JP5142248B2 - Fabrication method of FeSi2 dot array structure - Google Patents
Fabrication method of FeSi2 dot array structure Download PDFInfo
- Publication number
- JP5142248B2 JP5142248B2 JP2007068442A JP2007068442A JP5142248B2 JP 5142248 B2 JP5142248 B2 JP 5142248B2 JP 2007068442 A JP2007068442 A JP 2007068442A JP 2007068442 A JP2007068442 A JP 2007068442A JP 5142248 B2 JP5142248 B2 JP 5142248B2
- Authority
- JP
- Japan
- Prior art keywords
- fesi
- film
- substrate
- array structure
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000000034 method Methods 0.000 title claims description 16
- 229910005331 FeSi2 Inorganic materials 0.000 title 1
- 229910005329 FeSi 2 Inorganic materials 0.000 claims description 81
- 239000000758 substrate Substances 0.000 claims description 69
- 229910006585 β-FeSi Inorganic materials 0.000 claims description 33
- 239000013078 crystal Substances 0.000 claims description 30
- 238000012546 transfer Methods 0.000 claims description 30
- 238000002425 crystallisation Methods 0.000 claims description 5
- 230000008025 crystallization Effects 0.000 claims description 5
- 230000031700 light absorption Effects 0.000 claims description 4
- 229910006578 β-FeSi2 Inorganic materials 0.000 claims description 2
- 239000010408 film Substances 0.000 description 52
- 239000010409 thin film Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 229910052710 silicon Inorganic materials 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000004205 dimethyl polysiloxane Substances 0.000 description 6
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 6
- 229920000307 polymer substrate Polymers 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 5
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000000608 laser ablation Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005224 laser annealing Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 125000003396 thiol group Chemical class [H]S* 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Electroluminescent Light Sources (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Silicon Compounds (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Photovoltaic Devices (AREA)
Description
本発明は、光電変換素子等の電子デバイスや環境低負荷型の新しい近赤外光・受光材料として有用な新規なβ−FeSi2又はFeSi2アモルファスを含有するドットアレイ構造体の作製方法に関する。 The present invention relates to a method for manufacturing a dot array structure containing electronic devices and low environmental impact of the new near-infrared light-receiving materials and to usefulness novel beta-FeSi 2 or FeSi 2 Amorphous such photoelectric conversion element About.
β-鉄シリサイド(β-FeSi2)は、クラーク数2位と4位のSiとFeで構成され、希少元素や有毒元素を含まないことから、環境半導体として期待されている材料である。
特に、β-FeSi2は0.8-0.9 eVにバンドギャップを有し、1.5 μm光通信帯で近赤外フォトルミネッセンスおよびエレクトロルミネッセンスを示すことが報告されており、環境低負荷型の新しい近赤外発光・受光材料として注目を集めている。更に、従来の太陽電池用半導体材料に比べて極めて高い光吸収係数を示すことから、新規な高効率太陽電池材料としても期待されている。
β-iron silicide (β-FeSi 2 ) is composed of Si and Fe having the second and fourth Clark numbers and does not contain rare elements or toxic elements, and is therefore a material expected as an environmental semiconductor.
In particular, β-FeSi 2 has a band gap of 0.8-0.9 eV and has been reported to exhibit near-infrared photoluminescence and electroluminescence in the 1.5 μm optical communication band. It is attracting attention as a light emitting / receiving material. Furthermore, since it exhibits a very high light absorption coefficient compared to conventional semiconductor materials for solar cells, it is also expected as a novel high-efficiency solar cell material.
これまでに、β-FeSi2の薄膜は知られており、その作製方法としては、(イ)Si基板中にFe+イオンを高濃度に注入した後800〜940℃で熱アニールを行うイオン注入法(例えば非特許文献1参照)、(ロ)Si基板をSiとFeが反応する程度まで高温に加熱した状態でFeを堆積させる熱反応堆積法(例えば非特許文献2参照)、(ハ)FeとSiを高温にあるいは室温保持した基板上に同時蒸着させ高温アニールする分子線エピタキシー法(例えば非特許文献3参照)、(二)FeとSiターゲットを交互に、あるいはFeSi2ターゲットをスパッタリングして加熱した基板上に堆積させ、その後高温アニールを行ってβ-FeSi2結晶相膜を得るスパッタリング法(例えば非特許文献4参照)等の方法が知られている。 Up to now, β-FeSi 2 thin films have been known, and (b) ion implantation in which Fe + ions are implanted at a high concentration into a Si substrate and then thermally annealed at 800 to 940 ° C. (E.g., see Non-Patent Document 1), (b) thermal reaction deposition method (see Non-Patent Document 2), in which Fe is deposited while the Si substrate is heated to a high temperature to the extent that Si and Fe react. Molecular beam epitaxy method in which Fe and Si are vapor-deposited simultaneously on a substrate held at a high temperature or at room temperature and annealed at a high temperature (see, for example, Non-Patent Document 3), (2) Fe and Si targets alternately, or FeSi 2 targets are sputtered A sputtering method (for example, see Non-Patent Document 4) or the like is known in which a β-FeSi 2 crystal phase film is obtained by depositing on a heated substrate and then performing high-temperature annealing.
しかし、これらの手法によるβ-FeSi2薄膜の作製法は、成膜時の高い基板温度(〜400℃以上)あるいは成膜後の加熱による高温結晶化処理(〜800℃以上)を通常必要とし、また成膜後の高温結晶化処理は長時間(1〜20時間)に及ぶため、基板として耐熱性のあるものを用いなければならず、基板の選択自由度が小さく、またプロセスが煩雑であり、更には、β-FeSi2の半導体特性の再現性の低下をまねくといった共通の難点があった。 However, the method for producing β-FeSi 2 thin film by these methods usually requires high substrate temperature (˜400 ° C. or higher) during film formation or high-temperature crystallization treatment (˜800 ° C. or higher) by heating after film formation. In addition, since the high-temperature crystallization treatment after the film formation takes a long time (1 to 20 hours), it is necessary to use a heat-resistant substrate as the substrate, the degree of freedom in selecting the substrate is small, and the process is complicated. In addition, there is a common problem that the reproducibility of the semiconductor characteristics of β-FeSi 2 is lowered.
これらの問題点を解決するために、本願発明者らは、レーザーアブレーション法により生じるナノメートルからマイクロメートルサイズの微小液滴(ドロップレット)を従来法の如く抑制・排除することなくその生成量を増大させ、低温(100℃未満)保持した基板上に堆積させて、このドロップレットをβ-FeSi2結晶を含む粒子に変換し、これがFeSi2アモルファス相の上に島状に堆積する薄膜およびその効率的な製造方法を先に提案した(特許文献1)。 In order to solve these problems, the inventors of the present application reduced the generation amount of nanometer to micrometer sized droplets (droplets) generated by the laser ablation method without suppressing or eliminating the same as in the conventional method. A thin film deposited on an FeSi 2 amorphous phase, which is deposited on a substrate held at a low temperature (below 100 ° C.) and converted into particles containing β-FeSi 2 crystal. An efficient manufacturing method was previously proposed (Patent Document 1).
この手法により得られる薄膜は、β−FeSi2の結晶粒子とFeSi2のアモルファスを含む相との特性を生かすことより、太陽電池、熱電素子などのデバイス製造の他、β−FeSi2からの近赤外発光を結晶粒子へ閉じ込めることにより増幅する微小球レーザー類似の機能を有する新規薄膜型発光デバイスなどとしての応用が可能なものであり、また、β-FeSi2結晶を含む薄膜を低温(100 ℃未満)で作製することができるといった利点を有するものである。 Thin film obtained by this method, than to take advantage of the characteristics of the phase containing amorphous beta-FeSi 2 crystal grains and FeSi 2, other device fabrication, such as solar cells, thermoelectric elements, near from beta-FeSi 2 It can be applied as a novel thin-film light-emitting device with a function similar to a microsphere laser that amplifies infrared light by confining it in crystal grains, and a thin film containing β-FeSi 2 crystals can be used at low temperatures (100 (Below ° C.).
しかしながら、この薄膜は、レーザーアブレーションによるドロップレットの生成時に、ガス状の原子・分子・イオンも同時に発生することから、得られる薄膜は、ガス状の原子・分子・イオンが堆積することにより形成されるアモルファスFeSi2膜上にドロップレット粒子が島状に堆積したものであって、任意の基板上に直接β-FeSi2結晶粒子又はFeSi2アモルファス粒子を堆積させたものではなかった。また、実際には、島状に堆積させた粒子のサイズを制御することが難しく、ナノメートルからマイクロメートルサイズのFeSi2粒子が混在して堆積してしまい、かつその堆積位置の制御も困難であった。 However, since this thin film also generates gaseous atoms, molecules, and ions at the same time when droplets are generated by laser ablation, the resulting thin film is formed by depositing gaseous atoms, molecules, and ions. In other words, droplet particles were deposited in an island shape on the amorphous FeSi 2 film, and β-FeSi 2 crystal particles or FeSi 2 amorphous particles were not directly deposited on an arbitrary substrate. Also, in practice, it is difficult to control the size of the particles deposited in islands, FeSi 2 particles of nanometer to micrometer size are mixed and deposited, and it is difficult to control the deposition position. there were.
本発明は、このような背景技術に鑑みなされたものであって、その目的は、高品位の結晶性を有し、且つ精密にサイズ・位置制御がなされ、デバイスへの集積化の自由度の高められた、均質なFeSi2ドットアレイ構造体の作製方法を提供することにある。 The present invention has been made in view of such a background art, and its object is to have high-quality crystallinity and to precisely control the size and position, and to improve the degree of freedom of integration in a device. enhanced to provide a work made how homogeneous FeSi 2 dot array structure.
本発明者らは、FeSi2膜を有する透明板の膜面側に基板を対向させ透明板側からパルスレーザー光を照射すると、対向する基板上に、β-FeSi2結晶又はFeSi2アモルファスを含有するドットが均質に転写されることを知見し、本発明を完成するに至った。
すなわち、この出願によれば、以下の発明が提供される。
本発明のFeSi 2 ドットアレイ構造体の作製方法は、FeSi2膜を有する透明板の膜面側に基板を対向させ、透明板側からパルスレーザー光を照射し、対向基板上にβ-FeSi2結晶又はFeSi2アモルファスを含有するドットをレーザー転写することを特徴とする。
また、本発明のFeSi 2 ドットアレイ構造体の作製方法は、レーザー転写されたβ-FeSi2結晶又はFeSi2アモルファスを含有するドットを、更に結晶化処理し、高品位なβ-FeSi2結晶相に変換することを特徴とする。
また、本発明のFeSi 2 ドットアレイ構造体の作製方法は、パルスレーザー光を、その一画から一つのドットが1対1対応で形成されるように照射してもよいし、1ショットのパルスレーザー光の照射でドットの転写を行うようにしてもよい。また、本発明は、パルスレーザー照射の一画の面積が100×100μm以下であり、また、パルスレーザー光の波長が、FeSi2アモルファス相が光吸収を有する波長であり、パルス幅が1〜100ナノ秒である。更に、本発明は、FeSi2膜の厚さが10nm〜10μmであることを特徴とする。
The inventors of the present invention include a β-FeSi 2 crystal or FeSi 2 amorphous on the opposing substrate when the substrate is opposed to the film surface side of the transparent plate having the FeSi 2 film and irradiated with pulsed laser light from the transparent plate side. It was found that the dots to be transferred were homogeneously transferred, and the present invention was completed.
That is, according to this application, Ru provides the following invention.
In the method for producing the FeSi 2 dot array structure of the present invention , the substrate is opposed to the film surface side of the transparent plate having the FeSi 2 film, pulsed laser light is irradiated from the transparent plate side, and β-FeSi 2 is formed on the opposite substrate. dots containing crystalline or FeSi 2 amorphous you characterized by laser transfer.
In addition, according to the method of producing the FeSi 2 dot array structure of the present invention , the laser-transferred β-FeSi 2 crystal or FeSi 2 amorphous dot is further crystallized to obtain a high-quality β-FeSi2 crystal phase. you and converting.
Also, a manufacturing method of FeSi 2 dot array structure of the present invention, the pulse laser beam, to one dot from the one section may be irradiated as being formed in a one-to-one correspondence, one shot You may make it perform the transfer of a dot by irradiation of a pulse laser beam . The present invention also state, and are areas of one section is 100 × 100 [mu] m or less of the pulse laser irradiation, and the wavelength of the pulse laser light, the wavelength of FeSi 2 amorphous phase has a light absorption, the pulse width 1 Ru 100 nanoseconds der. Furthermore, the present invention is characterized in that the thickness of the FeSi 2 film is 10 nm to 10 μm .
本発明のFeSi2ドットアレイ構造体は、ドットが均質であり、そのサイズが均一でその位置が正確に制御されたものであり、光電変換素子等のデバイス化に要求される均一な光電変換特性等を満たすことから、フレキシブル近赤外発光デバイスやフレキシブル太陽電池などとして有用なものである。
また、本発明のFeSi2ドットアレイ構造体の作製方法は、高速・室温プロセスであるレーザー転写法を用いることから、β-FeSi2種結晶をドット構造中に析出させることも可能であり、ポリマー等低融点基板上をも含む各種基板上に、β-FeSi2結晶を含有するドット構造を簡便に形成することができる。また、その後のレーザーアニーリング等の結晶化処理を併用すれば、β-FeSi2ドットの結晶性をさらに向上させることができ、従来の手法では難しかった、β-FeSi2ドットアレイ構造体を発光層とする優れたフレキシブル近赤外発光デバイスの作製が可能となる。
The FeSi 2 dot array structure of the present invention has uniform dots, uniform size, and precisely controlled position, and uniform photoelectric conversion characteristics required for device conversion of photoelectric conversion elements and the like. Therefore, it is useful as a flexible near-infrared light emitting device or a flexible solar cell.
In addition, since the FeSi 2 dot array structure manufacturing method of the present invention uses a laser transfer method which is a high-speed and room temperature process, it is possible to precipitate β-FeSi 2 seed crystals in the dot structure. A dot structure containing a β-FeSi 2 crystal can be easily formed on various substrates including an isolow melting point substrate. In addition, the crystallinity of β-FeSi 2 dots can be further improved by using a subsequent crystallization treatment such as laser annealing, and the β-FeSi 2 dot array structure, which has been difficult with the conventional method, can be improved. An excellent flexible near-infrared light emitting device can be produced.
本発明に係るFeSi2結晶ドットアレイ構造体は、β-FeSi2結晶又はFeSi2アモルファスを含有するドットが基板表面に均質に設けられたものである。
ここで、β-FeSi2結晶又はFeSi2アモルファスドットアレイ構造体とは、β-FeSi2結晶もしくはFeSi2アモルファスが一部または全体に析出しているドットが基板表面に固定化されているものを意味する。また、「均質」とは、基板表面上に設けられたドットのサイズや高さがほぼ同じ大きさであり、かつ各ドットが同程度の密度(間隔)をもって整然と配列されている状態を意味する。
本発明におけるドットの直径は同じ大きさであれば特に制限はないが、通常、0.1〜100 μmとするのがよい。また、ドットの密度は同程度あれば特に制限はないが、通常、基板1平方ミリあたり102〜107個とするのがよい。
また、基板としては、Si(100)及び(111)ウエハー基板、Al2O3やMgO単結晶等の無機単結晶基板、セラミックス基板、石英ガラス等のガラス基板、そして無機基板に比べて耐熱性の低いポリマー基板やチオール等を表面に塗布したような有機分子塗布基板等、様々な基板を使用することが可能である。
In the FeSi 2 crystal dot array structure according to the present invention, dots containing β-FeSi 2 crystal or FeSi 2 amorphous are provided uniformly on the substrate surface.
Here, the β-FeSi 2 crystal or FeSi 2 amorphous dot array structure is a structure in which dots on which the β-FeSi 2 crystal or FeSi 2 amorphous is partially or entirely precipitated are fixed on the substrate surface. means. Further, “homogeneous” means a state in which the dots provided on the substrate surface have substantially the same size and height, and the dots are arranged in an orderly manner with the same density (interval). .
The diameter of the dot in the present invention is not particularly limited as long as it is the same size, but it is usually 0.1-100 μm. Further, the dot density is not particularly limited as long as it has the same density, but it is usually preferable to set the density to 10 2 to 10 7 per square millimeter of the substrate.
In addition, as substrates, Si (100) and (111) wafer substrates, inorganic single crystal substrates such as Al 2 O 3 and MgO single crystals, ceramic substrates, glass substrates such as quartz glass, and heat resistance compared to inorganic substrates It is possible to use various substrates such as a low molecular weight polymer substrate or an organic molecule coated substrate coated with thiol or the like on the surface.
本発明に係るFeSi2ドットアレイ構造体は、FeSi2膜を有する透明板の膜面側に基板を対向させ、透明板側(FeSi2原料膜の背面)からパルスレーザー光を照射し、対向基板上にβ-FeSi2結晶又はFeSi2アモルファスを含有するドットを転写することによって得ることができる。 In the FeSi 2 dot array structure according to the present invention, the substrate is opposed to the film surface side of the transparent plate having the FeSi 2 film, and pulsed laser light is irradiated from the transparent plate side (the back surface of the FeSi 2 raw material film). It can be obtained by transferring dots containing β-FeSi 2 crystal or FeSi 2 amorphous on the top.
すなわち、レーザー波長に対して透明板の上にそのレーザー波長に吸収を有する膜を成膜して、膜背面即ち透明板側からレーザーパルスを入射した場合には、透明板を透過したレーザー光が透明板/膜界面の膜側で局所的に吸収され、吸収された光のエネルギーが激しい格子振動、すなわち熱となり、膜温度が瞬間的に上昇し、その結果体積変化や相変化により界面部分で圧力が生じる。入射レーザーパルスのエネルギーを増加させていくと、膜の瞬間的な温度上昇と透明板/膜界面に生じる圧力が大きくなり、いわゆる膜のレーザーアブレーションが誘発され、レーザー照射エリアの膜部分の一部又は全体は透明板から放出されることになる。この時、膜に接触あるいはある程度の隙間を設けて対向基板を置くと、対向基板上に放出された膜原料がその組成を精密に保持した状態で転写される。 That is, when a film having absorption at the laser wavelength is formed on the transparent plate with respect to the laser wavelength, and a laser pulse is incident from the back side of the film, that is, from the transparent plate side, the laser light transmitted through the transparent plate is Absorbed locally on the film side of the transparent plate / film interface, the energy of the absorbed light becomes intense lattice vibration, that is, heat, and the film temperature rises instantaneously, resulting in volume change and phase change at the interface part. Pressure is generated. Increasing the energy of the incident laser pulse increases the instantaneous temperature rise of the film and the pressure generated at the transparent plate / film interface, so-called laser ablation of the film is induced, and part of the film part of the laser irradiation area Or the whole will be discharged from the transparent plate. At this time, when the counter substrate is placed in contact with the film or with a certain gap, the film raw material released onto the counter substrate is transferred with its composition kept precisely.
本発明で使用するFeSi2膜を有する透明板は、石英ガラス、ホウケイ酸ガラス、サファイヤ、イットリア安定化ジルコニアなどの使用するレーザー波長で透明な無機材料板やポリマーフィルムに、FeSi2膜の原料である、FeSi2合金粉末等を通常のホットプレス法で成形したFeSi2合金ターゲットをスパッタリングして成膜することにより簡単に得ることができる。 Transparent plate having FeSi 2 film used in the present invention, quartz glass, borosilicate glass, sapphire, a transparent inorganic material plate or a polymer film with a laser wavelength used, such as yttria-stabilized zirconia, the raw material of the FeSi 2 layer It can be easily obtained by forming a film by sputtering a FeSi 2 alloy target obtained by forming a FeSi 2 alloy powder or the like by a normal hot press method.
原料となる透明板上のFeSi2膜の厚さに特に制限はないが、原料膜を薄くすればするほど、転写体積が小さくなり、より小さなサブマイクロメートルサイズのドットを形成できる可能性があるため、ナノドット形成やドットアレイの高密度化を図る場合には、膜が薄いほど好ましく、通常は10 nm〜10 μm程度とするのがよい。 There is no particular limitation on the thickness of the FeSi 2 film on the transparent plate as the raw material, but the thinner the raw material film, the smaller the transfer volume and the possibility of forming smaller submicrometer-sized dots. Therefore, in order to form nanodots or increase the density of the dot array, the thinner the film, the better. Usually, the thickness is preferably about 10 nm to 10 μm.
レーザー転写に用いる基板材料の種類は特に限定されず、前記した、通常β-FeSi2薄膜作製に用いられるSi(100)及び(111)ウエハー基板、Al2O3やMgO単結晶等の無機単結晶基板、セラミックス基板、石英ガラス等のガラス基板、無機基板に比べて耐熱性の低いポリマー基板やチオール等を表面に塗布したような有機分子塗布基板等、様々な基板を使用することができる。 The type of substrate material used for laser transfer is not particularly limited. As described above, inorganic (eg, Si (100) and (111) wafer substrates, Al 2 O 3 and MgO single crystals), which are usually used for producing β-FeSi 2 thin films. Various substrates such as a crystal substrate, a ceramic substrate, a glass substrate such as quartz glass, a polymer substrate having a lower heat resistance than an inorganic substrate, and an organic molecule coated substrate coated with thiol on the surface can be used.
また、FeSi2膜を有する透明板の膜面側に基板を対向させる際の、膜/基板間距離については、膜と基板の間に0〜数百マイクロメートル程度の隙間があって良いが、ドット堆積位置の精度の観点からは、隙間が小さいほど好ましく、膜と基板が接触している方がさらに好ましい。 In addition, when the substrate is opposed to the film surface side of the transparent plate having the FeSi 2 film, the film / substrate distance may have a gap of about 0 to several hundred micrometers between the film and the substrate, From the viewpoint of the accuracy of the dot deposition position, it is preferable that the gap is small, and it is more preferable that the film and the substrate are in contact.
本発明方法は、レーザー転写により、透明板上に成膜したFeSi2原料膜の背面(透明板側)からレーザー光を照射し原料膜に対向設置した基板にβ-FeSi2又はFeSi2アモルファスドットを転写形成するものであるが、転写されたβ-FeSi2又はFeSi2アモルファスを更に高品位化するために、該ドットを更に結晶化処理しておくことが好ましい。結晶化処理法としては、通常の加熱や光照射によるレーザーアニーリングなどが挙げられる。 The method of the present invention uses a laser transfer to irradiate a laser beam from the back surface (transparent plate side) of the FeSi 2 raw material film formed on the transparent plate, and β-FeSi 2 or FeSi 2 amorphous dots on the substrate placed opposite to the raw material film. In order to further improve the quality of the transferred β-FeSi 2 or FeSi 2 amorphous, it is preferable to further crystallize the dots. Examples of the crystallization treatment method include normal annealing and laser annealing by light irradiation.
また、本発明においては、該レーザー転写を、レーザー光照射エリアの一区画から一つのドットが1対1対応で形成される条件下で行うことが好ましい。
すなわち、一般に、この種のレーザー転写法においては、膜原料を最終的に膜形状で対向基板に転写するものであるが、膜形状での転写の場合、転写後の膜の表面粗さや外形などの品位の低下が見られやすく、高品位な転写形状を得ることは困難とされていた。
そこで、本発明者らは、FeSi2膜を原料に用い、レーザー照射エリアの一区画の面積を減じることで、レーザー照射により溶融・アブレーションする転写体積を減少させ、その表面張力による凝集を経て球状のドットとして、レーザー光照射エリアの一区画から一つのドットが1対1対応で形成される条件を採用するとFeSi2ドットが有効に転写できることを知見したものである。
すなわち、レーザー照射エリアの一区画から一つのドットを転写するような条件(後述するが、原料膜厚、レーザーフルエンス、レーザー照射エリアの区画面積に主に依存)とすることで、均一なサイズを有するドットを非常に再現よく形成することが可能となる。
Moreover, in this invention, it is preferable to perform this laser transfer on the conditions in which one dot is formed by one-to-one correspondence from one division of a laser beam irradiation area.
That is, in general, in this type of laser transfer method, the film material is finally transferred to the counter substrate in the form of a film, but in the case of transfer in the form of a film, the surface roughness, outer shape, etc. of the film after transfer Therefore, it was difficult to obtain a high-quality transfer shape.
Therefore, the present inventors use a FeSi 2 film as a raw material, and reduce the area of a laser irradiation area to reduce the transfer volume that is melted and ablated by laser irradiation, and then agglomerate due to its surface tension to form a spherical shape. It has been found that FeSi 2 dots can be effectively transferred by adopting the condition that one dot is formed in one-to-one correspondence from one section of the laser light irradiation area.
In other words, a uniform size can be achieved by using a condition for transferring one dot from one section of the laser irradiation area (which will be described later, mainly depending on the raw material film thickness, laser fluence, and the section area of the laser irradiation area). It is possible to form dots having excellent reproducibility.
また、本発明においては、レーザー転写は、一つのドットの対向基板への転写が1ショットのパルスレーザー光の照射で起こる条件下で行うことが好ましい。
この理由は、最初のレーザーパルス照射により、膜原料のレーザー照射エリアからの対向基板へのドット転写が誘起される場合、2回目のレーザーパルスは対向基板上に形成されたドットにより吸収されるかあるいは膜原料の残存部位に吸収されるので、ドットや膜原料残存部位にレーザーアブレーションが起こり、最初のレーザー転写により形成したドット構造周辺部分に別のドットが生じ、その結果、精密にサイズ・位置制御されたドットアレイ構造の作製が困難となるからである。
In the present invention, it is preferable that the laser transfer is performed under the condition that the transfer of one dot to the counter substrate occurs by irradiation with one shot of pulsed laser light.
This is because if the first laser pulse irradiation induces dot transfer from the laser irradiation area of the film material to the counter substrate, is the second laser pulse absorbed by the dots formed on the counter substrate? Alternatively, it is absorbed by the remaining part of the film material, so laser ablation occurs at the remaining part of the film and film material, and another dot is generated around the dot structure formed by the first laser transfer, resulting in precise size and position. This is because it becomes difficult to produce a controlled dot array structure.
レーザー転写に用いるパルスレーザーの照射面積は、原料膜の転写体積を減じて、表面張力を利用したドット形状でのレーザー転写を誘起するため、原料膜/透明板界面でのレーザー照射一画の面積が十分小さくなるように、用いる原料膜厚等を主に考慮して定められるが、その一画の面積が100 x 100 μm以下程度とするのが好ましい。 The irradiation area of the pulse laser used for laser transfer reduces the transfer volume of the raw material film and induces laser transfer in a dot shape using surface tension, so the area of the laser irradiation at the raw material film / transparent plate interface However, it is preferable to set the area of one stroke to about 100 × 100 μm or less.
パルスレーザー光の照射フルエンスは、レーザーパルス照射により膜原料/透明板界面で生じる温度と圧力の上昇が、膜を放出し対向設置した基板に転写するに足るよう定める必要がある。また逆に、レーザーフルエンスが大きすぎると、転写パターンが1対1対応で形成されるサイズ・位置制御されたドットアレイ構造とはならず、爆発的なアブレーションにより様々なサイズの微細粒子が混在したパターンとなる可能性があるため、1対1対応でのドット作製に適したフルエンスの範囲が存在することになるが、本発明においては、パレスレーザー光の照射レーザーフルエンスを1 J/cm2〜3 J/cm2程度とするのが好ましい。 The irradiation fluence of the pulsed laser beam needs to be determined so that the temperature and pressure increase generated at the film raw material / transparent plate interface due to the laser pulse irradiation is sufficient to release the film and transfer it to the opposing substrate. On the other hand, if the laser fluence is too large, the transfer pattern is formed in a one-to-one correspondence and the dot array structure is not controlled in size and position, and fine particles of various sizes are mixed due to explosive ablation. Since there is a possibility of a pattern, there is a range of fluences suitable for dot production in a one-to-one correspondence. In the present invention, the irradiation laser fluence of the palace laser beam is 1 J / cm 2 to It is preferably about 3 J / cm 2 .
パルスレーザー光の波長は、FeSi2膜原料が光吸収を有する波長であり且つ透明板として用いる材料が高い透過率を有することが必要である。FeSi2は近赤外−可視−紫外にわたる広範囲な波長域に大きな吸収を有するため、選択した波長に吸収を持たない材料を透明板とすることにより、近赤外−可視−紫外の何れの波長を用いることが可能である。 The wavelength of the pulsed laser light is such that the FeSi 2 film material has light absorption, and the material used as the transparent plate needs to have high transmittance. Since FeSi 2 has a large absorption in a wide wavelength range from near infrared to visible to ultraviolet, a transparent plate made of a material having no absorption at a selected wavelength can be used for any wavelength from near infrared to visible to ultraviolet. Can be used.
パルスレーザー光のパルス幅は、膜原料からの熱伝導あるいは輻射による基板へのダメージを少なくし、引いては低融点基板の使用を可能にするといった観点からみて、1〜100ナノ秒とすることが好ましい。パルス幅が100ナノ秒を超えると、基板へのダメージが生じる可能性があり、基板の選択自由度が小さくなる。 The pulse width of the pulse laser beam should be 1 to 100 nanoseconds from the viewpoint of reducing damage to the substrate due to heat conduction or radiation from the film material, and enabling the use of a low melting point substrate. Is preferred. When the pulse width exceeds 100 nanoseconds, the substrate may be damaged, and the degree of freedom in selecting the substrate is reduced.
以下、本発明を実施例により更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
実施例1
FeとSiの粉末を1:2に混合・溶融して合成したFeSi2合金粉末を通常のホットプレス法で成形したFeSi2焼結体ターゲットのスパッタリングにより、石英ガラス透明基板上に、基板加熱することなく、アモルファスFeSi2薄膜(厚さ500 nm)を作製した。
次に、得られたFeSi2薄膜をシリコンウエハとコンタクトさせ、図1に示す装置のKrFエキシマレーザー光の結像位置に、石英ガラスとFeSi2薄膜の界面が一致するように設置した。
また図1のマスク縮小露光系においては、マスクには40ミクロンのグリッドパターン(40ミクロン□のレーザー照射エリア一区画が40ミクロンスペースで配置)を、縮小倍率は8倍の対物レンズを用い、結像面で5ミクロンのグリッドが1平方ミリメートルにわたりパターン露光されるように設定した。その状態で、石英ガラス側からKrFエキシマレーザーパルスを1パルスのみ入射させ、FeSi2のシリコンウエハへのレーザー転写を行った。尚、転写の際にシリコンウエハ基板の加熱は一切行っていない。照射レーザーフルエンスは2.2J/cm2とした。
FeSi2を転写したシリコンウエハ基板の表面をレーザー共焦点顕微鏡によって観察した。その結果を図2に示す。図2に示すように、このβ-FeSi2結晶ドットアレイ構造体は直径3.5ミクロン、高さ1.3ミクロンとサイズ均一化されたFeSi2ドットが、1平方ミリメートル当たり104個の密度で転写されていることが判る。さらに、ドットの結晶構造を調べるため顕微ラマン分光測定を行った。その結果を図3に示す。図3に示すように、このFeSi2結晶ドットアレイ構造体はβ−FeSi2による188ならびに242cm-1に中心を有するピークが観測され、これらのドットがβ−FeSi2結晶を含有することがわかった。
Example 1
FeSi 2 alloy powder synthesized by mixing and melting Fe and Si powders in a 1: 2 ratio is heated on a quartz glass transparent substrate by sputtering of a FeSi 2 sintered compact target formed by a normal hot press method. An amorphous FeSi 2 thin film (thickness 500 nm) was produced without any problems.
Next, the obtained FeSi 2 thin film was brought into contact with a silicon wafer, and was placed so that the interface between the quartz glass and the FeSi 2 thin film coincided with the imaging position of the KrF excimer laser light of the apparatus shown in FIG.
In the mask reduction exposure system of FIG. 1, a 40 micron grid pattern (a 40 micron square laser irradiation area is arranged in a 40 micron space) is used for the mask, and an objective lens with a reduction magnification of 8 times is used. The image was set so that a 5 micron grid was pattern-exposed over 1 square millimeter. In this state, only one KrF excimer laser pulse was incident from the quartz glass side, and laser transfer of FeSi 2 to the silicon wafer was performed. Note that the silicon wafer substrate is not heated at all during the transfer. The irradiation laser fluence was 2.2 J / cm 2 .
The surface of the silicon wafer substrate to which FeSi 2 was transferred was observed with a laser confocal microscope. The result is shown in FIG. As shown in FIG. 2, the beta-FeSi 2 crystal dot array structure diameter of 3.5 microns, the height 1.3 micron and size homogenized FeSi 2 dots, are transcribed in 10 4 Density per 1 mm2 You can see that Furthermore, microscopic Raman spectroscopic measurement was performed in order to investigate the crystal structure of the dots. The result is shown in FIG. As shown in FIG. 3, in this FeSi 2 crystal dot array structure, peaks centered at 188 and 242 cm −1 due to β-FeSi 2 were observed, and it was found that these dots contained β-FeSi 2 crystals. It was.
実施例2
FeSi2焼結体ターゲットのスパッタリングにより、石英ガラス透明基板上に、基板加熱することなく、実施例1に比べてより薄いアモルファスFeSi2薄膜(厚さ250 nm)を作製した。得られたFeSi2薄膜をシリコンウエハとコンタクトさせ、図1に示す装置のKrFエキシマレーザー光の結像位置に、石英ガラスとFeSi2薄膜の界面が一致するように設置した。また図1のマスク縮小露光系においては、マスクには40ミクロンのグリッドパターンを、縮小倍率は8倍の対物レンズを用い、結像面で5ミクロンのグリッドが1平方ミリメートルにわたりパターン露光されるように設定した。その状態で、石英ガラス側からKrFエキシマレーザーパルスを1パルスのみ入射させ、FeSi2のシリコンウエハへのレーザー転写を行った。尚、転写の際にシリコンウエハ基板の加熱は一切行っていない。照射レーザーフルエンスは1.6J/cm2とした。FeSi2を転写させたシリコンウエハ基板の表面をレーザー共焦点顕微鏡によって観察した。その結果を図4に示す。図4に示すように、このFeSi2結晶ドットアレイ構造体は直径2.0ミクロン、高さ0.9ミクロンとサイズ均一化されたFeSi2ドットが、1平方ミリメートル当たり104個の密度で転写されていることが判る。
Example 2
A thinner amorphous FeSi 2 thin film (thickness 250 nm) than that of Example 1 was produced on a quartz glass transparent substrate by sputtering with a FeSi 2 sintered body target without heating the substrate. The obtained FeSi 2 thin film was brought into contact with a silicon wafer and placed so that the interface between the quartz glass and the FeSi 2 thin film coincided with the imaging position of the KrF excimer laser beam in the apparatus shown in FIG. In the mask reduction exposure system of FIG. 1, a 40 micron grid pattern is used for the mask, and an objective lens with a reduction magnification of 8 times is used. Set to. In this state, only one KrF excimer laser pulse was incident from the quartz glass side, and laser transfer of FeSi 2 to the silicon wafer was performed. Note that the silicon wafer substrate is not heated at all during the transfer. The irradiation laser fluence was 1.6 J / cm 2 . The surface of the silicon wafer substrate onto which FeSi 2 was transferred was observed with a laser confocal microscope. The result is shown in FIG. As shown in FIG. 4, this FeSi 2 crystal dot array structure has a diameter of 2.0 microns, a height of 0.9 microns, and FeSi 2 dots with a uniform size transferred at a density of 10 4 per square millimeter. I understand.
実施例3
FeSi2焼結体ターゲットのスパッタリングにより、石英ガラス透明基板上に、基板加熱することなく、アモルファスFeSi2薄膜(厚さ500 nm)を作製した。転写用基板には、ポリジメチルシロキサン(Polydimethysiloxane、通称、PDMS)ポリマー基板を用いた。PDMS基板の厚さは約1ミリメートルとし、十分な可撓性を有する。FeSi2薄膜をPDMS基板とコンタクトさせ、図1に示す装置のKrFエキシマレーザー光の結像位置に、石英ガラスとFeSi2薄膜の界面が一致するように設置した。また図1のマスク縮小露光系においては、マスクには40ミクロンのグリッドパターンを、縮小倍率は8倍の対物レンズを用い、結像面で5ミクロンのグリッドが1平方ミリメートルにわたりパターン露光されるように設定した。その状態で、石英ガラス側からKrFエキシマレーザーパルスを1パルスのみ入射させ、FeSi2のPDMSポリマー基板へのレーザー転写を行った。尚、転写の際に基板加熱は一切行っていない。照射レーザーフルエンスは2.2J/cm2とした。FeSi2を転写させたPDMS基板の表面をレーザー共焦点顕微鏡によって観察した。その結果を図5に示す。図5に示すように、このFeSi2ドットアレイ構造体は直径3.7±0.5ミクロン、高さ1.9±0.3ミクロンとサイズ均一化されたFeSi2ドットが、1平方ミリメートル当たり104個の密度で転写されていることが判る。尚、図5写真で一部のドットがぼやけているのは、ポリマー基板の撓みに因るものである。
Example 3
An amorphous FeSi 2 thin film (thickness 500 nm) was produced on a quartz glass transparent substrate by sputtering with a FeSi 2 sintered body target without heating the substrate. A polydimethylsiloxane (commonly known as PDMS) polymer substrate was used as the transfer substrate. The thickness of the PDMS substrate is about 1 millimeter and has sufficient flexibility. The FeSi 2 thin film was brought into contact with the PDMS substrate and placed so that the interface between the quartz glass and the FeSi 2 thin film coincided with the KrF excimer laser beam imaging position of the apparatus shown in FIG. In the mask reduction exposure system of FIG. 1, a 40 micron grid pattern is used for the mask, and an objective lens with a reduction magnification of 8 times is used. Set to. In that state, only one KrF excimer laser pulse was incident from the quartz glass side, and laser transfer of FeSi 2 to the PDMS polymer substrate was performed. Note that the substrate is not heated at all during the transfer. The irradiation laser fluence was 2.2 J / cm 2 . The surface of the PDMS substrate onto which FeSi 2 was transferred was observed with a laser confocal microscope. The result is shown in FIG. As shown in FIG. 5, this FeSi 2 dot array structure has a diameter of 3.7 ± 0.5 microns and a height of 1.9 ± 0.3 microns, and FeSi 2 dots with a uniform size are transferred at a density of 10 4 per square millimeter. You can see that Note that some of the dots in the photograph in FIG. 5 are blurred because of the deflection of the polymer substrate.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007068442A JP5142248B2 (en) | 2006-03-20 | 2007-03-16 | Fabrication method of FeSi2 dot array structure |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006075933 | 2006-03-20 | ||
JP2006075933 | 2006-03-20 | ||
JP2007068442A JP5142248B2 (en) | 2006-03-20 | 2007-03-16 | Fabrication method of FeSi2 dot array structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007290953A JP2007290953A (en) | 2007-11-08 |
JP5142248B2 true JP5142248B2 (en) | 2013-02-13 |
Family
ID=38761955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007068442A Expired - Fee Related JP5142248B2 (en) | 2006-03-20 | 2007-03-16 | Fabrication method of FeSi2 dot array structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5142248B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5896334B2 (en) * | 2011-07-22 | 2016-03-30 | 株式会社ニコン | Method for producing quantum dot structure |
JP6913941B2 (en) * | 2017-06-29 | 2021-08-04 | 国立研究開発法人産業技術総合研究所 | Stamper for forming a pattern structure, its manufacturing method, and a manufacturing method of a pattern structure |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11103080A (en) * | 1997-09-26 | 1999-04-13 | Aisin Seiki Co Ltd | Solar cell |
JP4129528B2 (en) * | 2003-01-29 | 2008-08-06 | 独立行政法人産業技術総合研究所 | Thin film containing β-FeSi2 crystal particles and light emitting material using the same |
-
2007
- 2007-03-16 JP JP2007068442A patent/JP5142248B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007290953A (en) | 2007-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7691731B2 (en) | Deposition of crystalline layers on polymer substrates using nanoparticles and laser nanoforming | |
KR20160117515A (en) | Method of pulsed laser-based large area graphene synthesis on metallic and crystalline substrates | |
WO2006015328A2 (en) | Pulse thermal processing of functional materials using directed plasma arc | |
TW200807563A (en) | Method of heat treatment for semiconductor | |
Narazaki et al. | Nano-and microdot array formation of FeSi2 by nanosecond excimer laser-induced forward transfer | |
JP2009135501A (en) | Crystallization method | |
Hawkins et al. | Growth of single‐crystal silicon islands on bulk fused silica by CO2 laser annealing | |
Pathak et al. | Effect of substrate temperature on the structural, optical, and electrical properties of silverindium-selenide films prepared by using laser ablation | |
Shah et al. | Structural, optical, and electrical properties of flash-evaporated copper indium diselenide thin films | |
CN109935685B (en) | Method for regulating and controlling vacancy defects in material | |
JP5142248B2 (en) | Fabrication method of FeSi2 dot array structure | |
Khandelwal et al. | Effects of deposition temperature on the structural and morphological properties of thin ZnO films fabricated by pulsed laser deposition | |
Esqueda-Barrón et al. | ZnO synthesized in air by fs laser irradiation on metallic Zn thin films | |
JP4129528B2 (en) | Thin film containing β-FeSi2 crystal particles and light emitting material using the same | |
Kermadi et al. | An in-depth investigation on the grain growth and the formation of secondary phases of ultrasonic-sprayed Cu2ZnSnS4 based thin films assisted by Na crystallization catalyst | |
JP5352737B2 (en) | Method for producing polycrystalline silicon thin film | |
Popescu et al. | Laser ablation applied for synthesis of thin films: insights into laser deposition methods | |
Zhang et al. | Femtosecond laser-induced crystallization in amorphous Ge2Sb2Te5 films | |
Sava et al. | Amorphous SnSe~ 2 films | |
TWI801418B (en) | Method of processing a target material | |
Ott et al. | The pulse thermal processing of nanocrystalline silicon thin-films | |
Bae et al. | Defined crystallization of amorphous-silicon films using contact printing | |
JP2698363B2 (en) | Manufacturing method of polycrystalline silicon thin film | |
KR100840622B1 (en) | System and method of fabricating nanoparticle | |
TW201203319A (en) | Manufacturing method for thin film of poly-crystalline silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120521 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120907 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20121015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5142248 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |