JP5144860B2 - Propylene-olefin copolymer - Google Patents

Propylene-olefin copolymer Download PDF

Info

Publication number
JP5144860B2
JP5144860B2 JP2000558143A JP2000558143A JP5144860B2 JP 5144860 B2 JP5144860 B2 JP 5144860B2 JP 2000558143 A JP2000558143 A JP 2000558143A JP 2000558143 A JP2000558143 A JP 2000558143A JP 5144860 B2 JP5144860 B2 JP 5144860B2
Authority
JP
Japan
Prior art keywords
propylene
copolymer
borate
polymerization
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000558143A
Other languages
Japanese (ja)
Other versions
JP2002519486A5 (en
JP2002519486A (en
Inventor
ガッドカリ、アビナッシュ・シー
コーゼウィズ、チャールズ・シー
Original Assignee
エクソンモービル・ケミカル・パテンツ・インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクソンモービル・ケミカル・パテンツ・インク filed Critical エクソンモービル・ケミカル・パテンツ・インク
Publication of JP2002519486A publication Critical patent/JP2002519486A/en
Publication of JP2002519486A5 publication Critical patent/JP2002519486A5/ja
Application granted granted Critical
Publication of JP5144860B2 publication Critical patent/JP5144860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63908Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/6392Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/63922Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/63927Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Description

【0001】
発明の分野 本発明は、オレフィンのモル%と1)アイソタクチック指数、2)プロピレンメソ三つ組元素%および3)ガラス転移温度との関係として本明細書に記載されている特有の性質を有するプロピレン/オレフィンコポリマー(PO)に関する。オレフィンにはC、C〜C20α−オレフィンが含まれるが、最も好ましいオレフィンはエチレン(C)である。特に、本発明のコポリマーのアイソタクチック指数は−2.24O+A(ここでOは存在するオレフィンのモル%であり、Aは66〜89の数であり、アイソタクチック指数はゼロより大きい)に等しい。本発明のポリマーのプロピレンタクティシティーも−0.4492EO+Bに等しいメソ三つ組元素で説明される(ここでOは存在するオレフィンのモル%であり、Bは93〜100の数であり、メソ三つ組元素%は95%未満、好ましくは93%未満、より好ましくは90%未満である)。さらに、本発明のコポリマーは−1.1082O−C(ここでOは存在するオレフィンのモル%、Cは1〜14の数である)に等しいガラス転移温度を有する。本発明のPOコポリマーは、エラストマー性性質と組み合わされたその特有の結晶性において従来技術のPOコポリマーと区別されるが、そのため、本発明のPOコポリマーは、熱可塑性エラストマー(TPEs)として、熱可塑性オレフィン(TPOs)、弾性繊維およびフィルム、動的加硫アロイ(DVAs)における対衝撃性改質剤及び相溶化剤として、接着剤、ポリ塩化ビニル(PVC)代替品、粘度改質剤における硬化性エラストマー等としてのような種々の用途に有用になる。プロピレンの独特の結晶性のため、POコポリマーは結晶性ポリプロピレン(PP)と適合性の高いブレンドを生成することができる。この様なブレンドは、結晶性PPと従来の非結晶質エチレン−プロピレン(EP)コポリマーを含むブレンドよりも優れた性質を有している。さらに、本発明のPOコポリマー、およびそのポリプロピレン(PP)とのブレンドは、配向させると非常に増大した弾性回復と引張強さを有する様になる。
【0002】
本発明の他の実施態様によれば、本発明のPOコポリマーには少量の非共役ジエンが含まれ、加硫その他の化学変性を助ける。本発明の目的では、「コポリマー」という用語にはエチレンと1種以上のα−オレフィンから生成するポリマー、およびエチレン、1種以上のα−オレフィンおよび1種以上の非共役ジエンから生成するポリマーが含まれる。好ましい非共役ジエンは5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、1,6−オクタジエン、5−メチル−1,4−ヘキサジエン、3,7−ジメチル−1,6−オクタジエン、ビニルノルボルネン、ジシクロペンタジエンまたはそれらの組み合せ等のエチレン−プロピレンゴムの加硫に有用なモノマーからなる群から選ばれるが、それに限られるものではない。ジエンの量は好ましくは10重量%未満、最も好ましくは5重量%未満である。
【0003】
本発明のポリマーは活性化剤と任意には掃去剤を含むキラルメタロセン触媒の存在下に、C、C〜C20α−オレフィン、好ましくはエチレンとプロピレンを重合して製造される。
【0004】
従来の技術
エチレン−プロピレンコポリマーを製造するためにメタロセンが使用されている。例えば、欧州特許出願第128046号は、少なくとも2種の非キラルメタロセンを用いるEPコポリマーの製造を開示している。しかしながら、アキラルメタロセンは本来、ゼロより大きいアイソタクチック指数と、本発明のEPコポリマーのエラストマー性性質と組み合せた他の独特の結晶性特質を有するコポリマーを製造することはできない。
【0005】
欧州特許第0374695号は、アルモキサン助触媒と共にキラルメタロセン触媒を用いる、ゼロより大きいアイソタクチック指数を有するEPコポリマーの製造を開示している。しかしながら、本発明のコポリマーは−2.24Et+Aに等しいアイソタクチック指数(ここで、Etは存在するエチレンのモル%、Aは66〜89の数、アイソタクチック指数はゼロより大きい)を有する。エチレンのモル%とアイソタクチック指数とのこの関係は、図1で明らかな様に欧州特許第0374695号には示されていない。一般に、本発明のEPコポリマーのアイソタクチック指数は、欧州特許第0374695号のEPコポリマーのアイソタクチック指数よりかなり低い。本発明のEPコポリマーのアイソタクチック指数が低いことは、その優れたエラストマー性性質の鍵になるものである。
【0006】
米国特許第5,504,172号は、ポリプロピレン単位の高メソ三つ組元素タクティシティー%を有するEPコポリマーの製造を開示している。しかしながら、本発明のポリプロピレン単位のメソ三つ組元素タクティシティーはかなり低く、−0.4492Et+Bに等しい。ここでEtは存在するエチレンのモル%、Bは93〜100の数字、メソ三つ組元素%は95%未満である。図2に示す様に、エチレンのモル%と三つ組元素タクティシティーのこの関係は米国特許第5,504,172号のポリマーに見られる。本発明のコポリマーのメソ三つ組元素タクティシティー%が低いことは、その優れたエラストマー性性質に寄与している。
【0007】
発明の詳細な記載
本発明のPOコポリマーの製造に有用な以下に説明する触媒系は、非配位アニオン(NCA)活性化剤と、任意に掃去化合物とともに、メタロセンである。重合は溶液、スラリーまたは気相で行われるが、液相中が好ましい。重合は単一または複数の反応器法で行われる。スラリーまたは溶液重合法は減圧または過圧と、−25℃〜110℃の温度範囲を用いることができる。スラリー重合では、固体または粒状ポリマーの懸濁液が液体重合媒体中に形成され、そこへエチレン、α−オレフィンコモノマー、水素および触媒が添加される。溶液重合では、液体媒体がポリマーの溶剤の役割を果たす。重合媒体として用いられる液体は、ブタン、ペンタン、ヘキサンまたはシクロヘキサンのようなアルカンもしくはシクロアルカン、またはトルエン、エチルベンゼンまたはキシレンのような芳香族炭化水素であることができる。スラリー重合でも液体モノマーを使用することができる。使用する媒体は重合条件下では液体であり、比較的不活性である必要がある。溶液重合ではヘキサンまたはトルエンを用いることが好ましい。気相重合法は米国特許第4,543,399号、第4,588,790号および第5,028,670号に記載され、米国特許プラクチスのために引用によりその全てを本明細書に組み込む。ポリマー支持体または無機酸化物、例えばシリカ、アルミナ又はその両方のような適する粒状物質または多孔性担体上に触媒を担持することができる。メタロセン触媒を担持する方法は米国特許第4,808,561号、第4,897,455号、第4,937,301号、第4,937,217号、第4,912,075号、第5,008,228号、第5,086,025号、第5,147,949号および第5,238,892号に記載され、米国特許プラクチスのために引用によりそのすべてを本明細書に組み込む。
【0008】
プロピレンとエチレンは本発明のPOコポリマーを製造するための好ましいモノマーであるが、エチレンをC〜C20の他のα−オレフィンと入れ替えることができる。
【0009】
メタロセン
「メタロセン」および「メタロセン触媒前駆体」という用語は、置換し得る1つ又は複数のシクロペンタジエニル(Cp)配位子、少なくとも1個の非シクロペンタジエニル由来の配位子X、およびゼロまたは1個のヘテロ原子含有配位子Yとともに第IV、V、またはVI族遷移金属Mを有する化合物を意味することが知られている用語であって、配位子はMに配位し、配位数は金属の原子価数に相当する。活性メタロセン触媒を生成するためには、通常はメタロセン触媒前駆体を適する助触媒(活性化剤と呼ばれる)によって活性化する必要があるが、この活性メタロセン触媒とは一般にオレフィンを配位し、挿入し、重合することができる、空の配位部位を有する有機金属錯体をいう。
【0010】
好ましいメタロセンは、配位子として2個のCp環系を有するシクロペンタジエニル(Cp)錯体である。Cp配位子が金属とともに曲がったサンドイッチ錯体を形成し、架橋基で硬い形状に固定されていることが好ましい。これらのシクロペンタジエニル錯体は以下の一般式:
(Cp )R (Cp )MX
(式中、配位子(Cp )のCpおよび配位子(Cp )のCpは同じであることが好ましく、R及びRのそれぞれは独立にハロゲンまたは20炭素原子までを含むヒドロカルビル、ハロカルビル、ヒドロカルビル置換有機メタロイドまたはハロカルビル置換有機メタロイド基であり、mは好ましくは1〜5であり、pは好ましくは1〜5であり、シクロペンタジエニル環の隣り合った炭素原子上の2つのRおよび/またはR置換基は結合して4〜20炭素原子を含む環を形成することが好ましく、Rは架橋基であり、nは2個の配位子間を直接結ぶ原子数であって、好ましくは1〜8、最も好ましくは1〜3であり、Mは、3〜6の原子価を有する、好ましくは元素周期表で4、5または6族からの遷移金属であり、好ましくは最高の酸化状態にあり、Xはそれぞれ非シクロペンタジエニル配位子であり、独立に20炭素原子までを含むヒドロカルビル、オキシヒドロカルビル、ハロカルビル、ヒドロカルビル置換有機メタロイド、オキシヒドロカルビル置換有機メタロイド、またはハロカルビル置換有機メタロイド基であり、qはMの原子価マイナス2に等しい)を有する。
【0011】
本発明の上記ビスシクロペンタジエニルメタロセンの様々な例は、米国特許第5,324,800号、第5,198,401号、第5,278,119号、第5,387,568号、第5,120,867号、第5,017,714号、第4,871,705号、第4,542,199号、第4,752,597号、第5,132,262号、第5,391,629号、第5,243,001号、第5,278,264号、第5,296,434号および第5,304,614号に開示され、米国特許プラクチスのために引用によりそれらのすべてを本明細書に組み込む。
【0012】
本発明で上記Iに記載したタイプの好ましいビシクロペンタジエニルメタロセンの例示のしかし非限定的例は、以下のラセミ異性体である:
μ−(CHSi(インデニル)MCl
μ−(CHSi(インデニル)M(CH
μ−(CHSi(テトラヒドロインデニル)MCl
μ−(CHSi(テトラヒドロインデニル)M(CH
μ−(CHSi(インデニル)M(CHCH
μ−(CC(インデニル)M(CH
ここで、MはZr、HfまたはTiでなる群から選ばれる。
【0013】
非配位アニオン
上記の様に、メタロセンまたはその前駆体は非配位アニオンで活性化される。「非配位アニオン」という用語は、該遷移金属カチオンに配位しないか、または該カチオンに弱くしか配位せず、そのため中性ルイス塩基で十分に置換され得るアニオンを意味する。「適合性」非配位アニオンとは、最初に生成した錯体が分解した場合、中性まで還元されないものを言う。さらに、そのアニオンはアニオン性置換基または断片をカチオンに導入せず、従ってアニオンは中性の4配位メタロセン化合物、およびアニオン由来の中性副生成物を形成する。本発明に有用な非配位アニオンは適合性のアニオンであり、そのイオン電荷を釣り合わせてメタロセンカチオンを安定化するが、十分な不安定さを維持し、重合中にエチレン性またはアセチレン性不飽和モノマーによつて置換され得る。さらに、本発明で有用なアニオンは十分な分子サイズという意味で嵩高であることが好ましく、重合反応中に存在し得る重合性モノマー以外のルイス塩基によってメタロセンカチオンが中和されることを大きく阻害するか阻止する。典型例ではアニオンは4オングストローム以上の分子サイズを有する。
【0014】
非配位アニオンで活性化されるメタロセンカチオンから構成される配位重合用イオン性触媒の記載はEP−A−0277003、EP−A−0277004、米国特許第5,198,401号および第5,278,119号、およびWO92/00333に見られる。これらの特許には、メタロセン(ビスCpおよびモノCp)がアニオン性前駆体でプロトン化され、アルキル/ヒドリド基が遷移金属から引き抜かれ、非配位アニオンによってカチオン性で電荷が釣り合う様になる、好ましい方法が記載されている。活性プロトンを含まないが、活性メタロセンカチオンと非配位アニオンを生成し得るイオン化化合物の使用も知られている。EP−A−0426637、EP−A−0573403および米国特許第5,387,568号を参照。メタロセン化合物をイオン化し得る、ブレンステッド酸以外の反応性カチオンにはフェロセニウム、トリフェニルカルボニウムおよびトリエチルシリリウムカチオンが含まれる。水(または他のブレンステッド酸又はルイス酸)による分解に耐性のある配位錯体を形成し得るいずれかの金属またはメタロイドも、第2の活性化剤化合物として使用し得るか、または第2活性剤化合物のアニオン中に含有させることができる。適する金属にはアルミニウム、金、プラチナ等が含まれるが、それらに限定されない。これらの文献の非配位アニオンおよびその前駆体に関する記載は、米国特許プラクチスのために引用により本明細書に組み込む。
【0015】
イオン性触媒を製造する別な方法では、最初は中性ルイス酸であるが、メタロセン化合物とのイオン化反応によりカチオン及びアニオンを生成するイオン化アニオン性前駆体が用いられる。例えばトリス(ペンタフルオロフェニル)硼素はアルキル、ヒドリドまたはシリル配位子を引き抜き、メタロセンカチオン及び安定化非配位アニオンを生成する。EP−A−0427697およびEP−A−0520732を参照。付加重合用イオン性触媒はまた、金属酸化基とアニオン基を含有するイオン性前駆体により遷移金属化合物の金属中心の酸化によっても生成し得る。EP−A−0495375を参照。これらの文献の非配位アニオンおよびその前駆体を、同様に米国特許プラクチスのために引用によれ本明細書に組み込む。
【0016】
例示のためであり、それらに限定されない、本発明のメタロセン化合物のイオン性カチオン化し、得られた非配位アニオンにより安定化し得る適する活性化剤の例は以下の通りである:
トリエチルアンモニウムテトラフェニルボーレート、
トリプロピルアンモニウムテトラフェニルボーレート、
トリ(n−ブチル)アンモニウムテトラフェニルボーレート、
トリメチルアンモニウムテトラキス(p−トリル)ボーレート、
トリメチルアンモニウムテトラキス(o−トリル)ボーレート
トリブチルアンモニウムテトラキス(ペンタフルオロフェニル)ボーレート、
トリプロピルアンモニウムテトラキス(o,p−ジメチルフェニル)ボーレート、
トリブチルアンモニウムテトラキス(m,m−ジメチルフェニル)ボーレート、
トリブチルアンモニウムテトラキス(p−トリフルオロメチルフェニル)ボーレート、
トリブチルアンモニウムテトラキス(ペンタフルオロフェニル)ボーレート、
トリ(n−ブチル)アンモニウムテトラキス(o−トリル)ボーレート
等ののようなトリアルキル置換アンモニウム塩;
【0017】
N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボーレート、
N,N−ジメチルアニリニウムテトラキス(ヘプタフルオロナフチル)ボーレート、
N,N−ジメチルアニリニウムテトラキス(パーフルオロ−4−ビフェニル)ボーレート、
N,N−ジメチルアニリニウムテトラフェニルボーレート、
N,N−ジエチルアニリニウムテトラフェニルボーレート、
N,N−2,4,6−ペンタメチルアニリニウムテトラフェニルボーレート
等のようなN,N−ジアルキルアニリニウム塩;
【0018】
ジ−(イソプロピル)アンモニウムテトラキス(ペンタフルオロフェニル)ボーレート、
ジシクロヘキシルアンモニウムテトラフェニルボーレート
等のようなジアルキルアンモニウム塩;および
【0019】
トリフェニルホスホニウムテトラフェニルボーレート、
トリ(メチルフェニル)ホスホニウムテトラフェニルボーレート、
トリ(ジメチルフェニル)ホスホニウムテトラフェニルボーレート
等のようなトリアリールホスホニウム塩。
【0020】
適するアニオン性前駆体のまた別な例には、安定なカルボニウムイオン及び、適合性非配位アニオンを含む化合物が含まれる。それらには
トロピリリウムテトラキス(ペンタフルオロフェニル)ボーレート
トリフェニルメチリウムテトラキス(ペンタフルオロフェニル)ボーレート
ベンゼン(ジアゾニウム)テトラキス(ペンタフルオロフェニル)ボーレート
トロピリウムフェニルトリス(ペンタフルオロフェニル)ボーレート
トリフェニルメチリウムフェニル(トリペンタフルオロフェニル)ボーレート
ベンゼン(ジアゾニウム)フェニルトリス(ペンタフルオロフェニル)ボーレート
トロピリリウムテトラキス(2,3,5,6−テトラフルオロフェニル)ボーレート
トリフェニルメチリウムテトラキス(2,3,5,6−テトラフルオロフェニル)ボーレート
ベンゼン(ジアゾニウム)テトラキス(3,4,5−トリフルオロフェニル)ボーレート
トロピリウムテトラキス(3,4,5−トリフルオロフェニル)ボーレート
ベンゼン(ジアゾニウム)テトラキス(3,4,5−トリフルオロフェニル)ボーレート
トロピリウムテトラキス(3,4,5−トリフルオロフェニル)アルミネート
トリフェニルメチリウムテトラキス(3,4,5−トリフルオロフェニル)アルミネート
ベンゼン(ジアゾニウム)テトラキス(3,4,5−トリフルオロフェニル)アルミネート
トロピリウムテトラキス(1,2,2−トリフルオロエテニル)ボーレート
トリフェニルメチリウムテトラキス(1,2,2−トリフルオロエテニル)ボーレート
ベンゼン(ジアゾニウム)テトラキス(1,2,2−トリフルオロエテニル)ボーレート
トロピリウムテトラキス(2,3,4,5−テトラフルオロフェニル)ボーレート
トリフェニルメチリウムテトラキス(2,3,4,5−テトラフルオロフェニル)ボーレート
ベンゼン(ジアゾニウム)テトラキス(2,3,4,5−テトラフルオロフェニル)ボーレート
等が含まれる。
【0021】
特に好ましい触媒系は、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボーレートの助触媒とともにμ−(CHSi(インデニル)Hf(CHである。
【0022】
エチレンプロピレンコポリマー
本発明のEPコポリマーは、そのアイソタクチック指数およびプロピレン三つ組元素タクティシティーとエチレン含有量との関係で示される様な独自の性質を有する。アイソタクチック指数および三つ組元素タクティシティーは、以下の方法で本発明のEPコポリマーについて測定された。
【0023】
本発明のコポリマーはプロセス油、および成核剤、抗酸化剤、充填剤等のような他の通常の添加剤とブレンドされ、上記の様々な用途に使用される製品に加工される
【0024】
また、本発明のコポリマーと、他のα−オレフィンポリマーおよびコポリマー、例えばポリプロピレン、を含むブレンドは、上記の様々な用途に用いられる製品に加工される。一般に、これらの配合物はプロセス油、および成核剤、抗酸化剤、充填剤のような他の通常の添加剤を含む。
【0025】
多分散指数
本発明のコポリマーは好ましくは1.5〜10、より好ましくは1.8〜8、さらに好ましくは2.0〜5の多分散指数(M/M)を有する。
【0026】
アイソタクチック指数
ポリプロピレンのアイソタクチック指数は赤外(IR)分光分析法で測定される。ポリプロピレンのIRスペクトルでは、997cm−1と973cm−1に2本の観察されるピークが生じる。997cm−1の吸光度を973cm−1の吸光度で割った商はアイソタクチシティーの尺度であると認められている。ポリプロピレンのアイソタクチック指数は、この商に100を掛けた値と定義されている。
【0027】
本発明で製造されるEPコポリマーは、アイソタクチック指数で測定して特有の結晶性性質を有する。図1は、所定のコポリマーのアイソタクチック指数と、モル%エチレン含有量との関係を示すグラフである。本発明のコポリマーおよびEPA037659から得られるデーターがグラフにプロットされている。図1に示す様に、本発明のコポリマーはいずれかの所定のエチレン含量についてEPA037659と比較してより低いアイソタクチック指数を有する。より低いアイソタクチック指数は、相対的により低い結晶性に相当し、それが非常に優れた弾性回復と組み合わされた高い引張強さおよび破断点伸びのようなより良好なエラストマー性性質に反映する。良好なエラストマー性性質は、上記の可能性のある用途のために重要である。
【0028】
三つ組元素タクティシティー
「タクティシティー」とはポリマー中の立体規則度のことである。例えば、隣り合ったモノマーのキラリティーは同様の、または反対の配置のいづれかである。「二つ組元素(diad)」と言う用語は2個の連続的なモノマーを意図するために用いられ、3個の隣り合ったモノマーは三つ組元素(triad)と呼ばれる。隣り合ったモノマーのキラリティーが同じ相対配置である場合、二つ組元素はアイソタクチックと呼ばれ、配置が逆である場合、シンディオテイックと名付けられる。配置の関係を記載する別な方法は、同じキラリティーを有する隣接モノマー対をメソ(m)、反対の配置のものをラセミ(r)と呼ぶことである。
【0029】
3個の隣接したモノマーが同じ配置を有する場合、三つ組元素の立体規則性は“mm”である。3個のモノマー配列の2個が同じキラリティーであり、第3の単位の相対配置と異なっている場合、この三つ組元素は“mr”タクティシティーを有する。“rr”三つ組元素は、隣のいづれとも反対の配置である中央のモノマー単位を有する。ポリマー中の各タイプの三つ組元素の割合を決定し、100を掛けると、ポリマー中に見出されるそのタイプの百分率が示される。
【0030】
三つ組元素タクティシティーはプロピレンコポリマーの13C−NMRスペクトルから決定される。13C−NMRスペクトルは以下の様にして測定される。13C−NMRスペクトルを測定するため、250〜350mgのポリマーをNMR試料管(直径10mm)中の重水素化テトラクロロエタンに120℃で完全に溶解する。90°パルス角を用い、パルス間に少なくとも15秒の遅延で完全にプロトンをデカップリングして測定する。
【0031】
共鳴の化学的シフト測定に関して、頭−尾結合から成り、同じ相対キラリティーを有する5個の連続するプロピレン単位の配列における3番目の単位のメチル基を21.83ppmに設定する。他の炭素の共鳴の化学的シフトは、上記の値を基準に用いて決定される。メチル炭素領域(17.0〜23ppm)に関するスペクトルは1番目領域(21、1〜21.9ppm)、2番目領域(20.4〜21.0ppm)、3番目領域(19.5〜20.4ppm)および4番目領域(17.0〜17.5ppm)に分類される。Polymer、30巻(1989年)、1350頁、またはMacromolecules、17巻(1984年)、1950頁の論文に基づき、スペクトル中の各ピークが指定された。
【0032】
1番目領域において、PPP(mm)三つ組元素中の中心メチル基の信号が位置する。
【0033】
2番目領域において、PPP(mr)三つ組元素中の中心メチル基と、隣り合うユニットがプロピレン単位とエチレン単位であるプロピレン単位のメチル基の信号が共鳴する(PPE−メチル基)。
【0034】
第3番目領域では、PPP(rr)三つ組元素中の中心メチル基と、隣り合うユニットがエチレンユニットである信号が共鳴する(EPE−メチル基)。
【0035】
PPP(mm)、PPP(mr)およびPPP(rr)は、それぞれ頭−尾結合を有する以下の3個のポリプロピレン単位鎖構造を有する。
【0036】
【化1】

Figure 0005144860
【0037】
プロピレンコポリマーの三つ組元素タクティシティー(mm率)をプロピレンコポリマーの13C−NMRスペクトルと以下の式で決定する。
【0038】
【化2】
Figure 0005144860
【0039】
上記計算に使用されたピーク面積は、13C−NMRスペクトルの三つ組元素領域から直接測定されたものではない。mrおよびrr三つ組元素領域の強度は、それらからEPPおよびEPE配列による面積をそれぞれ差し引く必要がある。EPP面積は、26と27.2ppmの間の信号の差と30.1ppmの信号の面積の半分を差し引いた後に、30.8ppmにおける信号から決定される。EPEによる面積は33.2ppmにおける信号から決定される。
【0040】
EPPとEPEの存在についてのmrおよびrr領域の上記調整に加えて、上記式を用いる前にそそれらの領域について他の調整を行う必要がある。これらの調整は、非頭−尾プロピレン付加による信号を説明するために必要である。mr領域の面積は34と36ppmの間の面積の半分を差し引くことによって調整され、rr領域の面積は33.4と34.0ppmの間に見出される強度を差し引くことによって調整される。従って、mrおよびrr領域に上記調整を行うことにより、mm、mrおよびrr三つ組元素の信号強度を測定し、上記式を当てはめることができる。
【0041】
本発明で製造されるEPコポリマーは、メソ三つ組元素%で測定される独特のプロピレンタクティシティーを有する。図2は、所定のコポリマーのメソ三つ組元素%とそのモル%エチレン含有量との関係を示すグラフである。本発明のコポリマーと、米国特許第5,504,172号のコポリマーのデーターをグラフにプロットする。図2に示す様に、米国特許第5,504,172号と比較した場合、本発明のコポリマーは所定のエチレン含有量について、より低いメソ三つ組元素%を有する。より低いメソ三つ組元素含有量%は相対的により低い結晶性に対応し、それが優れた弾性回復とともに高い引張強さおよび破断点伸びに反映する。良好なエラストマー性性質は、発明の分野の項において述べた可能な応用分野のいくつかに重要である。
【0042】
コポリマーの性質
本発明のコポリマーを特徴付けるために様々な技術が用いられ、そのいくつかは、“Structure Characterization”、The Science and Technology of Elastomers、F.Eirich編、Academic Press、1978年、第3章、G.Ver Strate著に記載され、米国特許プラクチスのため引用により本明細書に組み込む。
【0043】
ポリマーのガラス転移温度(Tg)は通常、示差走査熱量計(DSC)で測定される。本明細書において報告されたEPコポリマーのTgは、調整DSC(modulated DSC)(MDSC)法または従来のDSC法で測定される。
【0044】
本発明のコポリマーは好ましくは2.5以下の反応性比積(r1×r2)を有する。
【0045】
通常のDSC法: DSCは成形ひずみのない試料を20℃で熱量計に載せ、試料を−75℃に冷却し、10℃/分で180℃まで走査し、−75℃に冷却し、再度走査する標準プロトコールを有する。Tgと融点(T)が測定される。
【0046】
調整DSC法: Thermal Analyzer instruments’ Model2910を使用した。5〜10mgのポリマー試料を周囲温度で装置に載せた。一般的な分析手法では、以下に示す順番で以下の熱セグメントに付す。
【0047】
1.室温から10℃/分で−60℃に温度を下げる。
2.1.0分間等温にする。
3.同時に60秒毎に+/−1.0℃調整し、5℃/分で150℃に温度を上げる。
4.1.0分間等温にする。
5.5℃/分で−10℃に温度を下げる。
6.1.0分間等温にする。
7.10℃/分で150℃に温度を上げる。
8.10℃/分で25℃に温度を下げる。
【0048】
Thermal Analyzer instruments’ Model2200コンピューターを用いてデーターを得て分析し、Tg、融点(T)および結晶点(T)を評価した。
【0049】
高温GCP(HT−GPC)
ゲル透過クロマトグラフィー(GPC)は、高分子をその流体力学サイズにより分離する液体クロマトグラフィー技術である。その技術を、本発明ではポリオレフィン試料(例えばPEおよびPP)の分子量分布を得るために用いる。多孔性充填物質(架橋スチレン/ジビニルベンゼンゲルの硬質粒子)で充填した一連の分離カラム中に、良溶剤(1、2、4−トリクロロベンゼン、TCB)中のポリオレフィン希溶液を一定の流量の移動相(TBC)を用いて通過させる。ポリマー分子がバルク溶剤と充填物質の細孔との間で交換を繰り返すことにより、分離が行われる。従って、分離が行われるサイズ範囲と分離度が細孔サイズの分布で決定され、大きい分子が小さい分子の前に溶出する。分離後、溶離時間(または溶離容積)の関数としてポリマー濃度を測定するために、示差屈折率(DRI)計が用いられる。ポリスチレン標準試料を基準にする、あらかじめ定めた検量線により、この生のデーターを濃度に対する分子量データーに変換することができる。その後、数、重量およびz−平均分子量(それぞれM、MおよびM)がこれらの結果から計算される。
【0050】
検量
一連の狭い分子量範囲のポリスチレン標準試料(Tosoh Corp.、日本)を流し、そのピーク保持(溶離)時間を記録することにより一組のカラムを検量する。MPS500〜5,000,000の分子量範囲をカバーする全体で16種のPS標準試料が用いられる。各PS標準試料についてのPE−またはPP−等価分子量を指定することにより、これらの結果からPEおよびPPの分子量対保持時間データーを計算する。PEおよびPPについての最終検量曲線は、これらのデーターセットを3次多項式に当てはめることから成る。
【0051】
PPでは”汎用検量”法が用いられ、MPS[η]PS=MPP[η]PPが成立すると仮定される。以下のMark−Houwink係数が式[η]=kMαに用いられる。
【0052】
【表1】
Figure 0005144860
【0053】
操作条件
装置: Waters150−C GPC
カラム: 3Shodex AT−806MS(混合床)
移動相: 濾過したTCB、300ppm抗酸化剤(Sa
ntonox)
温度: 145℃(カラムおよび注入区画室)
操作時間: 50分
注入容積: 300μL
流量: 1.0mL/分
DRI感度 256
DRIスケール係数: 16
【0054】
試料の調製
4〜6mgのポリマーを4mL WISPバイアル中にいれて秤量し、1.5mg/mLの濃度にするのに十分なTCBを加え、バイアルをPTFE隔膜で栓をし作業請求番号をラベルした。最も低い分子量成分が溶出する際のDRI信号の乱れ(溶剤ミスマッチピーク)を最小にするため、試料調製物と移動相の双方に同じ起源のTCBを使用することが好ましい。120〜160rpmの速度で連続的に攪拌しながら、試料を160〜170℃で3〜4時間、シェーカーオーブン中に置く。未溶解のゲルまたは固形粒子を含む試料を棄てた後、バイアルを予め加熱した試料回転ラックに移し、その回転ラックを素早くGPCの加熱されたインジェクター区画室に入れた。Waters150−C GPCマニュアルの標準操作指針に従って試料のセットを操作した。
【0055】
データー取得および分析
データーを取得し、Watersの“ExpertEase”ソフトウエアを用いて分析した。試料は操作請求および顧客ノート番号により識別した。得られたクロマトグラムで、ピーク前の傾向に基づいて直線状ベースラインを定め、ベースラインからの信号の初期点と最終点の偏差を見積って(および“溶剤ミスマッチ”および“注入”ピークを除外して)ピーク集積限界を設定した。PEまたはPPに適した得られた検量曲線を使用して、RDI信号対保持時間データーを分子量分布データーに変換した。M、M、Mおよび回収質量(標準試料に対する)をソフトウエアで計算した。これらの値、生の保持時間データーのプロット、および分子量分布のプロットを含むレポートが作成される。“時間スライス”レポートも得られる。
【0056】
本発明により製造したEPコポリマーはTで測定される独特の性質を有する。図3は、所定のコポリマーのTとそのエチレン含有量モル%との関係を示すグラフである。本発明のコポリマーからのデーターをグラフにプロットする。
【0057】
実施例1〜3
実施例1〜3のポリマーを以下の一般的操作で製造した。反応系への供給原料の連続的な流れを用いて11の攪拌された反応器中で重合を行ない、生成物を連続的に回収した。ヘキサンを含む溶剤、およびエチレンおよびプロピレンを含むモノマーを、アルミナおよび分子篩の床で精製した。触媒溶液を調製するためのトルエンも、同じ技術で精製した。それ自体の圧力で質量流量計/調節器を経由して気体として流れるエチレンを除いて、供給原料は全て、計量ポンプで反応器に送り込んだ。反応器の冷却ジャケットを通して水を循環して反応器の温度を制御した。反応混合物の過剰の蒸気圧に圧力を保ち、反応体を液相に保った。反応器は液体を満たして操作した。
【0058】
エチレンおよびプロピレン供給原料を一つの流れに合流させ、次いで少なくとも0℃に予備冷却したヘキサン流れと混合した。触媒毒の濃度を更に下げるため、溶剤とモノマー流の混合物が反応器に入る直前にトリイソブチルアルミニウム掃去剤のヘキサン溶液を添加して、μ−MeSi(インデニル)HfMe触媒とN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボーレート[(DMAH)B(pfp)]活性化剤を乾燥トルエン中に溶解させることにより触媒溶液を調製した。トルエン中の触媒成分のこの混合物を別個に反応器にポンプで送り込み、別な注入口から反応器に入れた。圧力を大気圧に低減させた圧力制御バルブにより反応器から生成物が出た。これにより、溶液中の未反応のモノマーが蒸気相にフラッシュさせ、気液分離器の上部から排気させる。主としてポリマーと溶剤を含む液相は分離器の底部から流れ出し、それを集めてポリマーを回収した。蒸気ストリッピング蒸留とその後の乾燥、または減圧加熱下での溶剤蒸発によりポリマーを回収した。下の表1は実施例1〜3の重合条件を示す。
【0059】
【表2】
Figure 0005144860
【0060】
実施例4〜6
実施例4〜6のポリマーを以下の一般的な方法で製造した。温度制御用外部ジャケットを取り付けた5ガロンのオートクレーブ攪拌槽反応器に29ポンドの乾燥トルエン(希釈剤)を入れた。トルエンの代わりにヘキサン又は他の不活性溶剤を用いてもよい。次にトリイソブチルアルミニウムの25%溶液を反応器に入れた。反応器の内容物を攪拌し、表2に示す特定の初期温度に保った。一般的にはエチレン(C)とプロピレン(C)の供給ラインを一つに繋ぎ、1本の傾斜管(dip tube)を通って反応器に供給される予備混合モノマー供給原料とした。または、エチレンとプロピレンを個々の導入管により直接供給してもよい。エチレンとプロピレンの流量を、望ましいC/Cモノマー比となるように調節した。100mlの乾燥トルエン中の121mgのμ−MeSi(インデニル)HfMeと151mgのN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)硼素を触媒ボンベに充填した。このボンベは、反応器への一回添加当り15mlの触媒を反応器に供給できる触媒供給装備の一部である。最初に、30〜45mlの触媒溶液を反応器に添加し重合を誘導した。重合中に望ましい間隔で更に触媒溶液を添加した。反応器の圧力と温度、およびCおよびC流量を重合反応の間中モニターし、典型的には10〜30分間継続した。一定時間後、反応器の流出液を窒素気圧下に脱蔵単位装置に移した。この単位装置に蒸気を長期間、連続的に流し、希釈剤の蒸発を確保した。希釈剤の蒸発を加速するため、通常は減圧を用いた。殆どの溶剤が蒸発すると、コポリマーが水の上部に浮かんだ。コポリマーを単離、乾燥し、特徴付けた。実施例4〜6の反応条件を以下の表2に示す。
【0061】
【表3】
Figure 0005144860
【0062】
実施例7
600mlの乾燥トルエン(希釈剤)を乾燥し脱酸素した、攪拌器と温度制御用外部ジャケットを備えた1Lオートクレーブに入れた。反応器の温度を0℃に下げた。プロピレン供給容器(容積1.1L)から120psi(ΔP)の精製プロピレンガスを反応器に供給した。反応器の圧力を平衡させた後、25psi(ΔP)の精製エチレンガスを反応器に導入した。この操作により、C高含有量のEPコポリマー合成用の望ましいC/Cモノマー比が得られた。触媒溶液をドライボックス中で調製し、触媒供給管に移した。触媒溶液は5mlの乾燥トルエン中に24mgのμ−MeSi(インデニル)HfMeと15mgのN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)硼素を含んでいた。触媒溶液を反応器中に注入して0℃で重合を誘導した。重合中、反応器の圧力と温度をモニターした。触媒溶液を添加6分後、9℃の温度上昇が観察された。最初の温度上昇後、反応器の温度は一定になり、重合時間が長くなるにつれ減少した。重合の間中、反応器の圧力は徐々に減少した。20分間の重合後、反応器を完全にガス抜きし、反応器の内容物を大過剰のアセトンが入ったビーカーに注いだ。沈殿したポリマーを減圧下に100℃で、24時間乾燥した。ポリマー収量は19.3gであった。
【0063】
実施例8
500mlの乾燥トルエン(希釈剤)を乾燥し脱酸素した、攪拌器と温度制御用外部ジャケットを備えた1Lオートクレーブに導入した。反応器の温度を−10℃に下げた。5mlの乾燥トルエン中に12mgのμ−MeSi(インデニル)HfMeと10mgのN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)硼素を含む触媒溶液を反応器中に注入した。反応器を乾燥窒素でわずかに正圧に保った。CおよびCの気体混合物を反応器に導入し、−10℃で重合を誘導した。この混合物中のC:Cのモノマーモル比は3.5:1であった。モノマー混合物の原料供給容器から反応器への流入を、両者の間に圧力差がなくなるまで続けた。この時点で反応器の入り口バルブを閉じ、重合を続けた。重合の間中、反応器の圧力と温度をモニターした。モノマー混合物を反応器へ導入してから5分間で18℃(−10℃から8℃まで)の温度上昇が観察された。最初の温度上昇後、温度は一定となり、重合時間にが増すにつれて減少した。重合中、反応器の圧力は徐々に減少した。重合20分後に反応器を完全にガス抜きし、反応器の内容物を大過剰のアセトンを入れたビーカーに注いだ。沈殿したポリマーを減圧下に100℃で、24時間乾燥した。ポリマー収量は20gであった。
【0064】
【表4】
Figure 0005144860
【0065】
本発明を特定の実施態様を参照して記述し示してきたが、本発明自体が、本明細書中で必ずしも示されなかった変更が可能であることは、当業者には理解されるであろう。本発明の真の範囲を定めるためには、請求の範囲およびそれと等価な内容のみを参考にすべきである。例えば、本発明で権利請求されたコポリマーを含有する加工製品も、本発明の一部である。この様な加工製品には任意にα−オレフィンポリマーまたはコポリマー、プロセス油および/または他の添加剤が含まれる。この様な特に好ましいα−オレフィンの一つはポリプロピレンである。
【図面の簡単な説明】
【図1】 図1はx−軸がエチレンのモル%、y−軸がアイソタクチック指数を示すグラフである。
【図2】 図2はx−軸がエチレンのモル%、y−軸がメソプロピレン三つ組元素%を示すグラフである。
【図3】 図3はx−軸がエチレンのモル%、y−軸がガラス転移温度を示すグラフである。[0001]
Field of Invention The present invention relates to a propylene / olefin copolymer having the unique properties described herein as a function of mole% of olefin and 1) isotactic index, 2) propylene meso triad element%, and 3) glass transition temperature. (PO) C for olefin2, C4~ C20Although α-olefins are included, the most preferred olefin is ethylene (C2). In particular, the isotactic index of the copolymer of the present invention is −2.24Equal to O + A, where O is the mole percent of olefin present, A is a number from 66 to 89, and the isotactic index is greater than zero. The propylene tacticity of the polymer of the present invention is also described with a meso-triadic element equal to -0.4492EO + B (where O is the mole percent of olefin present, B is a number from 93 to 100, and the meso-triadic element percent. Is less than 95%, preferably less than 93%, more preferably less than 90%). Further, the copolymers of the present invention have a glass transition temperature equal to -1.1082O-C, where O is the mole percent of olefin present and C is a number from 1 to 14. The PO copolymers of the present invention are distinguished from the prior art PO copolymers in their unique crystallinity combined with elastomeric properties, so that the PO copolymers of the present invention are thermoplastic as thermoplastic elastomers (TPEs). Curability in adhesives, polyvinyl chloride (PVC) substitutes, viscosity modifiers as impact modifiers and compatibilizers in olefins (TPOs), elastic fibers and films, dynamic vulcanized alloys (DVAs) It becomes useful for various uses such as an elastomer. Due to the unique crystallinity of propylene, PO copolymers can produce blends that are highly compatible with crystalline polypropylene (PP). Such blends have superior properties over blends comprising crystalline PP and conventional amorphous ethylene-propylene (EP) copolymers. Furthermore, the PO copolymers of the present invention and their blends with polypropylene (PP) will have a greatly increased elastic recovery and tensile strength when oriented.
[0002]
According to another embodiment of the present invention, the PO copolymers of the present invention contain small amounts of non-conjugated dienes to aid vulcanization and other chemical modifications. For the purposes of the present invention, the term “copolymer” includes polymers formed from ethylene and one or more α-olefins, and polymers formed from ethylene, one or more α-olefins and one or more non-conjugated dienes. included. Preferred non-conjugated dienes are 5-ethylidene-2-norbornene, 1,4-hexadiene, 1,6-octadiene, 5-methyl-1,4-hexadiene, 3,7-dimethyl-1,6-octadiene, vinyl norbornene, It is selected from the group consisting of monomers useful for vulcanization of ethylene-propylene rubber, such as dicyclopentadiene or combinations thereof, but is not limited thereto. The amount of diene is preferably less than 10% by weight, most preferably less than 5% by weight.
[0003]
The polymers of the present invention are prepared in the presence of a chiral metallocene catalyst containing an activator and optionally a scavenger.2, C4~ C20It is produced by polymerizing an α-olefin, preferably ethylene and propylene.
[0004]
Conventional technology
Metallocenes have been used to produce ethylene-propylene copolymers. For example, European Patent Application No. 128046 discloses the production of EP copolymers using at least two achiral metallocenes. However, achiral metallocenes cannot inherently produce copolymers having an isotactic index greater than zero and other unique crystalline properties combined with the elastomeric properties of the EP copolymers of the present invention.
[0005]
EP 0374695 discloses the preparation of EP copolymers with an isotactic index greater than zero using a chiral metallocene catalyst with an alumoxane cocatalyst. However, the copolymer of the present invention is −2.24It has an isotactic index equal to Et + A, where Et is the mole% of ethylene present, A is a number from 66 to 89, and the isotactic index is greater than zero. This relationship between the mole% of ethylene and the isotactic index is not shown in EP 0374695 as is evident in FIG. In general, the isotactic index of the EP copolymer of the present invention is considerably lower than the isotactic index of the EP copolymer of EP 0374695. The low isotactic index of the EP copolymer of the present invention is key to its excellent elastomeric properties.
[0006]
U.S. Pat. No. 5,504,172 discloses the preparation of an EP copolymer having a high meso-triadic element tacticity% of polypropylene units. However, the meso-triadic tacticity of the polypropylene unit of the present invention is quite low, equal to -0.4492 Et + B. Here, Et is the mol% of ethylene present, B is a number from 93 to 100, and the meso triplet element% is less than 95%. As shown in FIG. 2, this relationship between mole% ethylene and triplet tacticity is found in the polymer of US Pat. No. 5,504,172. The low meso-triadic element tacticity% of the copolymer of the present invention contributes to its excellent elastomeric properties.
[0007]
Detailed Description of the Invention
The catalyst system described below useful for the preparation of the PO copolymers of the present invention is a metallocene, with a non-coordinating anion (NCA) activator and optionally a scavenging compound. The polymerization is carried out in solution, slurry or gas phase, but preferably in the liquid phase. The polymerization is carried out in a single or multiple reactor process. The slurry or solution polymerization method can use reduced pressure or overpressure and a temperature range of -25 ° C to 110 ° C. In slurry polymerization, a solid or particulate polymer suspension is formed in a liquid polymerization medium, to which ethylene, an α-olefin comonomer, hydrogen and a catalyst are added. In solution polymerization, the liquid medium acts as a solvent for the polymer. The liquid used as the polymerization medium can be an alkane or cycloalkane such as butane, pentane, hexane or cyclohexane, or an aromatic hydrocarbon such as toluene, ethylbenzene or xylene. Liquid monomers can also be used in slurry polymerization. The medium used must be liquid under the polymerization conditions and relatively inert. In solution polymerization, hexane or toluene is preferably used. Gas phase polymerization methods are described in US Pat. Nos. 4,543,399, 4,588,790, and 5,028,670, all of which are incorporated herein by reference for US patent practices. . The catalyst can be supported on a suitable particulate material or porous support such as a polymer support or an inorganic oxide such as silica, alumina or both. US Pat. Nos. 4,808,561, 4,897,455, 4,937,301, 4,937,217, 4,912,075, US Pat. 5,008,228, 5,086,025, 5,147,949, and 5,238,892, all of which are incorporated herein by reference for US patent practice. .
[0008]
Propylene and ethylene are preferred monomers for making the PO copolymers of the present invention, but ethylene is a C4~ C20It can be replaced with other α-olefins.
[0009]
Metallocene
The terms “metallocene” and “metallocene catalyst precursor” refer to one or more optionally substituted cyclopentadienyl (Cp) ligands, at least one non-cyclopentadienyl derived ligand X, and A term known to mean a compound having a Group IV, V, or VI transition metal M with zero or one heteroatom-containing ligand Y, wherein the ligand is coordinated to M The coordination number corresponds to the valence number of the metal. In order to produce an active metallocene catalyst, it is usually necessary to activate the metallocene catalyst precursor with a suitable cocatalyst (called an activator), which generally coordinates and inserts olefins. An organometallic complex having an empty coordination site that can be polymerized.
[0010]
A preferred metallocene is a cyclopentadienyl (Cp) complex having two Cp ring systems as ligands. It is preferred that the Cp ligand forms a sandwich complex with the metal and is fixed in a hard shape with a crosslinking group. These cyclopentadienyl complexes have the following general formula:
(Cp1R1 m) R3 n(Cp2R2 pMXq
(Wherein the ligand (Cp1R1 m) Cp1And ligand (Cp2R2 p) Cp2Are preferably the same, R1And R2Each independently is a hydrocarbyl, halocarbyl, hydrocarbyl substituted organic metalloid or halocarbyl substituted organic metalloid group containing halogen or up to 20 carbon atoms, m is preferably 1-5, p is preferably 1-5, Two R on adjacent carbon atoms of the cyclopentadienyl ring1And / or R2The substituents are preferably joined to form a ring containing 4 to 20 carbon atoms, R3Is a bridging group, n is the number of atoms directly connecting the two ligands, preferably 1-8, most preferably 1-3, and M has a valence of 3-6 Preferably a transition metal from group 4, 5 or 6 on the periodic table of elements, preferably in the highest oxidation state, each X being a non-cyclopentadienyl ligand, independently up to 20 carbon atoms A hydrocarbyl, oxyhydrocarbyl, halocarbyl, hydrocarbyl-substituted organic metalloid, oxyhydrocarbyl-substituted organic metalloid, or halocarbyl-substituted organic metalloid group, where q is equal to the valence of M minus 2.
[0011]
Various examples of the above biscyclopentadienyl metallocenes of the present invention are described in US Pat. Nos. 5,324,800, 5,198,401, 5,278,119, 5,387,568, 5,120,867, 5,017,714, 4,871,705, 4,542,199, 4,752,597, 5,132,262, , 391,629, 5,243,001, 5,278,264, 5,296,434 and 5,304,614, which are incorporated by reference for US patent practice All of which are incorporated herein.
[0012]
Illustrative but non-limiting examples of preferred bicyclopentadienyl metallocenes of the type described in I above in the present invention are the following racemic isomers:
μ- (CH3)2Si (indenyl)2MC12
μ- (CH3)2Si (indenyl)2M (CH3)2
μ- (CH3)2Si (tetrahydroindenyl)2MC12
μ- (CH3)2Si (tetrahydroindenyl)2M (CH3)2
μ- (CH3)2Si (indenyl)2M (CH2CH3)2
μ- (C6H5)2C (indenyl)2M (CH3)2
Here, M is selected from the group consisting of Zr, Hf or Ti.
[0013]
Non-coordinating anion
As described above, the metallocene or precursor thereof is activated with a non-coordinating anion. The term “non-coordinating anion” means an anion that does not coordinate to the transition metal cation or only weakly coordinates to the cation and can therefore be fully substituted with a neutral Lewis base. “Compatible” non-coordinating anions are those that are not reduced to neutrality when the initially formed complex decomposes. In addition, the anion does not introduce an anionic substituent or fragment into the cation, so the anion forms a neutral 4-coordinate metallocene compound, and a neutral by-product from the anion. The non-coordinating anions useful in the present invention are compatible anions that balance the ionic charge to stabilize the metallocene cation, but maintain sufficient instability and are ethylenic or acetylenic inactive during polymerization. Can be replaced by saturated monomers. Furthermore, the anion useful in the present invention is preferably bulky in the sense of sufficient molecular size, and greatly inhibits neutralization of the metallocene cation by a Lewis base other than a polymerizable monomer that may be present during the polymerization reaction. Or stop. Typically, the anion has a molecular size of 4 angstroms or greater.
[0014]
Descriptions of ionic catalysts for coordination polymerization composed of metallocene cations activated with non-coordinating anions are described in EP-A-0277003, EP-A-0277004, US Pat. Nos. 5,198,401 and 5, 278,119, and WO92 / 00333. In these patents, the metallocene (bis Cp and mono Cp) is protonated with an anionic precursor, the alkyl / hydrido group is abstracted from the transition metal, and the non-coordinating anion becomes cationic and charge balanced. Preferred methods are described. The use of ionized compounds that are free of active protons but are capable of generating active metallocene cations and non-coordinating anions is also known. See EP-A-0426637, EP-A-0573403 and US Pat. No. 5,387,568. Reactive cations other than Bronsted acid that can ionize the metallocene compound include ferrocenium, triphenylcarbonium, and triethylsilylium cations. Any metal or metalloid capable of forming a coordination complex that is resistant to degradation by water (or other Bronsted acid or Lewis acid) may be used as the second activator compound or the second activity It can be contained in the anion of the agent compound. Suitable metals include, but are not limited to aluminum, gold, platinum and the like. The descriptions of these documents relating to non-coordinating anions and their precursors are incorporated herein by reference for US patent practice.
[0015]
Another method for producing ionic catalysts uses an ionized anionic precursor that is initially a neutral Lewis acid but generates a cation and an anion by ionization with a metallocene compound. For example, tris (pentafluorophenyl) boron abstracts alkyl, hydride or silyl ligands to produce metallocene cations and stabilized non-coordinating anions. See EP-A-0427697 and EP-A-0520732. The ionic catalyst for addition polymerization can also be generated by oxidation of the metal center of the transition metal compound with an ionic precursor containing a metal oxide group and an anion group. See EP-A-0495375. The non-coordinating anions of these documents and their precursors are likewise incorporated herein by reference for US patent practice.
[0016]
Illustrative, but not limited to, examples of suitable activating agents that can be ionic cationized and stabilized by the resulting non-coordinating anion of the metallocene compounds of the present invention are as follows:
Triethylammonium tetraphenylborate,
Tripropylammonium tetraphenylborate,
Tri (n-butyl) ammonium tetraphenylborate,
Trimethylammonium tetrakis (p-tolyl) borate,
Trimethylammonium tetrakis (o-tolyl) borate
Tributylammonium tetrakis (pentafluorophenyl) borate,
Tripropylammonium tetrakis (o, p-dimethylphenyl) borate,
Tributylammonium tetrakis (m, m-dimethylphenyl) borate,
Tributylammonium tetrakis (p-trifluoromethylphenyl) borate,
Tributylammonium tetrakis (pentafluorophenyl) borate,
Tri (n-butyl) ammonium tetrakis (o-tolyl) borate
Trialkyl-substituted ammonium salts such as
[0017]
N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate,
N, N-dimethylanilinium tetrakis (heptafluoronaphthyl) borate,
N, N-dimethylanilinium tetrakis (perfluoro-4-biphenyl) borate,
N, N-dimethylanilinium tetraphenyl borate,
N, N-diethylanilinium tetraphenyl borate,
N, N-2,4,6-pentamethylanilinium tetraphenylborate
N, N-dialkylanilinium salts such as
[0018]
Di- (isopropyl) ammonium tetrakis (pentafluorophenyl) borate,
Dicyclohexylammonium tetraphenylborate
Dialkylammonium salts such as and the like; and
[0019]
Triphenylphosphonium tetraphenylborate,
Tri (methylphenyl) phosphonium tetraphenylborate,
Tri (dimethylphenyl) phosphonium tetraphenylborate
Triarylphosphonium salts such as
[0020]
Another example of a suitable anionic precursor includes a compound containing a stable carbonium ion and a compatible non-coordinating anion. To them
Tropyrylium tetrakis (pentafluorophenyl) borate
Triphenylmethylium tetrakis (pentafluorophenyl) borate
Benzene (diazonium) tetrakis (pentafluorophenyl) borate
Tropylium phenyltris (pentafluorophenyl) borate
Triphenylmethylium phenyl (tripentafluorophenyl) borate
Benzene (diazonium) phenyl tris (pentafluorophenyl) borate
Tropyrylium tetrakis (2,3,5,6-tetrafluorophenyl) borate
Triphenylmethylium tetrakis (2,3,5,6-tetrafluorophenyl) borate
Benzene (diazonium) tetrakis (3,4,5-trifluorophenyl) borate
Tropylium tetrakis (3,4,5-trifluorophenyl) borate
Benzene (diazonium) tetrakis (3,4,5-trifluorophenyl) borate
Tropylium tetrakis (3,4,5-trifluorophenyl) aluminate
Triphenylmethylium tetrakis (3,4,5-trifluorophenyl) aluminate
Benzene (diazonium) tetrakis (3,4,5-trifluorophenyl) aluminate
Tropylium tetrakis (1,2,2-trifluoroethenyl) borate
Triphenylmethylium tetrakis (1,2,2-trifluoroethenyl) borate
Benzene (diazonium) tetrakis (1,2,2-trifluoroethenyl) borate
Tropylium tetrakis (2,3,4,5-tetrafluorophenyl) borate
Triphenylmethylium tetrakis (2,3,4,5-tetrafluorophenyl) borate
Benzene (diazonium) tetrakis (2,3,4,5-tetrafluorophenyl) borate
Etc. are included.
[0021]
A particularly preferred catalyst system is μ- (CH with N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst.3)2Si (indenyl)2Hf (CH3)2It is.
[0022]
Ethylene propylene copolymer
The EP copolymer of the present invention has unique properties as shown by its isotactic index and the relationship between propylene triad tacticity and ethylene content. Isotactic index and triplet element tacticity were measured for the EP copolymers of the present invention in the following manner.
[0023]
The copolymers of the present invention are blended with process oils and other conventional additives such as nucleating agents, antioxidants, fillers, etc. and processed into products for use in the various applications described above.
[0024]
Also, blends comprising the copolymers of the present invention and other α-olefin polymers and copolymers, such as polypropylene, are processed into products for use in the various applications described above. In general, these formulations contain process oils and other conventional additives such as nucleating agents, antioxidants, fillers.
[0025]
Polydispersity index
The copolymer of the present invention preferably has a polydispersity index (M) of 1.5 to 10, more preferably 1.8 to 8, and more preferably 2.0 to 5.w/ Mn).
[0026]
Isotactic index
The isotactic index of polypropylene is measured by infrared (IR) spectroscopy. In the IR spectrum of polypropylene, 997 cm-1And 973cm-1Two observed peaks occur in 997cm-1Absorbance of 973cm-1The quotient divided by the absorbance of is recognized as a measure of isotacticity. The isotactic index of polypropylene is defined as the quotient multiplied by 100.
[0027]
The EP copolymer produced in the present invention has unique crystalline properties as measured by isotactic index. FIG. 1 is a graph showing the relationship between the isotactic index of a given copolymer and the mol% ethylene content. Data obtained from the copolymer of the present invention and EPA037659 is plotted in a graph. As shown in FIG. 1, the copolymer of the present invention has a lower isotactic index compared to EPA037659 for any given ethylene content. A lower isotactic index corresponds to a relatively lower crystallinity, which reflects better elastomeric properties such as high tensile strength and elongation at break combined with very good elastic recovery . Good elastomeric properties are important for the above potential applications.
[0028]
Triple element tacticity
“Tacticity” refers to the degree of stereoregulation in a polymer. For example, the chirality of adjacent monomers is either a similar or opposite arrangement. The term “dyad” is used to mean two consecutive monomers, and three adjacent monomers are called triads. If the chirality of adjacent monomers is the same relative configuration, the duplex element is called isotactic, and if the configuration is reversed, it is named syndiotactic. Another way to describe the configuration relationship is to refer to pairs of adjacent monomers having the same chirality as meso (m) and those of the opposite configuration as racemic (r).
[0029]
When three adjacent monomers have the same configuration, the stereoregularity of the triplet element is “mm”. If two of the three monomer sequences are the same chirality and differ from the relative arrangement of the third unit, the triplet element has “mr” tacticity. The “rr” triplet element has a central monomer unit that is in the opposite configuration of any neighbor. Determining the proportion of each type of triplet element in the polymer and multiplying by 100 gives the percentage of that type found in the polymer.
[0030]
The triple element tacticity is the propylene copolymer13Determined from C-NMR spectrum.13The C-NMR spectrum is measured as follows.13To measure the C-NMR spectrum, 250-350 mg of polymer is completely dissolved at 120 ° C. in deuterated tetrachloroethane in an NMR sample tube (diameter 10 mm). Using a 90 ° pulse angle, measure with full proton decoupling with a delay of at least 15 seconds between pulses.
[0031]
For resonance chemical shift measurements, the methyl group of the third unit in an array of five consecutive propylene units consisting of a head-to-tail bond and having the same relative chirality is set to 21.83 ppm. The chemical shifts of other carbon resonances are determined using the above values as a reference. The spectrum for the methyl carbon region (17.0-23 ppm) is the first region (21, 1-21.9 ppm), the second region (20.4-21.0 ppm), the third region (19.5-20.4 ppm). ) And the fourth region (17.0-17.5 ppm).Polymer30 (1989), 1350, orMacromolecules17 (1984), 1950 pages, each peak in the spectrum was assigned.
[0032]
In the first region, the signal of the central methyl group in the PPP (mm) triplet element is located.
[0033]
In the second region, the signal of the central methyl group in the PPP (mr) triplet element and the methyl group of the propylene unit whose adjacent units are propylene units and ethylene units resonate (PPE-methyl group).
[0034]
In the third region, the central methyl group in the PPP (rr) triplet element resonates with a signal whose adjacent unit is an ethylene unit (EPE-methyl group).
[0035]
PPP (mm), PPP (mr), and PPP (rr) have the following three polypropylene unit chain structures each having a head-to-tail bond.
[0036]
[Chemical 1]
Figure 0005144860
[0037]
The triad element tacticity (mm ratio) of propylene copolymer13It is determined by the C-NMR spectrum and the following formula.
[0038]
[Chemical 2]
Figure 0005144860
[0039]
The peak area used in the above calculation is13It was not measured directly from the triplet element region of the C-NMR spectrum. The strengths of the mr and rr triplet element regions need to be subtracted from them by the EPP and EPE sequences, respectively. The EPP area is determined from the signal at 30.8 ppm after subtracting the signal difference between 26 and 27.2 ppm and half the area of the 30.1 ppm signal. The area by EPE is determined from the signal at 33.2 ppm.
[0040]
In addition to the above adjustment of the mr and rr regions for the presence of EPP and EPE, other adjustments must be made to those regions before using the above equations. These adjustments are necessary to account for signals due to non-head-to-tail propylene additions. The area of the mr region is adjusted by subtracting half the area between 34 and 36 ppm, and the area of the rr region is adjusted by subtracting the intensity found between 33.4 and 34.0 ppm. Therefore, by making the above adjustment in the mr and rr regions, the signal intensity of the mm, mr, and rr triplet elements can be measured and the above equation can be applied.
[0041]
The EP copolymer produced in the present invention has a unique propylene tacticity measured in% meso-triad elements. FIG. 2 is a graph showing the relationship between the meso triad element% of a given copolymer and its mol% ethylene content. Data for the copolymer of the present invention and the copolymer of US Pat. No. 5,504,172 are plotted on a graph. As shown in FIG. 2, when compared to US Pat. No. 5,504,172, the copolymer of the present invention has a lower meso triplet element% for a given ethylene content. The lower% meso-triad element content corresponds to a relatively lower crystallinity, which reflects high tensile strength and elongation at break with excellent elastic recovery. Good elastomeric properties are important for some of the possible application areas mentioned in the field of the invention.
[0042]
Copolymer properties
Various techniques are used to characterize the copolymers of the present invention, some of which are described in “Structure Characterization”, The Science and Technology of Elastomers, F.M. Erich, Ed., Academic Press, 1978, Chapter 3, G.E. Written by Ver Strate and incorporated herein by reference for US patent practice.
[0043]
The glass transition temperature (Tg) of a polymer is usually measured with a differential scanning calorimeter (DSC). The Tg of the EP copolymer reported herein is measured by a modified DSC (MDSC) method or a conventional DSC method.
[0044]
The copolymers of the present invention preferably have a reactivity specific product (r1 × r2) of 2.5 or less.
[0045]
Normal DSC methodDSC is a standard protocol for placing a sample without molding strain on a calorimeter at 20 ° C, cooling the sample to -75 ° C, scanning to 180 ° C at 10 ° C / min, cooling to -75 ° C, and scanning again. Have. Tg and melting point (TM) Is measured.
[0046]
Adjusted DSC methodA Thermal Analyzer instruments' Model 2910 was used. 5-10 mg of polymer sample was placed on the device at ambient temperature. In a general analysis method, the following thermal segments are attached in the order shown below.
[0047]
1. The temperature is lowered from room temperature to −60 ° C. at 10 ° C./min.
2. Isothermal for 1.0 minute.
3. At the same time, the temperature is adjusted to +/− 1.0 ° C. every 60 seconds and the temperature is increased to 150 ° C. at 5 ° C./min.
4. Isothermal for 1.0 minute.
Reduce the temperature to −10 ° C. at 5.5 ° C./min.
6. Isothermal for 1.0 minute.
7. Raise temperature to 150 ° C. at 10 ° C./min.
8. Reduce the temperature to 25 ° C at 10 ° C / min.
[0048]
Data was obtained and analyzed using a Thermal Analyzer instruments' Model 2200 computer, and Tg, melting point (Tm) And crystal points (Tc) Was evaluated.
[0049]
High temperature GCP (HT-GPC)
Gel permeation chromatography (GPC) is a liquid chromatography technique that separates macromolecules by their hydrodynamic size. That technique is used in the present invention to obtain the molecular weight distribution of polyolefin samples (eg, PE and PP). Transfer of polyolefin dilute solution in good solvent (1,2,4-trichlorobenzene, TCB) at constant flow rate into a series of separation columns packed with porous packing material (crosslinked styrene / divinylbenzene gel hard particles) Pass using phase (TBC). Separation takes place by repeated exchange of polymer molecules between the bulk solvent and the pores of the packing material. Therefore, the size range and degree of separation in which separation is performed are determined by the pore size distribution, with large molecules eluting before small molecules. After separation, a differential refractive index (DRI) meter is used to measure the polymer concentration as a function of elution time (or elution volume). This raw data can be converted to molecular weight data with respect to concentration by a predetermined calibration curve based on a polystyrene standard sample. The number, weight and z-average molecular weight (Mn, MwAnd Mz) Is calculated from these results.
[0050]
Calibration
A set of columns is calibrated by running a series of narrow molecular weight range polystyrene standards (Tosoh Corp., Japan) and recording their peak retention (elution) time. MPSA total of 16 PS standard samples covering a molecular weight range of 500 to 5,000,000 are used. From these results, PE and PP molecular weights versus retention time data are calculated by designating PE- or PP-equivalent molecular weights for each PS standard. The final calibration curve for PE and PP consists of fitting these data sets to a cubic polynomial.
[0051]
In PP, the “universal calibration” method is used.PS[Η]PS= MPP[Η]PPIs assumed to hold. The following Mark-Houwink coefficient is expressed by the equation [η] = kMαUsed for.
[0052]
[Table 1]
Figure 0005144860
[0053]
Operating conditions
Equipment: Waters 150-C GPC
Column: 3Shodex AT-806MS (mixed bed)
Mobile phase: filtered TCB, 300 ppm antioxidant (Sa
ntonox)
Temperature: 145 ° C (column and injection compartment)
Operation time: 50 minutes
Injection volume: 300 μL
Flow rate: 1.0 mL / min
DRI sensitivity 256
DRI scale factor: 16
[0054]
Sample preparation
4-6 mg of polymer was weighed into a 4 mL WISP vial, sufficient TCB was added to a concentration of 1.5 mg / mL, the vial was capped with a PTFE septum and labeled with a work order number. To minimize DRI signal disturbance (solvent mismatch peak) when the lowest molecular weight component elutes, it is preferred to use the same source TCB for both the sample preparation and the mobile phase. The sample is placed in a shaker oven at 160-170 ° C. for 3-4 hours with continuous stirring at a speed of 120-160 rpm. After discarding the sample containing undissolved gel or solid particles, the vial was transferred to a pre-heated sample carousel and the carousel quickly placed in the heated injector compartment of the GPC. The sample set was operated according to the standard operating guidelines of the Waters 150-C GPC manual.
[0055]
Data acquisition and analysis
Data were acquired and analyzed using Waters “ExpertEase” software. Samples were identified by operation request and customer note number. In the resulting chromatogram, define a linear baseline based on pre-peak trends and estimate the deviation of the initial and final points of the signal from the baseline (and exclude “solvent mismatch” and “injected” peaks) ) Peak accumulation limit was set. The resulting calibration curve suitable for PE or PP was used to convert RDI signal versus retention time data to molecular weight distribution data. Mn, Mw, MzAnd the recovered mass (relative to the standard sample) was calculated by software. A report is generated containing these values, a plot of raw retention time data, and a plot of molecular weight distribution. A “time slice” report is also available.
[0056]
The EP copolymer produced according to the invention is TgIt has a unique property measured by FIG. 3 shows the T for a given copolymer.gIt is a graph which shows the relationship between and ethylene content mol%. Data from the copolymer of the invention is plotted on a graph.
[0057]
Examples 1-3
The polymers of Examples 1-3 were prepared by the following general procedure. Polymerization was carried out in 11 stirred reactors using a continuous stream of feed to the reaction system and the product was continuously recovered. Solvents containing hexane and monomers containing ethylene and propylene were purified on alumina and molecular sieve beds. Toluene for preparing the catalyst solution was also purified by the same technique. All feedstock was pumped into the reactor with a metering pump, except for ethylene, which flowed as a gas via a mass flow meter / controller at its own pressure. Water was circulated through the reactor cooling jacket to control the reactor temperature. Pressure was maintained at the excess vapor pressure of the reaction mixture and the reactants were kept in the liquid phase. The reactor was filled with liquid and operated.
[0058]
The ethylene and propylene feeds were combined into one stream and then mixed with a hexane stream precooled to at least 0 ° C. To further reduce the concentration of catalyst poison, a hexane solution of triisobutylaluminum scavenger is added just before the solvent and monomer stream mixture enters the reactor to2Si (indenyl)2HfMe2Catalyst and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate [(DMAH) B (pfp)4A catalyst solution was prepared by dissolving the activator in dry toluene. This mixture of catalyst components in toluene was separately pumped into the reactor and entered into the reactor from another inlet. The product exited the reactor with a pressure control valve that reduced the pressure to atmospheric pressure. Thereby, the unreacted monomer in the solution is flushed to the vapor phase and exhausted from the upper part of the gas-liquid separator. The liquid phase containing mainly the polymer and solvent flowed out from the bottom of the separator and was collected to recover the polymer. The polymer was recovered by steam stripping distillation followed by drying or solvent evaporation under reduced pressure heating. Table 1 below shows the polymerization conditions of Examples 1-3.
[0059]
[Table 2]
Figure 0005144860
[0060]
Examples 4-6
The polymers of Examples 4-6 were prepared by the following general method. 29 lbs of dry toluene (diluent) was placed in a 5 gallon autoclave stirred tank reactor fitted with an external jacket for temperature control. Hexane or other inert solvents may be used in place of toluene. A 25% solution of triisobutylaluminum was then placed in the reactor. The reactor contents were stirred and maintained at the specific initial temperatures shown in Table 2. Generally ethylene (C2) And propylene (C3) Was connected to one, and used as a premixed monomer feed to be fed to the reactor through a single dip tube. Alternatively, ethylene and propylene may be directly supplied through individual introduction pipes. The flow rate of ethylene and propylene is the desired C3/ C2The monomer ratio was adjusted. 121 mg μ-Me in 100 ml dry toluene2Si (indenyl)2HfMe2And 151 mg of N, N-dimethylanilinium tetrakis (pentafluorophenyl) borane were charged to the catalyst cylinder. This cylinder is part of a catalyst supply facility that can supply 15 ml of catalyst to the reactor per addition to the reactor. Initially, 30-45 ml of catalyst solution was added to the reactor to induce polymerization. Additional catalyst solution was added at the desired intervals during the polymerization. Reactor pressure and temperature, and C3And C2The flow rate was monitored throughout the polymerization reaction and typically lasted for 10-30 minutes. After a certain time, the reactor effluent was transferred to a devolatilizing unit under nitrogen pressure. Steam was continuously flowed through the unit for a long period to ensure the evaporation of the diluent. A reduced pressure was usually used to accelerate the evaporation of the diluent. When most of the solvent had evaporated, the copolymer floated on top of the water. The copolymer was isolated, dried and characterized. The reaction conditions for Examples 4-6 are shown in Table 2 below.
[0061]
[Table 3]
Figure 0005144860
[0062]
Example 7
600 ml of dry toluene (diluent) was dried and deoxygenated and placed in a 1 L autoclave equipped with a stirrer and an external jacket for temperature control. The reactor temperature was lowered to 0 ° C. 120 psi (ΔP) of purified propylene gas was supplied to the reactor from a propylene supply container (volume: 1.1 L). After equilibrating the reactor pressure, 25 psi (ΔP) of purified ethylene gas was introduced into the reactor. By this operation, C3Desirable C for the synthesis of high content EP copolymers3/ C2A monomer ratio was obtained. A catalyst solution was prepared in a dry box and transferred to a catalyst feed tube. The catalyst solution was 24 mg μ-Me in 5 ml dry toluene.2Si (indenyl)2HfMe2And 15 mg of N, N-dimethylanilinium tetrakis (pentafluorophenyl) boron. The catalyst solution was injected into the reactor to induce polymerization at 0 ° C. During the polymerization, the reactor pressure and temperature were monitored. A temperature increase of 9 ° C. was observed 6 minutes after addition of the catalyst solution. After the initial temperature increase, the reactor temperature became constant and decreased with increasing polymerization time. During the polymerization, the reactor pressure gradually decreased. After 20 minutes of polymerization, the reactor was completely vented and the reactor contents were poured into a beaker containing a large excess of acetone. The precipitated polymer was dried at 100 ° C. under reduced pressure for 24 hours. The polymer yield was 19.3 g.
[0063]
Example 8
500 ml of dry toluene (diluent) was dried and deoxygenated and introduced into a 1 L autoclave equipped with a stirrer and an external jacket for temperature control. The reactor temperature was lowered to -10 ° C. 12 mg μ-Me in 5 ml dry toluene2Si (indenyl)2HfMe2And a catalyst solution containing 10 mg of N, N-dimethylanilinium tetrakis (pentafluorophenyl) boron were injected into the reactor. The reactor was kept slightly positive with dry nitrogen. C3And C2Was introduced into the reactor and polymerization was induced at -10 ° C. C in this mixture3: C2The monomer molar ratio was 3.5: 1. The flow of the monomer mixture from the raw material supply container into the reactor was continued until there was no pressure difference between the two. At this point, the reactor inlet valve was closed and polymerization continued. The reactor pressure and temperature were monitored throughout the polymerization. A temperature increase of 18 ° C. (from −10 ° C. to 8 ° C.) was observed over 5 minutes after introducing the monomer mixture into the reactor. After the initial temperature rise, the temperature remained constant and decreased with increasing polymerization time. During the polymerization, the reactor pressure gradually decreased. After 20 minutes of polymerization, the reactor was completely vented and the reactor contents were poured into a beaker containing a large excess of acetone. The precipitated polymer was dried at 100 ° C. under reduced pressure for 24 hours. The polymer yield was 20 g.
[0064]
[Table 4]
Figure 0005144860
[0065]
While the invention has been described and illustrated with reference to specific embodiments, those skilled in the art will recognize that the invention itself is susceptible to modifications not necessarily shown herein. Let's go. To define the true scope of the invention, reference should be made solely to the appended claims and equivalents thereof. For example, processed products containing the copolymers claimed in the present invention are also part of the present invention. Such processed products optionally include α-olefin polymers or copolymers, process oils and / or other additives. One such particularly preferred α-olefin is polypropylene.
[Brief description of the drawings]
FIG. 1 is a graph in which the x-axis is the mol% of ethylene and the y-axis is the isotactic index.
FIG. 2 is a graph in which the x-axis represents mol% of ethylene and the y-axis represents mesopropylene triad element%.
FIG. 3 is a graph in which the x-axis is mol% of ethylene and the y-axis is the glass transition temperature.

Claims (5)

プロピレンと、Cをメタロセン及び活性化助触媒で重合することを含むプロピレン/エチレンコポリマーの製造方法であって、
前記メタロセンが
μ−(CHSi(インデニル)M(CH
μ−(CHSi(テトラヒドロインデニル)M(CH
μ−(CHSi(インデニル)M(CHCH
μ−(CC(インデニル)M(CH
(ここで、MはZr、HfまたはTiでなる群から選ばれる)から成る群から選択され、
前記活性化助触媒がN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボーレート、 N,N−ジメチルアニリニウムテトラキス(ヘプタフルオロナフチル)ボーレート、 N,N−ジメチルアニリニウムテトラキス(パーフルオロ−4−ビフェニル)ボーレート、 N,N−ジメチルアニリニウムテトラフェニルボーレート、 N,N−ジエチルアニリニウムテトラフェニルボーレート、 及びN,N−2,4,6−ペンタメチルアニリニウムテトラフェニルボーレートから成る群から選択され、
前記プロピレン/エチレンコポリマーが
(a) −2.24O+Aに等しいアイソタクチック指数(Oは存在するオレフィンのモル%であり、Aは66〜89の数であり、アイソタクチック指数がゼロより大きい)、及び
(b) −0.4492O+Bに等しいメソ三つ組元素%(Oは存在するオレフィンのモル%であり、Bは93〜100の数であり、メソ三つ組元素%が95%以下である)を有する、プロピレン/エチレンコポリマーの製造方法。
And propylene, a process for the preparation of propylene / ethylene copolymer comprising a C 2 to polymerization in the metallocene and activating cocatalyst,
The metallocene is μ- (CH 3 ) 2 Si (indenyl) 2 M (CH 3 ) 2
μ- (CH 3 ) 2 Si (tetrahydroindenyl) 2 M (CH 3 ) 2
μ- (CH 3 ) 2 Si (indenyl) 2 M (CH 2 CH 3 ) 2
μ- (C 6 H 5 ) 2 C (indenyl) 2 M (CH 3 ) 2
(Wherein M is selected from the group consisting of Zr, Hf or Ti),
The activation promoter is N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (heptafluoronaphthyl) borate, N, N-dimethylanilinium tetrakis (perfluoro-4-) Biphenyl) borate, N, N-dimethylanilinium tetraphenylborate, N, N-diethylanilinium tetraphenylborate, and N, N-2,4,6-pentamethylanilinium tetraphenylborate ,
The propylene / ethylene copolymer has an isotactic index equal to (a) -2.24O + A (O is the mole percent of olefin present, A is a number from 66 to 89, and the isotactic index is greater than zero) And (b) having a meso-triadic element% equal to -0.4492O + B (O is the mole% of olefin present, B is a number from 93 to 100, and the meso-triadic element% is 95% or less). A method for producing a propylene / ethylene copolymer.
前記重合が、溶液中で行われる、請求項1に記載のコポリマーの製造方法。The method for producing a copolymer according to claim 1, wherein the polymerization is performed in a solution. 重合が単一または複数の反応器法で行われる、請求項1乃至2のいずれかに記載のコポリマーの製造方法。The method for producing a copolymer according to claim 1, wherein the polymerization is carried out by a single or a plurality of reactor methods. 前記プロピレン/エチレンコポリマーが10〜35モル%のエチレン含有量を有する、請求項1乃至4のいずれか1請求項に記載のコポリマーの製造方法。The method for producing a copolymer according to any one of claims 1 to 4, wherein the propylene / ethylene copolymer has an ethylene content of 10 to 35 mol%. 前記プロピレン/エチレンコポリマーが、15,000〜2,000,000の数平均Mと1.5〜10のM/M比を有する、請求項1乃至4のいずれか1請求項に記載のコポリマーの製造方法。The propylene / ethylene copolymer has a number average M W and M W / M N ratio of 1.5 to 10 of 15,000~2,000,000, according to any one claims of claims 1 to 4 A process for producing a copolymer of
JP2000558143A 1998-07-02 1999-07-01 Propylene-olefin copolymer Expired - Lifetime JP5144860B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10877298A 1998-07-02 1998-07-02
US09/108,772 1998-07-02
PCT/US1999/014967 WO2000001745A1 (en) 1998-07-02 1999-07-01 Propylene olefin copolymers

Publications (3)

Publication Number Publication Date
JP2002519486A JP2002519486A (en) 2002-07-02
JP2002519486A5 JP2002519486A5 (en) 2006-08-31
JP5144860B2 true JP5144860B2 (en) 2013-02-13

Family

ID=22323954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000558143A Expired - Lifetime JP5144860B2 (en) 1998-07-02 1999-07-01 Propylene-olefin copolymer

Country Status (5)

Country Link
EP (1) EP1091984A1 (en)
JP (1) JP5144860B2 (en)
KR (1) KR20010072663A (en)
AU (1) AU4965299A (en)
WO (1) WO2000001745A1 (en)

Families Citing this family (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635715B1 (en) 1997-08-12 2003-10-21 Sudhin Datta Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers
WO2002083754A1 (en) * 2001-04-12 2002-10-24 Exxonmobil Chemical Patents Inc. Propylene ethylene polymers and production process
US7232871B2 (en) * 1997-08-12 2007-06-19 Exxonmobil Chemical Patents Inc. Propylene ethylene polymers and production process
EP1098934A1 (en) 1998-07-01 2001-05-16 Exxon Chemical Patents Inc. Elastic blends comprising crystalline polymer and crystallizable polymers of propylene
WO2001046277A2 (en) 1999-12-22 2001-06-28 Exxonmobil Chemical Patents, Inc. Polypropylene-based adhesive compositions
US6489400B2 (en) 2000-12-21 2002-12-03 3M Innovative Properties Company Pressure-sensitive adhesive blends comprising ethylene/propylene-derived polymers and propylene-derived polymers and articles therefrom
US6455634B1 (en) 2000-12-29 2002-09-24 3M Innovative Properties Company Pressure sensitive adhesive blends comprising (meth)acrylate polymers and articles therefrom
EP1444276A1 (en) * 2001-11-06 2004-08-11 Dow Global Technologies, Inc. Isotactic propylene copolymers, their preparation and use
US6737487B2 (en) * 2002-07-30 2004-05-18 Equistar Chemicals, Lp Polyolefin block copolymers
EP1530611B1 (en) 2002-08-12 2013-12-04 ExxonMobil Chemical Patents Inc. Plasticized polyolefin compositions
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US8618219B2 (en) 2002-10-15 2013-12-31 Exxonmobil Chemical Patents Inc. Propylene copolymers for adhesive applications
US8653169B2 (en) 2002-10-15 2014-02-18 Exxonmobil Chemical Patents Inc. Propylene copolymers for adhesive applications
CN101724110B (en) 2002-10-15 2013-03-27 埃克森美孚化学专利公司 Multiple catalyst system for olefin polymerization and polymers produced therefrom
US7550528B2 (en) 2002-10-15 2009-06-23 Exxonmobil Chemical Patents Inc. Functionalized olefin polymers
ATE506930T1 (en) 2003-01-08 2011-05-15 Exxonmobil Chem Patents Inc ELASTIC ARTICLES AND PRODUCTION PROCESSES THEREOF
US9169406B2 (en) 2003-08-25 2015-10-27 Dow Global Technologies Llc Coating compositions
US8946329B2 (en) 2003-08-25 2015-02-03 Dow Global Technologies Llc Coating compositions
TW200517426A (en) 2003-08-25 2005-06-01 Dow Global Technologies Inc Aqueous dispersion, its production method, and its use
US7947776B2 (en) 2003-08-25 2011-05-24 Dow Global Technologies Llc Aqueous dispersion, its production method, and its use
WO2005080495A1 (en) 2004-02-12 2005-09-01 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
JP4980889B2 (en) 2004-04-19 2012-07-18 ダウ グローバル テクノロジーズ エルエルシー Composition suitable for single-sided, low-noise stretched adhesive film and film produced therefrom
DE602005021248D1 (en) 2004-12-17 2010-06-24 Exxonmobil Chem Patents Inc HOMOGENEOUS POLYMER BLEND AND ARTICLES THEREOF
ES2328611T3 (en) 2004-12-17 2009-11-16 Exxonmobil Chemical Patents Inc. FILMS OF POLYMER BLENDS.
EP1833910B1 (en) 2004-12-17 2009-08-26 ExxonMobil Chemical Patents Inc. Polymer blends and nonwoven articles therefrom
EP1828303B1 (en) * 2004-12-17 2009-08-26 ExxonMobil Chemical Patents, Inc., A Corporation of the State of Delaware Heterogeneous polymer blends and molded articles therefrom
KR20070087670A (en) 2004-12-21 2007-08-28 다우 글로벌 테크놀로지스 인크. Polypropylene-based adhesive compositions
AU2006240252A1 (en) 2005-04-19 2006-11-02 Dow Global Technologies Inc. Composition suitable for high gloss blown film and films made therefrom
TWI386310B (en) 2005-10-07 2013-02-21 Dow Global Technologies Llc Multilayer elastic film structures
US7807593B2 (en) 2005-10-26 2010-10-05 Dow Global Technologies Inc. Multi-layer, pre-stretched elastic articles
JP5106407B2 (en) 2005-10-31 2012-12-26 ダウ グローバル テクノロジーズ エルエルシー Elastomer composition based on propylene
US8282776B2 (en) 2005-12-15 2012-10-09 Kimberly-Clark Worldwide, Inc. Wiping product having enhanced oil absorbency
US7879191B2 (en) 2005-12-15 2011-02-01 Kimberly-Clark Worldwide, Inc. Wiping products having enhanced cleaning abilities
US8043713B2 (en) 2005-12-15 2011-10-25 Dow Global Technologies Llc Compositions and aqueous dispersions
BRPI0620686B1 (en) 2005-12-15 2018-01-16 Dow Global Technologies Inc. METHOD FOR FORMATING AN ARTICLE OF CELLULOSE AND ARTICLE BASED ON CELLULOSE
US7528080B2 (en) 2005-12-15 2009-05-05 Dow Global Technologies, Inc. Aqueous polyolefin dispersions for textile impregnation
CN101370869B (en) 2005-12-22 2011-05-04 陶氏环球技术公司 Blends of styrenic block copolymers and propylene-alpha olefin copolymers
US9547246B2 (en) 2006-03-03 2017-01-17 Dow Global Technologies Llc Aqueous dispersions for use as toners
US8007978B2 (en) 2006-03-03 2011-08-30 Dow Global Technologies Llc Aqueous dispersions for use as toners
US8916640B2 (en) 2006-07-06 2014-12-23 Dow Global Technologies Llc Blended polyolefin dispersions
US8785531B2 (en) 2006-07-06 2014-07-22 Dow Global Technologies Llc Dispersions of olefin block copolymers
TR201814683T4 (en) 2006-09-11 2018-11-21 Dow Global Technologies Llc Polyolefin dispersion technology used for resin coated sand.
US8476326B2 (en) 2006-09-22 2013-07-02 Dow Global Technologies Llc Fibrillated polyolefin foam
US20080118728A1 (en) 2006-10-20 2008-05-22 Dow Global Technologies Inc. Aqueous dispersions disposed on glass-based fibers and glass-containing substrates
CA2667457A1 (en) 2006-10-25 2008-05-02 Dow Global Technologies Inc. Polyolefin dispersions, froths, and foams
KR20090077010A (en) 2006-11-01 2009-07-13 다우 글로벌 테크놀로지스 인크. Polyurethane compositions and articles prepared therefrom, and methods for making the same
US7785443B2 (en) 2006-12-07 2010-08-31 Kimberly-Clark Worldwide, Inc. Process for producing tissue products
WO2008088995A1 (en) 2007-01-12 2008-07-24 Dow Global Technologies Inc. Composition suitable for thin-wall injection molded articles
PT2109641T (en) 2007-01-17 2017-05-25 Agrofresh Inc Delivery of ethylene blocking and/or promoting agents
WO2008098136A1 (en) 2007-02-08 2008-08-14 Dow Global Technologies Inc. Flexible conductive polymeric sheet
US7550538B2 (en) 2007-04-03 2009-06-23 Dupont Performance Elastomers Llc Chlorosulfonated propylene/olefin elastomers
EP2543393A3 (en) 2007-09-28 2013-10-30 Dow Global Technologies LLC Foam produced from a dispersion of higher crystallinity olefins
BRPI0816589B1 (en) 2007-10-25 2018-07-31 Dow Global Technologies Inc Method to form an article
JP5509089B2 (en) 2007-11-15 2014-06-04 ダウ グローバル テクノロジーズ エルエルシー Coating composition, coated article and method for producing such article
US10793738B2 (en) 2007-11-15 2020-10-06 Dow Global Technologies Llc Coating composition, a coated article, and method of forming such articles
WO2009073685A1 (en) 2007-12-05 2009-06-11 Dow Global Technologies Inc. Polypropylene melt-blown sealant films for retort packaging
BRPI0819478B1 (en) 2007-12-28 2019-04-24 Dow Global Technologies Inc. RETICULATED FOAM, METHOD FOR FORMING A RETICULATED FOAM, ARTIFICIAL TUFO AND SHOE
EP2080615A1 (en) 2008-01-18 2009-07-22 Dow Global Technologies Inc. Coated substrates and packages prepared therefrom
WO2009094027A1 (en) 2008-01-24 2009-07-30 Exxonmobil Chemical Patents Inc. Elastic polypropylene-based film compositions
US9388306B2 (en) 2008-03-04 2016-07-12 Exxonmobil Chemical Patents Inc. Polyethylene stretch film
CN102112529B (en) 2008-06-03 2014-10-15 陶氏环球技术有限责任公司 A composite dispersion, method of producing the same, and articles made therefrom
US10161063B2 (en) 2008-09-30 2018-12-25 Exxonmobil Chemical Patents Inc. Polyolefin-based elastic meltblown fabrics
US9168718B2 (en) 2009-04-21 2015-10-27 Exxonmobil Chemical Patents Inc. Method for producing temperature resistant nonwovens
US9498932B2 (en) * 2008-09-30 2016-11-22 Exxonmobil Chemical Patents Inc. Multi-layered meltblown composite and methods for making same
EP2356158B1 (en) 2008-12-12 2018-12-26 Dow Global Technologies LLC Coating composition, a process of producing a coating composition, a coated article, and a method of forming such articles
BRPI0917603B1 (en) 2008-12-16 2018-10-16 Dow Global Technologies Llc coating composition, method for producing a coating composition, coated substrate, method for producing a coated article and method for improving the opacity of a coating composition
WO2010075251A1 (en) 2008-12-22 2010-07-01 Dow Global Technologies Inc. Woven carpet coating compounds, associated methods of use, and articles made therefrom
WO2010098793A1 (en) 2009-02-27 2010-09-02 Exxonmobil Chemical Patents Inc. Biaxially elastic nonwoven laminates having inelastic zones
JP5689455B2 (en) 2009-03-16 2015-03-25 ダウ グローバル テクノロジーズ エルエルシー Dispersion and process for producing the dispersion
US8105463B2 (en) 2009-03-20 2012-01-31 Kimberly-Clark Worldwide, Inc. Creped tissue sheets treated with an additive composition according to a pattern
ES2556344T3 (en) 2009-03-20 2016-01-15 Dow Global Technologies Llc Multilayer structure and method of manufacturing it
AU2010232935B2 (en) 2009-03-30 2013-09-26 Dow Global Technologies Llc Hybrid dispersions and methods for producing the same
EP2275254A1 (en) 2009-07-17 2011-01-19 Dow Global Technologies Inc. Coated substrates and packages prepared therefrom
EP3254985B1 (en) 2009-07-24 2021-04-21 Dow Global Technologies LLC A coated container device, method of making the same
US20120118785A1 (en) * 2009-07-24 2012-05-17 Dow Global Technologies Inc. Coated container device, method of making the same
US20120128907A1 (en) 2009-08-06 2012-05-24 Michael Mounts Radio frequency sealable film, sealed film structure and method of making the same
US8709315B2 (en) 2009-08-18 2014-04-29 Exxonmobil Chemical Patents Inc. Process for making thermoplastic polymer pellets
JP2013506062A (en) 2009-10-02 2013-02-21 エクソンモービル・ケミカル・パテンツ・インク Multilayer meltblown composite material and method for producing the same
WO2011053904A1 (en) 2009-10-30 2011-05-05 Dow Global Technologies Inc. Alkyd dispersion, and a process for producing the same
US8609760B2 (en) 2009-11-18 2013-12-17 Exxonmobil Chemical Patents Inc. Blend partner with natural rubber for elastomeric compounds
EP3467024B1 (en) 2009-11-20 2022-08-03 Dow Global Technologies LLC Thermoplastic elastomer for cold and wet applications
US8425924B2 (en) 2009-11-24 2013-04-23 Exxonmobil Chemical Patents Inc. Propylene compositions containing a pyrethroid and products made therefrom
BR112012013132A2 (en) 2009-12-04 2020-08-18 Union Carbide Chemicals & Plastics Technology Llc extruder system, continuous process for the production of an aqueous dispersion and aqueous dispersion of one or more water-based polymers
CN102762377B (en) 2009-12-18 2015-03-25 陶氏环球技术有限责任公司 Films and articles prepared from the same
KR20170051524A (en) 2009-12-31 2017-05-11 다우 글로벌 테크놀로지스 엘엘씨 Halogen-free, flame retardant thermoplastic compositions for wire and cable applications
WO2011087731A1 (en) 2010-01-14 2011-07-21 Exxonmobil Chemical Patents Inc. Processes and apparatus for continuous solution polymerization
JP5602249B2 (en) 2010-01-14 2014-10-08 エクソンモービル・ケミカル・パテンツ・インク Method and apparatus for continuous solution polymerization
WO2011087729A2 (en) 2010-01-14 2011-07-21 Exxonmobil Chemical Patents Inc. Processes and apparatus for polymer finishing and packaging
EP2544895B1 (en) 2010-03-12 2014-10-01 ExxonMobil Chemical Patents Inc. Elastic meltblown laminate constructions and methods for making same
US20130059164A1 (en) 2010-05-10 2013-03-07 Dow Global Technologies Llc Adhesion promoter system, and method of producing the same
JP6055760B2 (en) 2010-05-10 2016-12-27 ダウ グローバル テクノロジーズ エルエルシー Adhesion promoter system and method for producing the same
EP2569382B1 (en) 2010-05-10 2018-01-17 Dow Global Technologies LLC Adhesion promoter system, and method of producing the same
CN102985484B (en) 2010-05-10 2015-12-16 陶氏环球技术有限责任公司 Adhesion promotor system and preparation method thereof
WO2011146338A1 (en) 2010-05-18 2011-11-24 Dow Global Technologies Llc A multilayer sheet, a thermoformed article, and a method for making the same
CN102939326A (en) 2010-06-09 2013-02-20 埃克森美孚石油公司 Film composition and method of making the same
BR112012032177B1 (en) 2010-06-18 2020-09-29 Dow Global Technologies Llc COATED POLYMERIC PARTICULATE AND METHOD TO PRODUCE COATED POLYMERIC PARTICULATE
RU2013102884A (en) 2010-06-23 2014-07-27 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи UTERINE MIXTURE
CA2801537C (en) 2010-07-12 2014-10-21 Exxonmobil Oil Corporation Laminate film and method of making the same
MX2013001063A (en) 2010-07-27 2013-02-21 Dow Global Technologies Llc Low-density web and method of applying an additive composition thereto.
US8445393B2 (en) 2010-07-27 2013-05-21 Kimberly-Clark Worldwide, Inc. Low-density web and method of applying an additive composition thereto
US8557906B2 (en) 2010-09-03 2013-10-15 Exxonmobil Chemical Patents Inc. Flame resistant polyolefin compositions and methods for making the same
SG188950A1 (en) 2010-09-15 2013-05-31 Dow Global Technologies Llc Propylene-alpha-olefin copolymer compositions with improved foaming window
WO2012037180A1 (en) 2010-09-16 2012-03-22 Dow Global Technologies Llc Coextruded multilayer film structure
BR112012005698B1 (en) 2010-11-02 2021-05-25 Dow Global Technologies Llc sealing composition, method of making a sealing composition, sealing layer, article and method of forming an article
CN103328564B (en) 2010-11-24 2016-08-24 陶氏环球技术有限责任公司 Including propylene-alpha-olefin copolymers, olefin block copolymers and the compositions of DPO-BSA molecule melt
US9336927B2 (en) 2010-12-17 2016-05-10 Dow Global Technologies Llc Halogen-free, flame retardant composition for wire and cable applications
BRPI1107080A2 (en) 2010-12-30 2013-04-24 Braskem Sa article forming by blowing and compression
BR112013017149A2 (en) 2011-01-03 2016-09-20 Dow Global Technologies Llc microcapillary film or foam, structure and multilayer and article
EP2661464B1 (en) 2011-01-03 2017-06-21 Dow Global Technologies LLC Reinforced microcapillary films and foams
US9643388B2 (en) 2011-01-28 2017-05-09 Exxonmobil Chemical Patents Inc. Multilayer films, their methods of production, and articles made therefrom
KR101042669B1 (en) * 2011-02-25 2011-06-21 대한민국 Small backpack and special vest, backpack
US9631115B2 (en) 2011-04-08 2017-04-25 Dow Global Technologies Llc Coating composition, and a process for producing the same
CN103649258B (en) 2011-06-27 2016-07-06 H.B.富勒公司 What radical initiator was modified comprises functional polyethylene and the hot-melt adhesive composition of propylene-alpha-olefin polymer
CA2789611C (en) 2011-06-30 2020-04-28 Dow Global Technologies Llc Clear graphic cling films
US8426521B2 (en) 2011-07-20 2013-04-23 The Procter & Gamble Company Polymer composition
US9605377B2 (en) 2011-07-28 2017-03-28 Dow Global Technologies Llc Polymeric blend formulations suitable for synthetic leather applications
US20130089685A1 (en) 2011-10-11 2013-04-11 Anne P. CAMPEAU Squeezable and Conformable Oriented Polypropylene Label
ES2806265T3 (en) 2011-11-04 2021-02-17 Jindal Films Europe Virton Sprl Biaxially Oriented and Uniaxially Shrinkable Polypropylene Films
BR112014014859A2 (en) 2011-12-20 2017-06-13 Dow Global Technologies Llc rotomolding composition
CN104125981B (en) 2011-12-21 2018-12-04 陶氏环球技术有限责任公司 High frequency including polar polymer can weld polyolefin composition
EP2794237B1 (en) 2011-12-21 2016-10-05 Dow Global Technologies LLC High frequency weldable polyolefin compositions containing zeolites
WO2013096714A1 (en) 2011-12-22 2013-06-27 Dow Global Technologies Llc Microcapillary films and foams suitable for capillary action fluid transport
WO2013134083A1 (en) 2012-03-07 2013-09-12 Dow Global Technologies Llc Polyolefin based formulations for membranes and fabrics
KR102044767B1 (en) 2012-04-12 2019-11-15 다우 글로벌 테크놀로지스 엘엘씨 Polyolefin blend composition and articles made therefrom
JP6278473B2 (en) 2012-05-02 2018-02-14 トレデガー フィルム プロダクツ コーポレイション Low peel force surface protective film and method of using the same
EP2861659B1 (en) 2012-06-19 2016-12-14 Dow Global Technologies LLC Aqueous based blend composition and method of producing the same
CN104662080B (en) 2012-06-19 2019-04-02 陶氏环球技术有限责任公司 Water base blend composition and preparation method thereof
ES2750331T3 (en) 2012-06-28 2020-03-25 Dow Global Technologies Llc Method and apparatus for producing a multilayer microcapillary film
WO2014003761A1 (en) 2012-06-28 2014-01-03 Dow Global Technologies Llc System, method and apparatus for producing a multi-layer, microcapillary film
ES2755377T3 (en) 2012-06-28 2020-04-22 Dow Global Technologies Llc A composite material, procedure to produce it and articles obtained from it
WO2014011450A1 (en) 2012-07-10 2014-01-16 Exxonmobil Chemical Patents Inc. Carpet comprising a propylene-based elastomer and methods of making the same
JP6211088B2 (en) 2012-10-09 2017-10-11 ダウ グローバル テクノロジーズ エルエルシー Sealant composition
BR112015011611B1 (en) 2012-11-21 2022-04-19 Rohm And Haas Company Coating composition and coated article
WO2014081516A1 (en) 2012-11-21 2014-05-30 Dow Global Technologies Llc A film composition, film made from the film composition and a multi-layer film including the film and articles made therefrom
JP2015536378A (en) 2012-11-21 2015-12-21 ダウ グローバル テクノロジーズ エルエルシー Film composition, film made from the film composition, multilayer film containing the film, and article made therefrom
US9840613B1 (en) 2012-11-29 2017-12-12 K. Jabat, Inc. Elastomeric composition having high impact strength
CN104837630B (en) 2012-12-05 2017-02-22 埃克森美孚化学专利公司 Ethylene-based polymers and articles made therefrom
CN105189105B (en) 2012-12-17 2017-04-19 陶氏环球技术有限责任公司 A multi-layered structure and a method of sealing or shaping using a multi-layered structure
WO2014099305A1 (en) 2012-12-19 2014-06-26 Dow Global Technologies Llc Flexible film composition forheat seals and container with same
SG11201505121XA (en) 2012-12-27 2015-07-30 Dow Global Technologies Llc Production of tpo roofing membrane via counter-rotating extrusion
BR112015015417B1 (en) 2012-12-28 2021-08-17 Dow Global Technologies Llc COATING COMPOSITION
CN104968736B (en) 2012-12-28 2017-09-05 陶氏环球技术有限责任公司 Coating composition
WO2014101154A1 (en) 2012-12-31 2014-07-03 Dow Global Technologies Llc Thermoplastic vulcanizate with crosslinked olefin block copolymer
US10548367B2 (en) 2013-01-29 2020-02-04 Exxonmobil Chemical Patents Inc. Footwear sole comprising a propylene-based elastomer, footwear comprising said sole, and methods of making them
US9593235B2 (en) 2013-02-15 2017-03-14 H.B. Fuller Company Reaction product of propylene polymer and wax, graft copolymers derived from polypropylene polymer and wax, hot melt adhesive compositions including the same, and methods of using and making the same
US9267060B2 (en) 2013-02-15 2016-02-23 H.B. Fuller Company Reaction product of propylene polymer and wax, graft copolymers derived from polypropylene polymer and wax, hot melt adhesive compositions including the same, and methods of using and making the same
US20150353718A1 (en) 2013-02-28 2015-12-10 Dow Global Technologies Llc A blend composition suitable for injection molding applications
US9034477B2 (en) 2013-03-05 2015-05-19 Dow Global Technologies Llc Coating composition, a film containing the same, and a method for forming a sealable film
WO2014186953A1 (en) 2013-05-22 2014-11-27 Dow Global Technologies Llc Paper composition and process for making the same
US9522213B2 (en) 2013-06-18 2016-12-20 H.B. Fuller Company Pressure-sensitive hot melt adhesive composition including propylene thermoplastic elastomer and articles including the same
EP2989133B1 (en) 2013-07-01 2017-06-28 Rohm and Haas Company Composite polymer composition
CN105683229B (en) 2013-07-02 2019-09-27 陶氏环球技术有限责任公司 Polyolefin/(methyl) acrylic acid impact modifying agent and preparation method
WO2015012948A1 (en) 2013-07-23 2015-01-29 Exxonmobil Chemical Patents Inc. Polymer compositions, methods of making the same, and articles made therefrom
WO2015021201A1 (en) 2013-08-08 2015-02-12 Dow Global Technologies Llc A composite material, articles made therefrom
WO2015042820A1 (en) 2013-09-26 2015-04-02 Dow Global Technologies Llc A polymeric blend composition
ES2750647T3 (en) 2013-10-15 2020-03-26 Dow Global Technologies Llc Mixtures of compatible polyolefins
EP2862712A1 (en) 2013-10-16 2015-04-22 Dow Global Technologies LLC Flexible film composition for heat seals and container thereof
US20160221312A1 (en) 2013-10-16 2016-08-04 Exxonmobil Chemical Patents Inc. Enhanced Stretched Cling Performance Polyolefin Films
US8916659B1 (en) 2013-10-31 2014-12-23 Exxonmobil Chemical Patents Inc. Process and apparatus for continuous solution polymerization
KR102205707B1 (en) 2013-11-08 2021-01-21 다우 글로벌 테크놀로지스 엘엘씨 Primerless paint composition, methods of manufacture thereof and articles comprising the same
EP3089870B1 (en) 2013-12-31 2018-04-25 Dow Global Technologies, LLC Multilayered films, methods of manufacture thereof and articles comprising the same
WO2015123827A1 (en) 2014-02-19 2015-08-27 Dow Global Technologies Llc High performance sealable co-extruded oriented film, methods of manufacture thereof and articles comprising the same
US20150231862A1 (en) 2014-02-19 2015-08-20 Dow Global Technologies Llc Multilayered polyolefin films, methods of manufacture thereof and articles comprising the same
WO2015123829A1 (en) 2014-02-19 2015-08-27 Dow Global Technologies Llc Multilayer film, methods of manufacture thereof and articles comprising the same
US20150231861A1 (en) 2014-02-19 2015-08-20 Dow Global Technologies Llc Multilayered polyolefin films, methods of manufacture thereof and articles comprising the same
EP2921519A1 (en) 2014-03-17 2015-09-23 Dow Global Technologies LLC A multilayer structure
CN106163800B (en) 2014-04-01 2019-12-06 陶氏环球技术有限责任公司 Multilayer films and articles made therefrom
US9969855B2 (en) 2014-04-09 2018-05-15 Exxonmobil Chemical Patents Inc. Compositions comprising propylene-based elastomers, foamed layers made therefrom, and methods of making the same
KR101580591B1 (en) * 2014-06-10 2015-12-28 주식회사 엘지화학 Propylene-based elastomer
WO2015188358A1 (en) 2014-06-12 2015-12-17 Dow Global Technologies Llc Coated substrates and articles made therefrom
EP3164255B1 (en) 2014-07-03 2020-04-08 Dow Global Technologies LLC A composition, injection molded article made therefrom and process to make injection molded article
CN106715632B (en) 2014-08-21 2019-05-31 陶氏环球技术有限责任公司 Hot-melt adhesive composition including crystalline blocks compound
US20170292001A1 (en) 2014-09-26 2017-10-12 Dow Global Technologies Llc A multilayer structure
KR102445633B1 (en) 2014-12-02 2022-09-21 다우 글로벌 테크놀로지스 엘엘씨 Dynamic vulcanization of a blend composition, methods of manufacture thereof and articles comprising the same
SG10201508406WA (en) 2014-12-23 2016-07-28 Dow Global Technologies Llc Polyolefin dispersion compositions for making high vapor transport hydrophobic coatings
EP3307794B1 (en) 2015-06-15 2019-02-27 ExxonMobil Chemical Patents Inc. Process for continuous solution polymerization
AR105371A1 (en) 2015-07-27 2017-09-27 Dow Global Technologies Llc ELASTIC COMPOSITIONS BASED ON POLYOLEFINE, METHODS FOR THEIR MANUFACTURING AND ARTICLES THAT INCLUDE THEM
EP3133107A1 (en) 2015-08-18 2017-02-22 Trinseo Europe GmbH Polyolefin compositions containing high concentrations of reinforcing fibers and methods of preparation
US20200247041A1 (en) 2015-10-22 2020-08-06 Dow Global Technologies Llc Selective sintering additive manufacturing method and powder used therein
WO2017088168A1 (en) 2015-11-27 2017-06-01 Dow Global Technologies Llc Adhesive formulations for fabric/poe adhesion
TW201723001A (en) 2015-12-16 2017-07-01 陶氏全球科技有限責任公司 Package with peelable and non-peelable heat seals
JP6855487B2 (en) 2016-01-05 2021-04-07 ダウ グローバル テクノロジーズ エルエルシー Thermoformed microcapillary sheet
US10790404B2 (en) 2016-03-30 2020-09-29 Exxonmobil Chemical Patents Inc. Thermoplastic vulcanizate compositions for photovoltaic cell applications
CN109071921B (en) 2016-05-02 2021-11-12 陶氏环球技术有限责任公司 Polyolefin dispersion and epoxy resin dispersion blends with improved damage tolerance
BR112019002838B1 (en) 2016-08-12 2022-11-08 Dow Global Technologies Llc COMPOSITION
BR112019002474B1 (en) 2016-08-12 2022-09-13 Dow Global Technologies Llc COMPOSITION
AR109703A1 (en) 2016-09-27 2019-01-16 Dow Global Technologies Llc ACCESSORY WITH PROPYLENE BASED MIXING COMPONENT AND FLEXIBLE CONTAINER WITH THE SAME
EP3519499B1 (en) 2016-09-29 2023-01-04 Dow Global Technologies Llc Blends for foams, foams manufactured therefrom and articles comprising the same
EP3526033B1 (en) 2016-10-12 2020-12-02 Dow Global Technologies Llc Multilayer structures, articles comprising the same, and methods of making multilayer structures
EP3363773A1 (en) 2017-02-17 2018-08-22 Trinseo Europe GmbH Fibrous sheets coated with polyolefin compositions and methods of preparation
EP3727854B1 (en) 2017-12-20 2022-09-07 Dow Global Technologies Llc Multilayer cast films and methods of making thereof
WO2019147343A1 (en) 2018-01-29 2019-08-01 Exxonmobil Chemical Patents Inc. Rubber blends, articles thereof, and methods of making the same
CN112437790B (en) 2018-06-13 2024-04-23 埃克森美孚化学专利公司 Polyolefin blend composition
PT3807359T (en) 2018-06-15 2023-05-30 Borealis Ag Flame retardant polyolefin composition
CA3103588A1 (en) 2018-06-15 2019-12-19 Borealis Ag Flame retardant composition
WO2020081279A1 (en) 2018-10-17 2020-04-23 Dow Global Technologies Llc A coating composition, a coated fabric, a method of making a coated fabric, and an article made from the coated fabric
CN112703131B (en) 2018-10-17 2024-01-30 陶氏环球技术有限责任公司 Coating composition, coated fabric, method of making coated fabric, and articles made from coated fabric
JP7419357B2 (en) 2018-10-17 2024-01-22 ダウ グローバル テクノロジーズ エルエルシー Coating compositions, coated fabrics, methods of making coated fabrics, and articles made from coated fabrics
EP3927769A1 (en) 2019-02-22 2021-12-29 ExxonMobil Chemical Patents Inc. Heavy layered mats
JP2022553144A (en) 2019-10-18 2022-12-22 ダウ グローバル テクノロジーズ エルエルシー Impact Modification of Styrenic Polymers with Polyolefin Acrylic Polymers
CA3162115A1 (en) 2019-12-18 2021-06-24 Borealis Ag Flame retardant materials
WO2021195070A1 (en) 2020-03-26 2021-09-30 Exxonmobil Chemical Patents Inc. Processes for making 3-d objects from blends of polypropylene and semi-amorphous polymers
WO2021257768A1 (en) 2020-06-19 2021-12-23 Rohm And Haas Company Polyolefin/(meth)acrylic composite polymer composition and method of preparing same
CN116209683A (en) 2020-08-10 2023-06-02 埃克森美孚化学专利公司 Method for delivering non-aromatic solutions to a polymerization reactor
TW202344403A (en) 2022-05-09 2023-11-16 美商陶氏全球科技有限責任公司 Recyclable laminate structures comprising polyolefin dispersions as laminating adhesives
WO2023244900A1 (en) 2022-06-14 2023-12-21 Exxonmobil Chemical Patents Inc. Machine direction oriented polyethylene films for labels and related methods
WO2024044481A1 (en) 2022-08-23 2024-02-29 Exxonmobil Chemical Patents Inc. Polyolefin elastomer vitrimer prepared with multi-functional boron-ester crosslinkers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726067A1 (en) * 1987-08-06 1989-02-16 Hoechst Ag METHOD FOR PRODUCING 1-OLEFIN POLYMERS
KR900009719A (en) * 1988-12-16 1990-07-05 엠. 데이비드 레오나이드 New Ethylene-Propylene Copolymer
DE4030379A1 (en) * 1990-09-26 1992-04-02 Basf Ag POLYMER WAXES OF PROPYLENE WITH HIGH HARDNESS AND CRYSTAL INITY
EP0582194B1 (en) * 1992-08-03 1998-05-06 TARGOR GmbH Process for the preparation of polymers using metallocenes with specifically substituted indenyl ligands
CA2125246C (en) * 1993-06-07 2001-07-03 Junichi Imuta Transition metal compound and olefin polymerization catalyst using the same
US5763534A (en) * 1994-08-25 1998-06-09 Solvay Engineered Polymers Thermoplastic polypropylene blends with mixtures of ethylene/butene and ethylene/octene copolymer elastomers
DE19729833A1 (en) * 1997-07-11 1999-01-14 Clariant Gmbh Polypropylene wax

Also Published As

Publication number Publication date
AU4965299A (en) 2000-01-24
KR20010072663A (en) 2001-07-31
WO2000001745A1 (en) 2000-01-13
EP1091984A1 (en) 2001-04-18
JP2002519486A (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP5144860B2 (en) Propylene-olefin copolymer
US6525157B2 (en) Propylene ethylene polymers
JP4275857B2 (en) Method for enhancing diene conversion in EPDM type polymerization
US7034078B2 (en) Blends made from propylene ethylene polymers
JP5156167B2 (en) Propylene-ethylene polymer and production method
US7026404B2 (en) Articles made from blends made from propylene ethylene polymers
CA2255756C (en) Polyolefin composition with molecular weight maximum occurring in that part of the composition that has the highest comonomer content
US7232871B2 (en) Propylene ethylene polymers and production process
EP0548274B1 (en) Ionic catalyst for the production of poly-alpha-olefins of controlled tacticity
EP0758346B1 (en) Process for the preparation of an elastomeric polymer from ethylene, alpha-olefin and optionally diene
JP2008179825A (en) Method for manufacturing interpolymer and product manufactured therefrom
KR20010081088A (en) Branched semi-crystalline ethylene-propylene compositions
JP2004527617A (en) Propylene-ethylene copolymer
JPH09227626A (en) Production of long-chain branched polyethylene
EP0611377B1 (en) Process for producing polyolefin
US20040210013A1 (en) Catalysts for propylene copolymers
WO2023026838A1 (en) Branched propylene-based polymer
KR19980045994A (en) Method for producing polypropylene having various distributions by sequential addition of metallocene catalyst and Ziegler-Natta catalyst

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101102

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111118

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5144860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term