JP5141896B2 - Bonded optical component and manufacturing method thereof - Google Patents

Bonded optical component and manufacturing method thereof Download PDF

Info

Publication number
JP5141896B2
JP5141896B2 JP2008114575A JP2008114575A JP5141896B2 JP 5141896 B2 JP5141896 B2 JP 5141896B2 JP 2008114575 A JP2008114575 A JP 2008114575A JP 2008114575 A JP2008114575 A JP 2008114575A JP 5141896 B2 JP5141896 B2 JP 5141896B2
Authority
JP
Japan
Prior art keywords
dielectric multilayer
optical
bonded
film
optical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008114575A
Other languages
Japanese (ja)
Other versions
JP2009265346A (en
Inventor
秀晴 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008114575A priority Critical patent/JP5141896B2/en
Publication of JP2009265346A publication Critical patent/JP2009265346A/en
Application granted granted Critical
Publication of JP5141896B2 publication Critical patent/JP5141896B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、2個以上の光学材料とこれ等光学材料間に設けられる誘電体多層膜とを具備した特定波長域を透過させる接合光学部品に係り、特に、2個以上の光学材料が接着剤を用いることなく接合された接合光学部品とその製造方法に関するものである。   The present invention relates to a bonded optical component that transmits two or more optical materials and a dielectric multilayer film provided between the optical materials and transmits a specific wavelength range. In particular, the two or more optical materials are adhesives. The present invention relates to a bonded optical component that is bonded without using any of the above and a manufacturing method thereof.

レーザプリンタ、バーコードリーダ、カメラ、望遠鏡、顕微鏡等多くの光学部品においては、反射防止膜やミラー等が用いられている。その中でも、反射防止膜はもっとも一般的に使用されており、特定波長域の反射を低減させるため誘電体多層膜で構成されている場合が多い。   In many optical parts such as a laser printer, a barcode reader, a camera, a telescope, and a microscope, an antireflection film or a mirror is used. Among them, the antireflection film is most commonly used and is often composed of a dielectric multilayer film in order to reduce reflection in a specific wavelength region.

ところで、光学部品の中には2個以上の光学材料(レンズ、光学結晶等単体で構成される光学材料と、結晶基板とこの基板面上にエピタキシャル成長させた他の結晶とで構成される光学材料等が例示される)を接合して使用する接合光学部品が多くある。   By the way, in an optical component, there are two or more optical materials (an optical material composed of a single unit such as a lens and an optical crystal), and an optical material composed of a crystal substrate and another crystal epitaxially grown on the substrate surface. There are many bonding optical components that are used by bonding them.

代表的な接合光学部品の例として、カメラレンズの色収差を補正するために屈折率の波長分散が異なる複数のレンズを貼り合わせて構成した接合レンズ、レーザ結晶(YAG)と第二次高調波結晶(KTP)を接合させた一体型接合グリーンレーザ素子、CCD撮像素子のモアレを除去するために光線を分離する2枚の水晶板を貼り合わせて構成した接合波長板、ファラデー回転角の温度特性が異なる2枚のファラデー回転子を貼り合わせて構成した温度安定型光アイソレータ等が知られている。   Examples of typical cemented optical components include a cemented lens, a laser crystal (YAG), and a second harmonic crystal formed by bonding a plurality of lenses having different wavelength dispersions of refractive index to correct chromatic aberration of a camera lens. (KTP) bonded joint green laser element, bonded wavelength plate formed by bonding two quartz plates that separate light rays to remove the moire of the CCD image sensor, and temperature characteristics of Faraday rotation angle A temperature-stable optical isolator configured by bonding two different Faraday rotators is known.

また、2個以上の光学材料の接合には、同じ光学材料を接合する場合と、異なった光学材料を接合する場合があり、これ等光学材料の接合により光学的機能を向上させたり、全く新しい機能を持たせたりすることができる。   In addition, two or more optical materials may be bonded in the same optical material or in different optical materials. These optical materials can be used to improve optical functions or be completely new. It can have functions.

ところで、2個以上の光学材料を接合する場合、光学材料界面の反射損失を低減させる方法を考慮する必要がある。   By the way, when two or more optical materials are bonded, it is necessary to consider a method for reducing the reflection loss at the optical material interface.

そして、例えば、接合させる2個の光学材料の使用波長における屈折率が等しければ、これ等光学材料と同じ屈折率の接着剤を用いて接着することにより反射損失を低減させることができる。   For example, if the refractive indices at the wavelengths used of the two optical materials to be joined are equal, the reflection loss can be reduced by bonding them using an adhesive having the same refractive index as these optical materials.

また、2個の光学材料の使用波長における屈折率が異なる光学材料を接合させる場合には、接合させる光学材料の中間屈折率を有する接着剤を使用する方法がある。しかし、この方法においては、光学材料と接着剤の界面に屈折率差が生じるため、反射損失を極端に低減させることはできない。もう一つの方法は、接合に用いる接着剤の屈折率に対する反射防止膜を光学材料の接合側面に成膜してから、接着剤を用い接合する方法である。この方法であれば、反射防止膜の作用により反射損失を極端に低減させることが可能となる。   In addition, when optical materials having different refractive indexes at the used wavelengths of the two optical materials are bonded, there is a method of using an adhesive having an intermediate refractive index of the optical materials to be bonded. However, in this method, a difference in refractive index occurs at the interface between the optical material and the adhesive, so that the reflection loss cannot be reduced extremely. Another method is a method in which an antireflection film for the refractive index of the adhesive used for bonding is formed on the bonding side surface of the optical material and then bonded using the adhesive. With this method, reflection loss can be extremely reduced by the action of the antireflection film.

上記した中で最も多く用いられている接合方法は、接着剤を用いかつ接着剤に対する反射防止膜を光学材料に施して(通常の反射防止膜は空気に対する反射防止膜である)接着する方法である。   The bonding method most frequently used among the above is a method in which an adhesive is used and an antireflection film for the adhesive is applied to the optical material (the ordinary antireflection film is an antireflection film for air) and is adhered. is there.

これ等の光学材料に施される反射防止膜は、上述したように誘電体多層膜で構成されている場合が多く、多層膜の成膜方法は、真空蒸着法、イオンアシスト蒸着法やスパッタリング法が一般的である。また、通常、光学材料(基板)の片面に上記多層膜が施されるが、近年、基板の両面に多層膜が施される場合も多い。   As described above, the antireflection film applied to these optical materials is often composed of a dielectric multilayer film, and the multilayer film is formed by vacuum deposition, ion-assisted deposition, or sputtering. Is common. Usually, the multilayer film is applied to one surface of the optical material (substrate), but in recent years, the multilayer film is often applied to both surfaces of the substrate.

そして、特許文献1と特許文献2には、ALD(Atomic Layer Deposition:原子層堆積)法により光学フィルターの製造が可能であることが記載され、このALD法による成膜法では、基板両面同時に多層膜の成膜が可能であることが記載されている。
特開2002−277628号公報 特開2004−176081号公報
Patent Document 1 and Patent Document 2 describe that an optical filter can be manufactured by an ALD (Atomic Layer Deposition) method. In this ALD method, a multilayer film is formed on both sides of a substrate simultaneously. It is described that a film can be formed.
JP 2002-277628 A JP 2004-176081 A

ところで、2個以上の光学材料と反射防止膜としての誘電体多層膜を具備した特定波長域を透過させる接合光学部品において、上記誘電体多層膜が施された2個以上の光学材料を上述したように接着剤で接合した場合、得られた接合光学部品が高温高湿といった過酷な環境条件に置かれると、接着剤として用いられている樹脂材料(有機材料)が変質してしまう問題があった。更に、接合光学部品がレーザ用光学部品の場合、上記接着剤の僅かな吸収によりダメージを受けてしまうこともあった。このような状況から、接着剤を用いない接合光学部品の開発が望まれている。   By the way, in a bonded optical component that transmits two or more optical materials and a dielectric multilayer film as an antireflection film and transmits a specific wavelength region, the two or more optical materials provided with the dielectric multilayer film are described above. When bonding with an adhesive as described above, there is a problem in that the resin material (organic material) used as the adhesive is denatured when the obtained bonded optical component is subjected to severe environmental conditions such as high temperature and high humidity. It was. Furthermore, when the bonded optical component is a laser optical component, it may be damaged by slight absorption of the adhesive. Under such circumstances, development of a bonded optical component that does not use an adhesive is desired.

そこで、本発明の課題とするところは、2個以上の光学材料が接着剤を用いることなく接合された接合光学部品とその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a bonded optical component in which two or more optical materials are bonded without using an adhesive, and a manufacturing method thereof.

そこで、本発明者は、上記課題を解決するため、広く利用されている真空蒸着法、イオンアシスト蒸着法、スパッタリング法等の成膜方法に代えて、特許文献1や特許文献2に記載されている原子層堆積(Atomic Layer Deposition:ALD)法を採用すると共に、光学材料の両面に両面対称構造を有する一対の誘電体多層膜が成膜された2個以上の誘電体多層膜構造体を、接着剤を用いることなく誘電体多層膜を介し圧着させたところ、容易に接合されて接合光学部品が得られることを見出すに至った。本発明はこのような技術的発見により完成されている。   Therefore, in order to solve the above problems, the present inventor described in Patent Document 1 and Patent Document 2 instead of film forming methods such as vacuum vapor deposition, ion-assisted vapor deposition, and sputtering that are widely used. Two or more dielectric multilayer structures in which a pair of dielectric multilayer films having a double-sided symmetrical structure are formed on both sides of an optical material, while adopting an atomic layer deposition (ALD) method. When pressure bonding is performed through a dielectric multilayer film without using an adhesive, it has been found that a bonded optical component can be easily obtained by bonding. The present invention has been completed by such technical discovery.

すなわち、請求項1に係る発明は、
接合される2個以上の光学材料とこれ等光学材料間に設けられ材料間の反射を防止する誘電体多層膜とを具備した特定波長域を透過させる接合光学部品において、
光学材料とその両面に原子層堆積(Atomic Layer Deposition:ALD)法により成膜された両面対称構造を有する一対の誘電体多層膜とで構成される2個以上の誘電体多層膜構造体が、その誘電体多層膜を介し直接接合されて成ることを特徴とするものである。
That is, the invention according to claim 1
In a bonded optical component that transmits a specific wavelength range, comprising two or more optical materials to be bonded and a dielectric multilayer film that is provided between these optical materials and prevents reflection between the materials,
Two or more dielectric multilayer structures comprising an optical material and a pair of dielectric multilayer films having a double-sided symmetrical structure formed by atomic layer deposition (ALD) on both sides thereof, It is characterized by being directly joined through the dielectric multilayer film.

また、請求項2に係る発明は、
請求項1に記載の接合光学部品の製造方法において、
光学材料の両面に原子層堆積(Atomic Layer Deposition:ALD)法により両面対称構造を有する一対の誘電体多層膜を同時に成膜して2個以上の誘電体多層膜構造体を製造し、得られた2個以上の誘電体多層膜構造体をその誘電体多層膜を介し直接接合して接合光学部品を製造することを特徴とする。
The invention according to claim 2
In the manufacturing method of the joined optical component according to claim 1,
Two or more dielectric multilayer structures are manufactured by simultaneously forming a pair of dielectric multilayer films having a symmetric structure on both surfaces of an optical material by atomic layer deposition (ALD) method. Further, it is characterized in that a bonded optical component is manufactured by directly bonding two or more dielectric multilayer film structures through the dielectric multilayer film.

次に、請求項3に係る発明は、
請求項2に記載の発明に係る接合光学部品の製造方法において、
上記光学材料の材質が、ガラス、セラミック、石英、結晶のいずれかであることを特徴とし、
請求項4に係る発明は、
請求項2または3に記載の発明に係る接合光学部品の製造方法において、
ALD装置内において、2個以上の誘電体多層膜構造体を、その誘電体多層膜の成膜直後に接合することを特徴とするものである。
Next, the invention according to claim 3 is
In the method for manufacturing a bonded optical component according to claim 2,
The material of the optical material is glass, ceramic, quartz, or crystal,
The invention according to claim 4
In the manufacturing method of the joining optical component which concerns on invention of Claim 2 or 3,
In the ALD apparatus, two or more dielectric multilayer film structures are bonded immediately after the formation of the dielectric multilayer film.

本発明に係る接合光学部品によれば、光学材料の両面に設けられた両面対称構造を有する誘電体多層膜がALD法により成膜されているため、成膜された誘電体多層膜表面の平滑性が極めて高い。   According to the bonded optical component of the present invention, since the dielectric multilayer film having a double-sided symmetrical structure provided on both surfaces of the optical material is formed by the ALD method, the surface of the formed dielectric multilayer film is smooth. The nature is extremely high.

従って、表面平滑性に優れた誘電体多層膜を光学材料両面に有する2個以上の誘電体多層膜構造体を圧着することにより、接着剤を用いることなくこれ等誘電体多層膜構造体を容易に接合させることが可能となる。   Therefore, by pressing two or more dielectric multilayer structures having dielectric multilayer films with excellent surface smoothness on both sides of the optical material, these dielectric multilayer structures can be easily made without using an adhesive. It becomes possible to make it join.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

光学材料と誘電体多層膜を具備した特定波長域を透過させる本発明に係る接合光学部品は、光学材料の両面に両面対称構造を有する一対の誘電体多層膜がALD法により成膜された誘電体多層膜構造体を、その誘電体多層膜を直接介し2個以上接合させて構成されている。   The bonded optical component according to the present invention that transmits a specific wavelength region including an optical material and a dielectric multilayer film is a dielectric in which a pair of dielectric multilayer films having a double-sided symmetrical structure are formed on both surfaces of the optical material by an ALD method. Two or more body multilayer film structures are joined directly through the dielectric multilayer film.

また、この接合光学部品を得るには、両面対称構造を有する一対の誘電体多層膜をALD法により光学材料両面に同時に成膜して誘電体多層膜構造体を製造し、得られた2個以上の誘電体多層膜構造体をその誘電体多層膜を直接介し接合して製造することができる。   In order to obtain this bonded optical component, a pair of dielectric multilayer films having a symmetric structure on both sides are simultaneously formed on both surfaces of the optical material by the ALD method to produce a dielectric multilayer film structure. The above dielectric multilayer film structure can be manufactured by directly joining the dielectric multilayer film.

そして、ALD法による成膜では光学材料両面への同時成膜が可能である。すなわち、ALD法は単原子(単分子)層ずつ堆積する方法で、光学材料両面に対して均一な成膜が可能である。
1.ALD法
原子層堆積(Atomic Layer Deposition:ALD)法は、真空容器(成膜装置)中に光学材料を配置する共に、分子層を構成する元素が含まれる原料ガスを交互に真空容器内に導入して、光学材料表面側に吸着された分子と次に導入される原料ガスとの反応により分子層を形成するもので、分子層の膜厚を原子層レベルで制御できる方法である。従って、ALD法で用いられる成膜装置(原子層堆積装置)においては、PVD法やCVD法で用いられる成膜装置に必要であった高価な部品ユニットや高速回転機構等が不要となり、従来の成膜方法と比べて成膜コストの低減が図れる。
In the film formation by the ALD method, simultaneous film formation on both surfaces of the optical material is possible. That is, the ALD method is a method of depositing single atomic (monomolecular) layers, and can form a uniform film on both surfaces of the optical material.
1. ALD method Atomic Layer Deposition (ALD) method is an optical material placed in a vacuum vessel (film formation device), and the source gas containing the elements constituting the molecular layer is alternately introduced into the vacuum vessel. Thus, the molecular layer is formed by the reaction between the molecules adsorbed on the optical material surface side and the next introduced source gas, and the film thickness of the molecular layer can be controlled at the atomic layer level. Therefore, in the film forming apparatus (atomic layer deposition apparatus) used in the ALD method, an expensive component unit, a high-speed rotation mechanism, and the like necessary for the film forming apparatus used in the PVD method and the CVD method are not required. The film formation cost can be reduced as compared with the film formation method.

そして、ALD法による光学多層膜の製造方法では、光学特性に関係する物性値の異なる複数種類の物質それぞれの分子層を光学材料に積層し、所望の複合的な物性値を有する薄膜が形成される基本工程を複数回繰り返すことにより複数の薄膜から成る光学多層膜を形成するものである。各薄膜の形成にあたっては、分子層を構成する元素のそれぞれが含まれる原料ガスを交互に真空容器(成膜装置)内に導入し、原料ガスの入れ替え回数を調整することにより各薄膜の複合的な物性値を連続的に変化させる。   In the method for producing an optical multilayer film by the ALD method, a thin film having a desired composite physical property value is formed by laminating molecular layers of a plurality of kinds of substances having different physical property values related to optical properties on an optical material. By repeating this basic process a plurality of times, an optical multilayer film composed of a plurality of thin films is formed. In forming each thin film, a raw material gas containing each of the elements constituting the molecular layer is alternately introduced into a vacuum vessel (film formation apparatus), and the number of replacements of the raw material gas is adjusted to adjust the composite of each thin film. The physical property value is continuously changed.

ALD法では、SiO、Al、Ta、TiO等多くの酸化物層や窒化物層の成膜が可能である。また、異なった物質を数原子層ずつ堆積して、新たな光学的特性(屈折率、消衰係数)を有する層を作り出すこともできる。 In the ALD method, many oxide layers and nitride layers such as SiO 2 , Al 2 O 5 , Ta 2 O 5 , and TiO 2 can be formed. It is also possible to deposit several atomic layers of different materials to create a layer with new optical properties (refractive index, extinction coefficient).

ALD法を用いて、例えばAlの単原子(単分子)層を形成する場合、下記4工程で完成する。
(1)水分子を導入して光学材料の表面若しくは既に成膜が行われた面にOH基を吸着させる。
For example, when forming a monoatomic (monomolecular) layer of Al 2 O 3 by using the ALD method, it is completed in the following four steps.
(1) Introduce water molecules to adsorb OH groups on the surface of the optical material or on the surface on which film formation has already been performed.

(1層目以降の反応)
2HO+:O−Al(CH → :Al−O−Al(OH)+2CH
(2)余剰水分子をパージ排気する。
(3)Al膜の原料ガスであるTMA[Trimethyl Aluminum:Al(CH]ガスを導入する。TMA分子がOH基と反応してCHガスが発生する。
(Reaction after the first layer)
2H 2 O +: O—Al (CH 3 ) 2 →: Al—O—Al (OH) 2 + 2CH 4
(2) Purge exhausting excess water molecules.
(3) TMA [Trimethyl Aluminum: Al (CH 3 ) 3 ] gas, which is a raw material gas for the Al 2 O 3 film, is introduced. TMA molecules react with OH groups to generate CH 4 gas.

(1層目の反応)
Al(CH+:O−H → :O−Al(CH+CH
(1層目以降の反応)
Al(CH+:Al−O−H → :Al−O−Al(CH+CH
(4)CHガスをパージ排気する。
(First layer reaction)
Al (CH 3 ) 3 +: O—H →: O—Al (CH 3 ) 2 + CH 4
(Reaction after the first layer)
Al (CH 3 ) 3 +: Al—O—H →: Al—O—Al (CH 3 ) 2 + CH 4
(4) Purge and exhaust CH 4 gas.

この4工程で約0.1nmのAl膜が形成されるので、要求する膜厚に到達するまで上記4工程を繰り返して膜厚を増加させる。 Since an Al 2 O 3 film of about 0.1 nm is formed in these four steps, the above four steps are repeated until the required film thickness is reached, and the film thickness is increased.

また、ALD法によってTiOの単原子(単分子)層を形成するには、TiO膜の原料ガスにTi(OC(Ti-ethaoxide)ガスを用いることにより同様に形成することができる。上記4工程で約0.04nmのTiO膜が形成されるので、所望の膜厚に到達するまで上記4工程を繰り返して膜厚を増加させる。 In addition, in order to form a TiO 2 monoatomic (monomolecular) layer by the ALD method, Ti (OC 2 H 5 ) 4 (Ti-ethaoxide) gas is used in the same manner as the raw material gas of the TiO 2 film. be able to. Since a TiO 2 film of about 0.04 nm is formed in the above four steps, the above four steps are repeated until the desired film thickness is reached, and the film thickness is increased.

次に、ALD法によってSiOの単原子(単分子)層を形成するには、SiO膜の原料ガスにSiClガスを用いることにより同様に形成することができる。この場合、上記SiClガスの導入後と水分子の導入後のそれぞれに、CN(Pyridine)を導入することで、CNの触媒作用により反応を促進させることができる。そして、この2工程が追加された6工程で約0.05nmのSiO膜が形成されるので、所望の膜厚に到達するまでこの工程を繰り返して膜厚を増加させる。 Next, in order to form a single atom (monomolecular) layer of SiO 2 by the ALD method, it can be formed similarly by using SiCl 4 gas as a raw material gas for the SiO 2 film. In this case, the reaction can be promoted by the catalytic action of C 5 H 5 N by introducing C 5 H 5 N (Pyridine) after introduction of the SiCl 4 gas and after introduction of water molecules. . Then, since the SiO 2 film having a thickness of about 0.05 nm is formed in the six steps in which these two steps are added, this step is repeated until the desired film thickness is reached, and the film thickness is increased.

次に、例えば、TiOから成る分子層と、Alから成る分子層とで光学多層膜を構成する場合について説明する。これ等2種類の分子層を形成する場合、例えばTiOの原料ガスとしてTiを含むTiClガスとOを含むHOガスが採用され、Alの原料ガスとしてAlを含む上記TMA(トリメチルアルミニウム)ガスを用いることができる。他の種類の分子層を形成する原料ガスとして、ALD用若しくはCVD用として市販されているものが利用でき、原子層堆積により自己精製効果があるため、特に高純度の原料ガスを用いる必要はない。また、欠陥の少ない光学多層膜を得るためには、固体原料を加熱して得る原料ガスより液体原料の原料ガスを使用することが望ましい。 Next, for example, a case where an optical multilayer film is composed of a molecular layer made of TiO 2 and a molecular layer made of Al 2 O 3 will be described. When these two types of molecular layers are formed, for example, a TiCl 4 gas containing Ti and a H 2 O gas containing O are used as a raw material gas for TiO 2 , and the TMA containing Al as a raw material gas for Al 2 O 3 is used. (Trimethylaluminum) gas can be used. As source gases for forming other types of molecular layers, commercially available gases for ALD or CVD can be used, and since there is a self-purifying effect by atomic layer deposition, it is not necessary to use a particularly high-purity source gas. . In order to obtain an optical multilayer film with few defects, it is desirable to use a liquid source gas rather than a source gas obtained by heating a solid source.

ここで、ALDの成膜装置において、TiClガスの供給路に配設されたバルブをLV1、HOガスの供給路に配設されたバルブをLV2、TMAガスの供給路に配設されたバルブをLV3、上記成膜装置(真空容器)の真空引きを行う真空ポンプの排気経路に配設されたゲートバルブをGVとすると、まず、真空ポンプにより成膜装置(真空容器)内を所定圧力(例えば、10−3Pa)以下に減圧した状態でゲートバルブGVを閉め、その後、バルブLV2を開いて光学材料が配置された成膜装置(真空容器)内にHOガスを導入し上記光学材料両面にOH基を1層だけ吸着させてから、上記ゲートバルブGVを開いて成膜装置(真空容器)内に残留しているHOガスを排気しかつ所定圧力以下に到達するように調整する。次に、ゲートバルブGVを閉じると共に、バルブLV1を開いて成膜装置(真空容器)内にTiClガスを導入することによりTiの吸着物と分解反応させて1層のTiO層を形成し、その後、ゲートバルブGVを開いて成膜装置(真空容器)内に残留しているTiClを排気しかつ所定圧力以下に到達するように調整してゲートバルブGVを閉じる。これ等工程がTiOの1原子層(1分子層)を成膜する1サイクルになり、膜厚はこのサイクル数で決定される。尚、この成膜装置(真空容器)においては、上記原料ガスの入れ替え回数がカウントされるようになっている。 Here, in the ALD film forming apparatus, the valve disposed in the TiCl 4 gas supply path is provided in LV1, the valve provided in the H 2 O gas supply path is provided in LV2, and the TMA gas supply path. If the valve is LV3 and the gate valve disposed in the exhaust path of the vacuum pump for evacuating the film forming apparatus (vacuum container) is GV, first, the inside of the film forming apparatus (vacuum container) is predetermined by the vacuum pump. The gate valve GV is closed in a state where the pressure is reduced to a pressure (for example, 10 −3 Pa) or less, and then the valve LV2 is opened to introduce H 2 O gas into the film forming apparatus (vacuum container) in which the optical material is arranged. After adsorbing only one layer of OH groups on both surfaces of the optical material, the gate valve GV is opened to exhaust the H 2 O gas remaining in the film forming apparatus (vacuum vessel) and reach a predetermined pressure or lower. To adjust Next, the gate valve GV is closed and the valve LV1 is opened to introduce a TiCl 4 gas into the film forming apparatus (vacuum vessel), thereby causing a decomposition reaction with the adsorbed Ti to form one TiO 2 layer. Thereafter, the gate valve GV is opened, the TiCl 4 remaining in the film forming apparatus (vacuum vessel) is exhausted, and the gate valve GV is closed by adjusting so as to reach a predetermined pressure or less. These steps constitute one cycle for forming one atomic layer (one molecular layer) of TiO 2 , and the film thickness is determined by the number of cycles. In this film forming apparatus (vacuum container), the number of times of replacement of the source gas is counted.

次に、Alから成る分子層についても、TiOから成る分子層の場合と同様、成膜装置(真空容器)内のバルブLV3とバルブLV2を開閉して上記TMAガスとHOガスを交互に供給し、原料ガスの入れ替え回数を調整することにより原子層レベルで膜厚を制御することができる。但し、各分子層の種類によって成膜速度が異なっており、事前に成膜速度を確認した上で条件を設定する必要がある。 Next, as for the molecular layer made of Al 2 O 3 , as in the case of the molecular layer made of TiO 2 , the valves LV3 and LV2 in the film forming apparatus (vacuum vessel) are opened and closed to open the TMA gas and H 2 O. The film thickness can be controlled at the atomic layer level by alternately supplying the gas and adjusting the number of times of replacing the source gas. However, the deposition rate differs depending on the type of each molecular layer, and it is necessary to set conditions after confirming the deposition rate in advance.

ところで、高温成膜ではTiO層が結晶化して散乱原因になる場合があるため、高温でも結晶化し難いAl等の層で上記TiO層を挟み込むことによりTiO層の結晶化を防止することができる。また、反応を促進させるためには基板加熱が必要であり、酸化物膜の場合、200〜400℃で光学材料の加熱を行うことが好ましい。また、成膜装置(真空容器)内において、光学材料の向きが水平方向となるように保持した場合、光学材料の自重により反り(中央部の凹み)を生ずることがある。このような反りを低減させるには、光学材料の向きが鉛直方向となるように保持した状態(すなわち、光学材料を鉛直方向に保持した状態)で成膜すればよい。

2.接合光学部品の製造方法
本発明に係る接合光学部品を得るには、上述したように両面対称構造を有する一対の誘電体多層膜を原子層堆積(Atomic Layer Deposition:ALD)法により光学材料両面に同時に成膜して誘電体多層膜構造体を製造し、得られた2個以上の誘電体多層膜構造体をその誘電体多層膜を直接介し接合して製造することができる。
Meanwhile, since the high-temperature film formation in some cases TiO 2 layer is scattered due to crystallization, the crystallization of the TiO 2 layer by sandwiching the TiO 2 layer with a layer of such hard Al 2 O 3 which crystallize at high temperatures Can be prevented. Moreover, in order to accelerate | stimulate reaction, a substrate heating is required and in the case of an oxide film, it is preferable to heat an optical material at 200-400 degreeC. Further, when the optical material is held in the film forming apparatus (vacuum container) so that the orientation of the optical material is horizontal, the optical material may be warped (dented in the center) due to its own weight. In order to reduce such warpage, film formation may be performed in a state where the orientation of the optical material is held in the vertical direction (that is, in a state where the optical material is held in the vertical direction).

2. Method for Manufacturing Bonded Optical Component To obtain a bonded optical component according to the present invention, a pair of dielectric multilayer films having a double-sided symmetric structure as described above are formed on both surfaces of an optical material by an atomic layer deposition (ALD) method. A dielectric multilayer film structure can be manufactured by forming films simultaneously, and two or more obtained dielectric multilayer film structures can be manufactured by directly joining the dielectric multilayer films.

すなわち、ALD装置内においてALD法により光学材料1の両面に一対の誘電体多層膜2を同時に成膜して複数の誘電体多層膜構造体10を製造する共に、図4(A)に示すようにALD装置内において例えば2個の誘電体多層膜構造体10を基板ホルダー3により保持し、かつ、図4(B)に示すように基板ホルダー3を移動させて2個の誘電体多層膜構造体10を接触させ、更に、図4(C)に示すようにプレス治具4により上下方向から圧力を加えて2個の誘電体多層膜構造体10を接合させる。そして、図5(A)に示すように上側のプレス治具4を上方向へ移動させて圧力を解除すると共に、図5(B)に示すように下側のプレス治具4も上方向へ移動させて接合光学部品を取り出し、本発明に係る接合光学部品を得ることができる。   That is, a plurality of dielectric multilayer films 10 are manufactured by simultaneously forming a pair of dielectric multilayer films 2 on both surfaces of the optical material 1 by the ALD method in the ALD apparatus, as shown in FIG. In the ALD apparatus, for example, two dielectric multilayer structures 10 are held by the substrate holder 3, and the substrate holder 3 is moved as shown in FIG. The body 10 is brought into contact, and further, as shown in FIG. 4C, pressure is applied from above and below by the pressing jig 4 to join the two dielectric multilayer film structures 10 together. Then, the upper press jig 4 is moved upward as shown in FIG. 5 (A) to release the pressure, and the lower press jig 4 is also moved upward as shown in FIG. 5 (B). The bonded optical component can be taken out and removed to obtain the bonded optical component according to the present invention.

尚、ALD法により成膜された誘電体多層膜2は原子層毎に堆積していることから表面の平滑性が高いため、2個の誘電体多層膜構造体10を圧着することにより容易に貼り付けることが可能である。このため、上記誘電体多層膜構造体10の接合は、表面が活性状態にある誘電体多層膜2の成膜直後にALD装置内で連続的に行うことが望ましい。但し、光学材料1に凸凹が存在すると、ALD法による成膜では光学材料1の凸凹を反映した誘電体多層膜2が成膜されてしまうため、誘電体多層膜構造体10表面も凸凹になってしまい接合することが困難となる。従って、凸凹が存在しない光学材料を適用することが好ましい。   Since the dielectric multilayer film 2 formed by the ALD method has a high surface smoothness because it is deposited for each atomic layer, it can be easily obtained by pressing the two dielectric multilayer film structures 10 together. It is possible to paste. Therefore, it is desirable that the dielectric multilayer structure 10 is continuously joined in the ALD apparatus immediately after the formation of the dielectric multilayer film 2 whose surface is in an active state. However, if the optical material 1 has irregularities, the dielectric multilayer film 2 reflecting the irregularities of the optical material 1 is formed in the film formation by the ALD method, so that the surface of the dielectric multilayer structure 10 is also irregular. It becomes difficult to join. Therefore, it is preferable to apply an optical material having no unevenness.

そして、例えば2個の誘電体多層膜構造体10が接合して得られる図5(B)の接合光学部品においては、各光学材料1両面に設けられた誘電体多層膜2の接合により光学材料1間に存在する誘電体多層膜の膜層数が2倍に増えるため、反射防止膜として作用する膜層数の誘電体多層膜を容易に形成できる利点を有しており、更に、接合された誘電体多層膜構造体10の内側に存在する誘電体多層膜2は、各光学材料1に囲まれる構造になるため劣化し難い特徴も有している。   For example, in the bonded optical component shown in FIG. 5B obtained by bonding two dielectric multilayer film structures 10, the optical material is obtained by bonding the dielectric multilayer films 2 provided on both surfaces of each optical material 1. Since the number of dielectric multilayer films existing between the layers is doubled, the number of dielectric multilayer films acting as an antireflection film can be easily formed. Further, the dielectric multilayer film 2 existing inside the dielectric multilayer film structure 10 has a structure that is difficult to deteriorate because it is surrounded by each optical material 1.

本発明に係る接合光学部品に適用できる光学材料の材質としては、ALD法による成膜中の温度変化に耐えることが可能で、成膜される誘電体多層膜と熱膨張係数がほぼ等しいガラス、セラミック、石英、結晶から選ばれるいずれかであることが好ましい。また、上記光学材料は、上述したように単一の材料で構成されるものに限らず、例えば、結晶基板上に他の結晶をエピタキシャル成長させた光学材料が挙げられる。   As a material of the optical material applicable to the bonded optical component according to the present invention, it is possible to withstand temperature changes during film formation by the ALD method, and a glass having a thermal expansion coefficient substantially equal to that of the dielectric multilayer film to be formed, It is preferably any one selected from ceramic, quartz, and crystals. The optical material is not limited to a single material as described above, and examples thereof include an optical material obtained by epitaxially growing another crystal on a crystal substrate.

また、光学材料の自重による反り(中央部の凹み)を低減させるため、ALD装置内において光学材料を垂直に保持する方法を採ることも可能である。   In addition, in order to reduce the warp (dent at the center) due to the weight of the optical material, it is possible to adopt a method of holding the optical material vertically in the ALD apparatus.

但し、本発明においては、2以上の光学材料のすべての面に同時に誘電体多層膜をALD法により成膜するため、接合させる各光学材料の使用波長に対する屈折率が互いに極端に異なる場合、同じ誘電体多層膜では各光学材料に対して反射防止膜として機能しなくなることが考えられる。このため、本発明においては、接合させる各光学材料の使用波長に対する屈折率が互いに近い方が望ましい。   However, in the present invention, since the dielectric multilayer film is simultaneously formed on all surfaces of two or more optical materials by the ALD method, the same applies when the refractive indices for the wavelengths used of the optical materials to be bonded are extremely different from each other. It is conceivable that the dielectric multilayer film does not function as an antireflection film for each optical material. For this reason, in the present invention, it is desirable that the refractive indexes of the optical materials to be bonded are close to each other at the wavelength used.

そして、レーザ結晶(YAG)と第二次高調波結晶(KTP)を接合した一体型接合グリーンレーザ素子、CCD撮像素子のモアレを除去するために光線を分離する2枚の水晶板を貼り合わせて構成される接合波長板、ファラデー回転角の温度特性が異なる2枚のファラデー回転子を貼り合わせて構成される温度安定型光アイソレータ等は、接合させる各光学材料の使用波長に対する屈折率が等しいか、非常に近いため、特に適している。   Then, an integrated junction green laser element in which a laser crystal (YAG) and a second harmonic crystal (KTP) are bonded together, and two quartz plates for separating light rays are bonded to remove the moire of the CCD image sensor. Whether the temperature-stable optical isolator configured by bonding two Faraday rotators with different Faraday rotation angle temperature characteristics is equal in refractive index to the wavelength used for each optical material to be bonded. Especially suitable because it is very close.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

固体レーザ素子であるNd:YAG結晶(光学材料)とアンドープのYAG結晶(光学材料)との接合を行った。レーザ発振に寄与するNd:YAG結晶に、熱伝導に優れるYAG結晶を接合することで、ビーム品質に優れるヒートシンク付の固体レーザ素子を製作することができる。両結晶の屈折率は、Nd:YAGレーザの発振波長の1064nmにおいて、約1.82である。   The Nd: YAG crystal (optical material), which is a solid-state laser element, and an undoped YAG crystal (optical material) were joined. By joining a YAG crystal excellent in heat conduction to an Nd: YAG crystal that contributes to laser oscillation, a solid-state laser element with a heat sink excellent in beam quality can be manufactured. The refractive indexes of both crystals are about 1.82 at the oscillation wavelength of the Nd: YAG laser at 1064 nm.

はじめに、反射防止膜として機能する誘電体多層膜の設計を行った。上述したようにALD法による成膜は両面同時成膜(正確にはすべての面が同時成膜)となるため両面対称構造の膜構造になる。   First, a dielectric multilayer film functioning as an antireflection film was designed. As described above, the film formation by the ALD method is a double-sided simultaneous film formation (precisely, all surfaces are simultaneously formed), and thus has a double-sided symmetrical film structure.

反射防止膜として機能する誘電体多層膜の膜構造を設計する場合、要求光学特性を設定し、光学薄膜の計算結果が要求光学特性になるように膜層数を増減させ、あるいは膜厚を増減させる最適化を行う。これにはSimplex法やNeedle法等の多くの最適化手法が用いられている。但し、本発明で適用するALD法による成膜では両面対象構造にしなければならないため、最適化の際、両面のn層目は同じ膜厚になるような制限を設定することが必要になる(カップリングあるいはペアリングと呼ばれる)。更に、誘電体多層膜同士を接合させた状態でも反射防止膜として機能する膜構造を設計する必要がある。   When designing a dielectric multilayer film structure that functions as an antireflection film, set the required optical characteristics, increase or decrease the number of film layers, or increase or decrease the film thickness so that the optical thin film calculation results will be the required optical characteristics. Perform optimization. For this, many optimization methods such as Simplex method and Needle method are used. However, since film formation by the ALD method applied in the present invention must have a double-sided target structure, it is necessary to set a restriction that the n-th layer on both sides has the same film thickness during optimization ( Called coupling or pairing). Furthermore, it is necessary to design a film structure that functions as an antireflection film even when the dielectric multilayer films are joined together.

この実施例では、低屈折率層にSiO、高屈折率層にTiOを採用して、反射防止膜として機能する誘電体多層膜の膜構造を設計した。 In this example, SiO 2 was used for the low refractive index layer and TiO 2 was used for the high refractive index layer to design a dielectric multilayer film structure that functions as an antireflection film.

そして、両面対象構造を有する実施例に係る誘電体多層膜構造体の構成を以下の表1に示す。但し、光学的膜厚(nd)は、屈折率(n)×物理的膜厚(d)、λは設計中心波長1064nm(Nd:YAGレーザの発振波長)である。また、A面は3層、B面も3層の両面対称構造である。   Table 1 below shows the configuration of the dielectric multilayer structure according to the example having the double-sided target structure. However, the optical film thickness (nd) is refractive index (n) × physical film thickness (d), and λ is the design center wavelength of 1064 nm (Nd: oscillation wavelength of YAG laser). Further, the A plane has a double-sided symmetrical structure with three layers and the B plane also has three layers.

Figure 0005141896
接合するための上記誘電体多層膜構造体における分光透過特性のシミュレーション結果を図1に示す。波長1064nmにおける透過率は約99.9%以上に達している。反射防止膜として機能する誘電体多層膜を有する誘電体多層膜構造体(Nd:YAG結晶とYAG結晶)を2個接合すると、以下の表2に示すような膜構成になる。
Figure 0005141896
FIG. 1 shows a simulation result of spectral transmission characteristics in the dielectric multilayer structure for bonding. The transmittance at a wavelength of 1064 nm reaches about 99.9% or more. When two dielectric multilayer structures (Nd: YAG crystal and YAG crystal) having a dielectric multilayer film functioning as an antireflection film are joined, a film configuration as shown in Table 2 below is obtained.

Figure 0005141896
2個の誘電体多層膜構造体(光学材料がNd:YAG結晶とYAG結晶)を接合して得られる実施例に係る接合光学部品における分光透過特性のシミュレーション結果を図2に示す。波長1064nmにおける透過率は約99.9%以上を維持している。
Figure 0005141896
FIG. 2 shows a simulation result of spectral transmission characteristics in a bonded optical component according to an example obtained by bonding two dielectric multilayer structures (optical materials are Nd: YAG crystal and YAG crystal). The transmittance at a wavelength of 1064 nm is maintained at about 99.9% or more.

この実施例に用いたNd:YAG結晶(光学材料)とYAG結晶は、共に直径1インチ(約25.4mm)、厚さ5mmである。   Both the Nd: YAG crystal (optical material) and YAG crystal used in this example have a diameter of 1 inch (about 25.4 mm) and a thickness of 5 mm.

図4(A)に示すように2個の光学材料(Nd:YAG結晶とYAG結晶)1を基板ホルダー3にそれぞれ水平に固定してALD装置内にセットし、その後、チャンバ(真空容器)を133Pa(1Torr)まで排気し、光学材料1を300℃に加熱した。   As shown in FIG. 4A, two optical materials (Nd: YAG crystal and YAG crystal) 1 are horizontally fixed to the substrate holder 3 and set in the ALD apparatus, and then the chamber (vacuum container) is set. The air was exhausted to 133 Pa (1 Torr), and the optical material 1 was heated to 300 ° C.

そして、表1に示す膜構成に従って、1層目のSiO層の要求膜厚になるまで上述した原子層の堆積サイクルを行い、次いで、2層目のTiO層目の要求膜厚になるまで同様に原子層の堆積サイクルを行い、以下、これ等堆積サイクルを交互に繰り返すことにより片面3層の両面対称構造を有する誘電体多層膜構造体10を製造した。 Then, according to the film configuration shown in Table 1, the atomic layer deposition cycle described above is performed until the required thickness of the first SiO 2 layer is reached, and then the required thickness of the second TiO 2 layer is reached. The dielectric layer structure 10 having a double-sided symmetrical structure with three layers on one side was manufactured by alternately repeating these deposition cycles.

そして、ALD装置内において、基板ホルダー3を移動させて2個の誘電体多層膜構造体10を図4(B)に示すように接触させ、更に、プレス治具4により図4(C)に示すように上下から約100g/cmの圧力を加えて2個の誘電体多層膜構造体10を接合させ、実施例に係る接合光学部品を製造した。 Then, in the ALD apparatus, the substrate holder 3 is moved to bring the two dielectric multilayer film structures 10 into contact with each other as shown in FIG. As shown in the drawing, a pressure of about 100 g / cm 2 was applied from above and below to bond the two dielectric multilayer film structures 10 to manufacture a bonded optical component according to the example.

尚、図5(A)に示すように上側のプレス治具4を上方向へ移動させて圧力を解除し、接合光学部品の光学材料1を室温付近まで冷却し、チャンバ(真空容器)をベント(大気開放)した後、図5(B)に示すように下側のプレス治具4を上方向へ移動させ、接合光学部品を取り出して実施例に係る接合光学部品を得た。

[比較例]
2個の光学材料(Nd:YAG結晶とYGA結晶)を上記ALD装置内にセットし、その後、チャンバ(真空容器)を133Pa(1Torr)まで排気し、光学材料1を300℃に加熱した。
As shown in FIG. 5A, the upper pressing jig 4 is moved upward to release the pressure, the optical material 1 of the joining optical component is cooled to near room temperature, and the chamber (vacuum container) is vented. After opening to the atmosphere, the lower pressing jig 4 was moved upward as shown in FIG. 5B, and the bonded optical component was taken out to obtain the bonded optical component according to the example.

[Comparative example]
Two optical materials (Nd: YAG crystal and YGA crystal) were set in the ALD apparatus, and then the chamber (vacuum vessel) was evacuated to 133 Pa (1 Torr), and the optical material 1 was heated to 300.degree.

そして、上記表1に示す膜構成に従って、1層目のSiO層の要求膜厚になるまで上述した原子層の堆積サイクルを行い、次いで、2層目のTiO層目の要求膜厚になるまで同様に原子層の堆積サイクルを行い、以下、これ等堆積サイクルを交互に繰り返すことにより片面3層の両面対称構造を有する誘電体多層膜構造体を2個製造した。 Then, according to the film configuration shown in Table 1, the atomic layer deposition cycle described above is performed until the required thickness of the first SiO 2 layer is reached, and then the required thickness of the second TiO 2 layer is reached. In the same manner, atomic layer deposition cycles were carried out until then, and thereafter, by repeating these deposition cycles alternately, two dielectric multilayer structures having a double-sided symmetrical structure of one side and three layers were manufactured.

次に、得られた2個の誘電体多層膜構造体を接合させることなく室温付近まで冷却し、チャンバ(真空容器)をベント(大気開放)した後、これ等の誘電体多層膜構造体を取り出した。   Next, the obtained two dielectric multilayer structures are cooled to near room temperature without bonding, and the chamber (vacuum container) is vented (open to the atmosphere), and then these dielectric multilayer structures are assembled. I took it out.

そして、光学材料(Nd:YAG結晶とYGA結晶)両面に片面3層の両面対称構造を有する誘電体多層膜が形成された2個の誘電体多層膜構造体を、0.1mmの間隔(エアーギャップ)で平行に配置して固定し、比較例に係る光学部品を得た。もちろん、Nd:YAG結晶とYGA結晶は接合されていないので、YAG結晶はヒートシンクとして機能しない。   Then, two dielectric multilayer film structures in which a dielectric multilayer film having a double-sided symmetrical structure with three layers on one side is formed on both surfaces of an optical material (Nd: YAG crystal and YGA crystal) are spaced at an interval of 0.1 mm (air An optical component according to a comparative example was obtained by arranging and fixing in parallel with a gap). Of course, since the Nd: YAG crystal and the YGA crystal are not joined, the YAG crystal does not function as a heat sink.

「評 価」
実施例に係る誘電体多層膜構造体および2個の誘電体多層膜構造体を接合して得られた実施例に係る接合光学部品の各分光透過特性と、0.1mmの間隔(エアーギャップ)で平行に配置し固定した比較例に係る光学部品の分光透過特性をそれぞれ自記分光光度計により測定した。
"Evaluation"
Spectral transmission characteristics of the joined optical component according to the example obtained by joining the dielectric multilayer structure according to the example and the two dielectric multilayer structures, and an interval (air gap) of 0.1 mm Spectral transmission characteristics of the optical parts according to the comparative example that were arranged and fixed in parallel with each other were measured with a self-recording spectrophotometer.

測定結果を図3にまとめて示す。   The measurement results are summarized in FIG.

そして、接合前の実施例に係る誘電体多層膜構造体および接合後の実施例に係る接合光学部品の各分光透過特性と、0.1mmの間隔(エアーギャップ)で平行に配置し固定した比較例に係る光学部品の分光透過特性は、図3に示すように設計中心波長である波長1064nm付近においてほとんど変わらない特性を示している。   And each spectral transmission characteristic of the dielectric multilayer film structure according to the example before bonding and the bonded optical component according to the example after bonding, and a comparison in which they are arranged and fixed in parallel at an interval (air gap) of 0.1 mm As shown in FIG. 3, the spectral transmission characteristics of the optical component according to the example show characteristics that hardly change in the vicinity of the design center wavelength of 1064 nm.

そして、図3に示す接合後の実施例に係る接合光学部品の分光透過特性から、樹脂材料(有機材料)で構成された接着剤を用いることなく、反射防止層として作用する誘電体多層膜を備えた2個の光学材料(Nd:YAG結晶とYAG結晶)を簡単な操作により一つに接合できたことが確認される。   From the spectral transmission characteristics of the bonded optical component according to the embodiment after bonding shown in FIG. 3, a dielectric multilayer film that acts as an antireflection layer without using an adhesive composed of a resin material (organic material) is used. It is confirmed that the two optical materials (Nd: YAG crystal and YAG crystal) provided can be joined together by a simple operation.

この結果、接合光学部品が高温高湿といった過酷な環境条件に置かれた場合に、接着剤として用いられている樹脂材料(有機材料)が変質するという問題が解消され、更に、レーザ用接合光学部品の場合に、接着剤の僅かな吸収によりダメージを受けるという問題も解消することが可能になった。   As a result, the problem that the resin material (organic material) used as an adhesive is altered when the bonding optical component is subjected to severe environmental conditions such as high temperature and high humidity is solved. In the case of parts, the problem of damage due to slight absorption of the adhesive can be solved.

この接合光学部品を数mm角にダイシングすることにより、ヒートシンクを持つ小型レーザ素子としてレーザ加工機等に用いることができる。   By dicing this bonded optical component into several mm square, it can be used in a laser processing machine or the like as a small laser element having a heat sink.

また、同様な手法で、2つの光学材料の屈折率がほとんど等しいレーザ結晶(YAG)と第二次高調波結晶(KTP)を接合した一体型接合グリーンレーザ素子、CCD撮像素子のモアレを除去するために光線を分離する2枚の水晶板を貼り合わせる接合波長板、ファラデー回転角の温度特性が異なる2枚のファラデー回転子を貼り合わせた温度安定型光アイソレータも製作することができる。   In addition, by using the same method, the moire of the integrated junction green laser element and CCD image sensor obtained by joining the laser crystal (YAG) and the second harmonic crystal (KTP) having almost the same refractive index of the two optical materials is removed. Therefore, it is also possible to manufacture a bonded wavelength plate in which two quartz plates for separating light beams are bonded, and a temperature-stable optical isolator in which two Faraday rotators having different temperature characteristics of Faraday rotation angles are bonded.

本発明に係る接合光学部品によれば、反射防止層として作用する誘電体多層膜をそれぞれ備えた2個以上の光学材料が接着剤を用いることなく接合されているため、接着剤に起因した従来の問題を解消することが可能となる。従って、レーザプリンタ、バーコードリーダ、カメラ、望遠鏡、顕微鏡等に組み込まれる接合光学部品として用いられる産業上の利用可能性を有している。   According to the bonded optical component according to the present invention, since two or more optical materials each having a dielectric multilayer film that acts as an antireflection layer are bonded without using an adhesive, the conventional adhesive caused by the adhesive is used. It becomes possible to solve the problem. Therefore, it has industrial applicability used as a joining optical component incorporated in a laser printer, a barcode reader, a camera, a telescope, a microscope and the like.

実施例に係る接合光学部品の構成部品である誘電体多層膜構造体における分光透過特性のシミュレーション結果を示すグラフ図。The graph figure which shows the simulation result of the spectral transmission characteristic in the dielectric multilayer film structure which is a component of the joining optical component which concerns on an Example. 実施例に係る接合光学部品における分光透過特性のシミュレーション結果を示すグラフ図。The graph figure which shows the simulation result of the spectral transmission characteristic in the joining optical component which concerns on an Example. 実施例に係る誘電体多層膜構造体(実施例の接合前)および2個の誘電体多層膜構造体を接合して得られた実施例に係る接合光学部品(実施例の接合後)の各分光透過特性と、0.1mmの間隔(エアーギャップ)で平行に配置し固定した比較例に係る光学部品の分光透過特性をそれぞれ自記分光光度計により測定した結果を示すグラフ図。Each of the dielectric multilayered film structure according to the example (before bonding of the example) and the bonded optical component according to the example (after bonding of the example) obtained by bonding two dielectric multilayered film structures The graph which shows the result of having measured the spectral transmission characteristic and the spectral transmission characteristic of the optical component which concerns on the comparative example arrange | positioned and fixed in parallel with the space | interval (air gap) of 0.1 mm, respectively with the self-recording spectrophotometer. 図4(A)〜(C)は本発明に係る接合光学部品の製造工程を示す工程説明図。4A to 4C are process explanatory views showing the manufacturing process of the bonded optical component according to the present invention. 図5(A)〜(B)は本発明に係る接合光学部品の製造工程を示す工程説明図。5 (A) to 5 (B) are process explanatory views showing the manufacturing process of the bonded optical component according to the present invention.

符号の説明Explanation of symbols

1 基板
2 誘電体多層膜
3 基板ホルダー
4 プレス治具
10 誘電体多層膜構造体
DESCRIPTION OF SYMBOLS 1 Substrate 2 Dielectric multilayer 3 Substrate holder 4 Press jig 10 Dielectric multilayer structure

Claims (4)

接合される2個以上の光学材料とこれ等光学材料間に設けられ材料間の反射を防止する誘電体多層膜とを具備した特定波長域を透過させる接合光学部品において、
光学材料とその両面に原子層堆積(Atomic Layer Deposition:ALD)法により成膜された両面対称構造を有する一対の誘電体多層膜とで構成される2個以上の誘電体多層膜構造体が、その誘電体多層膜を介し直接接合されて成ることを特徴とする接合光学部品。
In a bonded optical component that transmits a specific wavelength range, comprising two or more optical materials to be bonded and a dielectric multilayer film that is provided between these optical materials and prevents reflection between the materials,
Two or more dielectric multilayer structures comprising an optical material and a pair of dielectric multilayer films having a double-sided symmetrical structure formed by atomic layer deposition (ALD) on both sides thereof, A bonded optical component which is directly bonded through the dielectric multilayer film.
請求項1に記載の接合光学部品の製造方法において、
光学材料の両面に原子層堆積(Atomic Layer Deposition:ALD)法により両面対称構造を有する一対の誘電体多層膜を同時に成膜して2個以上の誘電体多層膜構造体を製造し、得られた2個以上の誘電体多層膜構造体をその誘電体多層膜を介し直接接合して接合光学部品を製造することを特徴とする接合光学部品の製造方法。
In the manufacturing method of the joined optical component according to claim 1,
Two or more dielectric multilayer structures are manufactured by simultaneously forming a pair of dielectric multilayer films having a symmetric structure on both surfaces of an optical material by atomic layer deposition (ALD) method. A method of manufacturing a bonded optical component, wherein a bonded optical component is manufactured by directly bonding two or more dielectric multilayer film structures through the dielectric multilayer film.
上記光学材料の材質が、ガラス、セラミック、石英、結晶のいずれかであることを特徴とする請求項2に記載の接合光学部品の製造方法。   3. The method of manufacturing a bonded optical component according to claim 2, wherein the optical material is any one of glass, ceramic, quartz, and crystal. ALD装置内において、2個以上の誘電体多層膜構造体をその誘電体多層膜の成膜直後に接合することを特徴とする請求項2または3に記載の接合光学部品の製造方法。   4. The method for manufacturing a bonded optical component according to claim 2, wherein two or more dielectric multilayer film structures are bonded immediately after the formation of the dielectric multilayer film in the ALD apparatus.
JP2008114575A 2008-04-24 2008-04-24 Bonded optical component and manufacturing method thereof Expired - Fee Related JP5141896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114575A JP5141896B2 (en) 2008-04-24 2008-04-24 Bonded optical component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114575A JP5141896B2 (en) 2008-04-24 2008-04-24 Bonded optical component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009265346A JP2009265346A (en) 2009-11-12
JP5141896B2 true JP5141896B2 (en) 2013-02-13

Family

ID=41391285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114575A Expired - Fee Related JP5141896B2 (en) 2008-04-24 2008-04-24 Bonded optical component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5141896B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222388A (en) * 1993-01-28 1994-08-12 Fujitsu Ltd Production of thin film transistor matrix
JPH10233558A (en) * 1997-02-19 1998-09-02 Canon Inc Multilayer film structure wherein diamond layer is incorporated, optical device with it and its manufacturing method
JPH11202126A (en) * 1998-01-12 1999-07-30 Japan Aviation Electron Ind Ltd Dielectric multilayer film filter
JP3844886B2 (en) * 1998-07-28 2006-11-15 富士通株式会社 Manufacturing method of optical filter
JP2002076513A (en) * 2000-09-01 2002-03-15 Fujitsu Ltd Bragg's reflecting mirror distributed independently of temperature and planar optical element
JP2005221867A (en) * 2004-02-06 2005-08-18 Canon Inc Reflection type optical device
US7405880B2 (en) * 2004-02-12 2008-07-29 Api Nanofabrication And Research Corporation Multilayer optical filter
JP4443425B2 (en) * 2005-01-12 2010-03-31 岡本硝子株式会社 Optical multilayer device

Also Published As

Publication number Publication date
JP2009265346A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
US11402559B2 (en) Optical filter with layers having refractive index greater than 3
US20150285957A1 (en) Hafnium or Zirconium Oxide Coating
WO2011162331A1 (en) Method for producing wavelength plate
CN1278152C (en) Optical element and its manufacturing method
JP5543690B2 (en) Optical filter for UVIR cut
JP5141894B2 (en) Dielectric multilayer mirror and manufacturing method thereof
US11865829B2 (en) Functional element and method of manufacturing functional element, and electronic apparatus
JP7086198B2 (en) CVD manufacturing method and its products to reduce particle defects in imaging modules
US20060087739A1 (en) Low net stress multilayer thin film optical filter
JP4804830B2 (en) Multilayer film forming method and film forming apparatus
JP5141896B2 (en) Bonded optical component and manufacturing method thereof
JP2007156321A (en) Method for manufacturing optical multilayer filter
JP2003098340A (en) Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference film
JP5324742B2 (en) Optical filter
JPH07209516A (en) Optical multilayer film filter
JP2009205070A (en) Method for manufacturing ultraviolet-infrared cut filter, ultraviolet-infrared cut filter and method for manufacturing camera chip
JP2015025207A (en) Hafnium oxide-coating or zirconium oxide-coating
TW202219551A (en) Method for deposition of depth-varying refractive index films
KR20120086196A (en) A distributed bragg reflector(dbr) using silicon and method for fabricating the same
CN114207483A (en) Optical filter, sensor system comprising same, and method for manufacturing halogenated amorphous silicon thin film for optical filter
CN111500985A (en) Preparation method for low-stress all-dielectric optical film
JP2005308968A (en) Optical multilayer film and optical element
JP5667261B2 (en) Optical filter
JP2013109004A (en) Optical filter and manufacturing method thereof
JP7236225B2 (en) Phase difference compensation element, liquid crystal display device and projection type image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees