 and the polarization state every 45 degrees. The state 7 can be alternately converted. Therefore, by stopping the half-wave plate 22 at either position, the passed polarized pulsed laser beam 5b can always be converted into the polarization state 6 or the polarization state 7.

形状変換光学系30は、偏光変換光学系20を通過した偏光パルスレーザ光5bを、ガラス基板上の走査方向に短くその直交方向に長い矩形断面の矩形偏光ビーム9に変換する機能を有する。   The shape conversion optical system 30 has a function of converting the polarized pulsed laser light 5b that has passed through the polarization conversion optical system 20 into a rectangular polarization beam 9 having a rectangular cross section that is short in the scanning direction on the glass substrate and long in the orthogonal direction.

形状変換光学系30は、この例では、ビームエキスパンダー32、1対のシリンドリカルレンズアレイ34、及びコンデンサーレンズ36からなる。   In this example, the shape conversion optical system 30 includes a beam expander 32, a pair of cylindrical lens arrays 34, and a condenser lens 36.

ビームエキスパンダー32は、この例では非球面の凹レンズ32aと凸レンズ32bからなり、円形断面の偏光パルスレーザ光5bをガラス基板上の走査方向4に短くその直交方向に長い矩形断面の矩形偏光ビーム8aに変換する。矩形偏光ビーム8aは平行光であるのが好ましい。
なお、ビームエキスパンダー32は、上述した以外の構成の光学系であってもよい。
In this example, the beam expander 32 includes an aspherical concave lens 32a and a convex lens 32b. The circular pulsed polarized laser beam 5b is converted into a rectangular polarized beam 8a having a rectangular cross section that is short in the scanning direction 4 on the glass substrate and long in the orthogonal direction. Convert. The rectangular polarized beam 8a is preferably parallel light.
The beam expander 32 may be an optical system having a configuration other than that described above.

1対のシリンドリカルレンズアレイ34は、上流側シリンドリカルレンズアレイ34aと下流側シリンドリカルレンズアレイ34bとからなり、図示しないアクチュエータにより、その間隔Δを変更できるようになっている。間隔Δを変化させることにより、1対のシリンドリカルレンズアレイ34の焦点距離を変化し、矩形偏光ビーム8bの長辺方向の長さを変化させることができる。   The pair of cylindrical lens arrays 34 includes an upstream side cylindrical lens array 34a and a downstream side cylindrical lens array 34b, and the interval Δ can be changed by an actuator (not shown). By changing the interval Δ, the focal length of the pair of cylindrical lens arrays 34 can be changed, and the length of the rectangular polarized beam 8b in the long side direction can be changed.

すなわち、上流側シリンドリカルレンズアレイ34aと下流側シリンドリカルレンズアレイ34bの焦点距離をそれぞれf,fとすると、1対のシリンドリカルレンズアレイ34の焦点距離fは、式(1)であらわすことができる。 That is, if the focal lengths of the upstream cylindrical lens array 34a and the downstream cylindrical lens array 34b are f 1 and f 2 , respectively, the focal length f of the pair of cylindrical lens arrays 34 can be expressed by Expression (1). .

1/f=1/f+1/f−Δ/(f・f)・・・(1) 1 / f = 1 / f 1 + 1 / f 2 −Δ / (f 1 · f 2 ) (1)

この式(1)から、Δを変化させることにより、焦点距離fを変化させることができ、この結果、走査方向4に直交する方向の集光角度が変化し、矩形偏光ビーム8bの長辺方向の長さを変化させることができることがわかる。
なお、1対のシリンドリカルレンズアレイ34は、上述した以外の構成の光学系であってもよい。
From this equation (1), it is possible to change the focal length f by changing Δ. As a result, the condensing angle in the direction orthogonal to the scanning direction 4 changes, and the long side direction of the rectangular polarized light beam 8b changes. It can be seen that the length of can be changed.
Note that the pair of cylindrical lens arrays 34 may be an optical system having a configuration other than those described above.

コンデンサーレンズ36は、シリンドリカルレンズアレイ34を通過した矩形偏光ビーム8bをガラス基板上に集光する。コンデンサーレンズ36は、非球面凸レンズであり、矩形偏光ビーム8bをガラス基板上の走査方向4に集光し、ガラス基板上に走査方向4に短くその直交方向に長い矩形断面の矩形偏光ビーム9を照射する。
なお、コンデンサーレンズ36は、上述した以外の構成の光学系であってもよい。
The condenser lens 36 condenses the rectangular polarized beam 8b that has passed through the cylindrical lens array 34 on a glass substrate. The condenser lens 36 is an aspherical convex lens, condenses the rectangular polarized beam 8b in the scanning direction 4 on the glass substrate, and the rectangular polarized beam 9 having a rectangular cross section which is short in the scanning direction 4 and long in the orthogonal direction on the glass substrate. Irradiate.
The condenser lens 36 may be an optical system having a configuration other than that described above.

上述した構成により、駆動部24により1/2波長板22を適宜回転又は揺動させることにより、偏光パルスレーザ光5aを偏光状態6又は偏光状態7に変換して、ガラス基板上の周辺回路部3と画素部2とで矩形偏光ビーム9を異なる偏光状態で照射することができる。   With the above-described configuration, the polarization pulse laser beam 5a is converted into the polarization state 6 or the polarization state 7 by appropriately rotating or swinging the half-wave plate 22 by the driving unit 24, and the peripheral circuit unit on the glass substrate. 3 and the pixel unit 2 can irradiate the rectangular polarized beam 9 in different polarization states.

図3は、本発明によるレーザアニール装置の第2実施形態図である。
この図において、本発明のレーザアニール装置は、レーザ出射装置10、偏光変換光学系20、及び形状変換光学系30を備える。
FIG. 3 is a diagram showing a second embodiment of the laser annealing apparatus according to the present invention.
In this figure, the laser annealing apparatus of the present invention includes a laser emitting device 10, a polarization conversion optical system 20, and a shape conversion optical system 30.

レーザ出射装置10は、偏光パルスレーザ光5aを周期的に出射する複数(この図で2台)のレーザ共振器12A,12Bと、複数のレーザ共振器のパルスタイミングがずれるように各々に制御信号を出力するパルス制御部14とからなる。
レーザ共振器12A,12Bは、それぞれ偏光状態7と偏光状態6を周期的に出射する。またこの偏光状態7と偏光状態6は、パルス制御部14により出射するパルスタイミングが異なり、交互に出射するようになっている。
The laser emitting apparatus 10 controls each of the plurality of (two in this figure) laser resonators 12A and 12B that periodically emit the polarized pulsed laser light 5a and the pulse timings of the plurality of laser resonators so that the pulse timing is shifted. And a pulse control unit 14 for outputting.
Laser resonators 12A and 12B periodically emit polarization state 7 and polarization state 6, respectively. Further, the polarization state 7 and the polarization state 6 have different pulse timings emitted by the pulse control unit 14 and are emitted alternately.

偏光変換光学系20は、上述した1/2波長板22と駆動部24のほかに、反射ミラー26と偏光ビームスプリッタ28を備える。
反射ミラー26は、偏光状態7を偏光状態6と直交する方向に全反射させて、偏光状態7を偏光ビームスプリッタ28に入射させる。
偏光ビームスプリッタ28は、2つの偏光パルスレーザ光5a(偏光状態7と偏光状態6)を同軸光路上に合成する機能を有する。
The polarization conversion optical system 20 includes a reflection mirror 26 and a polarization beam splitter 28 in addition to the half-wave plate 22 and the drive unit 24 described above.
The reflection mirror 26 totally reflects the polarization state 7 in a direction orthogonal to the polarization state 6 and causes the polarization state 7 to enter the polarization beam splitter 28.
The polarization beam splitter 28 has a function of synthesizing two polarization pulse laser beams 5a (polarization state 7 and polarization state 6) on a coaxial optical path.

この構成により、偏光ビームスプリッタ28で2つの偏光パルスレーザ光5a(偏光状態7と偏光状態6)を同軸光路上に合成し、偏光状態7と偏光状態6を交互に形状変換光学系30に入射させることができる。
また、駆動部24により1/2波長板22を適宜回転又は揺動させることにより、形状変換光学系30に入射する偏光パルスレーザ光5を、(1)偏光状態6のみ、(2)偏光状態7のみ、或いは(3)偏光状態7と偏光状態6に交互に変換して、ガラス基板上の周辺回路部3と画素部2とに照射することができる。
With this configuration, the polarization beam splitter 28 synthesizes two polarized pulsed laser beams 5a (polarization state 7 and polarization state 6) on a coaxial optical path, and the polarization state 7 and the polarization state 6 are alternately incident on the shape conversion optical system 30. Can be made.
In addition, by appropriately rotating or swinging the half-wave plate 22 by the driving unit 24, the polarized pulsed laser light 5 incident on the shape conversion optical system 30 can be (1) only in the polarization state 6 or (2) in the polarization state. 7 or (3) It is possible to irradiate the peripheral circuit unit 3 and the pixel unit 2 on the glass substrate by alternately converting into the polarization state 7 and the polarization state 6.

また、この構成により、2台のレーザ共振器12A,12Bを同時に使用できるので、基板上のレーザ光の走査速度を高めることができ、レーザアニールの処理効率を高め生産性を向上させることができる。   Also, with this configuration, two laser resonators 12A and 12B can be used simultaneously, so that the scanning speed of the laser light on the substrate can be increased, the processing efficiency of laser annealing can be increased, and the productivity can be improved. .

本発明のレーザアニール方法では、上述した装置を用いて、偏光パルスレーザ光5aをガラス基板上の走査方向に短くその直交方向に長い矩形断面の矩形偏光ビーム9に変換し、ガラス基板上の周辺回路部3と画素部2とで矩形偏光ビーム9を異なる偏光状態で照射する。   In the laser annealing method of the present invention, using the above-described apparatus, the polarized pulsed laser beam 5a is converted into a rectangular polarized beam 9 having a rectangular cross section that is short in the scanning direction on the glass substrate and long in the orthogonal direction. The circuit unit 3 and the pixel unit 2 irradiate the rectangular polarized beam 9 in different polarization states.

すなわち、本発明の第1の方法では、周辺回路部3には、電場が矩形偏光ビームの長辺方向に向く偏光状態6の偏光パルスレーザ光9を照射し、偏光パルスレーザ光9のエネルギー勾配により短辺方向に結晶粒を増大させる。   That is, in the first method of the present invention, the peripheral circuit unit 3 is irradiated with the polarized pulsed laser beam 9 in the polarization state 6 in which the electric field is directed in the long side direction of the rectangular polarized beam, and the energy gradient of the polarized pulsed laser beam 9 is obtained. Thus, the crystal grains are increased in the short side direction.

また、本発明の第2の方法では、画素部2には、電場が矩形偏光ビームの短辺方向に向く偏光状態7の偏光パルスレーザ光9を照射し、短辺方向に発生する定在波により、結晶粒の短辺方向の伸長を抑制し、均一な結晶粒を成長させる。   Further, in the second method of the present invention, the pixel unit 2 is irradiated with the polarized pulsed laser light 9 in the polarization state 7 in which the electric field is directed in the short side direction of the rectangular polarized beam, and the standing wave generated in the short side direction. Thus, the elongation of the crystal grains in the short side direction is suppressed, and uniform crystal grains are grown.

さらに、本発明の第3の方法では、画素部2に、電場が矩形偏光ビームの長辺方向に向く偏光状態6の偏光パルスレーザ光9と、電場が矩形偏光ビームの短辺方向に向く偏光状態7の偏光パルスレーザ光9とを交互に照射し、長辺方向及び短辺方向に発生する定在波により、長辺方向に結晶粒を伸長させかつ結晶粒の短辺方向の伸長を抑制し、均一な結晶粒を成長させる。   Further, according to the third method of the present invention, the pixel unit 2 has the polarization pulse laser light 9 in the polarization state 6 in which the electric field is directed in the long side direction of the rectangular polarized beam and the polarized light in which the electric field is directed in the short side direction of the rectangular polarized beam. By alternately irradiating the polarized pulsed laser light 9 in the state 7 and standing waves generated in the long side direction and the short side direction, the crystal grains are elongated in the long side direction and the elongation of the crystal grains in the short side direction is suppressed. Then, uniform crystal grains are grown.

図4は、本発明の第1の方法により、電場が矩形偏光ビーム9の長辺方向に向く偏光状態の偏光パルスレーザ光を照射した場合に得られた結晶粒寸法の状態図である。この図は、電場の向きが長辺方向であり波長が532nmの矩形レーザビームをエネルギー密度450〜500mJ/cmで、非晶質シリコン膜に垂直に照射して得られた多結晶シリコン中の結晶粒を示している。
この図から、短辺方向の結晶粒寸法は1.5μm程度であり、本発明の第1の方法により、短辺方向に結晶粒を増大させることができることが確認された。
FIG. 4 is a phase diagram of the crystal grain size obtained when the polarized pulsed laser light in the polarization state in which the electric field is directed in the long side direction of the rectangular polarized beam 9 is irradiated by the first method of the present invention. This figure shows that in the polycrystalline silicon obtained by vertically irradiating an amorphous silicon film with a rectangular laser beam having a long side direction and a wavelength of 532 nm and an energy density of 450 to 500 mJ / cm 2 . Crystal grains are shown.
From this figure, the crystal grain size in the short side direction is about 1.5 μm, and it was confirmed that the crystal grain can be increased in the short side direction by the first method of the present invention.

電場が長辺方向を向くとき短辺方向に結晶粒が伸びる理由は、短辺方向にレーザが元来もっているエネルギー分布があるからである。すなわち、固体レーザであればガウシアン形状に近いエネルギープロファイルとなる。この図において結晶粒が伸びている方向は短辺方向である。   The reason why the crystal grains extend in the short side direction when the electric field faces in the long side direction is that there is an energy distribution that the laser originally has in the short side direction. That is, if it is a solid-state laser, the energy profile is close to a Gaussian shape. In this figure, the direction in which the crystal grains extend is the short side direction.

図5は、本発明の第2の方法により、電場が矩形偏光ビーム9の短辺方向に向く偏光状態の偏光パルスレーザ光を照射した場合に得られた結晶粒寸法の状態図である。レーザ光の波長、エネルギー密度および照射角度は、実施例1と同一である。
この図から、長辺方向及び短辺方向の結晶粒寸法は0.3μm程度であり、本発明の第2の方法により、均一な結晶粒を成長させることができることが確認された。
FIG. 5 is a state diagram of the crystal grain size obtained when the polarized pulsed laser light in the polarization state in which the electric field is directed to the short side direction of the rectangular polarized beam 9 is irradiated by the second method of the present invention. The wavelength, energy density, and irradiation angle of the laser light are the same as those in the first embodiment.
From this figure, the crystal grain size in the long side direction and the short side direction is about 0.3 μm, and it was confirmed that uniform crystal grains can be grown by the second method of the present invention.

この特性は、半導体膜上に偏光方向である短辺方向に定在波が発生し、この定在波の周期的なエネルギーに対応する温度勾配が生じることによる。すなわち、この周期的エネルギーの谷の位置に結晶核が発生し、各結晶核は温度のより高い方向へ成長し互いにぶつかりあった箇所が結晶粒界となる。しかし短辺方向の照射範囲は狭く温度変化が大きいので、結晶粒の短辺方向の成長はこの温度分布により抑制される。従って、長辺方向及び短辺方向の両方向の結晶成長が制限され、全体として均一な結晶粒を成長させることができる。   This characteristic is due to the fact that a standing wave is generated on the semiconductor film in the short side direction, which is the polarization direction, and a temperature gradient corresponding to the periodic energy of the standing wave is generated. That is, crystal nuclei are generated at the positions of the periodic energy valleys, and each crystal nucleus grows in a higher temperature direction, and a portion where the crystal nuclei collide with each other becomes a crystal grain boundary. However, since the irradiation range in the short side direction is narrow and the temperature change is large, the growth of crystal grains in the short side direction is suppressed by this temperature distribution. Therefore, crystal growth in both the long side direction and the short side direction is restricted, and uniform crystal grains can be grown as a whole.

図6は、本発明の第3の方法により、電場が矩形偏光ビームの長辺方向に向く偏光状態の偏光パルスレーザ光と、電場が矩形偏光ビームの短辺方向に向く偏光状態の偏光パルスレーザ光とを交互に照射した場合に得られた結晶粒寸法の状態図である。レーザ光の波長、エネルギー密度および照射角度は、実施例1と同一である。
この図から、長辺方向及び短辺方向の結晶粒寸法は0.3μm程度であり、本発明の第3の方法により、均一な結晶粒を成長させることができることが確認された。
FIG. 6 shows a polarization pulse laser beam in a polarization state in which the electric field is directed to the long side direction of the rectangular polarization beam and a polarization pulse laser in a polarization state in which the electric field is directed to the short side direction of the rectangular polarization beam by the third method of the present invention. It is a phase diagram of a crystal grain size obtained when light and light are alternately irradiated. The wavelength, energy density, and irradiation angle of the laser light are the same as those in the first embodiment.
From this figure, the crystal grain size in the long side direction and the short side direction is about 0.3 μm, and it was confirmed that uniform crystal grains can be grown by the third method of the present invention.

この特性は、半導体膜上に偏光方向である長辺方向及び短辺方向に交互に定在波が発生し、この定在波の周期的なエネルギーに対応する温度勾配が生じることによる。すなわち、この周期的エネルギーの谷の位置に結晶核が発生し、各結晶核は温度のより高い方向へ成長し互いにぶつかりあった箇所が結晶粒界となる。従って、周期的な位置に発生した結晶核は、長辺方向及び短辺方向の同じ温度勾配の影響を受けて成長するので、長辺方向及び短辺方向の寸法が均一な結晶粒からなる多結晶半導体膜を形成することができる。   This characteristic is due to the fact that standing waves are alternately generated in the long-side direction and the short-side direction, which are polarization directions, on the semiconductor film, and a temperature gradient corresponding to the periodic energy of the standing wave is generated. That is, crystal nuclei are generated at the positions of the periodic energy valleys, and each crystal nucleus grows in a higher temperature direction, and a portion where the crystal nuclei collide with each other becomes a crystal grain boundary. Therefore, crystal nuclei generated at periodic positions grow under the influence of the same temperature gradient in the long-side direction and the short-side direction, so that many nuclei consisting of crystal grains having uniform dimensions in the long-side direction and the short-side direction are formed. A crystalline semiconductor film can be formed.

上述したように、本発明の方法及び装置によれば、液晶および有機ディスプレイ装置用のガラス基板上の非晶質半導体膜に、偏光パルスレーザ光5aをガラス基板上の走査方向4に短くその直交方向に長い矩形断面を有しかつ異なる偏光状態の2種以上の矩形偏光ビーム9に変換し、ガラス基板上の周辺回路部3と画素部2とで矩形偏光ビーム9を異なる偏光状態で照射するので、周辺回路部3と画素部2とで偏光状態の相違により異なる結晶化を行うことができる。   As described above, according to the method and apparatus of the present invention, the polarized pulsed laser beam 5a is shortened in the scanning direction 4 on the glass substrate and perpendicular to the amorphous semiconductor film on the glass substrate for liquid crystal and organic display devices. It is converted into two or more types of rectangular polarized beams 9 having a rectangular section that is long in the direction and having different polarization states, and the rectangular polarized beams 9 are irradiated with different polarization states in the peripheral circuit section 3 and the pixel section 2 on the glass substrate. Therefore, different crystallization can be performed by the difference in polarization state between the peripheral circuit unit 3 and the pixel unit 2.

周辺回路部3には、上述した装置を用いて、電場が矩形偏光ビームの長辺方向に向く偏光状態6の偏光パルスレーザ光9を照射することにより、偏光パルスレーザ光9のエネルギー勾配により短辺方向に結晶粒を増大させることができる。   The peripheral circuit unit 3 is irradiated with the polarized pulsed laser beam 9 in the polarization state 6 in which the electric field is directed in the long-side direction of the rectangular polarized beam using the above-described device, so that the energy gradient of the polarized pulsed laser beam 9 is shortened. Crystal grains can be increased in the side direction.

また、画素部2には、上述した装置を用いて、電場が矩形偏光ビームの短辺方向に向く偏光状態7の偏光パルスレーザ光9を照射することにより、短辺方向に発生する定在波により、結晶粒の短辺方向の伸長を抑制し、均一な結晶粒を成長させることができる。   The pixel unit 2 is irradiated with the polarized pulsed laser light 9 in the polarization state 7 in which the electric field is directed in the short side direction of the rectangular polarized light beam using the above-described device, and thereby the standing wave generated in the short side direction. Thus, it is possible to suppress the elongation of the crystal grains in the short side direction and to grow uniform crystal grains.

また、画素部2に、上述した装置を用いて、電場が矩形偏光ビームの長辺方向に向く偏光状態6の偏光パルスレーザ光9と、電場が矩形偏光ビームの短辺方向に向く偏光状態7の偏光パルスレーザ光9とを交互に照射することにより、長辺方向及び短辺方向に発生する定在波により、長辺方向に結晶粒を均一化させかつ結晶粒の短辺方向の伸長を抑制し、均一な結晶粒を成長させることができる。   In addition, using the above-described device for the pixel unit 2, the polarization pulse laser light 9 in the polarization state 6 in which the electric field is directed in the long side direction of the rectangular polarized beam and the polarization state 7 in which the electric field is directed in the short side direction of the rectangular polarized beam. By alternately irradiating the polarized pulsed laser beam 9 with a standing wave generated in the long side direction and the short side direction, the crystal grains are made uniform in the long side direction and the crystal grains are elongated in the short side direction. It is possible to suppress and grow uniform crystal grains.

なお、一般的には周辺回路部3と画素部2ではガラス基板上で必要となる面積が異なるため、同一基板内において長辺方向に同一長さのレーザで照射することは効率的ではない。
そのため、本発明では、上述した装置を用いて、例えば1対のシリンドリカルレンズアレイ34の上流側シリンドリカルレンズアレイ34aと下流側シリンドリカルレンズアレイ34bの間隔Δを変化させることにより、1対のシリンドリカルレンズアレイ34の焦点距離を変化し、矩形偏光ビーム8の長辺方向の長さを変化させる。
これにより、マスクを用いずに、アモルファスシリコン膜などの非晶質半導体膜を有する同一のガラス基板内に、周辺回路部3と画素部2とで矩形偏光ビーム9を異なる偏光状態で照射することができる。
In general, the area required on the glass substrate is different between the peripheral circuit unit 3 and the pixel unit 2, so that it is not efficient to irradiate with the same length laser in the long side direction in the same substrate.
Therefore, in the present invention, by using the above-described apparatus, for example, by changing the distance Δ between the upstream cylindrical lens array 34a and the downstream cylindrical lens array 34b of the pair of cylindrical lens arrays 34, the pair of cylindrical lens arrays The focal length 34 is changed to change the length of the rectangular polarized beam 8 in the long side direction.
Thereby, the rectangular polarized light beam 9 is irradiated with different polarization states in the peripheral circuit portion 3 and the pixel portion 2 in the same glass substrate having an amorphous semiconductor film such as an amorphous silicon film without using a mask. Can do.

また、異なる偏光状態を得る手段として、円偏光又は無偏光を用いて、結晶粒径を均一化してもよい。   Further, as means for obtaining different polarization states, circularly polarized light or non-polarized light may be used to make the crystal grain size uniform.

なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

本発明の処理対象である液晶および有機ディスプレイ装置用のガラス基板1の上面図である。It is a top view of the glass substrate 1 for the liquid crystal and organic display apparatus which are the process target of this invention. 本発明によるレーザアニール装置の第1実施形態図である。1 is a diagram showing a laser annealing apparatus according to a first embodiment of the present invention. 本発明によるレーザアニール装置の第2実施形態図である。It is 2nd Embodiment figure of the laser annealing apparatus by this invention. 本発明の第1の方法により得られた結晶粒寸法の状態図である。It is a phase diagram of the crystal grain size obtained by the 1st method of the present invention. 本発明の第2の方法により得られた結晶粒寸法の状態図である。It is a phase diagram of the crystal grain size obtained by the 2nd method of the present invention. 本発明の第3の方法により得られた結晶粒寸法の状態図である。It is a phase diagram of the crystal grain size obtained by the 3rd method of this invention.

符号の説明Explanation of symbols

1 ガラス基板、2 画素部、3 周辺回路部、4 走査方向、
5 偏光パルスレーザ光、6,7 偏光状態、
8a,8b 矩形偏光ビーム、9 矩形偏光ビーム、
10 レーザ出射装置、12,12A,12B レーザ共振器、
14 パルス制御部、
20 偏光変換光学系、22 1/2波長板、24 駆動部、
26 反射ミラー、28 偏光ビームスプリッタ、
30 形状変換光学系、32 ビームエキスパンダー、
34 シリンドリカルレンズアレイ、36 コンデンサーレンズ
1 glass substrate, 2 pixel section, 3 peripheral circuit section, 4 scanning direction,
5 polarized pulsed laser light, 6, 7 polarization state,
8a, 8b Rectangular polarized beam, 9 Rectangular polarized beam,
10 laser emitting device, 12, 12A, 12B laser resonator,
14 Pulse controller,
20 polarization conversion optical system, 22 1/2 wavelength plate, 24 drive unit,
26 reflection mirror, 28 polarizing beam splitter,
30 shape conversion optics, 32 beam expander,
34 Cylindrical lens array, 36 condenser lens

Claims (2)

液晶および有機ディスプレイ装置用のガラス基板上に成膜された非晶質半導体膜をレーザ光の照射により結晶化する多結晶半導体膜の作製方法であって、
偏光パルスレーザ光をガラス基板上の走査方向に短くその直交方向に長い矩形断面を有しかつ異なる偏光状態の2種以上の矩形偏光ビームに変換し、前記ガラス基板上の周辺回路部と画素部とで前記矩形偏光ビームを異なる偏光状態で照射し、
前記周辺回路部に、電場が矩形偏光ビームの長辺方向に向く偏光状態の偏光パルスレーザ光を照射し、該偏光パルスレーザ光のエネルギー勾配により短辺方向に結晶粒を増大させ、
前記画素部に、電場が矩形偏光ビームの短辺方向に向く偏光状態の偏光パルスレーザ光を照射し、短辺方向に発生する定在波により、結晶粒の短辺方向の伸長を抑制し、均一な結晶粒を成長させる、ことを特徴とする多結晶半導体膜の作製方法。
A method for producing a polycrystalline semiconductor film, wherein an amorphous semiconductor film formed on a glass substrate for liquid crystal and organic display devices is crystallized by laser light irradiation,
A polarized pulse laser beam is converted into two or more types of rectangular polarized beams having a rectangular cross section that is short in the scanning direction on the glass substrate and long in the orthogonal direction, and having different polarization states, and a peripheral circuit unit and a pixel unit on the glass substrate And irradiating the rectangular polarized beam in different polarization states,
The peripheral circuit portion is irradiated with a polarized pulse laser beam in a polarization state in which an electric field is directed in the long side direction of the rectangular polarized beam, and the crystal grains are increased in the short side direction by the energy gradient of the polarized pulse laser beam,
The pixel portion is irradiated with a polarized pulsed laser beam in which the electric field is directed to the short side direction of the rectangular polarized beam, and the standing wave generated in the short side direction is used to suppress the elongation of the crystal grains in the short side direction, A method for manufacturing a polycrystalline semiconductor film, characterized in that uniform crystal grains are grown.
液晶および有機ディスプレイ装置用のガラス基板上に成膜された非晶質半導体膜をレーザ光の照射により結晶化する多結晶半導体膜の作製方法であって、
偏光パルスレーザ光をガラス基板上の走査方向に短くその直交方向に長い矩形断面を有しかつ異なる偏光状態の2種以上の矩形偏光ビームに変換し、前記ガラス基板上の周辺回路部と画素部とで前記矩形偏光ビームを異なる偏光状態で照射し、
前記周辺回路部に、電場が矩形偏光ビームの長辺方向に向く偏光状態の偏光パルスレーザ光を照射し、該偏光パルスレーザ光のエネルギー勾配により短辺方向に結晶粒を増大させ、
前記画素部に、電場が矩形偏光ビームの長辺方向に向く偏光状態の偏光パルスレーザ光と、電場が矩形偏光ビームの短辺方向に向く偏光状態の偏光パルスレーザ光とを交互に照射し、長辺方向及び短辺方向に発生する定在波により、長辺方向に結晶粒を均一化させかつ結晶粒の短辺方向の伸長を抑制し、均一な結晶粒を成長させる、ことを特徴とする多結晶半導体膜の作製方法。
A method for producing a polycrystalline semiconductor film, wherein an amorphous semiconductor film formed on a glass substrate for liquid crystal and organic display devices is crystallized by laser light irradiation,
A polarized pulse laser beam is converted into two or more types of rectangular polarized beams having a rectangular cross section that is short in the scanning direction on the glass substrate and long in the orthogonal direction, and having different polarization states, and a peripheral circuit unit and a pixel unit on the glass substrate And irradiating the rectangular polarized beam in different polarization states,
The peripheral circuit portion is irradiated with a polarized pulse laser beam in a polarization state in which an electric field is directed in the long side direction of the rectangular polarized beam, and the crystal grains are increased in the short side direction by the energy gradient of the polarized pulse laser beam,
The pixel unit is alternately irradiated with a polarized pulsed laser beam in a polarization state in which the electric field is directed in the long side direction of the rectangular polarized beam and a polarized pulsed laser beam in the polarization state in which the electric field is directed in the short side direction of the rectangular polarized beam, By standing waves generated in the long-side direction and the short-side direction, the crystal grains are made uniform in the long-side direction and the elongation of the crystal grains in the short-side direction is suppressed, and uniform crystal grains are grown. A method for manufacturing a polycrystalline semiconductor film.
JP2006312509A 2006-11-20 2006-11-20 Method for manufacturing polycrystalline semiconductor film Expired - Fee Related JP5147220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312509A JP5147220B2 (en) 2006-11-20 2006-11-20 Method for manufacturing polycrystalline semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312509A JP5147220B2 (en) 2006-11-20 2006-11-20 Method for manufacturing polycrystalline semiconductor film

Publications (3)

Publication Number Publication Date
JP2008130713A JP2008130713A (en) 2008-06-05
JP2008130713A5 JP2008130713A5 (en) 2009-11-26
JP5147220B2 true JP5147220B2 (en) 2013-02-20

Family

ID=39556266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312509A Expired - Fee Related JP5147220B2 (en) 2006-11-20 2006-11-20 Method for manufacturing polycrystalline semiconductor film

Country Status (1)

Country Link
JP (1) JP5147220B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162575B1 (en) 2008-01-07 2012-07-05 가부시키가이샤 아이에이치아이 Laser anneal method and device
US8115137B2 (en) 2008-06-12 2012-02-14 Ihi Corporation Laser annealing method and laser annealing apparatus
JP6706155B2 (en) * 2016-06-15 2020-06-03 株式会社日本製鋼所 Method for manufacturing polycrystalline semiconductor film, laser annealing device, thin film transistor, and display
KR101963510B1 (en) * 2017-09-14 2019-03-28 고려대학교 세종산학협력단 Laser annealing apparatus and the controlling method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659930B2 (en) * 1998-01-27 2011-03-30 株式会社東芝 Polycrystalline semiconductor film manufacturing method and laser annealing apparatus
JPH11354444A (en) * 1998-06-04 1999-12-24 Toshiba Corp Manufacture of polycrystalline semiconductor film
JP2002158184A (en) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp Laser optical system for laser heat treatment
JP2003347211A (en) * 2002-05-30 2003-12-05 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2004103628A (en) * 2002-09-05 2004-04-02 Hitachi Ltd Laser annealing device and method of laser-annealing tft substrate
JP4116465B2 (en) * 2003-02-20 2008-07-09 株式会社日立製作所 Panel-type display device, manufacturing method thereof, and manufacturing device
JP2006253571A (en) * 2005-03-14 2006-09-21 Ishikawajima Harima Heavy Ind Co Ltd Laser emission apparatus and method therefor, and laser anneal apparatus and method therefor

Also Published As

Publication number Publication date
JP2008130713A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
US8455790B2 (en) Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
US9058994B2 (en) Laser annealing method and device
US7326623B2 (en) Method of manufacturing display device
JP4567984B2 (en) Flat panel display manufacturing equipment
JP5147220B2 (en) Method for manufacturing polycrystalline semiconductor film
JP2004103628A (en) Laser annealing device and method of laser-annealing tft substrate
JP4772261B2 (en) Display device substrate manufacturing method and crystallization apparatus
US8351317B2 (en) Laser irradiation apparatus, irradiation method using the same, and method of crystallizing amorphous silicon film using the same
KR102427155B1 (en) Laser crystalling apparatus
JP2006196539A (en) Method and device for manufacturing polycrystalline semiconductor thin film
US7097709B2 (en) Laser annealing apparatus
JP2010278051A (en) Crystallization irradiation method and crystallization irradiation device
JP2008130713A5 (en)
JP5191674B2 (en) Laser annealing apparatus and laser annealing method
WO2004008511A1 (en) Crystallizing apparatus and crystallizing method
JP2002158184A (en) Laser optical system for laser heat treatment
JP2006344844A (en) Laser processing device
JP2007287866A (en) Method for manufacturing semiconductor crystal thin film and manufacturing apparatus thereof, photomask, and semiconductor element
JP2007036080A (en) Laser annealing device
US20070170426A1 (en) Silicon crystallizing mask, apparatus for crystallizing silicon having the mask and method for crystallizing silicon using the apparatus
JP2005032847A (en) Crystallization equipment, crystallization method, and device
JP2004342954A (en) Laser annealing method and its apparatus
JP2008103692A (en) Light irradiation apparatus, crystallizing apparatus, crystallizing method, and device
JP2009224373A (en) Manufacturing method of flat display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R150 Certificate of patent or registration of utility model

Ref document number: 5147220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees