JP5140988B2 - Resin composition and molded article comprising the same - Google Patents

Resin composition and molded article comprising the same Download PDF

Info

Publication number
JP5140988B2
JP5140988B2 JP2006290423A JP2006290423A JP5140988B2 JP 5140988 B2 JP5140988 B2 JP 5140988B2 JP 2006290423 A JP2006290423 A JP 2006290423A JP 2006290423 A JP2006290423 A JP 2006290423A JP 5140988 B2 JP5140988 B2 JP 5140988B2
Authority
JP
Japan
Prior art keywords
weight
resin
acid
resin composition
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006290423A
Other languages
Japanese (ja)
Other versions
JP2007191688A (en
Inventor
貞紀 熊澤
晃義 玉井
裕千 大目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006290423A priority Critical patent/JP5140988B2/en
Publication of JP2007191688A publication Critical patent/JP2007191688A/en
Application granted granted Critical
Publication of JP5140988B2 publication Critical patent/JP5140988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、強度、耐衝撃性、耐熱性、成形加工性に優れ低環境負荷である樹脂組成物およびそれからなる成形品に関するものである。   The present invention relates to a resin composition that is excellent in strength, impact resistance, heat resistance, and molding processability and has a low environmental load, and a molded article comprising the same.

スチレン系樹脂は優れた機械的性質、成形加工性、外観によって、電気・電子部品、自動車、雑貨、各種用途など広範な分野で使用されている。しかしながらスチレン系樹脂は石油資源を原料としており、製造時の大気へのCO2排出や廃棄時の環境負荷が近年問題視されており、非石油資源を含有する材料が環境低負荷材料として求められている。 Styrenic resins are used in a wide range of fields such as electrical and electronic parts, automobiles, general merchandise, and various applications due to their excellent mechanical properties, moldability, and appearance. However, styrene-based resins are made from petroleum resources, and CO 2 emissions into the atmosphere during production and environmental impacts during disposal have been viewed as problems in recent years, and materials containing non-petroleum resources are required as environmentally low-load materials. ing.

最近、地球環境保全の見地から、土中、水中に存在する微生物の作用により自然環境下で分解される生分解性ポリマーが注目され、様々な生分解性ポリマーが開発されている。中でも、ポリ乳酸は比較的コストが安く、融点もおよそ170℃と高く、溶融成形可能な生分解性ポリマーとして期待されている。また、最近ではモノマーである乳酸が微生物を利用した発酵法により安価に製造されるようになり、より一層低コストでポリ乳酸を生産できるようになってきたため、生分解性ポリマーとしてだけでなく、汎用ポリマーとしての利用も検討されるようになってきた。しかし、その一方で、耐衝撃性や柔軟性が低いなどの物性的な欠点を有しており、その改良が望まれている。   Recently, biodegradable polymers that are decomposed in the natural environment by the action of microorganisms existing in the soil and water have attracted attention from the viewpoint of global environmental conservation, and various biodegradable polymers have been developed. Among them, polylactic acid is relatively inexpensive and has a high melting point of about 170 ° C., and is expected as a biodegradable polymer that can be melt-molded. In addition, lactic acid, which is a monomer, has recently been manufactured at low cost by fermentation using microorganisms, and it has become possible to produce polylactic acid at a much lower cost, so that not only as a biodegradable polymer, Use as a general-purpose polymer has also been studied. However, on the other hand, it has physical defects such as low impact resistance and low flexibility, and an improvement is desired.

そこで環境低負荷材料として、ポリ乳酸とポリスチレン、ポリエチレン、ポリエチレンテレフタレート、ポリプロピレンなどの熱可塑性樹脂とを混合する方法(特許文献1)が開示されている。本法で混合した場合、環境低負荷材料とはなるものの、いずれも汎用樹脂として用いるには、機械特性の改良が必要であった。本文献には、衝撃改良剤としてゴム成分があげられているものの、好ましい態様や実施例については例示されておらず、また本発明のスチレン系樹脂添加で耐熱性を向上させ、さらにグラフト重合体添加で耐衝撃性を向上させることについては、開示されていない。   Therefore, a method of mixing polylactic acid and a thermoplastic resin such as polystyrene, polyethylene, polyethylene terephthalate, or polypropylene as an environmentally low load material (Patent Document 1) is disclosed. When mixed by this method, it becomes an environmentally low load material, but in order to use any of them as a general-purpose resin, it was necessary to improve mechanical properties. Although this article mentions a rubber component as an impact modifier, preferred embodiments and examples are not exemplified, and the addition of the styrenic resin of the present invention improves the heat resistance, and further the graft polymer. There is no disclosure of improving impact resistance by addition.

さらに、ポリ乳酸とポリ乳酸のガラス転移温度より高いガラス転移温度を有する非晶性樹脂とを含む生分解性樹脂組成物(特許文献2)が開示されているが、耐熱性と耐衝撃性を共に向上させるという点では、さらに改良が必要であった。   Furthermore, a biodegradable resin composition (Patent Document 2) containing polylactic acid and an amorphous resin having a glass transition temperature higher than the glass transition temperature of polylactic acid has been disclosed. Further improvements were needed in terms of improving both.

また脂肪族ポリエステルと多層構造重合体とを含有する脂肪族ポリエステル樹脂組成物(特許文献3)、およびポリ乳酸系重合体とゴム質重合体にビニル系単量体をグラフト重合して得られるグラフト共重合体からなる樹脂組成物(特許文献4)が開示されているが、これらの樹脂組成物には、スチレン系樹脂が含まれておらず、得られる樹脂組成物は、耐熱性の点で課題があり、汎用ポリマーとして用いる場合さらなる改良が必要であった。
特表平6−504799号公報(第53頁) 特開2005−60637号公報(第2頁) 特開2003−286396号公報(第2頁) 特開2004−285258号公報(第2頁)
In addition, an aliphatic polyester resin composition containing an aliphatic polyester and a multilayer structure polymer (Patent Document 3), and a graft obtained by graft polymerization of a vinyl monomer to a polylactic acid polymer and a rubber polymer Although a resin composition (Patent Document 4) made of a copolymer is disclosed, these resin compositions do not contain a styrenic resin, and the resulting resin composition is heat resistant. There was a problem, and further improvement was required when used as a general-purpose polymer.
JP-T 6-504799 (page 53) Japanese Patent Laying-Open No. 2005-60637 (second page) JP 2003-286396 A (page 2) JP 2004-285258 A (2nd page)

本発明は、上述した従来技術における問題点の解決を課題として検討した結果、達成されたものであり、その目的とするところは、優れた強度、耐衝撃性、耐熱性および成形加工性を有し、製造時のCO2排出量を大幅に低減可能な環境低負荷樹脂組成物およびそれからなる成形品を提供することにある。 The present invention has been achieved as a result of studying the solution of the above-described problems in the prior art as an object, and the object thereof is to have excellent strength, impact resistance, heat resistance and moldability. Another object of the present invention is to provide an environmentally low load resin composition capable of greatly reducing CO 2 emission during production and a molded product comprising the same.

本発明者らは、上記課題を解決すべく鋭意検討した結果、スチレン系樹脂、グラフト重合体、ポリ乳酸、メタクリル樹脂を特定の割合で含む樹脂組成物とすることで上記課題を解決できることがわかった。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a resin composition containing a styrene resin, a graft polymer, polylactic acid, and a methacrylic resin at a specific ratio. It was.

すなわち本発明は、
(1)(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸および(D)メタクリル樹脂を配合してなる樹脂組成物であって、(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸および(D)メタクリル樹脂の合計量に対して、(A)スチレン系樹脂10重量%以上、(B)グラフト重合体0〜50重量%、(C)ポリ乳酸85重量%未満、および(D)メタクリル樹脂1〜30重量%であり、
(A)スチレン系樹脂と(D)メタクリル樹脂の混合比が、(A)スチレン系樹脂と(D)メタクリル樹脂の合計量100重量%に対し、(D)メタクリル樹脂が12.5重量%以下であり、
(A)スチレン系樹脂が、(a)不飽和カルボン酸アルキルエステル系単位0〜99重量%、(b)芳香族ビニル系単位1〜100重量%、(c)シアン化ビニル系単位0〜50重量%、および(d)これらと共重合可能な他のビニル系単位0〜99重量%が共重合されたスチレン系樹脂である樹脂組成物、
(2)(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸および(D)メタクリル樹脂の合計量に対して、(A)スチレン系樹脂20〜58重量%、(B)グラフト重合体0〜30重量%、(C)ポリ乳酸30〜60重量%、および(D)メタクリル樹脂2〜15重量%である(1)記載の樹脂組成物、
(3)(A)スチレン系樹脂が、(a)不飽和カルボン酸アルキルエステル系単位0〜70重量%、(b)芳香族ビニル系単位25〜100重量%、および(c)シアン化ビニル系単位0〜30重量%が共重合されたスチレン系樹脂であることを特徴とする(1)〜(2)いずれかに記載の樹脂組成物、
(4)(B)グラフト重合体が、(r)ゴム質重合体10〜80重量%に、(a)不飽和カルボン酸アルキルエステル系単位20〜90重量%、(b)芳香族ビニル系単位0〜70重量%、(c)シアン化ビニル系単位0〜50重量%、および(d)これらと共重合可能な他のビニル系単位0〜70重量%がグラフト重合されたグラフト重合体であることを特徴とする(1)〜(3)のいずれかに記載の樹脂組成物、
(5)(B)グラフト共重合体が、(r)ブタジエン系重合体10〜80重量%に、(a)不飽和カルボン酸アルキルエステル系単位20〜90重量%、(b)芳香族ビニル系単位0〜70重量%、(c)シアン化ビニル系単位0〜50重量%、および(d)これらと共重合可能な他のビニル系単位0〜70重量%がグラフト重合されたグラフト重合体であることを特徴とする(1)〜(4)のいずれかに記載の樹脂組成物、
(6)(C)ポリ乳酸が、総乳酸成分の内、L体あるいはD体が80モル%以上含まれることを特徴とする(1)〜(5)のいずれかに記載の樹脂組成物、
(7)(D)メタクリル樹脂が、シンジオタクチシチーが40%以上である(1)〜(6)のいずれかに記載の樹脂組成物、
(8)(1)〜(7)のいずれかに記載の樹脂組成物を成形してなる成形品、
である。
That is, the present invention
(1) A resin composition comprising (A) a styrene resin, (B) a graft polymer, (C) polylactic acid, and (D) a methacrylic resin, (A) a styrene resin, (B) (A) Styrenic resin 10% by weight or more, (B) 0-50% by weight of graft polymer, (C) polylactic acid, based on the total amount of graft polymer, (C) polylactic acid and (D) methacrylic resin Less than 85 wt%, and (D) 1-30 wt% methacrylic resin,
(A) The mixing ratio of the styrene resin and the (D) methacrylic resin is 100% by weight of the total amount of the (A) styrene resin and the (D) methacrylic resin. And
(A) Styrenic resin is (a) 0 to 99% by weight of unsaturated carboxylic acid alkyl ester unit, (b) 1 to 100% by weight of aromatic vinyl unit, (c) vinyl cyanide unit 0 to 50 And (d) a resin composition which is a styrene resin in which 0 to 99% by weight of other vinyl units copolymerizable with these are copolymerized,
(2) (A) 20 to 58% by weight of styrene resin, (B) based on the total amount of (A) styrene resin, (B) graft polymer, (C) polylactic acid and (D) methacrylic resin The resin composition according to (1), wherein the graft polymer is 0 to 30% by weight, (C) polylactic acid 30 to 60% by weight, and (D) methacrylic resin 2 to 15% by weight,
(3) (A) the styrene resin is (a) an unsaturated carboxylic acid alkyl ester unit of 0 to 70% by weight, (b) an aromatic vinyl unit of 25 to 100% by weight, and (c) a vinyl cyanide type. The resin composition according to any one of (1) to (2), wherein the unit is 0 to 30% by weight of a copolymerized styrene resin,
(4) (B) Graft polymer is (r) 10 to 80% by weight of rubbery polymer, (a) 20 to 90% by weight of unsaturated carboxylic acid alkyl ester unit, (b) aromatic vinyl unit A graft polymer in which 0 to 70% by weight, (c) 0 to 50% by weight of vinyl cyanide units, and (d) 0 to 70% by weight of other vinyl units copolymerizable therewith are graft-polymerized. The resin composition according to any one of (1) to (3),
(5) (B) Graft copolymer is (r) butadiene-based polymer 10 to 80% by weight, (a) unsaturated carboxylic acid alkyl ester unit 20 to 90% by weight, (b) aromatic vinyl-based A graft polymer in which 0 to 70% by weight of units, (c) 0 to 50% by weight of vinyl cyanide units, and (d) 0 to 70% by weight of other vinyl units copolymerizable therewith are graft-polymerized. The resin composition according to any one of (1) to (4) ,
(6) The resin composition according to any one of (1) to (5) , wherein (C) polylactic acid contains 80 mol% or more of L-form or D-form among the total lactic acid components,
(7) (D) The resin composition according to any one of (1) to (6) , wherein the methacrylic resin has a syndiotacticity of 40% or more,
(8) A molded product obtained by molding the resin composition according to any one of (1) to (7) ,
It is.

本発明の樹脂組成物およびその成形品において、(A)スチレン系樹脂、(C)ポリ乳酸及び(D)メタクリル樹脂からなる樹脂組成物であって、好ましい態様においては、ジカルボン酸無水物またはジカルボン酸から選ばれる少なくとも1種を配合してなる樹脂組成物であって、さらに好ましい態様においては、(B)グラフト重合体を配合してなる樹脂組成物であって、優れた強度、耐衝撃性、耐熱性、および成形加工性を有する環境低負荷の樹脂組成物が得られる。 In the resin composition of the present invention and its molded article, it is a resin composition comprising (A) a styrene resin, (C) polylactic acid, and (D) a methacrylic resin , and in a preferred embodiment, a dicarboxylic acid anhydride or dicarboxylic acid A resin composition comprising at least one selected from acids, and in a more preferred embodiment, (B) a resin composition comprising a graft polymer, which has excellent strength and impact resistance. A low environmental load resin composition having heat resistance and molding processability is obtained.

以下に本発明の樹脂組成物について具体的に説明する。   The resin composition of the present invention will be specifically described below.

本発明で用いる(A)スチレン系樹脂とは、スチレンをはじめ、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン、o−エチルスチレン、p−エチルスチレンおよびp−t−ブチルスチレンなどの(b)芳香族ビニル系単量体およびこれと共重合可能な単量体を公知の塊状重合、塊状懸濁重合、溶液重合、沈殿重合または乳化重合に供することにより得られる。   (A) Styrenic resin used in the present invention includes styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, o-ethylstyrene, p-ethylstyrene, pt-butylstyrene, and the like. (B) It can be obtained by subjecting an aromatic vinyl monomer and a monomer copolymerizable therewith to known bulk polymerization, bulk suspension polymerization, solution polymerization, precipitation polymerization or emulsion polymerization.

本発明における(A)スチレン系樹脂としては、(r)ゴム質重合体に(b)芳香族ビニル系単位などをグラフト重合したものは含まない。(r)ゴム質重合体に(b)芳香族ビニル系単位などをグラフト重合したものは、後述する(B)グラフト重合体に含める。   The (A) styrene resin in the present invention does not include (r) a rubbery polymer obtained by graft polymerization of (b) an aromatic vinyl unit or the like. (R) A rubber polymer obtained by graft polymerization of (b) an aromatic vinyl unit or the like is included in (B) the graft polymer described later.

具体的には(b)芳香族ビニル系単位1〜100重量%に対して、(a)不飽和カルボン酸アルキルエステル系単位0〜99重量%、(c)シアン化ビニル系単位0〜50重量%、および(d)これらと共重合可能な他のビニル系単位0〜99重量%を共重合して得られるビニル系共重合体である。   Specifically, (b) 0 to 99% by weight of unsaturated carboxylic acid alkyl ester unit, (c) 0 to 50% by weight of vinyl cyanide unit, based on 1 to 100% by weight of aromatic vinyl unit. %, And (d) a vinyl copolymer obtained by copolymerizing 0 to 99% by weight of other vinyl units copolymerizable therewith.

本発明における(A)スチレン系樹脂に用いる(a)不飽和カルボン酸アルキルエステル系単量体には特に制限はないが、炭素数1〜6のアルキル基または置換アルキル基を持つアクリル酸エステルおよび/またはメタクリル酸エステルが好適である。   The (a) unsaturated carboxylic acid alkyl ester monomer used for the (A) styrene resin in the present invention is not particularly limited, but an acrylic ester having a C 1-6 alkyl group or substituted alkyl group and Methacrylic acid esters are preferred.

(a)不飽和カルボン酸アルキルエステル系単量体の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシルおよび(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどが挙げられるが、なかでもメタクリル酸メチルが最も好ましく用いられる。これらはその1種または2種以上を用いることができる。   Specific examples of (a) unsaturated carboxylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and n-butyl (meth) acrylate. T-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2- (meth) acrylic acid 2- Hydroxyethyl, 3-hydroxypropyl (meth) acrylate, 2,3,4,5,6-pentahydroxyhexyl (meth) acrylate and 2,3,4,5-tetrahydroxypentyl (meth) acrylate Among them, methyl methacrylate is most preferably used. These can be used alone or in combination of two or more thereof.

本発明における(A)スチレン系樹脂に用いる(c)シアン化ビニル系単量体には特に制限はなく、具体例としてはアクリロニトリル、メタクリロニトリルおよびエタクリロニトリルなどが挙げられるが、なかでもアクリロニトリルが好ましく用いられる。これらは1種または2種以上を用いることができる。   The (c) vinyl cyanide monomer used in the (A) styrene resin in the present invention is not particularly limited, and specific examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, etc., among which acrylonitrile. Is preferably used. These can use 1 type (s) or 2 or more types.

本発明における(A)スチレン系樹脂に用いる(d)これらと共重合可能な他のビニル系単量体としては、(a)不飽和カルボン酸アルキルエステル系単量体、(b)芳香族ビニル系単量体、(c)シアン化ビニル系単量体と共重合可能であれば特に制限はなく、具体例としてN−メチルマレイミド、N−エチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミドなどのマレイミド系単量体、アクリル酸、メタクリル酸、マレイン酸、マレイン酸モノエチルエステル、無水マレイン酸、フタル酸およびイタコン酸などのカルボキシル基または無水カルボキシル基を有するビニル系単量体、3−ヒドロキシ−1−プロペン、4−ヒドロキシ−1−ブテン、シス−4−ヒドロキシ−2−ブテン、トランス−4−ヒドロキシ−2−ブテン、3−ヒドロキシ−2−メチル−1−プロペン、シス−5−ヒドロキシ−2−ペンテン、トランス−5−ヒドロキシ−2−ペンテン、4,4−ジヒドロキシ−2−ブテンなどのヒドロキシル基を有するビニル系単量体、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、アリルグリシジルエーテル、スチレン−p−グリシジルエーテルおよびp−グリシジルスチレンなどのエポキシ基を有するビニル系単量体、アクリルアミド、メタクリルアミド、N−メチルアクリルアミド、ブトキシメチルアクリルアミド、N−プロピルメタクリルアミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチル、N−ビニルジエチルアミン、N−アセチルビニルアミン、アリルアミン、メタアリルアミン、N−メチルアリルアミン、p−アミノスチレンなどのアミノ基およびその誘導体を有するビニル系単量体、2−イソプロペニル−オキサゾリン、2−ビニル−オキサゾリン、2−アクロイル−オキサゾリンおよび2−スチリル−オキサゾリンなどのオキサゾリン基を有するビニル系単量体などが挙げられ、これらは1種または2種以上を用いることができる。   Examples of other vinyl monomers copolymerizable with (A) styrene resins in the present invention include (a) unsaturated carboxylic acid alkyl ester monomers, and (b) aromatic vinyls. There is no particular limitation as long as it is copolymerizable with a monomer based on (c) vinyl cyanide, and specific examples include N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, etc. Maleimide monomer, acrylic acid, methacrylic acid, maleic acid, maleic acid monoethyl ester, maleic anhydride, phthalic acid, itaconic acid and other vinyl monomers having a carboxyl group or an anhydrous carboxyl group, 3-hydroxy -1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2 Vinyl having a hydroxyl group such as butene, 3-hydroxy-2-methyl-1-propene, cis-5-hydroxy-2-pentene, trans-5-hydroxy-2-pentene, 4,4-dihydroxy-2-butene Monomers, glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, allyl glycidyl ether, vinyl monomers having an epoxy group such as styrene-p-glycidyl ether and p-glycidyl styrene, acrylamide, Methacrylamide, N-methylacrylamide, butoxymethylacrylamide, N-propylmethacrylamide, aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, Vinyl-based monomer having amino groups and derivatives thereof such as phenylaminoethyl acrylate, cyclohexylaminoethyl methacrylate, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, p-aminostyrene , Vinyl monomers having an oxazoline group such as 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acryloyl-oxazoline and 2-styryl-oxazoline, etc., and these are one or more Can be used.

なお、本発明において、(A)スチレン系樹脂としては、1種または2種以上を用いることができ、耐衝撃性、耐熱性、表面外観性、着色性のいずれにも優れるという点で、例えば、メタクリル酸メチルを共重合したスチレン系樹脂とメタクリル酸メチルを共重合してないスチレン系樹脂を併用することが好ましい。   In the present invention, as the (A) styrenic resin, one or more kinds can be used, and in terms of excellent impact resistance, heat resistance, surface appearance, and colorability, for example, It is preferable to use together a styrene resin copolymerized with methyl methacrylate and a styrene resin not copolymerized with methyl methacrylate.

(A)スチレン系樹脂の特性には制限はないが、メチルエチルケトン溶媒を用いて、30℃で測定した極限粘度[η]が、0.20〜2.00dl/g、特に0.25〜1.50dl/gの範囲のものが、すぐれた耐衝撃性および成形加工性を有する樹脂組成物が得られることから好ましい。   (A) Although there is no restriction | limiting in the characteristic of a styrene-type resin, The intrinsic viscosity [(eta)] measured at 30 degreeC using the methyl ethyl ketone solvent is 0.20-2.00 dl / g, Especially 0.25-1. The range of 50 dl / g is preferable because a resin composition having excellent impact resistance and molding processability can be obtained.

(A)スチレン系樹脂の分子量には制限はないが、テトラヒドロフラン溶媒を用いて、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が、1万〜40万の範囲、特に5万〜15万の範囲のものが、優れた耐衝撃性および成形加工性を有する樹脂組成物が得られることから好ましい。   (A) Although there is no restriction | limiting in the molecular weight of a styrene resin, The weight average molecular weights measured by the gel permeation chromatography (GPC) using the tetrahydrofuran solvent are the range of 10,000-400,000, especially 50,000-15. Those in the range of 10,000 are preferable because a resin composition having excellent impact resistance and molding processability can be obtained.

本発明で用いる(B)グラフト重合体とは、(r)ゴム質重合体の存在下に、ビニル系単量体およびこれと共重合可能な単量体を加えた単量体混合物を、公知の塊状重合、塊状懸濁重合、溶液重合、沈殿重合または乳化重合に供することにより得られる。   The (B) graft polymer used in the present invention is a monomer mixture obtained by adding a vinyl monomer and a monomer copolymerizable therewith in the presence of (r) a rubbery polymer. It is obtained by subjecting to bulk polymerization, bulk suspension polymerization, solution polymerization, precipitation polymerization or emulsion polymerization.

そして(B)グラフト重合体とは、ビニル系単量体を含有する共重合体が(r)ゴム質重合体にグラフトした構造をとったものと、ビニル系単量体を含有する共重合体が(r)ゴム質重合体に非グラフトした構造をとったものとを含むものである。   The (B) graft polymer is a copolymer having a structure in which a copolymer containing a vinyl monomer is grafted to (r) a rubbery polymer, and a copolymer containing a vinyl monomer. (R) includes a structure in which the rubbery polymer is not grafted.

具体的には、(r)ゴム質重合体10〜80重量%の存在下に、(a)不飽和カルボン酸アルキルエステル系単量体20〜90重量%、(b)芳香族ビニル系単位0〜70重量%、(c)シアン化ビニル系単位0〜50重量%、および(d)これらと共重合可能な他のビニル系単位0〜70重量%を共重合して得られるビニル系グラフト共重合体が好適である。   Specifically, (r) in the presence of 10 to 80% by weight of rubbery polymer, (a) 20 to 90% by weight of unsaturated carboxylic acid alkyl ester monomer, (b) aromatic vinyl unit 0 Vinyl graft copolymer obtained by copolymerizing ˜70 wt%, (c) 0 to 50 wt% of vinyl cyanide units, and (d) 0 to 70 wt% of other vinyl units copolymerizable therewith. Polymers are preferred.

上記(r)ゴム質重合体には特に制限はないが、ガラス転移温度が0℃以下のものが好適であり、ジエン系ゴム、アクリル系ゴム、エチレン系ゴムなどが使用できる。これらゴム質重合体の具体例としては、ポリブタジエン、スチレン−ブタジエン共重合体、スチレン−ブタジエンのブロック共重合体、アクリロニトリル−ブタジエン共重合体、アクリル酸ブチル−ブタジエン共重合体、ポリイソプレン、ブタジエン−メタクリル酸メチル共重合体、アクリル酸ブチル−メタクリル酸メチル共重合体、ブタジエン−アクリル酸エチル共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン系共重合体、エチレン−イソプレン共重合体およびエチレン−アクリル酸メチル共重合体などが挙げられる。これらのゴム質重合体のうちでは、ポリブタジエン、スチレン−ブタジエン共重合体、スチレン−ブタジエンのブロック共重合体およびアクリロニトリル−ブタジエン共重合体が、特に耐衝撃性の観点から好ましく用いられ、1種または2種以上の混合物で使用することが可能である。   The (r) rubbery polymer is not particularly limited, but those having a glass transition temperature of 0 ° C. or lower are suitable, and diene rubber, acrylic rubber, ethylene rubber, and the like can be used. Specific examples of these rubbery polymers include polybutadiene, styrene-butadiene copolymer, block copolymer of styrene-butadiene, acrylonitrile-butadiene copolymer, butyl acrylate-butadiene copolymer, polyisoprene, butadiene- Methyl methacrylate copolymer, butyl acrylate-methyl methacrylate copolymer, butadiene-ethyl acrylate copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-isoprene copolymer And ethylene-methyl acrylate copolymer. Among these rubbery polymers, polybutadiene, styrene-butadiene copolymer, block copolymer of styrene-butadiene and acrylonitrile-butadiene copolymer are particularly preferably used from the viewpoint of impact resistance, and one kind or It can be used in a mixture of two or more.

本発明における(B)グラフト重合体を構成する(r)ゴム質重合体の重量平均粒子径には特に制限はないが、0.05〜1.0μm、特に0.1〜0.5μmの範囲であることが好ましい。ゴム質重合体の重量平均粒子径を0.05μm〜1.0μmの範囲とすることによって、優れた耐衝撃性を発現することができる。また、ゴム質重合体としては、1種または2種以上を用いることができ、耐衝撃性と流動性の点で、重量平均粒子径が異なるゴム質重合体を2種以上用いることが好ましく、例えば、重量平均粒子径が小さいゴム質重合体と重量平均粒子径が大きいゴム質重合体を併用する、いわゆるバイモーダルゴムを用いてもよい。   The weight average particle diameter of the (r) rubbery polymer constituting the (B) graft polymer in the present invention is not particularly limited, but is in the range of 0.05 to 1.0 μm, particularly 0.1 to 0.5 μm. It is preferable that By setting the weight average particle diameter of the rubbery polymer in the range of 0.05 μm to 1.0 μm, excellent impact resistance can be exhibited. Further, as the rubbery polymer, one or more kinds can be used, and it is preferable to use two or more kinds of rubbery polymers having different weight average particle diameters in terms of impact resistance and fluidity. For example, a so-called bimodal rubber using a rubber polymer having a small weight average particle diameter and a rubber polymer having a large weight average particle diameter may be used.

なお、(r)ゴム質重合体の重量平均粒子径は、「Rubber Age、Vol.88、p.484〜490、(1960)、by E.Schmidt, P.H.Biddison」に記載のアルギン酸ナトリウム法、つまりアルギン酸ナトリウムの濃度によりクリーム化するポリブタジエン粒子径が異なることを利用して、クリーム化した重量割合とアルギン酸ナトリウム濃度の累積重量分率より累積重量分率50%の粒子径を求める方法により測定することができる。   In addition, the weight average particle diameter of (r) rubber-like polymer is sodium alginate as described in "Rubber Age, Vol. 88, p.484-490, (1960), by E. Schmidt, PH Biddison". Method, that is, by using the fact that the polybutadiene particle size to be creamed differs depending on the concentration of sodium alginate, the particle size of 50% cumulative weight fraction is obtained from the weight proportion of cream and the cumulative weight fraction of sodium alginate concentration. Can be measured.

(r)ゴム質重合体のゲル含有量には特に制限はないが、耐衝撃性と耐熱性の点で、40〜99重量%であることが好ましく、60〜95重量%であることがより好ましく、72〜88重量%であることが特に好ましい。ここで、ゲル含有量は、トルエンを用いて室温で24時間抽出して不溶分の割合を求める方法により測定することができる。   (R) The gel content of the rubbery polymer is not particularly limited, but is preferably 40 to 99% by weight and more preferably 60 to 95% by weight in terms of impact resistance and heat resistance. 72 to 88% by weight is particularly preferable. Here, the gel content can be measured by a method in which toluene is extracted at room temperature for 24 hours to obtain the insoluble content.

本発明における(B)グラフト重合体に用いる(a)不飽和カルボン酸アルキルエステル系単量体には特に制限はないが、炭素数1〜6のアルキル基または置換アルキル基を持つアクリル酸エステルおよび/またはメタクリル酸エステルが好適である。   The (a) unsaturated carboxylic acid alkyl ester monomer used in the graft polymer (B) in the present invention is not particularly limited, but an acrylate ester having an alkyl group having 1 to 6 carbon atoms or a substituted alkyl group and Methacrylic acid esters are preferred.

(a)不飽和カルボン酸アルキルエステル系単量体の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシルおよび(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどが挙げられるが、なかでもメタクリル酸メチルが最も好ましく用いられる。これらはその1種または2種以上を用いることができる。   Specific examples of (a) unsaturated carboxylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and n-butyl (meth) acrylate. T-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2- (meth) acrylic acid 2- Hydroxyethyl, 3-hydroxypropyl (meth) acrylate, 2,3,4,5,6-pentahydroxyhexyl (meth) acrylate and 2,3,4,5-tetrahydroxypentyl (meth) acrylate Among them, methyl methacrylate is most preferably used. These can be used alone or in combination of two or more thereof.

本発明における(B)グラフト重合体に用いる(b)芳香族ビニル系単量体には特に制限はなく、具体例としてはスチレンをはじめ、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン、o−エチルスチレン、p−エチルスチレンおよびp−t−ブチルスチレンなどが挙げられるが、なかでもスチレンおよびα−メチルスチレンが好ましく用いられる。これらは1種または2種以上を用いることができる。   The (b) aromatic vinyl monomer used in the graft polymer (B) in the present invention is not particularly limited, and specific examples include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene. , O-ethyl styrene, p-ethyl styrene, pt-butyl styrene and the like, among which styrene and α-methyl styrene are preferably used. These can use 1 type (s) or 2 or more types.

本発明における(B)グラフト重合体に用いる(c)シアン化ビニル系単量体には特に制限はなく、具体例としてはアクリロニトリル、メタクリロニトリルおよびエタクリロニトリルなどが挙げられるが、なかでもアクリロニトリルが好ましく用いられる。これらは1種または2種以上を用いることができる。   The (c) vinyl cyanide monomer used in the graft polymer (B) in the present invention is not particularly limited, and specific examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, etc., among which acrylonitrile. Is preferably used. These can use 1 type (s) or 2 or more types.

本発明における(B)グラフト重合体に用いる(d)これらと共重合可能な他のビニル系単量体としては、(a)不飽和カルボン酸アルキルエステル系単量体、(b)芳香族ビニル系単量体、(c)シアン化ビニル系単量体と共重合可能であれば特に制限はないが、具体例としてはN−メチルマレイミド、N−エチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミドなどのマレイミド系単量体、アクリル酸、メタクリル酸、マレイン酸、マレイン酸モノエチルエステル、無水マレイン酸、フタル酸およびイタコン酸などのカルボキシル基または無水カルボキシル基を有するビニル系単量体、3−ヒドロキシ−1−プロペン、4−ヒドロキシ−1−ブテン、シス−4−ヒドロキシ−2−ブテン、トランス−4−ヒドロキシ−2−ブテン、3−ヒドロキシ−2−メチル−1−プロペン、シス−5−ヒドロキシ−2−ペンテン、トランス−5−ヒドロキシ−2−ペンテン、4,4−ジヒドロキシ−2−ブテンなどのヒドロキシル基を有するビニル系単量体、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、アリルグリシジルエーテル、スチレン−p−グリシジルエーテルおよびp−グリシジルスチレンなどのエポキシ基を有するビニル系単量体、アクリルアミド、メタクリルアミド、N−メチルアクリルアミド、ブトキシメチルアクリルアミド、N−プロピルメタクリルアミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチル、N−ビニルジエチルアミン、N−アセチルビニルアミン、アリルアミン、メタアリルアミン、N−メチルアリルアミン、p−アミノスチレンなどのアミノ基およびその誘導体を有するビニル系単量体、2−イソプロペニル−オキサゾリン、2−ビニル−オキサゾリン、2−アクロイル−オキサゾリンおよび2−スチリル−オキサゾリンなどのオキサゾリン基を有するビニル系単量体などが挙げられ、これらは1種または2種以上を用いることができる。   (D) Other vinyl monomers copolymerizable with these used in the graft polymer (B) in the present invention include (a) unsaturated carboxylic acid alkyl ester monomers, and (b) aromatic vinyl. There is no particular limitation as long as it can be copolymerized with a monomer based on (c) vinyl cyanide, but specific examples include N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, and N-phenyl. Maleimide monomers such as maleimide, vinyl monomers having a carboxyl group or an anhydride carboxyl group such as acrylic acid, methacrylic acid, maleic acid, maleic acid monoethyl ester, maleic anhydride, phthalic acid and itaconic acid, 3 -Hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy Hydroxyl groups such as 2-butene, 3-hydroxy-2-methyl-1-propene, cis-5-hydroxy-2-pentene, trans-5-hydroxy-2-pentene, and 4,4-dihydroxy-2-butene; Vinyl monomers having glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, allyl glycidyl ether, vinyl monomers having an epoxy group such as styrene-p-glycidyl ether and p-glycidyl styrene, Acrylamide, methacrylamide, N-methylacrylamide, butoxymethylacrylamide, N-propyl methacrylamide, aminoethyl acrylate, propylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate Vinyl-based monomer having amino groups and derivatives thereof such as phenylaminoethyl methacrylate, cyclohexylaminoethyl methacrylate, N-vinyldiethylamine, N-acetylvinylamine, allylamine, methallylamine, N-methylallylamine, p-aminostyrene , Vinyl monomers having an oxazoline group such as 2-isopropenyl-oxazoline, 2-vinyl-oxazoline, 2-acryloyl-oxazoline and 2-styryl-oxazoline, etc., and these are one or more Can be used.

本発明における(B)グラフト重合体は、(r)ゴム質重合体10〜80重量%、より好ましくは30〜70重量%の存在下に、(a)不飽和カルボン酸アルキルエステル系単量体が20〜90重量%、より好ましくは30〜70重量%、(b)芳香族ビニル系単量体が0〜70重量%、より好ましくは0〜50重量%、(c)シアン化ビニル系単量体が0〜50重量%、より好ましくは0〜30重量%、(d)これらと共重合可能な他のビニル系単量体が0〜70重量%、より好ましくは0〜50重量%を共重合することによって得られる。ゴム質重合体の割合が上記の範囲未満でも、また上記の範囲を超えても、衝撃強度や表面外観が低下する場合があるため好ましくない。   In the present invention, (B) the graft polymer comprises (r) an unsaturated carboxylic acid alkyl ester monomer in the presence of (r) 10 to 80% by weight, more preferably 30 to 70% by weight of a rubbery polymer. Is 20 to 90% by weight, more preferably 30 to 70% by weight, (b) aromatic vinyl monomer is 0 to 70% by weight, more preferably 0 to 50% by weight, and (c) vinyl cyanide monomer. 0 to 50% by weight of the monomer, more preferably 0 to 30% by weight, (d) 0 to 70% by weight of other vinyl monomers copolymerizable with these, more preferably 0 to 50% by weight. Obtained by copolymerization. Even if the ratio of the rubbery polymer is less than the above range or exceeds the above range, the impact strength and the surface appearance may be deteriorated.

なお(B)グラフト重合体は、(r)ゴム質重合体に単量体または単量体混合物がグラフトした構造をとったグラフト共重合体の他に、グラフトしていない共重合体を含有したものである。グラフト重合体のグラフト率は特に制限がないが、耐衝撃性および光沢が均衡してすぐれる樹脂組成物を得るためには、10〜100重量%、特に20〜80重量%の範囲であることが好ましい。ここで、グラフト率は次式により算出される値である。
グラフト率(%)=[<ゴム質重合体にグラフト重合したビニル系共重合体量>/<グラフト共重合体のゴム含有量>]×100
The (B) graft polymer contained an ungrafted copolymer in addition to (r) a graft copolymer having a structure in which a monomer or a monomer mixture was grafted to a rubbery polymer. Is. The graft ratio of the graft polymer is not particularly limited, but is 10 to 100% by weight, particularly 20 to 80% by weight, in order to obtain a resin composition having a good balance between impact resistance and gloss. Is preferred. Here, the graft ratio is a value calculated by the following equation.
Graft rate (%) = [<Amount of vinyl copolymer graft-polymerized to rubbery polymer> / <Rubber content of graft copolymer>] × 100

グラフトしていない共重合体の特性は特に制限されないが、メチルエチルケトン可溶分の極限粘度[η](30℃で測定)が、0.10〜1.00dl/g、特に0.20〜0.80dl/gの範囲であることが、すぐれた耐衝撃性の樹脂組成物を得るために好ましい条件である。   The characteristics of the ungrafted copolymer are not particularly limited, but the intrinsic viscosity [η] (measured at 30 ° C.) of the methyl ethyl ketone-soluble component is 0.10 to 1.00 dl / g, particularly 0.20 to 0.00. A range of 80 dl / g is a preferable condition for obtaining a resin composition having excellent impact resistance.

(B)グラフト重合体は、公知の重合法で得ることができる。例えば、ゴム質重合体ラテックスの存在下に単量体および連鎖移動剤の混合物と乳化剤に溶解したラジカル発生剤の溶液を連続的に重合容器に供給して乳化重合する方法などによって得ることができる。   (B) The graft polymer can be obtained by a known polymerization method. For example, it can be obtained by a method of emulsion polymerization by continuously supplying a mixture of a monomer and a chain transfer agent and a solution of a radical generator dissolved in an emulsifier to a polymerization vessel in the presence of a rubbery polymer latex. .

本発明では、(C)ポリ乳酸が使用される。 In the present invention, is used is (C) polylactic acid.

ポリ乳酸としては、L−乳酸および/またはD−乳酸を主たる構成成分とする重合体であるが、本発明の目的を損なわない範囲で、乳酸以外の他の共重合成分を含んでいてもよい。   The polylactic acid is a polymer mainly composed of L-lactic acid and / or D-lactic acid, but may contain other copolymer components other than lactic acid as long as the object of the present invention is not impaired. .

かかる他の共重合成分単位としては、例えば、多価カルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトンなどが挙げられ、具体的には、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、フマル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、5−ナトリウムスルホイソフタル酸、5−テトラブチルホスホニウムスルホイソフタル酸などの多価カルボン酸類、エチレングリコール、プロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ−ル、デカンジオール、1,4−シクロヘキサンジメタノ−ル、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ビスフェノ−ルA、ビスフェノールにエチレンオキシドを付加反応させた芳香族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどの多価アルコール類、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸類、グリコリド、ε−カプロラクトングリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトンなどのラクトン類などを使用することができる。これらの共重合成分は、単独ないし2種以上を用いることができる。   Examples of such other copolymer component units include polyvalent carboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, lactones, and the like. Specifically, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid , Azelaic acid, sebacic acid, dodecanedioic acid, fumaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid Polyhydric carboxylic acids such as ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerin, trimethyl Propanediol, pentaerythritol, bisphenol A, aromatic polyhydric alcohols obtained by addition reaction of ethylene oxide with bisphenol, polyhydric alcohols such as diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, glycolic acid, Hydroxycarboxylic acids such as 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, hydroxybenzoic acid, glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ- Lactones such as butyrolactone, β- or γ-butyrolactone, pivalolactone, and δ-valerolactone can be used. These copolymer components can be used alone or in combination of two or more.

ポリ乳酸で高い耐熱性を得るためには、乳酸成分の光学純度が高い方が好ましく、総乳酸成分の内、L体あるいはD体が80モル%以上含まれることが好ましく、さらには90モル%以上含まれることが好ましく、95モル%以上含まれることが特に好ましい。   In order to obtain high heat resistance with polylactic acid, it is preferable that the optical purity of the lactic acid component is high. Among the total lactic acid components, L-form or D-form is preferably contained at 80 mol% or more, and more preferably 90 mol%. It is preferably contained in an amount of 95 mol% or more.

また、本発明の(C)ポリ乳酸としては、耐熱性、成形加工性の点で、ポリ乳酸ステレオコンプレックスを用いることが好ましい。ポリ乳酸ステレオコンプレックスを形成させる方法としては、例えば、L体が90モル%以上、好ましくは95モル%以上、より好ましくは98モル%以上のポリ−L−乳酸とD体が90モル%以上、好ましくは95モル%以上、より好ましくは98モル%以上のポリ−D−乳酸を溶融混練や溶液混練などにより混合する方法が挙げられる。また、別の方法として、ポリ−L−乳酸とポリ−D−乳酸をブロック共重合体とする方法も挙げることができ、ポリ乳酸ステレオコンプレックスを容易に形成させることができるという点で、ポリ−L−乳酸とポリ−D−乳酸をブロック共重合体とする方法が好ましい。 Moreover, as (C) polylactic acid of this invention, it is preferable to use a polylactic acid stereocomplex from the point of heat resistance and a moldability. As a method of forming a polylactic acid stereocomplex, for example, L-form is 90 mol% or more, preferably 95 mol% or more, more preferably 98 mol% or more poly-L-lactic acid and D-form is 90 mol% or more, Preferably, 95 mol% or more, more preferably 98 mol% or more of poly-D-lactic acid is mixed by melt kneading or solution kneading. Another method is a method in which poly-L-lactic acid and poly-D-lactic acid are used as a block copolymer, so that a polylactic acid stereocomplex can be easily formed. A method using L-lactic acid and poly-D-lactic acid as a block copolymer is preferred.

(C)ポリ乳酸の製造方法としては、既知の重合方法を用いることができ、乳酸からの直接重合法、ラクチドを介する開環重合法などを採用することができる。 As a method for producing (C) a polylactic acid, can be used known polymerization methods can be employed direct polymerization method from lactic, ring-opening polymerization via lactide or the like.

(C)ポリ乳酸の分子量や分子量分布は、実質的に成形加工が可能であれば、特に限定されるものではなく、重量平均分子量としては、好ましくは1万以上、より好ましくは4万以上、特に好ましくは8万以上であるのがよい。ここでいう重量平均分子量とは、溶媒としてヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィー(GPC)で測定したポリメタクリル酸メチル(PMMA)換算の重量平均分子量である。 (C) The molecular weight and molecular weight distribution of polylactic acid are not particularly limited as long as it can be substantially molded, and the weight average molecular weight is preferably 10,000 or more, more preferably 40,000 or more, Particularly preferred is 80,000 or more. The weight average molecular weight herein is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent.

(C)ポリ乳酸の融点は、特に限定されるものではなく、90℃以上であることが好ましく、さらに150℃以上であることが好ましい。 (C) Melting | fusing point of polylactic acid is not specifically limited, It is preferable that it is 90 degreeC or more, and it is more preferable that it is 150 degreeC or more.

本発明において、耐熱性に優れる樹脂組成物が得られるという点で、(A)スチレン系樹脂と(C)ポリ乳酸の溶融粘度比((A)/(C))が、0.1〜10の範囲にあることが好ましい。 In the present invention, the melt viscosity ratio ((A) / (C)) of (A) styrene resin and (C) polylactic acid is 0.1 to 10 in that a resin composition having excellent heat resistance is obtained. It is preferable that it exists in the range.

本発明において、(A)スチレン系樹脂および(C)ポリ乳酸のいずれか一方が分散相を形成する相構造を形成する場合、耐衝撃性および耐熱性に優れる樹脂組成物が得られるという点で、その分散相の平均粒径が、10nm〜100μmの範囲にあることが好ましく、50nm〜10μmの範囲にあることがより好ましく、100nm〜1000nmの範囲にあることがさらに好ましい。ここでいう平均粒径とは、本発明の樹脂組成物の断面を電子顕微鏡で観察した時の相構造において、分散した個々の分散相の最も長い粒子系を測定し、数平均した値で数平均粒径である。 In the present invention, when any one of (A) styrenic resin and (C) polylactic acid forms a phase structure that forms a dispersed phase, a resin composition having excellent impact resistance and heat resistance can be obtained. The average particle size of the dispersed phase is preferably in the range of 10 nm to 100 μm, more preferably in the range of 50 nm to 10 μm, and still more preferably in the range of 100 nm to 1000 nm. The average particle diameter here is the number average value obtained by measuring the longest particle system of each dispersed phase in the phase structure when the cross section of the resin composition of the present invention is observed with an electron microscope. Average particle size.

本発明で使用する(D)メタクリル樹脂とは、(メタ)アクリル酸アルキルの重合体であるThe (D) methacrylic resin used in the present invention is a polymer of alkyl (meth) acrylate.

(メタ)アクリル酸アルキルとしては、メタクリル酸メチル、アクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸ヒドロキシエチル、メタクリル酸グリシジル、メタクリル酸アリル、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸グリシジル、アクリル酸ジシクロペンテニルオキシエチル、アクリル酸ジシクロペンタニル、ジアクリル酸ブタンジオール、ジアクリル酸ノナンジオール、ジアクリル酸ポリエチレングリコール、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、メタクリル酸、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロへキシル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、メタクリル酸グリシジル、メタクリル酸ジシクロペンテニルオキシエチル、メタクリル酸ジシクロペンタニル、メタクリル酸ペンタメチルピペリジル、メタクリル酸テトラメチルピペリジル、メタクリル酸ベンジル、ジメタクリル酸エチレングリコール、ジメタクリル酸プロピレングリコール、ジメタクリル酸ポリエチレングリコールなどが挙げられ、これらの1種又は2種以上を用いることができる。   Examples of alkyl (meth) acrylate include methyl methacrylate, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, cyclohexyl methacrylate, hydroxyethyl methacrylate, glycidyl methacrylate, allyl methacrylate, Aminoethyl acrylate, propylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, butanediol diacrylate, diacryl Acid nonanediol, polyethylene glycol diacrylate, methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, methacrylic acid, methacrylate Ethyl acetate, butyl methacrylate, cyclohexyl methacrylate, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, phenylaminoethyl methacrylate, cyclohexylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate Glycidyl methacrylate, dicyclopentenyloxyethyl methacrylate, dicyclopentanyl methacrylate, pentamethylpiperidyl methacrylate, tetramethylpiperidyl methacrylate, benzyl methacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, dimethacrylate Acid polyethylene glycol etc. are mentioned, These 1 type (s) or 2 or more types can be used.

本発明において、(D)メタクリル樹脂は、重量平均分子量1千〜45万であることが好ましく、1万〜20万がより好ましく、3万〜15万がさらに好ましい。ここでいう重量平均分子量とは、溶媒としてヘキサフルオロイソプロパノールを用いたGPCで測定したポリメチルメタクリレート(PMMA)換算の重量平均分子量である。 In the present invention, the (D) methacrylic resin preferably has a weight average molecular weight of 1,000 to 450,000, more preferably 10,000 to 200,000, and still more preferably 30,000 to 150,000. The weight average molecular weight here is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by GPC using hexafluoroisopropanol as a solvent.

本発明において、耐熱性の点で、(D)メタクリル樹脂のガラス転移温度は、60℃以上が好ましく、70℃以上がより好ましく、80℃以上がさらに好ましく、90℃以上が特に好ましく、100℃以上が最も好ましい。上限は特に限定されないが、成形性の点で、150℃以下が好ましい。ここでいうガラス転移温度は、示差走査型熱量計(DSC)測定により求めたガラス転移温度の値であり、ガラス転移温度領域における比熱容量変化が半分の値となる温度である。 In the present invention, in terms of heat resistance, the glass transition temperature of (D) methacrylic resin is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, particularly preferably 90 ° C. or higher, 100 ° C. The above is most preferable. Although an upper limit is not specifically limited, 150 degreeC or less is preferable at the point of a moldability. The glass transition temperature here is a value of the glass transition temperature obtained by differential scanning calorimeter (DSC) measurement, and is a temperature at which the specific heat capacity change in the glass transition temperature region becomes a half value.

本発明において、メタクリル樹脂のシンジオタクチシチーは、20%以上が好ましく、30%以上がより好ましく、40%以上がさらに好ましい。上限は特に限定されないが、成形性の点で、90%以下が好ましい。また、耐熱性の点で、ヘテロタクチシチーが50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましい。また、耐熱性の点で、アイソタクチシチーが20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。ここでいうシンジオタクチシチー、ヘテロタクチシチー、アイソタクチシチーとは、溶媒として、重水素化クロロホルムを用いた1H−NMR測定による直鎖分岐のメチル基の積分強度比から算出した値である。 In the present invention, the syndiotacticity of the methacrylic resin is preferably 20% or more, more preferably 30% or more, and further preferably 40% or more. Although an upper limit is not specifically limited, 90% or less is preferable at the point of a moldability. In terms of heat resistance, the heterotacticity is preferably 50% or less, more preferably 40% or less, and further preferably 30% or less. In terms of heat resistance, isotacticity is preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less. Syndiotacticity, heterotacticity, and isotacticity as used herein are values calculated from the integrated intensity ratio of linearly branched methyl groups by 1H-NMR measurement using deuterated chloroform as a solvent.

(D)メタクリル樹脂の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合等の公知の重合方法を用いることができる。 (D) As a manufacturing method of a methacryl resin , well-known polymerization methods, such as block polymerization, solution polymerization, suspension polymerization, and emulsion polymerization, can be used.

本発明において、(E1)ジカルボン酸無水物とは、ジカルボン酸から、分子内で水分子が脱離した構造を有する化合物のことであり、例えば、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、5−ノルボルネン−2,3−ジカルボン酸無水物、1−シクロヘキセン−1,2−ジカルボン酸無水物、シス−4−シクロヘキセン−1,2−ジカルボン酸無水物、コハク酸無水物、アジピン酸無水物、シクロヘキサンジカルボン酸無水物、フタル酸無水物などが挙げられ、耐衝撃性、耐熱性、成形加工性の点で、マレイン酸無水物またはコハク酸無水物のいずれかであることが好ましく、耐衝撃性、耐熱性の点で、マレイン酸無水物がより好ましい。なお、本発明の樹脂組成物において、(E1)ジカルボン酸無水物は、化合物として単体で存在していてもよく、また、(A)スチレン系樹脂、(B)グラフト重合体、(C)脂肪族ポリエステルおよび(D)アクリル系樹脂のいずれか1種以上と反応し、ジカルボン酸無水物の構造を保持せずに存在していてもよい。本発明では、(E1)ジカルボン酸無水物を配合することにより、(A)スチレン系樹脂、(B)グラフト重合体、(C)脂肪族ポリエステルおよび(D)アクリル系樹脂の相構造に影響を及ぼすため、強度、耐衝撃性、耐熱性および成形加工性などの特性が、大きく向上すると考えられる。   In the present invention, (E1) dicarboxylic acid anhydride is a compound having a structure in which water molecules are eliminated in the molecule from dicarboxylic acid. For example, maleic acid anhydride, itaconic acid anhydride, citraconic acid Anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, 1-cyclohexene-1,2-dicarboxylic acid anhydride, cis-4-cyclohexene-1,2-dicarboxylic acid anhydride, succinic acid anhydride, adipine Acid anhydrides, cyclohexanedicarboxylic acid anhydrides, phthalic acid anhydrides, etc. are mentioned, and in terms of impact resistance, heat resistance, and moldability, either maleic acid anhydride or succinic acid anhydride is preferable. In terms of impact resistance and heat resistance, maleic anhydride is more preferable. In the resin composition of the present invention, (E1) dicarboxylic acid anhydride may exist alone as a compound, and (A) a styrene resin, (B) a graft polymer, (C) a fat. It reacts with any one or more of the group polyester and (D) acrylic resin, and may exist without retaining the structure of the dicarboxylic acid anhydride. In the present invention, by adding (E1) dicarboxylic acid anhydride, the phase structure of (A) styrene resin, (B) graft polymer, (C) aliphatic polyester and (D) acrylic resin is affected. Therefore, it is considered that characteristics such as strength, impact resistance, heat resistance and molding processability are greatly improved.

本発明において、(E2)ジカルボン酸とは、分子内にカルボン酸を二つ有する化合物であり、例えば、マレイン酸、イタコン酸、シトラコン酸、5−ノルボルネン−2,3−ジカルボン酸、1−シクロヘキセン−1,2−ジカルボン酸、シス−4−シクロヘキセン−1,2−ジカルボン酸、コハク酸、アジピン酸、シクロヘキサンジカルボン酸、フタル酸などが挙げられ、耐衝撃性、耐熱性、成形加工性の点で、マレイン酸またはコハク酸のいずれかであることが好ましく、耐衝撃性、耐熱性の点で、マレイン酸がより好ましい。なお、本発明の樹脂組成物において、(E2)ジカルボン酸は、化合物として単体で存在していてもよく、また、(A)スチレン系樹脂、(B)グラフト重合体、(C)脂肪族ポリエステルおよび(D)アクリル系樹脂のいずれか1種以上と反応し、ジカルボン酸の構造を保持せずに存在していてもよい。本発明では、(E2)ジカルボン酸を配合することにより、(A)スチレン系樹脂、(B)グラフト重合体、(C)脂肪族ポリエステルおよび(D)アクリル系樹脂の相構造に影響を及ぼすため、強度、耐衝撃性、耐熱性および成形加工性などの特性が、大きく向上すると考えられる。   In the present invention, (E2) dicarboxylic acid is a compound having two carboxylic acids in the molecule. For example, maleic acid, itaconic acid, citraconic acid, 5-norbornene-2,3-dicarboxylic acid, 1-cyclohexene -1,2-dicarboxylic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, succinic acid, adipic acid, cyclohexanedicarboxylic acid, phthalic acid, etc., impact resistance, heat resistance, molding processability In this case, either maleic acid or succinic acid is preferable, and maleic acid is more preferable in terms of impact resistance and heat resistance. In the resin composition of the present invention, (E2) dicarboxylic acid may exist alone as a compound, and (A) a styrene resin, (B) a graft polymer, (C) an aliphatic polyester. And (D) may react with any one or more of the acrylic resins and may exist without retaining the structure of the dicarboxylic acid. In the present invention, by blending (E2) dicarboxylic acid, the phase structure of (A) styrene resin, (B) graft polymer, (C) aliphatic polyester and (D) acrylic resin is affected. Properties such as strength, impact resistance, heat resistance, and moldability are considered to be greatly improved.

本発明において、(E1)ジカルボン酸無水物および(E2)ジカルボン酸は、それぞれ単独で用いてもよく、2種以上を併用して用いてもよい。   In the present invention, (E1) dicarboxylic acid anhydride and (E2) dicarboxylic acid may be used alone or in combination of two or more.

本発明においては、(A)スチレン系樹脂、(C)ポリ乳酸に、(D)メタクリル樹脂を少量添加することで、特異的に強度、耐熱性、耐衝撃性を向上することができ、より好ましい態様として、(E1)ジカルボン酸無水物および(E2)ジカルボン酸から選ばれる少なくとも1種を少量添加することにより、予想外に強度、耐熱性、耐衝撃性を向上することができ、さらに好ましい態様として、(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸に、(D)メタクリル樹脂を少量添加し、さらに(E1)ジカルボン酸無水物および(E2)ジカルボン酸から選ばれる少なくとも1種を少量添加することで、予想外に飛躍的に強度、耐熱性、衝撃性を向上することができる。 In the present invention, by adding a small amount of (D) methacrylic resin to (A) styrenic resin and (C) polylactic acid, the strength, heat resistance, and impact resistance can be specifically improved. As a preferred embodiment, by adding a small amount of at least one selected from (E1) dicarboxylic acid anhydride and (E2) dicarboxylic acid, the strength, heat resistance, and impact resistance can be unexpectedly improved, and more preferable. As an embodiment, a small amount of (D) methacrylic resin is added to (A) styrene resin, (B) graft polymer, and (C) polylactic acid, and further selected from (E1) dicarboxylic acid anhydride and (E2) dicarboxylic acid By adding a small amount of at least one selected from the above, strength, heat resistance, and impact resistance can be dramatically improved unexpectedly.

本発明の樹脂組成物の(A)スチレン系樹脂、(C)ポリ乳酸、(D)メタクリル樹脂との混合比は、(A)スチレン系樹脂、(C)ポリ乳酸及び(D)メタクリル樹脂の合計量に対して、(A)スチレン系樹脂10重量%以上であり、好ましくは25〜70重量%、さらに好ましくは30〜60重量%、特に好ましくは35〜60重量%である。また、(C)ポリ乳酸の添加量は85重量%未満、好ましくは65〜10重量%、さらに好ましくは60〜10重量%の範囲である。(D)メタクリル樹脂の添加量は、1〜30重量%、好ましくは2〜20重量%、より好ましくは2〜15重量%、さらに好ましくは2〜9重量%、特に好ましくは2〜8.5重量%、最も好ましくは2〜7.4重量%である。 The mixing ratio of (A) styrene resin, (C) polylactic acid, and (D) methacrylic resin in the resin composition of the present invention is such that (A) styrene resin, (C) polylactic acid, and (D) methacrylic resin are mixed. (A) Styrenic resin is 10 weight% or more with respect to a total amount, Preferably it is 25-70 weight%, More preferably, it is 30-60 weight%, Most preferably, it is 35-60 weight%. Moreover, the addition amount of (C) polylactic acid is less than 85 weight%, Preferably it is 65 to 10 weight%, More preferably, it is the range of 60 to 10 weight%. (D) The addition amount of the methacrylic resin is 1 to 30% by weight, preferably 2 to 20% by weight, more preferably 2 to 15% by weight, still more preferably 2 to 9% by weight, and particularly preferably 2 to 8.5%. % By weight, most preferably 2 to 7.4% by weight.

本発明において、(E1)ジカルボン酸無水物および(E2)ジカルボン酸の配合量は、(A)スチレン系樹脂、(C)脂肪族ポリエステル及び(D)アクリル系樹脂の合計量100重量部に対して、0〜5重量部であり、耐衝撃性、耐熱性の点で、好ましくは0.05〜2重量部、より好ましくは0.1〜1重量部であり、さらに好ましくは、0.1〜0.5重量部である。   In the present invention, the blending amount of (E1) dicarboxylic acid anhydride and (E2) dicarboxylic acid is based on 100 parts by weight of the total amount of (A) styrene resin, (C) aliphatic polyester and (D) acrylic resin. 0 to 5 parts by weight, preferably in terms of impact resistance and heat resistance, preferably 0.05 to 2 parts by weight, more preferably 0.1 to 1 part by weight, still more preferably 0.1 -0.5 parts by weight.

本発明の樹脂組成物の(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸、(D)メタクリル樹脂との混合比は、(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸及び(D)メタクリル樹脂の合計量に対して、(A)スチレン系樹脂10重量%以上であり、好ましくは25〜70重量%、さらに好ましくは30〜60重量%、特に好ましくは35〜60重量%である。また(B)グラフト重合体の添加量は5〜50重量%、好ましくは7〜50重量%、さらに好ましくは10〜50重量%である。さらに(C)ポリ乳酸の添加量は85重量%未満、好ましくは65〜10重量%、さらに好ましくは60〜10重量%の範囲である。(D)メタクリル樹脂の添加量は、1〜30重量%、好ましくは2〜20重量%、より好ましくは2〜15重量%、さらに好ましくは2〜9重量%、特に好ましくは2〜8.5重量%、最も好ましくは2〜7.4重量%である。 The mixing ratio of (A) styrene resin, (B) graft polymer, (C) polylactic acid, (D) methacrylic resin of the resin composition of the present invention is as follows: (A) styrene resin, (B) graft weight (A) Styrenic resin is 10% by weight or more, preferably 25 to 70% by weight, more preferably 30 to 60% by weight, based on the total amount of coalescence, (C) polylactic acid and (D) methacrylic resin , Most preferably, it is 35-60 weight%. The amount of (B) graft polymer added is 5 to 50% by weight, preferably 7 to 50% by weight, and more preferably 10 to 50% by weight. Furthermore, the addition amount of (C) polylactic acid is less than 85% by weight, preferably 65 to 10% by weight, more preferably 60 to 10% by weight. (D) The addition amount of the methacrylic resin is 1 to 30% by weight, preferably 2 to 20% by weight, more preferably 2 to 15% by weight, still more preferably 2 to 9% by weight, and particularly preferably 2 to 8.5%. % By weight, most preferably 2 to 7.4% by weight.

本発明の樹脂組成物が、(B)グラフト重合体を配合してなる樹脂組成物である場合には、(E1)ジカルボン酸無水物および(E2)ジカルボン酸の配合量は、(A)スチレン系樹脂、(B)グラフト重合体、(C)脂肪族ポリエステル及び(D)アクリル系樹脂の合計量100重量部に対して、0〜5重量部であり、耐衝撃性、耐熱性の点で、好ましくは0.05〜2重量部、より好ましくは0.1〜1重量部であり、さらに好ましくは、0.1〜0.5重量部である。   When the resin composition of the present invention is a resin composition obtained by blending (B) a graft polymer, the blending amount of (E1) dicarboxylic acid anhydride and (E2) dicarboxylic acid is (A) styrene. It is 0 to 5 parts by weight with respect to 100 parts by weight of the total amount of the resin, (B) graft polymer, (C) aliphatic polyester and (D) acrylic resin, in terms of impact resistance and heat resistance. The amount is preferably 0.05 to 2 parts by weight, more preferably 0.1 to 1 part by weight, and still more preferably 0.1 to 0.5 part by weight.

また、本発明において、(A)スチレン系樹脂と(D)メタクリル樹脂の混合比は、(A)スチレン系樹脂と(D)メタクリル樹脂の合計量100重量%に対し、(D)メタクリル樹脂が12.5重量%以下であり、さらに好ましくは1〜12.5重量%、特に好ましくは3.2〜12.5重量%の範囲であるときに、優れた耐衝撃性および耐熱性を両立して発現することができる。 Further, in the present invention, (A) mixing ratio of the styrene-based resin and (D) a methacrylic resin, the total amount of 100 wt% of (A) a styrenic resin and (D) a methacrylic resin, is (D) a methacrylic resin 1 2.5% by weight or less , more preferably 1 to 12.5% by weight, particularly preferably 3.2 to 12.5% by weight, when both excellent impact resistance and heat resistance are achieved. Can be expressed.

本発明の樹脂組成物は、上記のような組成で(A)スチレン系樹脂、(C)ポリ乳酸、(D)メタクリル樹脂を混合すること、さらに好ましい態様としては、(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸、(D)メタクリル樹脂を混合することにより得られるが、得られたスチレン系樹脂には、(a)不飽和カルボン酸アルキルエステル系単位が樹脂成分に対して1〜90重量%、好ましくは10〜80重量%、(b)芳香族ビニル系単位0.1〜80重量%、好ましくは1〜70重量%、(c)シアン化ビニル系単位0〜45重量%、好ましくは0〜40重量%、(d)これらと共重合可能な他のビニル系単位0〜85重量%、好ましくは0〜80重量%の範囲となるようにすることで、十分な耐衝撃性と耐熱性を得ることができる。 The resin composition of the present invention is a mixture of (A) a styrene resin, (C) polylactic acid, and (D) a methacrylic resin in the composition as described above. It can be obtained by mixing (B) graft polymer, (C) polylactic acid, and (D) methacrylic resin . In the obtained styrene resin, (a) unsaturated carboxylic acid alkyl ester unit is a resin component. 1 to 90% by weight, preferably 10 to 80% by weight, (b) 0.1 to 80% by weight, preferably 1 to 70% by weight, (c) vinyl cyanide unit 0 -45% by weight, preferably 0-40% by weight, (d) by making the other vinyl units copolymerizable with these 0-85% by weight, preferably 0-80% by weight, Get sufficient impact and heat resistance Door can be.

本発明の樹脂組成物が、(B)グラフト重合体を配合してなる樹脂組成物である場合には、本発明での樹脂組成物においては、(A)スチレン系樹脂、(C)ポリ乳酸からなるマトリックスと、このマトリックス中に分散する(B)グラフト重合体のドメインとからなっており、このときドメインである(B)グラフト重合体が、(C)ポリ乳酸中に存在する面積割合が10〜90%の範囲で存在することが好ましい。 When the resin composition of the present invention is a resin composition obtained by blending (B) a graft polymer, in the resin composition of the present invention, (A) a styrene resin, (C) polylactic acid And a (B) graft polymer domain dispersed in the matrix, wherein the (B) graft polymer, which is a domain, has an area ratio existing in (C) polylactic acid. It is preferable that it exists in 10 to 90% of range.

例えば、射出成形により得られた成形品について、オスミウムブロック染色法により、(A)スチレン系樹脂、(B)グラフト重合体を染色した後、超薄切片を切り出したサンプルについて、透過型電子顕微鏡にて6000倍に拡大して断面の観察を行うことにより、(B)グラフト重合体の分散形態を確認することができる。   For example, for a molded product obtained by injection molding, a sample obtained by staining an ultrathin section after staining (A) a styrene resin and (B) a graft polymer by an osmium block staining method is applied to a transmission electron microscope. By observing the cross section at a magnification of 6000, the dispersion form of the (B) graft polymer can be confirmed.

さらに(B)グラフト重合体の(r)ゴム質重合体にグラフト共重合する単量体混合物の組成を変更することにより、(B)グラフト重合体の分散形態を変更することができる。例えば、単量体混合物中の(a)不飽和カルボン酸アルキルエステルを多くすると、(B)グラフト重合体は(C)ポリ乳酸相での分散が多くなり、(a)不飽和カルボン酸アルキルエステルが少なくなると、(B)グラフト重合体は(C)ポリ乳酸相での分散が少なくなり、(A)スチレン系樹脂相での分散となることが確認できる。 Furthermore, the dispersion form of the (B) graft polymer can be changed by changing the composition of the monomer mixture that is graft-copolymerized to the (r) rubber polymer of the (B) graft polymer. For example, if (a) the unsaturated carboxylic acid alkyl ester in the monomer mixture is increased, the (B) graft polymer will be dispersed in the (C) polylactic acid phase, and (a) the unsaturated carboxylic acid alkyl ester. It can be confirmed that (B) the graft polymer is less dispersed in the (C) polylactic acid phase and (A) is dispersed in the styrene resin phase.

ここで(B)グラフト重合体が、(C)ポリ乳酸中に存在する断面写真での面積割合は10〜90%の範囲であり、好ましくは20〜85%、さらに好ましくは30〜80%の範囲である。面積割合が10〜90%の範囲にない場合は、耐衝撃性が著しく低下するため好ましくない。 Here, the area ratio in the cross-sectional photograph in which (B) the graft polymer is present in (C) polylactic acid is in the range of 10 to 90%, preferably 20 to 85%, more preferably 30 to 80%. It is a range. When the area ratio is not in the range of 10 to 90%, the impact resistance is remarkably lowered, which is not preferable.

(B)グラフト重合体が、(C)ポリ乳酸中に存在する面積割合を測定する方法としては、上記と同様の方法で透過型電子顕微鏡にて成形品断面を撮影した。さらに4倍に拡大し、(C)ポリ乳酸中の分散グラフト重合体の面積(X)と(A)スチレン系樹脂中の分散グラフト重合体の面積(Y)を該写真から切り出し重量法を用いて求め、(X)/((X)+(Y))の式に従って求めたものである。 (B) As a method for measuring the area ratio in which the graft polymer is present in (C) polylactic acid , a cross section of the molded product was photographed with a transmission electron microscope in the same manner as described above. Further expanded to 4 times, (C) the area (X) of the dispersion graft polymer in polylactic acid and (A) the area (Y) of the dispersion graft polymer in styrene resin were cut out from the photograph and used the weight method. And obtained according to the formula of (X) / ((X) + (Y)).

本発明においては、耐熱性が向上するという観点から、さらに結晶核剤を含有することが好ましい。   In the present invention, it is preferable to further contain a crystal nucleating agent from the viewpoint of improving heat resistance.

本発明で使用する結晶核剤としては、一般にポリマーの結晶核剤として用いられるものを特に制限なく用いることができ、無機系結晶核剤および有機系結晶核剤のいずれをも使用することができる。   As the crystal nucleating agent used in the present invention, those generally used as polymer crystal nucleating agents can be used without particular limitation, and any of inorganic crystal nucleating agents and organic crystal nucleating agents can be used. .

無機系結晶核剤の具体例としては、タルク、カオリナイト、モンモリロナイト、マイカ、合成マイカ、クレー、ゼオライト、シリカ、グラファイト、カーボンブラック、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化チタン、硫化カルシウム、窒化ホウ素、炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、酸化アルミニウム、酸化ネオジウムおよびフェニルホスホネートの金属塩などが挙げられ、耐熱性を向上させる効果が大きいという観点から、タルク、カオリナイト、モンモリロナイトおよび合成マイカが好ましい。これらは単独ないし2種以上を用いることができる。これらの無機系結晶核剤は、組成物中での分散性を高めるために、有機物で修飾されていることが好ましい。   Specific examples of inorganic crystal nucleating agents include talc, kaolinite, montmorillonite, mica, synthetic mica, clay, zeolite, silica, graphite, carbon black, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, calcium sulfide, and nitriding. Examples thereof include metal salts of boron, magnesium carbonate, calcium carbonate, barium sulfate, aluminum oxide, neodymium oxide, and phenylphosphonate, and talc, kaolinite, montmorillonite, and synthetic mica are preferable from the viewpoint of a large effect of improving heat resistance. . These may be used alone or in combination of two or more. These inorganic crystal nucleating agents are preferably modified with an organic substance in order to enhance dispersibility in the composition.

無機系結晶核剤の含有量は、(C)ポリ乳酸100重量部に対して、0.01〜100重量部が好ましく、0.05〜50重量部がより好ましく、0.1〜30重量部がさらに好ましい。 The content of the inorganic crystal nucleating agent is preferably 0.01 to 100 parts by weight, more preferably 0.05 to 50 parts by weight, and 0.1 to 30 parts by weight with respect to 100 parts by weight of (C) polylactic acid. Is more preferable.

また、有機系結晶核剤の具体例としては、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸カルシウム、安息香酸マグネシウム、安息香酸バリウム、テレフタル酸リチウム、テレフタル酸ナトリウム、テレフタル酸カリウム、シュウ酸カルシウム、ラウリン酸ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、オクタコサン酸ナトリウム、オクタコサン酸カルシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン酸カルシウム、トルイル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチル酸亜鉛、アルミニウムジベンゾエート、カリウムジベンゾエート、リチウムジベンゾエート、ナトリウムβ−ナフタレート、ナトリウムシクロヘキサンカルボキシレートなどの有機カルボン酸金属塩、p−トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウムなどの有機スルホン酸塩、ステアリン酸アミド、エチレンビスラウリン酸アミド、パルチミン酸アミド、ヒドロキシステアリン酸アミド、エルカ酸アミド、トリメシン酸トリス(t−ブチルアミド)などのカルボン酸アミド、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリイソプロピレン、ポリブテン、ポリ−4−メチルペンテン、ポリ−3−メチルブテン−1、ポリビニルシクロアルカン、ポリビニルトリアルキルシラン、高融点ポリ乳酸などのポリマー、エチレン−アクリル酸またはメタクリル酸コポリマーのナトリウム塩、スチレン−無水マレイン酸コポリマーのナトリウム塩などのカルボキシル基を有する重合体のナトリウム塩またはカリウム塩(いわゆるアイオノマー)、ベンジリデンソルビトールおよびその誘導体、ナトリウム−2,2’−メチレンビス(4,6−ジ−t−ブチルフェニル)フォスフェートなどのリン化合物金属塩および2,2−メチルビス(4,6−ジ−t−ブチルフェニル)ナトリウムなどが挙げられ、耐熱性を向上させる効果が大きいという観点からは、有機カルボン酸金属塩およびカルボン酸アミドが好ましい。これらは単独ないし2種以上用いることができる。   Specific examples of organic crystal nucleating agents include sodium benzoate, potassium benzoate, lithium benzoate, calcium benzoate, magnesium benzoate, barium benzoate, lithium terephthalate, sodium terephthalate, potassium terephthalate, Calcium oxide, sodium laurate, potassium laurate, sodium myristate, potassium myristate, calcium myristate, sodium octacosanoate, calcium octacosanoate, sodium stearate, potassium stearate, lithium stearate, calcium stearate, magnesium stearate, Barium stearate, sodium montanate, calcium montanate, sodium toluate, sodium salicylate, potassium salicylate, salicylic acid , Metal salts of organic carboxylic acids such as aluminum dibenzoate, potassium dibenzoate, lithium dibenzoate, sodium β-naphthalate, sodium cyclohexanecarboxylate, organic sulfonates such as sodium p-toluenesulfonate, sodium sulfoisophthalate, stearic acid Amide, ethylenebislauric acid amide, palmitic acid amide, hydroxystearic acid amide, erucic acid amide, carboxylic acid amides such as trimesic acid tris (t-butylamide), low density polyethylene, high density polyethylene, polypropylene, polyisopropylene, polybutene Polymers such as poly-4-methylpentene, poly-3-methylbutene-1, polyvinylcycloalkane, polyvinyltrialkylsilane, and high melting point polylactic acid, Sodium salt or potassium salt of a polymer having a carboxyl group such as sodium salt of ethylene-acrylic acid or methacrylic acid copolymer, sodium salt of styrene-maleic anhydride copolymer (so-called ionomer), benzylidene sorbitol and its derivatives, sodium-2, Phosphorus compound metal salts such as 2'-methylenebis (4,6-di-t-butylphenyl) phosphate and sodium 2,2-methylbis (4,6-di-t-butylphenyl) From the viewpoint that the effect of improving the resistance is large, organic carboxylic acid metal salts and carboxylic acid amides are preferred. These may be used alone or in combination of two or more.

有機系結晶核剤の含有量は、(C)ポリ乳酸100重量部に対して、0.01〜30重量部が好ましく、0.05〜10重量部がより好ましく、0.1〜5重量部がさらに好ましい。 The content of the organic crystal nucleating agent is preferably 0.01 to 30 parts by weight, more preferably 0.05 to 10 parts by weight, and 0.1 to 5 parts by weight with respect to 100 parts by weight of (C) polylactic acid. Is more preferable.

本発明においては、耐熱性が向上するという観点から、さらに可塑剤を含有することが好ましい。   In the present invention, it is preferable to further contain a plasticizer from the viewpoint of improving heat resistance.

本発明で使用する可塑剤としては、一般にポリマーの可塑剤として用いられるものを特に制限なく用いることができ、例えばポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤などを挙げることができる。   As the plasticizer used in the present invention, those generally used as polymer plasticizers can be used without particular limitation. For example, polyester plasticizer, glycerin plasticizer, polyvalent carboxylic ester plasticizer, polyalkylene Examples include glycol plasticizers and epoxy plasticizers.

ポリエステル系可塑剤の具体例としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸などの酸成分と、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルやポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステルなどを挙げることができる。これらのポリエステルは単官能カルボン酸もしくは単官能アルコールで末端封鎖されていてもよく、またエポキシ化合物などで末端封鎖されていてもよい。   Specific examples of the polyester plasticizer include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, propylene glycol, 1,3-butanediol, 1,4-butane. Examples thereof include polyesters composed of diol components such as diol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acid such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.

グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレートおよびグリセリンモノアセトモノモンタネートなどを挙げることができる。   Specific examples of the glycerin plasticizer include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.

多価カルボン酸系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、アジピン酸ジイソデシル、アジピン酸n−オクチル−n−デシルアジピン酸エステルなどのセバシン酸エステル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチルなどのクエン酸エステル、アゼライン酸ジ−2−エチルヘキシルなどのアゼライン酸エステル、セバシン酸ジブチル、およびセバシン酸ジ−2−エチルヘキシルなどのセバシン酸エステルなどを挙げることができる。   Specific examples of polycarboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, and trimellitic acid. Trimellitic acid esters such as tributyl, trioctyl trimellitic acid, trihexyl trimellitic acid, sebacic acid esters such as diisodecyl adipate, n-octyl-n-decyl adipate adipate, triethyl acetylcitrate, tributyl acetylcitrate, etc. Citrate esters, azelaic acid esters such as di-2-ethylhexyl azelate, sebacic acid esters such as dibutyl sebacate, and di-2-ethylhexyl sebacate.

ポリアルキレングリコール系可塑剤の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロック及び/またはランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物および末端エーテル変性化合物などの末端封鎖化合物などを挙げることができる。   Specific examples of the polyalkylene glycol plasticizer include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, bisphenols Polyalkylene glycols such as propylene oxide addition polymers, tetrahydrofuran addition polymers of bisphenols, or end-capped compounds such as terminal epoxy-modified compounds, terminal ester-modified compounds, and terminal ether-modified compounds.

エポキシ系可塑剤とは、一般にはエポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどを指すが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするような、いわゆるエポキシ樹脂も使用することができる。   The epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. Can be used.

その他の可塑剤の具体例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ−2−エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール、ポリアクリル酸エステル、シリコーンオイルおよびパラフィン類などを挙げることができる。   Specific examples of other plasticizers include benzoic acid esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, fatty acid amides such as stearamide, oleic acid Examples thereof include aliphatic carboxylic acid esters such as butyl, oxyacid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritol, various sorbitols, polyacrylic acid esters, silicone oils, and paraffins.

本発明で使用する可塑剤としては、上記に例示したものの中でも、特にポリエステル系可塑剤及びポリアルキレングリコール系可塑剤から選択した少なくとも1種が好ましい。本発明に使用する可塑剤は、単独ないし2種以上用いることができる。   Among the plasticizers used in the present invention, at least one selected from polyester plasticizers and polyalkylene glycol plasticizers is particularly preferable. The plasticizer used in the present invention may be used alone or in combination of two or more.

また、可塑剤の含有量は、(C)ポリ乳酸100重量部に対して、0.01〜30重量部の範囲が好ましく、0.1〜20重量部の範囲がより好ましく、0.5〜10重量部の範囲がさらに好ましい。 The plasticizer content is preferably in the range of 0.01 to 30 parts by weight, more preferably in the range of 0.1 to 20 parts by weight, with respect to 100 parts by weight of (C) polylactic acid , and 0.5 to The range of 10 parts by weight is more preferable.

本発明においては、結晶核剤と可塑剤を各々単独で用いてもよいが、両者を併用して用いることが好ましい。   In the present invention, each of the crystal nucleating agent and the plasticizer may be used alone, but it is preferable to use both in combination.

本発明においては、耐熱性が向上するという観点から、さらに無機系結晶核剤以外の充填剤を含有することが好ましい。   In this invention, it is preferable to contain fillers other than an inorganic crystal nucleating agent from a viewpoint that heat resistance improves.

本発明で使用する無機系結晶核剤以外の充填剤としては、通常熱可塑性樹脂の強化に用いられる繊維状、板状、粒状、粉末状のものを用いることができる。具体的には、ガラス繊維、アスベスト繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラストナイト、セピオライト、アスベスト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化硅素繊維及びホウ素繊維などの無機繊維状充填剤、ポリエステル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維、ケナフ、ラミー、木綿、ジュート、麻、サイザル、亜麻、リネン、絹、マニラ麻、さとうきび、木材パルプ、紙屑、古紙及びウールなどの有機繊維状充填剤、ガラスフレーク、グラファイト、金属箔、セラミックビーズ、セリサイト、ベントナイト、ドロマイト、微粉珪酸、長石粉、チタン酸カリウム、シラスバルーン、珪酸アルミニウム、酸化珪素、石膏、ノバキュライト、ドーソナイトおよび白土などなどの板状や粒状の充填剤が挙げられる。これらの充填剤の中では、無機繊維状充填剤が好ましく、特にガラス繊維、ワラストナイトが好ましい。また、有機繊維状充填剤の使用も好ましく、ポリ乳酸樹脂の生分解性を生かすという観点から、天然繊維や再生繊維がさらに好ましい。また、配合に供する繊維状充填剤のアスペクト比(平均繊維長/平均繊維径)は5以上であることが好ましく、10以上であることがさらに好ましく、20以上であることがさらに好ましい。 As fillers other than the inorganic crystal nucleating agent used in the present invention, fibrous, plate-like, granular, and powdery materials that are usually used for reinforcing thermoplastic resins can be used. Specifically, glass fiber, asbestos fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, asbestos, slag fiber, zonolite , Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, etc., inorganic fiber filler, polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, acetate fiber Organic fiber fillers such as kenaf, ramie, cotton, jute, hemp, sisal, flax, linen, silk, manila hemp, sugar cane, wood pulp, paper waste, waste paper and wool, glass flakes, graphite, metal foil, ceramic beads Sericite, bentonite, dolomite, fine silicic acid, feldspar powder, potassium titanate, shirasu balloon, aluminum silicate, silicon oxide, gypsum, novaculite, include plate-like or particulate filler, such as such as dawsonite and white clay. Among these fillers, inorganic fibrous fillers are preferable, and glass fibers and wollastonite are particularly preferable. Moreover, use of an organic fibrous filler is also preferable, and natural fibers and regenerated fibers are more preferable from the viewpoint of taking advantage of the biodegradability of the polylactic acid resin. Further, the aspect ratio (average fiber length / average fiber diameter) of the fibrous filler used for blending is preferably 5 or more, more preferably 10 or more, and further preferably 20 or more.

上記の充填剤は、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂で被覆または集束処理されていてもよく、アミノシランやエポキシシランなどのカップリング剤などで処理されていてもよい。   The filler may be coated or focused with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin, or may be a coupling agent such as aminosilane or epoxysilane. It may be processed.

充填剤の含有量は、(C)ポリ乳酸100重量部に対して、0.1〜200重量部が好ましく、0.5〜100重量部がさらに好ましい。 The content of the filler is preferably 0.1 to 200 parts by weight, more preferably 0.5 to 100 parts by weight with respect to 100 parts by weight of (C) polylactic acid .

本発明においては、加水分解抑制により耐熱性、耐久性が向上するという観点から、さらにカルボキシル基反応性末端封鎖剤を含有することが好ましい。   In the present invention, it is preferable to further contain a carboxyl group-reactive end-blocking agent from the viewpoint of improving heat resistance and durability by inhibiting hydrolysis.

本発明で使用するカルボキシル基反応性末端封鎖剤としては、ポリマーのカルボキシル末端基を封鎖することのできる化合物であれば特に制限はなく、ポリマーのカルボキシル末端の封鎖剤として用いられているものを用いることができる。本発明においてかかるカルボキシル基反応性末端封鎖剤は、(C)ポリ乳酸の末端を封鎖するのみではなく、天然由来の有機充填剤の熱分解や加水分解などで生成する乳酸やギ酸などの酸性低分子化合物のカルボキシル基も封鎖することができる。また、上記末端封鎖剤は、熱分解により酸性低分子化合物が生成する水酸基末端も封鎖できる化合物であることがさらに好ましい。 The carboxyl group-reactive end-blocking agent used in the present invention is not particularly limited as long as it is a compound that can block the carboxyl end group of the polymer, and those used as the carboxyl-terminal blocking agent of the polymer are used. be able to. In the present invention, the carboxyl group-reactive end-blocking agent not only blocks the end of (C) polylactic acid but also has a low acidity such as lactic acid and formic acid generated by thermal decomposition or hydrolysis of naturally-occurring organic fillers. The carboxyl group of the molecular compound can also be blocked. Further, the end-capping agent is more preferably a compound that can also block the hydroxyl end where an acidic low molecular weight compound is generated by thermal decomposition.

このようなカルボキシル基反応性末端封鎖剤としては、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、カルボジイミド化合物、イソシアネート化合物から選ばれる少なくとも1種の化合物を使用することが好ましく、なかでもエポキシ化合物および/またはカルボジイミド化合物が好ましい。   As such a carboxyl group-reactive end-blocking agent, it is preferable to use at least one compound selected from an epoxy compound, an oxazoline compound, an oxazine compound, a carbodiimide compound, and an isocyanate compound, and in particular, an epoxy compound and / or a carbodiimide. Compounds are preferred.

カルボキシル基反応性末端封鎖剤の含有量は、(C)ポリ乳酸100重量部に対して、0.01〜10重量部の範囲が好ましく、0.05〜5重量部の範囲がより好ましい。 The content of the carboxyl group-reactive end-blocking agent is preferably in the range of 0.01 to 10 parts by weight and more preferably in the range of 0.05 to 5 parts by weight with respect to 100 parts by weight of (C) polylactic acid .

カルボキシル基反応性末端封鎖剤の添加時期は、特に限定されないが、耐熱性を向上するだけでなく、機械特性や耐久性を向上できるという点で、(C)ポリ乳酸と予め溶融混練した後、その他のものと混練することが好ましい。 Addition timing of the carboxyl group reactive end capping agent is not particularly limited, not only to improve the heat resistance, in that it can improve the mechanical properties and durability, after melt-kneading (C) and the polylactic acid, It is preferable to knead with others.

本発明において、本発明の目的を損なわない範囲で安定剤(酸化防止剤、紫外線吸収剤、耐候剤など)、滑剤、離型剤、難燃剤、染料または顔料を含む着色剤、帯電防止剤、発泡剤などを添加することができる。   In the present invention, stabilizers (antioxidants, ultraviolet absorbers, weathering agents, etc.), lubricants, mold release agents, flame retardants, colorants including dyes or pigments, antistatic agents, as long as the object of the present invention is not impaired. A foaming agent or the like can be added.

本発明において、本発明の目的を損なわない範囲で、他の熱可塑性樹脂(例えば、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、脂肪族ポリエステル以外のポリエステル樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、芳香族および脂肪族ポリカーボネート樹脂、ポリアリレート樹脂、ポリフェニレンオキサイド樹脂、ポリアセタール樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、芳香族および脂肪族ポリケトン樹脂、フッ素樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン樹脂、ビニルエステル系樹脂、酢酸セルロース樹脂、ポリビニルアルコール樹脂など)または熱硬化性樹脂(例えば、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、シリコーン樹脂、エポキシ樹脂など)などの少なくとも1種以上をさらに含有することができる。これらの樹脂を配合することで、優れた特性を有する成形品を得ることができる。   In the present invention, other thermoplastic resins (for example, polyamide resins, polyphenylene sulfide resins, polyether ether ketone resins, polyester resins other than aliphatic polyesters, polysulfone resins, polyether sulfone resins, as long as the object of the present invention is not impaired. , Aromatic and aliphatic polycarbonate resins, polyarylate resins, polyphenylene oxide resins, polyacetal resins, polyimide resins, polyetherimide resins, aromatic and aliphatic polyketone resins, fluorine resins, polyvinyl chloride resins, polyvinylidene chloride resins, Vinyl ester resin, cellulose acetate resin, polyvinyl alcohol resin, etc.) or thermosetting resin (eg phenol resin, melamine resin, polyester resin, silicone resin, epoxy resin, etc.). Furthermore it is possible to contain at least one more. By blending these resins, a molded product having excellent characteristics can be obtained.

これらの添加剤は、本発明の樹脂組成物を製造する任意の段階で配合することが可能であり、例えば、(A)、(B)、(C)、(D)成分を配合する際に同時に添加する方法や、予め少なくとも2成分の樹脂を溶融混練した後に添加する方法が挙げられる。   These additives can be blended at any stage of producing the resin composition of the present invention. For example, when blending the components (A), (B), (C), and (D) The method of adding simultaneously and the method of adding after melt-kneading at least 2 component resin beforehand are mentioned.

本発明の樹脂組成物の製造方法は、特に限定されるものではなく、例えば、(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸、(D)メタクリル樹脂および必要に応じて結晶核剤、可塑剤、充填剤、その他の添加剤を予めブレンドした後、融点以上において、一軸または二軸押出機で、均一に溶融混練する方法や溶液中で混合した後に溶媒を除く方法などが好ましく用いられる。 The method for producing the resin composition of the present invention is not particularly limited. For example, (A) a styrene resin, (B) a graft polymer, (C) polylactic acid, (D) a methacrylic resin, and as necessary. Crystal nucleating agent, plasticizer, filler, and other additives are blended in advance and then melted and kneaded uniformly with a single or twin screw extruder above the melting point, or the solvent is removed after mixing in solution Etc. are preferably used.

本発明において、得られた樹脂組成物は、通常公知の射出成形、押出成形、インフレーション成形、ブロー成形などの任意の方法で成形することができ、あらゆる形状の成形品として広く用いることができる。成形品とは、フィルム、シート、繊維・布、不織布、射出成形品、押出し成形品、真空圧空成形品、ブロー成形品、または他の材料との複合体などであり、自動車用資材、電機・電子機器用資材、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、文具、医療用品、便座、雑貨、またはその他の用途として有用である。また本成形品は、塗装、メッキ等を施して用いることもできる。   In the present invention, the obtained resin composition can be molded by any method such as generally known injection molding, extrusion molding, inflation molding, blow molding, etc., and can be widely used as a molded product of any shape. Molded products are films, sheets, fibers / clothes, non-woven fabrics, injection molded products, extrusion molded products, vacuum / pressure molded products, blow molded products, or composites with other materials. It is useful for electronic equipment materials, agricultural materials, horticultural materials, fishery materials, civil engineering / building materials, stationery, medical supplies, toilet seats, miscellaneous goods, or other uses. The molded product can also be used after being painted, plated or the like.

本発明をさらに具体的に説明するために、以下、実施例および比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。実施例中の部数および%はそれぞれ重量部および重量%を示す。   In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited to these examples. In the examples, parts and% indicate parts by weight and% by weight, respectively.

[参考例1] (A)スチレン系樹脂
以下にスチレン系樹脂の調製方法を示す。なお得られたポリマーを、70℃で5時間減圧乾燥後、0.4g/100ml濃度のメチルエチルケトン溶液を調製し、30℃の温度条件下でウベローデ粘度計を用いて極限粘度を測定した。
[Reference Example 1] (A) Styrenic Resin A method for preparing a styrene resin is shown below. The polymer obtained was dried under reduced pressure at 70 ° C. for 5 hours, and then a methyl ethyl ketone solution having a concentration of 0.4 g / 100 ml was prepared, and the intrinsic viscosity was measured using an Ubbelohde viscometer at 30 ° C.

<A−1>PSジャパン製“HF77”(ポリスチレン:標準グレード)を使用した。   <A-1> PS Japan "HF77" (polystyrene: standard grade) was used.

<A−2>容量が20Lで、バッフルおよびファウドラ型撹拌翼を備えたステンレス製オートクレーブに、メタクリル酸メチル/アクリルアミド共重合体(特公昭45−24151号公報記載)0.05重量部をイオン交換水165重量部に溶解した溶液を添加して400rpmで撹拌し、系内を窒素ガスで置換した。次に、下記混合物質を反応系で撹拌しながら添加し、60℃に昇温し重合を開始した。
スチレン 70重量部
アクリロニトリル 30重量部
t−ドデシルメルカプタン 0.2重量部
2,2’−アゾビスイソブチロニトリル 0.4重量部。
<A-2> A 20-liter capacity stainless steel autoclave equipped with baffles and foudra-type stirring blades, and 0.05 parts by weight of methyl methacrylate / acrylamide copolymer (described in Japanese Patent Publication No. 45-24151) are ion-exchanged. A solution dissolved in 165 parts by weight of water was added and stirred at 400 rpm, and the system was replaced with nitrogen gas. Next, the following mixed substances were added with stirring in the reaction system, and the temperature was raised to 60 ° C. to initiate polymerization.
Styrene 70 parts by weight Acrylonitrile 30 parts by weight t-dodecyl mercaptan 0.2 parts by weight 2,2′-azobisisobutyronitrile 0.4 parts by weight

30分かけて反応温度を65℃まで昇温したのち、120分かけて100℃まで昇温した。以降、通常の方法に従い、反応系の冷却、ポリマーの分離、洗浄、乾燥を行なうことにより、ビーズ状のポリマーを得た。得られたスチレン系樹脂のメチルエチルケトン可溶分の極限粘度は0.53dl/gであった。   After raising the reaction temperature to 65 ° C. over 30 minutes, the temperature was raised to 100 ° C. over 120 minutes. Thereafter, the reaction system was cooled, the polymer was separated, washed, and dried according to the usual method to obtain a bead-shaped polymer. The intrinsic viscosity of the methyl ethyl ketone soluble part of the obtained styrene-based resin was 0.53 dl / g.

<A−3>上記<A−2>のスチレン70重量部、アクリロニトリル30重量部をメタクリル酸メチル70重量部、スチレン25重量部、アクリロニトリル5重量部に変更した以外はすべて同様に懸濁重合を行った。得られたスチレン系樹脂のメチルエチルケトン可溶分の極限粘度は0.35dl/gであった。   <A-3> Suspension polymerization was similarly performed except that 70 parts by weight of styrene and 30 parts by weight of acrylonitrile in the above <A-2> were changed to 70 parts by weight of methyl methacrylate, 25 parts by weight of styrene, and 5 parts by weight of acrylonitrile. went. The intrinsic viscosity of the methyl ethyl ketone soluble part of the obtained styrene resin was 0.35 dl / g.

<A−4>スチレン50重量部、アクリロニトリル10重量部、N−フェニルマレイミド40重量部、およびt−ドデシルメルカプタン0.2重量部、2,2’−アゾビスイソブチロニトリル0.4重量部をシクロヘキサノン溶媒中で溶液重合した。以降、通常の方法に従い、反応系の冷却、メタノール溶液による再沈殿、洗浄、乾燥、粉砕を行うことによりポリマーを得た。得られたスチレン系樹脂のメチルエチルケトン可溶分の極限粘度は0.33dl/gであった。   <A-4> 50 parts by weight of styrene, 10 parts by weight of acrylonitrile, 40 parts by weight of N-phenylmaleimide, 0.2 part by weight of t-dodecyl mercaptan, 0.4 part by weight of 2,2′-azobisisobutyronitrile Was solution polymerized in cyclohexanone solvent. Thereafter, the polymer was obtained by cooling the reaction system, reprecipitation with a methanol solution, washing, drying, and pulverization according to a usual method. The intrinsic viscosity of the methyl ethyl ketone soluble part of the obtained styrene resin was 0.33 dl / g.

<A−5>
上記<A−2>のt−ドデシルメルカプタンを0.35重量部にする以外はすべて同様に懸濁重合を行った。得られたスチレン系樹脂のメチルエチルケトン可溶分の極限粘度は0.41dl/gであった。
<A-5>
Suspension polymerization was performed in the same manner except that the amount of t-dodecyl mercaptan of <A-2> was changed to 0.35 parts by weight. The intrinsic viscosity of the methyl ethyl ketone soluble part of the obtained styrene resin was 0.41 dl / g.

<A−6>BASFジャパン製“576H”(ポリスチレン:高衝撃グレード)を使用した。   <A-6> “576H” (polystyrene: high impact grade) manufactured by BASF Japan was used.

<A−7>旭化成ケミカル製“スタイラック121”(ABS:標準グレード)を使用した。   <A-7> "Stylac 121" (ABS: standard grade) manufactured by Asahi Kasei Chemical was used.

[参考例2] (B)グラフト重合体
以下にグラフト共重合体の調製方法を示す。なおグラフト率は次の方法で求めたものである。グラフト共重合体の所定量(m)にアセトンを加え4時間還流した。この溶液を8000rpm(遠心力10,000G(約100×103 m/s2 ))30分遠心分離後、不溶分を濾過した。この不溶分を70℃で5時間減圧乾燥し、重量(n)を測定した。
グラフト率=[(n)−(m)×L]/[(m)×L]×100
ここでLはグラフト共重合体のゴム含有率を意味する。
[Reference Example 2] (B) Graft polymer A method for preparing a graft copolymer is shown below. The graft ratio was determined by the following method. Acetone was added to a predetermined amount (m) of the graft copolymer and refluxed for 4 hours. This solution was centrifuged at 8000 rpm (centrifugal force 10,000 G (about 100 × 10 3 m / s 2 )) for 30 minutes, and the insoluble matter was filtered off. This insoluble matter was dried under reduced pressure at 70 ° C. for 5 hours, and the weight (n) was measured.
Graft ratio = [(n) − (m) × L] / [(m) × L] × 100
Here, L means the rubber content of the graft copolymer.

上記アセトン溶液の濾液をロータリーエバポレーターで濃縮し、析出物(アセトン可溶分)を得た。この可溶分を、70℃で5時間減圧乾燥後、0.4g/100ml濃度のメチルエチルケトン溶液を調製し、30℃の温度条件下でウベローデ粘度計を用いて極限粘度を測定した。   The filtrate of the acetone solution was concentrated with a rotary evaporator to obtain a precipitate (acetone soluble matter). The soluble matter was dried under reduced pressure at 70 ° C. for 5 hours, a 0.4 g / 100 ml concentration methyl ethyl ketone solution was prepared, and the intrinsic viscosity was measured using an Ubbelohde viscometer under a temperature condition of 30 ° C.

<B−1>
ポリブタジエン(重量平均粒子径0.35μm) 50重量部
(日本ゼオン社製 Nipol LX111K) (固形分換算)
オレイン酸カリウム 0.5重量部
ブドウ糖 0.5重量部
ピロリン酸ナトリウム 0.5重量部
硫酸第一鉄 0.005重量部
脱イオン水 120重量部。
<B-1>
Polybutadiene (weight average particle size 0.35 μm) 50 parts by weight (Nipol LX111K manufactured by Nippon Zeon Co., Ltd.) (solid content conversion)
Potassium oleate 0.5 part by weight Glucose 0.5 part by weight Sodium pyrophosphate 0.5 part by weight Ferrous sulfate 0.005 part by weight Deionized water 120 part by weight.

以上の物質を重合容器に仕込み、撹拌しながら65℃に昇温した。内温が65℃に達した時点を重合開始として、メタクリル酸メチル35重量部、スチレン12.5重量部、アクリロニトリル2.5重量部、およびt−ドデシルメルカプタン0.3重量部を5時間かけて連続滴下した。並行してクメンハイドロパーオキサイド0.25重量部、オレイン酸カリウム2.5重量部および純水25重量部からなる水溶液を、7時間で連続滴下し反応を完結させた。得られたグラフト共重合体ラテックスを硫酸で凝固し、苛性ソ−ダで中和した後、洗浄、濾過、乾燥してパウダー状として得た。得られたグラフト共重合体のグラフト率は40%、メチルエチルケトン可溶分の極限粘度は0.30dl/gであった。   The above substances were charged into a polymerization vessel and heated to 65 ° C. with stirring. The polymerization was started when the internal temperature reached 65 ° C., and 35 parts by weight of methyl methacrylate, 12.5 parts by weight of styrene, 2.5 parts by weight of acrylonitrile, and 0.3 parts by weight of t-dodecyl mercaptan were taken over 5 hours. Continuous dripping. In parallel, an aqueous solution consisting of 0.25 parts by weight of cumene hydroperoxide, 2.5 parts by weight of potassium oleate and 25 parts by weight of pure water was continuously added dropwise over 7 hours to complete the reaction. The obtained graft copolymer latex was coagulated with sulfuric acid, neutralized with caustic soda, washed, filtered and dried to obtain a powder. The graft ratio of the obtained graft copolymer was 40%, and the intrinsic viscosity of methyl ethyl ketone-soluble component was 0.30 dl / g.

<B−2>上記<B−1>のメタクリル酸メチル35重量部、スチレン12.5重量部、アクリロニトリル2.5重量部をメタクリル酸メチル42.5重量部、スチレン7.5重量部に変更した以外はすべて同様に乳化重合を行った。得られたグラフト共重合体のグラフト率は42%、メチルエチルケトン可溶分の極限粘度は0.28dl/gであった。   <B-2> 35 parts by weight of methyl methacrylate, 12.5 parts by weight of styrene, and 2.5 parts by weight of acrylonitrile are changed to 42.5 parts by weight of methyl methacrylate and 7.5 parts by weight of styrene. Except that, emulsion polymerization was carried out in the same manner. The graft ratio of the obtained graft copolymer was 42%, and the intrinsic viscosity of the methyl ethyl ketone-soluble component was 0.28 dl / g.

<B−3>上記<B−1>のメタクリル酸メチル35重量部、スチレン12.5重量部、アクリロニトリル2.5重量部をメタクリル酸メチル50部に変更した以外はすべて同様に乳化重合を行った。得られたグラフト共重合体のグラフト率は43%、メチルエチルケトン可溶分の極限粘度は0.27dl/gであった。   <B-3> Emulsion polymerization is carried out in the same manner except that 35 parts by weight of methyl methacrylate, 12.5 parts by weight of styrene and 2.5 parts by weight of acrylonitrile are changed to 50 parts of methyl methacrylate. It was. The graft ratio of the obtained graft copolymer was 43%, and the intrinsic viscosity of methyl ethyl ketone-soluble component was 0.27 dl / g.

<B−4>上記<B−1>のメタクリル酸メチル35重量部、スチレン12.5重量部、アクリロニトリル2.5重量部をスチレン35重量部、アクリロニトリル15重量部に変更した以外はすべて同様に乳化重合を行った。得られたグラフト共重合体のグラフト率は38%、メチルエチルケトン可溶分の極限粘度は0.33dl/gであった。   <B-4> The same as above except that 35 parts by weight of methyl methacrylate, 12.5 parts by weight of styrene and 2.5 parts by weight of acrylonitrile are changed to 35 parts by weight of styrene and 15 parts by weight of acrylonitrile. Emulsion polymerization was performed. The graft ratio of the obtained graft copolymer was 38%, and the intrinsic viscosity of methyl ethyl ketone-soluble component was 0.33 dl / g.

[参考例3] (C)ポリ乳酸
<C−1>重量平均分子量16万、D−乳酸単位1.2%のポリ−L−乳酸を使用した。
[Reference Example 3] (C) Polylactic acid <C-1> Poly-L-lactic acid having a weight average molecular weight of 160,000 and a D-lactic acid unit of 1.2% was used.

<C−2>重量平均分子量21万、D−乳酸単位4%のポリ−L−乳酸を使用した。   <C-2> Poly-L-lactic acid having a weight average molecular weight of 210,000 and a D-lactic acid unit of 4% was used.

<C−3>重量平均分子量20万、D−乳酸単位1%のポリ−L−乳酸を使用した。   <C-3> Poly-L-lactic acid having a weight average molecular weight of 200,000 and a D-lactic acid unit of 1% was used.

[参考例4] (D)メタクリル樹脂
<D−1> メタクリル樹脂(住友化学製“スミペックスLG21”Tg105℃、シンジオタクチシチー41%、Mw8万、MFR21g/10分(230℃、37.2N))
[Reference Example 4] (D) Methacrylic Resin <D-1> Methacrylic Resin (Sumitomo Chemical “Sumipex LG21” Tg 105 ° C., Syndiotacticity 41%, Mw 80,000, MFR 21 g / 10 min (230 ° C., 37.2 N) )

<D−2>メタクリル樹脂(クラレ製“パラペット”HR−L、Tg117℃、シンジオタクチシチー56%、Mw9万、MFR2g/10分(230℃、37.2N))   <D-2> Methacrylic resin (Kuraray “Parapet” HR-L, Tg 117 ° C., syndiotacticity 56%, Mw 90,000, MFR 2 g / 10 min (230 ° C., 37.2 N))

[参考例5](E1)ジカルボン酸無水物
<E1−1>東京化成工業製マレイン酸無水物を使用した。
[Reference Example 5] (E1) Dicarboxylic anhydride <E1-1> Maleic anhydride manufactured by Tokyo Chemical Industry was used.

<E1−2>東京化成工業製コハク酸無水物を使用した。   <E1-2> Tokyo Chemical Industry's succinic anhydride was used.

[参考例6](E2)ジカルボン酸
<E2−1>東京化成工業製マレイン酸を使用した。
[Reference Example 6] (E2) Dicarboxylic acid <E2-1> Maleic acid manufactured by Tokyo Chemical Industry was used.

[参考例7] 結晶核剤
<F−1>富士タルク工業製”LMS300”(タルク;無機系結晶核剤)を使用した。
[Reference Example 7] Crystal nucleating agent <F-1> “LMS300” (talc; inorganic crystal nucleating agent) manufactured by Fuji Talc Kogyo was used.

<F−2>日本化成製”スリパックスL”(エチレンビスラウリン酸アミド;有機系結晶核剤)を使用した。   <F-2> Nippon Kasei's “Slipax L” (ethylenebislauric acid amide; organic crystal nucleating agent) was used.

[参考例8] 可塑剤
<G−1>三洋化成製”PEG4000”(ポリエチレングリコール)を使用した。
[Reference Example 8] Plasticizer <G-1>"PEG4000" (polyethylene glycol) manufactured by Sanyo Chemical Industries was used.

[参考例9] 充填剤
<H−1>日東紡績製”CS3J948”(ガラス繊維)を使用した。
[Reference Example 9] Filler <H-1> “CS3J948” (glass fiber) manufactured by Nittobo was used.

[参考例10] カルボキシル末端封鎖剤
<I−1>日清紡製”カルボジライト”LA−1(カルボジイミド)を使用した。
[Reference Example 10] Carboxyl terminal blocking agent <I-1> “Carbodilite” LA-1 (carbodiimide) manufactured by Nisshinbo was used.

[実施例1、2、5〜7、比較例1〜6、14、15
表1記載の組成からなる原料をドライブレンドした後、押出温度220℃に設定した2軸スクリュー押出機(日本製鋼所製TEX−30)を使用して溶融混合ペレタイズを行った。
[Examples 1 , 2 , 5 to 7, Comparative Examples 1 to 6 , 14, 15 ]
After dry blending the raw materials having the composition shown in Table 1, melt mixing pelletizing was performed using a twin screw extruder (TEX-30 manufactured by Nippon Steel Works) set at an extrusion temperature of 220 ° C.

実施例1、2、5〜7および比較例1〜6、14、15で得られたペレットを東芝機械製IS55EPN射出成形機を用いて、成形温度230℃、金型温度40℃の条件で射出成形することにより得られた試験片について、各特性を以下の測定方法にて評価した。 The pellets obtained in Examples 1 , 2, 5 to 7 and Comparative Examples 1 to 6 , 14 , and 15 were injected under conditions of a molding temperature of 230 ° C. and a mold temperature of 40 ° C. using an IS55EPN injection molding machine manufactured by Toshiba Machine. About the test piece obtained by shape | molding, each characteristic was evaluated with the following measuring methods.

[引張特性]:ASTM D638に従い、引張特性を評価した。   [Tensile properties]: Tensile properties were evaluated according to ASTM D638.

[耐衝撃性]:ASTM D256−56Aに従い、耐衝撃性を評価した。   [Impact resistance]: The impact resistance was evaluated according to ASTM D256-56A.

[耐熱性]:ASTM D648(荷重:0.46MPa)に従い、荷重たわみ温度を測定した。   [Heat resistance]: The deflection temperature under load was measured according to ASTM D648 (load: 0.46 MPa).

[TEM観察]:透過型電子顕微鏡(HITACHI、ELECTRON MICROSCOPE H−700)を用いて、得られた樹脂組成物の断面についてモルフォロジー観察を行い、倍率1000倍の写真(写真上1cmが10μmに相当)をもとに、写真上に撮影された、分散した個々の球状分散相の任意の30個について、最も長い粒子径を測定し、数平均した値を平均粒径とした。   [TEM Observation]: Using a transmission electron microscope (HITACHI, ELECTRON MICROSCOPE H-700), a cross-section of the obtained resin composition was observed for morphology, and a photograph with a magnification of 1000 times (1 cm on the photograph corresponds to 10 μm) The longest particle diameter of any 30 dispersed individual spherical dispersed phases taken on the photograph was measured, and the number averaged value was taken as the average particle diameter.

各サンプルの引張特性、耐衝撃性、耐熱性、TEM観察についての測定結果をそれぞれ表1に示す。   Table 1 shows the measurement results of tensile properties, impact resistance, heat resistance, and TEM observation of each sample.

Figure 0005140988
Figure 0005140988

実施例1、2、5〜7、比較例1〜6、14、15より、本発明の樹脂組成物は、引張特性、耐衝撃性、耐熱性に優れることがわかる。 From Examples 1 , 2 , 5 to 7 and Comparative Examples 1 to 6 , 14, and 15 , it can be seen that the resin composition of the present invention is excellent in tensile properties, impact resistance, and heat resistance.

[実施例8〜19、21〜23、比較例7〜13、16〜21
表2、3、4記載の組成からなる原料をドライブレンドした後、押出温度220℃に設定した2軸スクリュー押出機(日本製鋼所製TEX−30)を使用して溶融混合ペレタイズを行った。
[Examples 8-19 , 21-23 , Comparative Examples 7-13 , 16-21 ]
After dry blending the raw materials composed of the compositions shown in Tables 2, 3, and 4, melt mixing pelletizing was performed using a twin screw extruder (TEX-30 manufactured by Nippon Steel Works) set at an extrusion temperature of 220 ° C.

実施例8〜19、21〜23、および比較例7〜13、16〜21で得られたペレットを東芝機械製IS55EPN射出成形機を用いて、成形温度230℃、金型温度40℃の条件で射出成形することにより得られた試験片について、各特性を以下の測定方法にて評価した。比較例17〜21で得られたペレットは、成形温度230℃、金型温度85℃の条件に変更した以外はすべて同様に成形、評価をした。 The pellets obtained in Examples 8 to 19 , 21 to 23 , and Comparative Examples 7 to 13 and 16 to 21 were used under the conditions of a molding temperature of 230 ° C. and a mold temperature of 40 ° C. using an IS55EPN injection molding machine manufactured by Toshiba Machine. About the test piece obtained by carrying out injection molding, each characteristic was evaluated with the following measuring methods. The pellets obtained in Comparative Examples 17 to 21 were all molded and evaluated in the same manner except that the conditions were changed to a molding temperature of 230 ° C and a mold temperature of 85 ° C.

[流動性]:射出成形時の成形下限圧(ゲージ圧)から流動性を評価した。最低充填圧力が小さいものほど流動性に優れる。   [Flowability]: Flowability was evaluated from the molding lower limit pressure (gauge pressure) during injection molding. The smaller the minimum filling pressure, the better the fluidity.

[引張特性]:ASTM D638に従い引張特性を評価した。   [Tensile Properties]: Tensile properties were evaluated according to ASTM D638.

[耐衝撃性]:ASTM D256−56Aに従い耐衝撃性を評価した。   [Impact resistance]: The impact resistance was evaluated according to ASTM D256-56A.

[耐熱性]:ASTM D648(荷重:0.46MPa)に従い熱変形温度を測定した。   [Heat resistance]: The heat distortion temperature was measured according to ASTM D648 (load: 0.46 MPa).

[面積割合]:射出成形により得られた成形品について、オスミウムブロック染色法により、(A)スチレン系樹脂、(B)グラフト重合体を染色した後、超薄切片を切り出したサンプルについて、透過型電子顕微鏡にて6000倍に拡大して断面を観察、撮影した。さらに4倍に拡大し、(C)脂肪族ポリエステル中に分散している(B)の面積(X)と(A)スチレン系樹脂中に分散している(B)の面積(Y)を該写真から切り出し重量法を用いて求め、(X)/((X)+(Y))の式に従って面積割合を求めた。   [Area ratio]: For a molded article obtained by injection molding, a sample obtained by cutting out an ultrathin section after dyeing (A) a styrene resin and (B) a graft polymer by an osmium block dyeing method. The cross section was observed and photographed at an magnification of 6000 with an electron microscope. Further expanded to 4 times, (C) the area (X) of (B) dispersed in the aliphatic polyester and (A) the area (Y) of (B) dispersed in the styrene resin The area ratio was calculated according to the formula (X) / ((X) + (Y)).

各サンプルの流動性、引張特性、耐衝撃性、耐熱性、面積割合についての測定結果をそれぞれ表2、表3、表4に示す。   Tables 2, 3, and 4 show the measurement results of the fluidity, tensile properties, impact resistance, heat resistance, and area ratio of each sample, respectively.

Figure 0005140988
Figure 0005140988

Figure 0005140988
Figure 0005140988

Figure 0005140988
Figure 0005140988

なお、実施例17において、実施例1と同様にTEM観察を行った結果、脂肪族ポリエステルの平均粒径は200nmであった。   In Example 17, the TEM observation was performed in the same manner as in Example 1. As a result, the average particle size of the aliphatic polyester was 200 nm.

実施例8〜19、21〜23、比較例7〜13、16〜21より、本発明の樹脂組成物は、流動性、引張特性、耐衝撃性、耐熱性に優れることがわかる。 From Examples 8 to 19 , 21 to 23 , and Comparative Examples 7 to 13 and 16 to 21 , it can be seen that the resin composition of the present invention is excellent in fluidity, tensile properties, impact resistance, and heat resistance.

自動車用資材、電機・電子機器用資材、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、文具、医療用品、便座、雑貨、またはその他各種の用途として用いることができる。   It can be used as materials for automobiles, materials for electric / electronic devices, materials for agriculture, materials for horticulture, materials for fisheries, materials for civil engineering / building, stationery, medical supplies, toilet seats, miscellaneous goods, or other various uses.

Claims (8)

(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸および(D)メタクリル樹脂を配合してなる樹脂組成物であって、(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸および(D)メタクリル樹脂の合計量に対して、(A)スチレン系樹脂10重量%以上、(B)グラフト重合体0〜50重量%、(C)ポリ乳酸85重量%未満、および(D)メタクリル樹脂1〜30重量%であり、
(A)スチレン系樹脂と(D)メタクリル樹脂の混合比が、(A)スチレン系樹脂と(D)メタクリル樹脂の合計量100重量%に対し、(D)メタクリル樹脂が12.5重量%以下であり、
(A)スチレン系樹脂が、(a)不飽和カルボン酸アルキルエステル系単位0〜99重量%、(b)芳香族ビニル系単位1〜100重量%、(c)シアン化ビニル系単位0〜50重量%、および(d)これらと共重合可能な他のビニル系単位0〜99重量%が共重合されたスチレン系樹脂である樹脂組成物。
(A) Styrenic resin, (B) graft polymer, (C) polylactic acid, and (D) a methacrylic resin composition, (A) styrene resin, (B) graft polymer , (C) polylactic acid and (D) methacrylic resin, based on the total amount of (A) styrene resin 10% by weight or more, (B) 0-50% by weight of graft polymer, (C) 85% by weight of polylactic acid And (D) methacrylic resin 1 to 30% by weight,
(A) The mixing ratio of the styrene resin and the (D) methacrylic resin is 100% by weight of the total amount of the (A) styrene resin and the (D) methacrylic resin. And
(A) Styrenic resin is (a) 0 to 99% by weight of unsaturated carboxylic acid alkyl ester unit, (b) 1 to 100% by weight of aromatic vinyl unit, (c) vinyl cyanide unit 0 to 50 And (d) a resin composition which is a styrene resin copolymerized with 0 to 99% by weight of other vinyl units copolymerizable therewith.
(A)スチレン系樹脂、(B)グラフト重合体、(C)ポリ乳酸および(D)メタクリル樹脂の合計量に対して、(A)スチレン系樹脂20〜58重量%、(B)グラフト重合体0〜30重量%、(C)ポリ乳酸30〜60重量%、および(D)メタクリル樹脂2〜15重量%である請求項1記載の樹脂組成物。 (A) 20-58 wt% styrene resin, (B) graft polymer, based on the total amount of (A) styrene resin, (B) graft polymer, (C) polylactic acid and (D) methacrylic resin 2. The resin composition according to claim 1, comprising 0 to 30% by weight, (C) 30 to 60% by weight of polylactic acid, and (D) 2 to 15% by weight of methacrylic resin. (A)スチレン系樹脂が、(a)不飽和カルボン酸アルキルエステル系単位0〜70重量%、(b)芳香族ビニル系単位25〜100重量%、および(c)シアン化ビニル系単位0〜30重量%が共重合されたスチレン系樹脂であることを特徴とする請求項1〜2いずれか1項に記載の樹脂組成物。 (A) Styrenic resin comprises (a) unsaturated carboxylic acid alkyl ester unit 0 to 70% by weight, (b) aromatic vinyl unit 25 to 100% by weight, and (c) vinyl cyanide unit 0 to The resin composition according to any one of claims 1 to 2, wherein 30% by weight is a copolymerized styrene resin. (B)グラフト重合体が、(r)ゴム質重合体10〜80重量%に、(a)不飽和カルボン酸アルキルエステル系単位20〜90重量%、(b)芳香族ビニル系単位0〜70重量%、(c)シアン化ビニル系単位0〜50重量%、および(d)これらと共重合可能な他のビニル系単位0〜70重量%がグラフト重合されたグラフト重合体であることを特徴とする請求項1〜3のいずれか1項に記載の樹脂組成物。 (B) Graft polymer is (r) 10 to 80% by weight of rubbery polymer, (a) 20 to 90% by weight of unsaturated carboxylic acid alkyl ester unit, and (b) aromatic vinyl unit 0 to 70%. A graft polymer in which 0% by weight, (c) 0 to 50% by weight of vinyl cyanide units, and (d) 0 to 70% by weight of other vinyl units copolymerizable therewith are graft polymers. The resin composition according to any one of claims 1 to 3. (B)グラフト共重合体が、(r)ブタジエン系重合体10〜80重量%に、(a)不飽和カルボン酸アルキルエステル系単位20〜90重量%、(b)芳香族ビニル系単位0〜70重量%、(c)シアン化ビニル系単位0〜50重量%、および(d)これらと共重合可能な他のビニル系単位0〜70重量%がグラフト重合されたグラフト重合体であることを特徴とする請求項1〜のいずれか1項に記載の樹脂組成物。 (B) The graft copolymer is (r) 10 to 80% by weight of a butadiene polymer, (a) 20 to 90% by weight of an unsaturated carboxylic acid alkyl ester unit, and (b) an aromatic vinyl unit 0 to 70% by weight, (c) 0 to 50% by weight of vinyl cyanide units, and (d) 0 to 70% by weight of other vinyl units copolymerizable therewith are graft polymers. The resin composition according to any one of claims 1 to 4 , wherein the resin composition is characterized in that (C)ポリ乳酸が、総乳酸成分の内、L体あるいはD体が80モル%以上含まれることを特徴とする請求項1〜のいずれか1項に記載の樹脂組成物。 (C) Polylactic acid contains 80 mol% or more of L-form or D-form among the total lactic acid components, The resin composition of any one of Claims 1-5 characterized by the above-mentioned. (D)メタクリル樹脂が、シンジオタクチシチーが40%以上である請求項1〜のいずれか1項に記載の樹脂組成物。 (D) The resin composition according to any one of claims 1 to 6 , wherein the methacrylic resin has a syndiotacticity of 40% or more. 請求項1〜のいずれか1項に記載の樹脂組成物を成形してなる成形品。 A molded article formed by molding the resin composition according to any one of claims 1 to 7 .
JP2006290423A 2005-12-22 2006-10-25 Resin composition and molded article comprising the same Active JP5140988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290423A JP5140988B2 (en) 2005-12-22 2006-10-25 Resin composition and molded article comprising the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005369377 2005-12-22
JP2005369377 2005-12-22
JP2006290423A JP5140988B2 (en) 2005-12-22 2006-10-25 Resin composition and molded article comprising the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012175521A Division JP5494757B2 (en) 2005-12-22 2012-08-08 Resin composition and molded article comprising the same

Publications (2)

Publication Number Publication Date
JP2007191688A JP2007191688A (en) 2007-08-02
JP5140988B2 true JP5140988B2 (en) 2013-02-13

Family

ID=47460178

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006290423A Active JP5140988B2 (en) 2005-12-22 2006-10-25 Resin composition and molded article comprising the same
JP2012175521A Expired - Fee Related JP5494757B2 (en) 2005-12-22 2012-08-08 Resin composition and molded article comprising the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012175521A Expired - Fee Related JP5494757B2 (en) 2005-12-22 2012-08-08 Resin composition and molded article comprising the same

Country Status (1)

Country Link
JP (2) JP5140988B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068095B2 (en) * 2007-03-28 2012-11-07 シャープ株式会社 Thermoplastic resin composition, thermoplastic resin molded body, and method for producing thermoplastic resin molded body
US8647738B2 (en) 2007-09-10 2014-02-11 Teijin Limited Film
JP5191264B2 (en) * 2008-04-11 2013-05-08 Psジャパン株式会社 Resin composition containing styrene resin and polylactic acid resin
JP5200281B2 (en) * 2008-08-29 2013-06-05 日本エイアンドエル株式会社 Thermoplastic resin composition
JP2010059279A (en) * 2008-09-02 2010-03-18 Nippon A&L Inc Thermoplastic resin composition
KR101098126B1 (en) 2008-09-24 2011-12-26 주식회사 엘지화학 Eco-friendly resin composition having improved impact strength and heat stability
KR101233373B1 (en) * 2008-12-30 2013-02-18 제일모직주식회사 Polylactic acid resin composition
CN102906184A (en) 2011-02-15 2013-01-30 东丽株式会社 Thermoplastic resin composition and molded articles thereof
KR101427452B1 (en) 2011-08-01 2014-08-08 주식회사 엘지화학 Polylactic acid resin composition and preparation method thereof
JP6687330B2 (en) * 2015-04-09 2020-04-22 東洋スチレン株式会社 Styrene resin composition and molded article
WO2020137843A1 (en) * 2018-12-26 2020-07-02 東洋スチレン株式会社 Resin composition and molded body
CN117164932B (en) * 2023-10-31 2024-01-26 汕头市虹桥包装实业有限公司 Injection molding foaming polypropylene material, preparation method thereof and application thereof in lightweight high-performance bottle cap

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330580A (en) * 1997-05-30 1998-12-15 Asahi Chem Ind Co Ltd Thermoplastic resin composition excellent in acetic acid resistance and impact strength
JPH11279380A (en) * 1998-03-27 1999-10-12 Daise Kogyo Kk Biodegradable pearlescent plastic, biodegradable pearlescent plastic article, and production of biodegradable pearlescent plastic article
JPH11330580A (en) * 1998-05-20 1999-11-30 Matsushita Electric Ind Co Ltd Piezoelectric transformer, its manufacture and its driving method
US7354973B2 (en) * 2003-12-12 2008-04-08 E.I. Du Pont De Nemours And Company Toughened poly(lactic acid) compositions
JP2005344075A (en) * 2004-06-07 2005-12-15 Mitsubishi Rayon Co Ltd Polylactic acid-based thermoplastic resin composition
JP5396681B2 (en) * 2005-11-30 2014-01-22 ユーエムジー・エービーエス株式会社 Flame retardant polylactic acid-based thermoplastic resin composition and molded article thereof

Also Published As

Publication number Publication date
JP2012237005A (en) 2012-12-06
JP5494757B2 (en) 2014-05-21
JP2007191688A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP5140988B2 (en) Resin composition and molded article comprising the same
TWI396712B (en) Resin composition and the molding article
JP2007191695A (en) Resin composition and molded article comprising the same
JP5245229B2 (en) Resin composition and molded article comprising the same
JP5272283B2 (en) Styrenic resin composition
JP5120521B2 (en) Thermoplastic resin composition and molded article thereof
KR20100078850A (en) Polylactic acid resin composition
JP5228297B2 (en) Styrene resin composition and molded article comprising the same
JP2008222790A (en) Resin composition and molding comprising the same
KR101023650B1 (en) Environmentally Friendly Thermoplastic Resin Composition Using Recycled Polyester Resin
JP2009120725A (en) Polylactic acid-based resin sheet and information recording card
JP5229417B2 (en) Styrene resin composition and molded article comprising the same
JP4935222B2 (en) Resin composition and molded article comprising the same
JP2007126535A (en) Polylactic acid-based thermoplastic resin composition and its molded article
JP5504548B2 (en) Styrenic resin composition
JP5483387B2 (en) Resin composition and molded article comprising the same
JP2013245222A (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP2008133466A5 (en)
JP2006056988A (en) Aliphatic polyester resin composition and molded product using the same
JP2013181046A (en) Thermoplastic resin composition and molded article thereof
JP2011099048A (en) Thermoplastic resin composition and molded product thereof
JP2012136715A (en) Resin composition and molded article comprising the same
JP2013147672A (en) Polylactic acid-based thermoplastic resin composition and its molded article
JP2014040559A (en) Polylactic acid-based thermoplastic resin composition, and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5140988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151