JP5140309B2 - X-ray fluoroscopic equipment - Google Patents

X-ray fluoroscopic equipment Download PDF

Info

Publication number
JP5140309B2
JP5140309B2 JP2007112485A JP2007112485A JP5140309B2 JP 5140309 B2 JP5140309 B2 JP 5140309B2 JP 2007112485 A JP2007112485 A JP 2007112485A JP 2007112485 A JP2007112485 A JP 2007112485A JP 5140309 B2 JP5140309 B2 JP 5140309B2
Authority
JP
Japan
Prior art keywords
image
contrast agent
contrast
contrast medium
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007112485A
Other languages
Japanese (ja)
Other versions
JP2008264274A (en
JP2008264274A5 (en
Inventor
正 中村
重之 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2007112485A priority Critical patent/JP5140309B2/en
Publication of JP2008264274A publication Critical patent/JP2008264274A/en
Publication of JP2008264274A5 publication Critical patent/JP2008264274A5/ja
Application granted granted Critical
Publication of JP5140309B2 publication Critical patent/JP5140309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、X線透視撮影装置に係り、特に血管造影検査における造影剤の流れを観察するX線透視撮影装置に関する。   The present invention relates to an X-ray fluoroscopic apparatus, and more particularly to an X-ray fluoroscopic apparatus that observes the flow of a contrast medium in an angiographic examination.

近年、特許文献1等に開示されているような血管造影検査装置を用いて塞栓物によって腫瘍への血流を止めて治療する血管塞栓術が行われている。   In recent years, vascular embolization has been performed in which an angiographic examination apparatus such as that disclosed in Patent Document 1 is used to stop and treat blood flow to a tumor with an embolus.

これは、X線を透過させない成分を含む造影剤を血管に挿入したカテーテルから注入し、前記血管造影検査装置のX線透視により前記造影剤の流れを確認しながら塞栓状態を観察して行うものである。   This is performed by injecting a contrast medium containing a component that does not transmit X-rays from a catheter inserted into a blood vessel, and observing the embolization state while confirming the flow of the contrast medium by X-ray fluoroscopy of the angiography inspection apparatus. It is.

前記塞栓状態を観察するためには、連続的に血液の流れを撮影し、造影剤の
移動量及び流速度を可視化して造影剤の移動情況を把握する必要がある。
In order to observe the embolization state, it is necessary to continuously capture the blood flow, visualize the amount and flow velocity of the contrast agent, and grasp the movement state of the contrast agent.

特開2004-81569号公報JP 2004-81569 A

前記特許文献1等に開示されている血管造影検査装置は、白黒階調の画像表示装置にX線の透過性のみの情報を表示してX線透視により造影剤の流れを確認している。   The angiography inspection apparatus disclosed in Patent Document 1 or the like displays information on only X-ray permeability on a black and white gradation image display apparatus and confirms the flow of contrast medium by X-ray fluoroscopy.

しかしながら、造影剤を注入する血管は常に血液が流れているために造影剤も流れてしまい、前記白黒階調の表示では前記造影剤の一回の注入で該造影剤の流れを確認するには不充分である。そのために、透視X線を照射しながら造影剤を何回か注入する必要があった。   However, since blood always flows through the blood vessel for injecting the contrast medium, the contrast medium also flows. In the black and white gradation display, in order to confirm the flow of the contrast medium by one injection of the contrast medium Insufficient. Therefore, it was necessary to inject contrast medium several times while irradiating fluoroscopic X-rays.

そこで、本発明は、造影剤の一定時間における移動量をカラー化又はパターン化して可視化すること及び造影剤の移動量、造影剤の流速度等のX線画像から得られる情報を多くして前記造影剤の流れの状況を効率良く観察できるX線透視撮影装置を提供することを目的とする。   Therefore, the present invention is to visualize the amount of contrast agent movement in a certain time by colorizing or patterning and increasing the information obtained from the X-ray image such as the amount of contrast agent movement and the flow rate of the contrast agent. An object of the present invention is to provide an X-ray fluoroscopic apparatus capable of efficiently observing the flow state of a contrast agent.

本発明の血管造影検査機能を備えたX線透視撮影装置は、被検体の血管内に注入した造影剤の流れの状況を可視化するもので、具体的には以下の手段によって達成される。   The X-ray fluoroscopic apparatus having an angiographic examination function of the present invention visualizes the flow state of a contrast medium injected into a blood vessel of a subject, and is specifically achieved by the following means.

すなわち、被検体に造影剤を注入する造影剤注入手段と、前記被検体に照射するX線を発生するX線発生手段と、前記X線の照射量を制御するX線制御手段と、前記X線発生手段と対向配置され前記被検体の透過X線を検出してこれをデジタル画像データとして検出する二次元X線検出手段と、この二次元X線検出手段で検出した画像データに対して画像処理を施す画像処理手段と、この画像処理手段で処理されたX線画像を表示する画像表示手段とを備えたX線透視撮影装置であって、前記画像処理手段は、少なくとも前記造影剤注入手段で前記被検体の血管内に造影剤を注入して撮影した画像を格納するフレームメモリと、このフレームメモリに格納した画像から前記造影剤の移動状態を可視化する画像を生成する造影剤可視化画像生成手段とを備え、この手段で生成した造影剤可視化画像と現画像とを第一の画像合成手段で合成し、この合成した画像を前記画像表示手段に表示する。   That is, a contrast medium injection means for injecting a contrast medium into a subject, an X-ray generation means for generating X-rays to be irradiated on the subject, an X-ray control means for controlling the X-ray dose, and the X A two-dimensional X-ray detection means for detecting transmitted X-rays of the subject, which is arranged opposite to the line generation means, and detecting it as digital image data, and an image for the image data detected by the two-dimensional X-ray detection means An X-ray fluoroscopic apparatus comprising image processing means for performing processing and image display means for displaying an X-ray image processed by the image processing means, wherein the image processing means is at least the contrast medium injection means A frame memory for storing an image taken by injecting a contrast medium into the blood vessel of the subject and a contrast medium visualization image generation for generating an image for visualizing the movement state of the contrast medium from the image stored in the frame memory Means and The contrast agent visualized image generated by this means and the current image are synthesized by the first image synthesis means, and the synthesized image is displayed on the image display means.

前記フレームメモリに格納する画像は、前記被検体の血管内に予め塞栓物質を留置させた状態で撮影した画像及び前記造影剤注入手段で前記血管内に造影剤を注入して撮影した画像であって、前記造影剤可視化画像生成手段は、前記フレームメモリに格納した画像間の演算を行う演算手段と、該演算結果から前記注入した造影剤の先端位置を検出する造影剤先端位置検出手段と、該検出した造影剤先端位置情報から該造影剤の移動距離を算出する造影剤移動距離算出手段と、該移動距離を可視化情報に変換する造影剤移動距離可視化手段とを備えて前記造影剤の移動状態を可視化する。   The image stored in the frame memory is an image taken in a state where an embolic substance is placed in advance in the blood vessel of the subject and an image taken by injecting a contrast agent into the blood vessel by the contrast agent injecting means. The contrast agent visualized image generation means includes a calculation means for calculating between images stored in the frame memory, a contrast agent tip position detection means for detecting a tip position of the injected contrast agent from the calculation result, Contrast agent movement distance calculating means for calculating the movement distance of the contrast agent from the detected contrast agent tip position information, and contrast agent movement distance visualization means for converting the movement distance into visualization information. Visualize the state.

前記造影剤先端位置検出手段は、前記造影剤を注入した画像から造影剤を注入していない画像を前記演算手段で減算して造影剤が通過した領域を算出する造影剤通過領域算出手段と、この算出した造影剤通過領域から該造影剤の先端部を算出する造影剤先端部算出手段とを備えて造影剤の先端位置を検出する。   The contrast medium tip position detecting means is a contrast medium passage area calculating means for calculating an area through which the contrast medium has passed by subtracting an image where the contrast medium has not been injected from the image into which the contrast medium has been injected by the calculating means, Contrast agent tip calculating means for calculating the tip of the contrast agent from the calculated contrast agent passage region is provided to detect the tip position of the contrast agent.

前記造影剤移動距離可視化手段は、前記造影剤の移動量に応じた色相に変換する第一の色相変換手段又は線の間隔によるパターンに変換するパターン化変換手段により造影剤の移動距離を可視化する。   The contrast agent moving distance visualizing means visualizes the moving distance of the contrast agent by a first hue converting means for converting to a hue corresponding to the moving amount of the contrast agent or a patterning converting means for converting to a pattern by a line interval. .

さらに、X線を透過させる非造影剤を注入する非造影剤注入手段と、前記造影剤注入手段から注入される造影剤と前記非造影剤注入手段から注入される非造影剤を排他的に選択して注入する注入選択手段とを備え、前記フレームメモリに格納する画像は、前記造影剤注入手段から注入される造影剤と前記非造影剤注入手段から注入される非造影剤とを一定間隔で前記注入選択手段により選択して間欠的に前記造影剤と非造影剤とを注入して撮影した画像であって、このフレームメモリに格納された前記造影剤を注入した画像と前記非造影剤を注入した画像とを対とした複数の対画像を連結する画像連結手段と、該画像連結手段によって連結した連結画像と現画像とを合成する第二の画像合成手段とを備え、この第二の画像合成手段で合成した画像を前記画像表示手段に表示する。
Further, a non-contrast agent injection means for injecting a non-contrast agent that transmits X-rays, a contrast agent injected from the contrast agent injection means, and a non-contrast agent injected from the non-contrast agent injection means are exclusively selected. The image stored in the frame memory includes a contrast medium injected from the contrast medium injection means and a non-contrast medium injected from the non-contrast medium injection means at regular intervals. An image selected by the injection selection means and intermittently injected with the contrast medium and the non-contrast medium, and an image obtained by injecting the contrast medium stored in the frame memory and the non-contrast medium An image connecting means for connecting a plurality of paired images with the injected image as a pair; and a second image combining means for combining the connected image connected by the image connecting means with the current image. Image synthesized by image synthesis means An image is displayed on the image display means.

前記連結画像の先端部の陰影幅を算出する先端部陰影幅算出手段と、前記連結画像の先端部を除く前記複数の対画像の陰影幅を算出する対画像陰影幅算出手段と、前記先端部の陰影幅と前記対画像の陰影幅との比を算出して造影剤流速度を算出する造影剤流速度算出手段と、前記造影剤を注入する最初の位置から前記対画像の造影剤の先端部までの距離を算出する造影剤先端部距離算出手段と、該造影剤先端部距離算出手段で算出した距離と前記造影剤流速度算出手段で算出した造影剤流速度との関係をグラフ化する手段とを備えて、該グラフにより血管内の狭窄部の有無を把握する。   A front end shadow width calculating unit that calculates a shadow width of a front end of the connected image; a counter image shadow width calculating unit that calculates a shadow width of the plurality of pair images excluding the front end of the connected image; and the front end A contrast medium flow velocity calculating means for calculating a contrast medium flow velocity by calculating a ratio between the shadow width of the contrast image and the shadow width of the pair of images, and a tip of the contrast agent of the pair images from the initial position where the contrast agent is injected A graph showing the relationship between the contrast medium tip distance calculating means for calculating the distance to the head and the distance calculated by the contrast medium tip distance calculating means and the contrast medium flow speed calculated by the contrast medium flow speed calculating means Means for grasping the presence or absence of a stenosis in the blood vessel from the graph.

さらに、前記複数の対画像の論理和を演算する論理和演算手段を備えて造影剤の流れの軌跡を画像化する。   Further, a logical sum calculation means for calculating a logical sum of the plurality of paired images is provided to image the trajectory of the contrast agent flow.

さらに、前記造影剤注入器による造影剤注入と前記非造影剤注入器による非
造影剤注入を一度だけ行い、その後連続して撮影した画像を前記フレームメモリに格納して該格納した画像間から単発の前記造影剤の経過を示す画像を演算する造影剤経過画像演算手段を備え、この手段を用いることにより造影剤を流すためのカテーテル先端からの位置と造影剤流速度の関係を得ることができ、これによって狭窄部の有無を把握することができると共に塞栓物を留置する手技においては、塞栓されるに従い流速は減衰するので、塞栓の進行具合を知ることができる。
Further, the contrast medium injection by the contrast medium injector and the non-contrast medium injection by the non-contrast medium injector are performed only once, and then continuously captured images are stored in the frame memory, and a single shot is performed between the stored images. A contrast medium progress image calculating means for calculating an image showing the progress of the contrast medium, and by using this means, the relationship between the position from the catheter tip for flowing the contrast medium and the contrast medium flow velocity can be obtained. As a result, the presence or absence of a stenosis can be grasped, and in the procedure of placing an embolus, the flow rate is attenuated as it is embolized, so that the progress of the embolism can be known.

前記造影剤経過画像演算手段は、前記フレームメモリに格納してあるフレーム間の画像の差分を算出する差分算出手段と、この差分算出手段で算出した差分から一フレーム前からの前記造影剤の移動距離の増減がプラスかマイナスかを判定する移動距離増減判定手段と、この移動距離増減判定手段で判定した結果に応じて前記撮影画像の造影剤部分に色相変換処理を施す第二の色相変換手段とを備えることにより、造影剤の移動方向及び造影剤の逆流の有無を知ることができる。   The contrast medium progress image calculation means includes a difference calculation means for calculating a difference between images stored in the frame memory, and a movement of the contrast medium from the previous frame based on the difference calculated by the difference calculation means. Movement distance increase / decrease determination means for determining whether the increase / decrease in distance is positive or negative, and second hue conversion means for performing a hue conversion process on the contrast agent portion of the photographed image according to the result determined by the movement distance increase / decrease determination means , The moving direction of the contrast agent and the presence or absence of the backflow of the contrast agent can be known.

なお、前記画像合成手段で合成する現画像は透視画像であって、この透視画像に前記可視化画像を重ね合わせた画像を前記画像表示手段に表示する。   The current image synthesized by the image synthesizing unit is a fluoroscopic image, and an image obtained by superimposing the visualized image on the fluoroscopic image is displayed on the image display unit.

以上、本発明によれば、造影剤の移動量を可視化することが可能となり、X線画像
から得られる情報が多くなって、塞栓の状況の観察と血管内の造影剤の状況を容易に知ることができ、これによって血管造影検査の効率が向上するという効果が得られる。
As described above, according to the present invention, it is possible to visualize the moving amount of the contrast agent, and the amount of information obtained from the X-ray image increases, so that the state of the embolus and the state of the contrast agent in the blood vessel can be easily known. This can improve the efficiency of the angiographic examination.

以下、本発明に係る血管造影検査機能を備えたX線透視撮影装置の好ましい実施の形態について添付図面を用いて詳細に説明する。
《第一の実施の形態》
図1は、本発明のX線透視撮影装置における第一の実施形態の全体構成を示す図である。
Hereinafter, preferred embodiments of an X-ray fluoroscopic apparatus having an angiographic examination function according to the present invention will be described in detail with reference to the accompanying drawings.
First embodiment
FIG. 1 is a diagram showing the overall configuration of the first embodiment of the X-ray fluoroscopic apparatus of the present invention.

この図1に示すX線透視撮影装置は、被検体Mに照射するX線を発生するX線管1(X線発生手段)と、前記被検体Mに照射するX線の照射範囲を制限するX線可動絞り装置2と、図示省略の操作コンソールで設定したX線条件に基づいて前記X線管1から放射するX線を制御する信号を生成するX線制御装置3と、このX線制御装置3からのX線制御信号に対応した前記X線管1の陽極と陰極間に印加する直流高電圧(管電圧)を発生し、前記X線管1の陽極と陰極間の透視用の電流(透視管電流)と撮影用の電流(撮影管電流)を流す機能を備えたX線高電圧装置4と(前記X線制御装置3とX線高電圧装置4とでX線制御手段を構成)、前記X線管1及びX線可動絞り装置2と対向配置され前記被検体Mの透過X線を検出しこれをデジタル画像データとして検出する半導体二次元X線検出器であるX線平面検出器5(二次元X線検出手段)と、このX線平面検出器5で検出した画像データの読み出し制御を行うX線平面検出器制御装置6と、このX線平面検出器制御装置6で読み出された画像データに対して種々の画像処理を施す画像処理装置7(画像処理手段)と、この画像処理装置7で処理された画像を表示する画像表示装置8(画像表示手段)と、前記被検体Mを載置する天板を備えたテーブル9と、このテーブル9に載置された被検体Mに対して造影剤を注入する造影剤注入器10(造影剤注入手段)と、前記図示省略の操作コンソールから入力した操作信号に基づいてシステム全体を制御及び管理するシステム制御装置11とを備えて構成される。   The X-ray fluoroscopic apparatus shown in FIG. 1 limits an X-ray tube 1 (X-ray generating means) that generates X-rays to be irradiated on the subject M and an irradiation range of the X-rays to be irradiated on the subject M. X-ray movable diaphragm device 2, X-ray control device 3 for generating a signal for controlling the X-rays radiated from the X-ray tube 1 based on the X-ray conditions set by an operation console (not shown), and this X-ray control A DC high voltage (tube voltage) applied between the anode and cathode of the X-ray tube 1 corresponding to the X-ray control signal from the device 3 is generated, and a current for fluoroscopy between the anode and cathode of the X-ray tube 1 (X-ray control means is composed of the X-ray control device 3 and the X-ray high voltage device 4). ), An X-ray plane detector which is a semiconductor two-dimensional X-ray detector which is disposed opposite to the X-ray tube 1 and the X-ray movable diaphragm device 2 and detects the transmitted X-rays of the subject M and detects them as digital image data. An output unit 5 (two-dimensional X-ray detection means), an X-ray plane detector control device 6 for controlling the readout of image data detected by the X-ray plane detector 5, and an X-ray plane detector control device 6 An image processing device 7 (image processing means) that performs various image processing on the read image data, an image display device 8 (image display means) that displays an image processed by the image processing device 7, A table 9 provided with a top plate on which the subject M is placed; a contrast medium injector 10 (contrast medium injection means) for injecting a contrast medium into the subject M placed on the table 9; The system controller 11 is configured to control and manage the entire system based on an operation signal input from an operation console (not shown).

前記画像処理装置7は、図2に示すように、撮影した画像を記憶するフレームメモリ12と、このフレームメモリ12に記憶した撮影画像間の演算を行う演算器13(演算手段)と、この演算器13の演算結果から造影剤先端位置を検出する造影剤先端位置検出部14(造影剤先端位置検出手段)と、この造影剤先端位置検出部14で検出した造影剤先端位置から造影剤の移動量を求めて色分けを行う移動距離可視化部15(造影剤移動距離可視化手段)と、この移動距離可視化部15で生成した画像と現画像とを合成する画像合成部16(第一の画像合成手段、第二の画像合成手段)と、この画像合成部16で合成した画像を前記画像表示装置8に表示制御する図示省略の表示制御手段(造影剤可視化画像生成手段)とを備えて構成される。   As shown in FIG. 2, the image processing device 7 includes a frame memory 12 that stores captured images, a calculator 13 (calculation means) that performs a calculation between the captured images stored in the frame memory 12, and the calculation Contrast agent tip position detection unit 14 (contrast agent tip position detection means) for detecting the contrast agent tip position from the calculation result of the contrast device 13, and movement of the contrast agent from the contrast agent tip position detected by the contrast agent tip position detection unit 14 A moving distance visualization unit 15 (contrast medium moving distance visualization unit) that performs color classification by obtaining an amount, and an image synthesis unit 16 (first image synthesis unit) that synthesizes the image generated by the movement distance visualization unit 15 and the current image , Second image synthesis means) and display control means (not shown) (contrast medium visualization image generation means) for controlling display of the image synthesized by the image synthesis unit 16 on the image display device 8. .

なお、前記現画像は透視画像であることが望ましい。   The current image is preferably a fluoroscopic image.

このように構成されたX線透視撮影装置を用いて、本発明の特徴である造影剤の流れの可視化は、図3に示すフローチャートに基づくソフトウェアにより実行される。以下、造影剤の流れの可視化について図3のフローチャートを用いて説明する。
(1)造影剤無しの撮影(S100)
Visualizing the flow of the contrast agent, which is a feature of the present invention, using the X-ray fluoroscopic imaging apparatus configured as described above is executed by software based on the flowchart shown in FIG. Hereinafter, visualization of the flow of the contrast agent will be described with reference to the flowchart of FIG.
(1) Imaging without contrast medium (S100)

先ず、塞栓する血管部に塞栓物18を詰めた状態で、かつ血管17に造影剤を注入しないで撮影し、この撮影画像をフレームメモリ12に格納する。この画像を図4(a)に示す。
(2)造影剤を注入しながら撮影(S101)
First, an image is taken in a state where the embolus 18 is filled in the blood vessel portion to be embolized and a contrast agent is not injected into the blood vessel 17, and this captured image is stored in the frame memory 12. This image is shown in FIG.
(2) Imaging while injecting contrast medium (S101)

塞栓物18を詰めた状態で血管17に造影剤を注入しながら3回撮影を行い、これらの撮影した図4の(b)、(c)、(d)に示す画像をフレームメモリ12に格納する。
(3)造影剤通過領域の算出(S102)
Taking three images while injecting contrast medium into the blood vessel 17 with the embolus 18 packed, the images shown in FIGS. 4B, 4C, and 4D are stored in the frame memory 12. To do.
(3) Calculation of contrast agent passage area (S102)

前記造影剤を注入した画像である図4(b)、(c)、(d)から造影剤を注入していない画像図4(a)を演算器13で減算して、造影剤が通過した領域を算出する(造影剤通過領域算出手段)。
(4)造影剤先端部の算出(S103)、造影剤先端部移動量の算出(S104)
4 (b), (c) and (d), which are images in which the contrast medium has been injected, are subtracted by the calculator 13 from the image 13 (a) in which no contrast medium has been injected, and the contrast medium has passed. An area is calculated (contrast medium passage area calculating means).
(4) Calculation of contrast medium tip (S103), calculation of contrast medium tip movement (S104)

前記算出した造影剤通過領域の先端部を造影剤先端位置検出部14(造影剤先端位置検出手段)により造影剤先端位置yを検出する(造影剤先端部算出手段)(S103)。   The contrast agent tip position y is detected by the contrast agent tip position detector 14 (contrast agent tip position detector) (contrast agent tip part calculator) (S103).

この検出した造影剤先端位置yを用いて、図5に示すように、各画像における造影剤先端部の位置から一フレーム毎の造影剤の移動量d1、d2、d3を求める(造影剤移動距離算出手段)(S104)。ここで、図5のy1は図4(b)の造影剤の先端位置、図5のy2は図4(c)の造影剤の先端位置、図5のy3は図4(d)の造影剤の先端位置に対応する。   Using the detected contrast agent tip position y, as shown in FIG. 5, the contrast agent movement amounts d1, d2, and d3 for each frame are obtained from the position of the contrast agent tip in each image (contrast agent movement distance). (Calculation means) (S104). Here, y1 in FIG. 5 is the tip position of the contrast agent in FIG. 4 (b), y2 in FIG. 5 is the tip position of the contrast agent in FIG. 4 (c), and y3 in FIG. 5 is the contrast agent in FIG. 4 (d). Corresponds to the tip position of.

なお、前記フレームメモリ12は、1アドレスにつき1座標分の画素値が格納されるので、アドレスと座標が関連付けられており、したがって、前記移動量d1、d2、d3はX線平面検出器5のx座標(x方向の画素数)とy座標(y方向の画素数)から求める。
(5)移動量に応じた色分け作成(S105)
Since the frame memory 12 stores pixel values for one coordinate per address, the address and the coordinate are associated with each other. Therefore, the movement amounts d1, d2, and d3 are stored in the X-ray flat panel detector 5. It is obtained from the x coordinate (number of pixels in the x direction) and the y coordinate (number of pixels in the y direction).
(5) Color coding according to the amount of movement (S105)

次に、移動量に応じて色分けを行う(例えば、10画素進んでいたら赤、5画素進んでいたら黄、1画素なら灰色とする)。
この移動量に応じた色分けは、前記移動距離可視化部15(造影剤移動距離可視化手段)に図6に示す色相変換テーブル20とパレットテーブル21から成る色相変換部を備えて前記移動量に応じた色値を色相変換テーブル20から出力し、前記色値をパレットテーブル21からRGB値を出力して色相変換する(第一の色相変換手段)。
Next, color classification is performed in accordance with the amount of movement (for example, red when the pixel advances by 10 pixels, yellow when the pixel advances by 5 pixels, and gray if the pixel advances by 1 pixel).
The color classification according to the movement amount includes the hue conversion unit including the hue conversion table 20 and the palette table 21 shown in FIG. 6 in the movement distance visualization unit 15 (contrast agent movement distance visualization unit). The color value is output from the hue conversion table 20, and the color value is output as an RGB value from the palette table 21 to be subjected to hue conversion (first hue conversion means).

前記色相変換テーブル20とパレットテーブル21は、図7に示すように、移動量と色、色パレット、RGB値とが関係付けられている。
(6)透視画像と合成して画像表示装置に表示(S106)
As shown in FIG. 7, the hue conversion table 20 and the palette table 21 are associated with a movement amount, a color, a color palette, and an RGB value.
(6) Combined with the fluoroscopic image and displayed on the image display device (S106)

前記色分けされた画像と現在の透視画像とを画像合成部16(第一の画像合成手段)で合成して図8に示す画像を画像表示装置8に表示する。
このようにして、造影剤の流れをカラー表示して可視化することにより、造影剤は一回の注入で済むので、血管造影検査の効率が向上する。
また、血管に隆起がある箇所は造影剤の流れる速度が遅くなるため、血管内の隆起の有無を知ることも可能となる。
The image shown in FIG. 8 is displayed on the image display device 8 by combining the color-coded image and the current fluoroscopic image by the image combining unit 16 (first image combining means).
In this way, by visualizing the flow of the contrast medium in color, the contrast medium can be injected once, so that the efficiency of the angiographic examination is improved.
Further, since the flow rate of the contrast medium is slow at the portion where the blood vessel is raised, it is also possible to know whether or not the blood vessel is raised.

なお、造影剤の可視化として色付けを行った例について説明したが、本発明はこれに限定するものではなく、例えば、図9に示すように線の間隔によるパターン化した画像を白黒モニタに表示する方法でも上記と同様の効果を得ることができる。図10は、移動量とパターンの関係を示す図で、移動量に応じて一定幅の横線を描く間隔を変える事でパターン化することができる(パターン化変換手段)。
《第二の実施形態》
In addition, although the example which performed the coloring as visualization of a contrast agent was demonstrated, this invention is not limited to this, For example, as shown in FIG. 9, the image patterned by the space | interval of a line is displayed on a monochrome monitor Even with this method, the same effect as described above can be obtained. FIG. 10 is a diagram showing the relationship between the movement amount and the pattern, and patterning can be performed by changing the interval of drawing a horizontal line having a certain width according to the movement amount (patterning conversion means).
<< Second Embodiment >>

図11は、本発明のX線透視撮影装置における第二の実施形態の全体構成を示す図である。この図11に示すX線透視撮影装置は、前記第一の実施形態における造影剤注入器10に加えて、さらにX線を透過させる造影効果のない生理食塩水等の非造影剤を注入する非造影剤注入器22(非造影剤注入手段)及び前記造影剤注入器10と非造影剤注入器22からの造影剤と非造影剤とを排他的に選択するセレクタ23(注入選択手段)とを追加して構成したものである。   FIG. 11 is a diagram showing an overall configuration of the second embodiment in the X-ray fluoroscopic apparatus of the present invention. In addition to the contrast medium injector 10 in the first embodiment, the X-ray fluoroscopic apparatus shown in FIG. 11 further injects a non-contrast medium such as physiological saline having no contrast effect that transmits X-rays. A contrast medium injector 22 (non-contrast medium injection means) and a selector 23 (injection selection means) for exclusively selecting the contrast medium injector 10 and the contrast medium and non-contrast medium from the non-contrast medium injector 22 It is an additional configuration.

このように構成されたX線透視撮影装置において、造影剤注入時に、造影剤注入器10からは通常の造影剤を、非造影剤注入器22からは非造影剤を一定間隔でセレクタ23により注入する造影剤の種別を変更して間欠的に造影剤と非造影剤とを注入して撮影した画像を前記フレームメモリ12に格納する。   In the thus configured X-ray fluoroscopic apparatus, when contrast medium is injected, normal contrast medium is injected from the contrast medium injector 10 and non-contrast medium is injected from the non-contrast medium injector 22 by the selector 23 at regular intervals. The type of the contrast agent to be changed is changed, and an image obtained by intermittently injecting the contrast agent and the non-contrast agent is stored in the frame memory 12.

そして、前記フレームメモリ12に格納した前記造影剤を注入した画像と前記非造影剤を注入した画像とを対とした複数の対画像を連結(画像連結手段)し、この連結した画像と現画像とを合成(第二の画像合成手段)することによって、図12に示すように、造影剤の陰影間隔が異なる画像が得られ、前記対画像間の間隔から造影剤の流れる速度を知ることができる。なお、前記現画像は透視画像であることが望ましい。   Then, a plurality of paired images paired with the image injected with the contrast agent and the image injected with the non-contrast agent stored in the frame memory 12 are connected (image connecting means), and the connected image and the current image 12 (second image composition means), as shown in FIG. 12, images with different contrast intervals of the contrast agent are obtained, and the flow rate of the contrast agent can be known from the interval between the paired images. it can. The current image is preferably a fluoroscopic image.

本実施形態においては、造影効果のある造影剤と造影効果のない生理食塩水等の非造影剤とを間欠的に注入するだけで、前記第一の実施形態のように演算を行うことなく、造影剤の流速度を可視化することが可能となる。   In the present embodiment, only by intermittently injecting a contrast agent having a contrast effect and a non-contrast agent such as physiological saline having no contrast effect, without performing calculations as in the first embodiment, It is possible to visualize the flow velocity of the contrast agent.

また、造影剤を注入するカテーテル先端においては、前記造影剤注入器による注入速度がそのまま造影剤流速度となるため、図13に示すようにカテーテル先端部の陰影幅d01と、それぞれの陰影幅d11、d21、d31・・・、dnの比を算出することで、図14に示すようにカテーテル先端からの距離に応じた造影剤流速度をグラフ化することが可能となる。   Further, at the catheter tip for injecting the contrast agent, since the injection speed by the contrast agent injector is directly the contrast agent flow velocity, as shown in FIG. 13, the shadow width d01 of the catheter tip and the respective shadow widths d11 , D21, d31..., Dn can be calculated to graph the contrast agent flow velocity according to the distance from the catheter tip as shown in FIG.

すなわち、前記連結画像の先端部の陰影幅と前記連結画像の先端部を除く前記複数の対画像の陰影幅を算出(先端部陰影幅算出手段、対画像陰影幅算出手段)し、該先端部の陰影幅と対画像の陰影幅との比から造影剤流速度を算出(造影剤流速度算出手段)する。   That is, calculating the shadow width of the tip portion of the connected image and the shadow width of the plurality of image pairs excluding the tip portion of the connected image (tip portion shadow width calculating means, image shadow width calculating means), and the tip portion The contrast medium flow velocity is calculated from the ratio of the shadow width of the image to the shadow width of the image (contrast medium flow velocity calculation means).

そして、前記造影剤を注入する最初の位置から前記対画像の造影剤の先端部までの距離を算出(造影剤先端部距離算出手段)して該距離と前記造影剤流速度との関係を求めてカテーテル先端からの距離に応じた造影剤流速度をグラフ化する。   Then, the distance from the initial position where the contrast agent is injected to the tip of the contrast agent in the paired image is calculated (contrast agent tip distance calculating means) to obtain the relationship between the distance and the contrast agent flow velocity. And graphing the contrast medium flow velocity according to the distance from the catheter tip.

この場合、正常な血管においては、図14のようにカテーテル先端からの距離に応じて造影剤流速度が減少するが、血管途中に狭窄がある場合、狭窄部での造影剤の移動量が少なくなり、カテーテル先端からの距離と造影剤流速度との関係は図15のようになる。この結果から狭窄の有無を知ることが可能となる。   In this case, in a normal blood vessel, the contrast medium flow velocity decreases according to the distance from the catheter tip as shown in FIG. 14, but when there is a stenosis in the middle of the blood vessel, the amount of contrast medium movement in the stenosis is small. Thus, the relationship between the distance from the catheter tip and the contrast medium flow velocity is as shown in FIG. From this result, it is possible to know the presence or absence of stenosis.

なお、X線撮影では二次元の画像データしか得られず、奥行き方向に狭窄部がある場合は、画像から認識できない場合があるが、上記図15の関係から狭窄部の存在の可能性を知ることができるので、撮影方向を変えて追加撮影を実施することにより狭窄部を把握することが可能となる。   Note that only two-dimensional image data can be obtained by X-ray imaging, and if there is a stenosis in the depth direction, it may not be recognized from the image, but the possibility of the presence of the stenosis is known from the relationship shown in FIG. Therefore, it is possible to grasp the stenosis by changing the imaging direction and performing additional imaging.

また、本実施形態において、造影剤を間欠的に注入後、数回の撮影を行う事で、図16に示す画像を得ることができる。これらの画像の論理和を取ることで(論理和演算手段)、図16に示すように造影剤の流れの軌跡を画像化することができ、血管の描写が可能となる。   In the present embodiment, the image shown in FIG. 16 can be obtained by performing imaging several times after intermittently injecting the contrast medium. By taking a logical sum of these images (logical sum operation means), the trajectory of the flow of the contrast agent can be imaged as shown in FIG. 16, and a blood vessel can be drawn.

さらに、間欠的に造影剤を注入後、数回の撮影を行い、図17に示すように、各造影部の先端位置を検出し、動いた距離を計算することで、図18に示すカテーテル先端からの位置と造影剤流速度の関係を得ることができ、前記実施形態1と同様、血管内各部での造影剤の流速度を知ることができる。   Further, after intermittently injecting the contrast agent, imaging was performed several times, and as shown in FIG. 17, the tip position of each contrast unit was detected, and the distance moved was calculated, whereby the catheter tip shown in FIG. The relationship between the position of the contrast medium and the flow rate of the contrast medium can be obtained, and the flow speed of the contrast medium in each part of the blood vessel can be known as in the first embodiment.

このように、造影剤の流速度を知ることにより、例えば図12に示すカテーテル先端からの距離と造影剤流速度の関係から不自然な減衰部に狭窄の疑いを持つことが可能となり、また、塞栓物を設ける手技においては、塞栓されるに従い流速は減衰するので、塞栓の進行具合を知ることができる。
《第三の実施形態》
Thus, by knowing the flow velocity of the contrast agent, for example, it becomes possible to have a suspicion of stenosis in an unnatural attenuation part from the relationship between the distance from the catheter tip shown in FIG. 12 and the contrast agent flow velocity, In the procedure for providing an embolus, the flow rate decreases as the embolus is inserted, so that the progress of the embolism can be known.
<< Third embodiment >>

次に、本発明の第三の実施形態について、説明する。全体構成図は第二の実施形態と同じである。
本発明の第三の実施形態は、前記図11のX線透視撮影装置を用いて造影剤注入器10による造影剤注入と非造影剤注入器22による非造影剤注入を一度だけ行い、その後連続して撮影を行って得た画像を前記フレームメモリ12に格納し、該格納した画像間から単発の前記造影剤の経過を示す画像を演算(造影剤経過画像演算手段)して図19に示す単発の造影剤の経過を示す画像を取得する。
Next, a third embodiment of the present invention will be described. The overall configuration diagram is the same as in the second embodiment.
In the third embodiment of the present invention, the contrast medium injector 10 and the non-contrast medium injector 22 are injected only once using the X-ray fluoroscopic apparatus of FIG. 19 is stored in the frame memory 12, and an image showing the progress of the single contrast agent is calculated between the stored images (contrast agent progress image calculating means) and shown in FIG. An image showing the progress of a single contrast agent is acquired.

前記画像のフレーム毎の差分を算出し(差分算出手段)、一フレーム前からの移動距離がプラス方向の場合は赤、マイナス方向への移動は青とすることで(移動距離増減判定手段、第二の色相変換手段)、図20に示す画像を得ることができ、これによって造影剤の移動情況を知ることができる。   The difference for each frame of the image is calculated (difference calculating means), and when the moving distance from the previous frame is positive, it is red, and the moving in the negative direction is blue (moving distance increase / decrease determining means, Second hue conversion means), the image shown in FIG. 20 can be obtained, and the movement of the contrast medium can be known.

このように、造影剤の移動情況から前記造影剤の移動方向を知ることにより造影剤の逆流の有無を知ることが可能となる。   In this way, it is possible to know the presence or absence of the backflow of the contrast agent by knowing the moving direction of the contrast agent from the movement situation of the contrast agent.

すなわち、造影剤の逆流が起きると、造影剤の移動距離の増減がマイナスになることから、単発の造影剤を注入後、連続撮影を行い、一フレーム前との移動距離がマイナス方向になった場合は逆流が発生したことになり、造影剤の逆流の有無が分かる。   In other words, if the back flow of the contrast agent occurs, the increase or decrease in the travel distance of the contrast agent becomes negative. Therefore, after injecting a single contrast agent, continuous imaging was performed, and the travel distance from the previous frame was in the negative direction. In this case, a backflow has occurred, and the presence or absence of the backflow of the contrast agent can be known.

以上、第一から第三の実施形態において、造影剤注入後に撮影を行う例について述べたが、本発明にこれに限定するものではなく、造影剤注入後の撮影画像は造影剤の識別が可能であれば透視画像を用いても良い。   As described above, in the first to third embodiments, the example of performing imaging after contrast medium injection has been described. However, the present invention is not limited to this, and the captured image after contrast medium injection can identify the contrast medium. If so, a fluoroscopic image may be used.

なお、被検体の透過X線を検出しこれをデジタル画像データとして検出する検出器に半導体二次元X線検出器であるX線平面検出器を用いた例について説明したが、デジタル画像データに変換できるものであれば、どのような二次元X線検出器を用いても良い。   Although an example in which an X-ray flat panel detector, which is a semiconductor two-dimensional X-ray detector, is used as a detector that detects transmitted X-rays of a subject and detects them as digital image data, it is converted into digital image data. Any two-dimensional X-ray detector may be used if possible.

本発明のX線透視撮影装置における第一の実施形態の全体構成図。1 is an overall configuration diagram of a first embodiment in an X-ray fluoroscopic apparatus of the present invention. 本発明によるX線透視撮影装置の画像処理装置の構成図。1 is a configuration diagram of an image processing apparatus of an X-ray fluoroscopic apparatus according to the present invention. 本発明による造影剤の流れの可視化を説明するフローチャート。The flowchart explaining visualization of the flow of a contrast agent by the present invention. 塞栓物を血管部に詰めた状態で血管に造影剤を注入しない場合と注入した場合の撮影画像を透視画像に重ねた画像を示す図。The figure which shows the image which superimposed the picked-up image when not inject | pouring a contrast agent into the blood vessel in the state which packed the embolus in the blood vessel part, and when inject | pouring a fluoroscopic image. 各画像における造影剤先端部の位置から一フレーム毎の造影剤の移動量を示す図。The figure which shows the moving amount | distance of the contrast agent for every frame from the position of the contrast agent front-end | tip part in each image. 色相変換テーブルの構成図。The block diagram of a hue conversion table. 色相変換テーブルにおける造影剤の移動量と色、色パレット、RGB値との対応関係を示す図。The figure which shows the correspondence of the movement amount of a contrast agent in a hue conversion table, and a color, a color palette, and an RGB value. 色相変換した画像と現在の透視画像とを合成した画像を示す図。The figure which shows the image which synthesize | combined the image which carried out hue conversion, and the present fluoroscopic image. 線の間隔によるパターン化した画像と現在の透視画像とを合成した画像を示す図。The figure which shows the image which synthesize | combined the image patterned by the space | interval of a line, and the present fluoroscopic image. 造影剤移動量と線の間隔によるパターンとの対応関係を示す図The figure which shows the correspondence of the contrast agent movement amount and the pattern by the interval of the line 本発明のX線透視撮影装置における第二の実施形態の全体構成図。The whole block diagram of 2nd embodiment in the X-ray fluoroscopic imaging apparatus of this invention. 造影剤と非造影剤とを間欠的に注入して撮影した画像と現在の透視画像とを合成した画像を示す図。The figure which shows the image which synthesize | combined the image image | photographed by inject | pouring a contrast agent and a non-contrast agent intermittently, and the present fluoroscopic image. 造影剤と非造影剤とを間欠的に注入して撮影した画像と現在の透視画像とを合成した画像における各造影剤陰影部の幅を示す図。The figure which shows the width | variety of each contrast agent shadow part in the image which synthesize | combined the image image | photographed by intermittently inject | pouring a contrast agent and a non-contrast agent, and the present fluoroscopic image. カテーテル先端からの距離と造影剤流速度との関係を示す図。The figure which shows the relationship between the distance from a catheter front-end | tip, and a contrast agent flow velocity. 狭窄部がある場合のカテーテル先端からの距離と造影剤流速度との関係を示す図。The figure which shows the relationship between the distance from the catheter tip in case there exists a stenosis part, and contrast agent flow velocity. 造影剤の流れの軌跡を示す図。The figure which shows the locus | trajectory of the flow of a contrast agent. 各造影剤陰影部の先端位置を示す図。The figure which shows the front-end | tip position of each contrast agent shadow part. カテーテル先端からの距離と造影剤流速度との関係を示す図。The figure which shows the relationship between the distance from a catheter front-end | tip, and a contrast agent flow velocity. 第三の実施形態における造影剤の流れの経過を示す図。The figure which shows progress of the flow of the contrast agent in 3rd embodiment. 各画像のフレーム毎の差分による造影剤の移動情況を示す図。The figure which shows the movement condition of the contrast agent by the difference for every flame | frame of each image.

符号の説明Explanation of symbols

1 X線管、3 X線制御装置、4 X線高電圧装置、5 X線平面検出器、6 X
線平面検出器制御装置、7 画像処理装置、8 画像表示装置、10 造影剤注入
器、11 システム制御装置、12 フレームメモリ、13 演算器、14 造影剤先
端位置検出部、15 移動距離可視化部、16 画像合成部、17 血管、18 塞栓
物、19 造影剤陰影、20 色相変換テーブル、21 パレットテーブル、22 非
造影剤注入器、23 セレクタ、d1、d2、d3 造影剤の移動量、d01、d11、d21、
d31、d41、dn、d11´、d21´、d31´ 造影剤の陰影幅、y1、y2、y3 造影剤
の先端位置
1 X-ray tube, 3 X-ray control device, 4 X-ray high voltage device, 5 X-ray flat panel detector, 6 X
Line plane detector control device, 7 image processing device, 8 image display device, 10 contrast medium injector, 11 system control device, 12 frame memory, 13 computing unit, 14 contrast medium tip position detection unit, 15 travel distance visualization unit, 16 Image composition unit, 17 Blood vessels, 18 Embols, 19 Contrast shadow, 20 Hue conversion table, 21 Pallet table, 22 Non-contrast injector, 23 Selector, d1, d2, d3 Contrast travel, d01, d11 , D21,
d31, d41, dn, d11´, d21´, d31´ Shadow width of contrast agent, y1, y2, y3 Tip position of contrast agent

Claims (2)

被検体に造影剤を注入する造影剤注入手段と、前記被検体に照射するX線を発生するX線発生手段と、前記X線の照射量を制御するX線制御手段と、前記X線発生手段と対向配置され前記被検体の透過X線を検出してこれをデジタル画像データとして検出する次元X線検出手段と、この二次元X線検出手段で検出した画像データに対して画像処理を施す画像処理手段と、この画像処理手段で処理されたX線の第1の画像を表示する画像表示手段とを備えたX線透視撮影装置であって、
前記画像処理手段は、少なくとも前記造影剤注入手段で前記被検体の血管内に造影剤を注入して撮影した画像を格納するフレームメモリと、このフレームメモリに格納した画像から前記造影剤の移動状態を可視化した第2の画像を生成する造影剤可視化画像生成手段とを備え
さらに、X線を透過させる非造影剤を注入する非造影剤注入手段と、前記造影剤注入手段から注入される造影剤と前記非造影剤注入手段から注入される非造影剤を排他的に選択して注入する注入選択手段とを備え、前記フレームメモリに格納された画像は、前記造影剤注入手段から注入される造影剤と前記非造影剤注入手段から注入される非造影剤とを一定間隔で前記注入選択手段により選択して間欠的に注入して撮影した画像であって、このフレームメモリに格納された前記造影剤を注入した造影剤注入画像と前記非造影剤を注入した非造影剤注入画像とを対とした複数の対画像を連結して前記第2の画像を得る画像連結手段と、該画像連結手段によって得た前記第2の画像と前記第1の画像とを合成する画像合成手段とを備えたことを特徴とするX線透視撮影装置。
Contrast medium injection means for injecting a contrast medium into the subject, X-ray generation means for generating X-rays for irradiating the subject, X-ray control means for controlling the X-ray dose, and X-ray generation A two- dimensional X-ray detection means that detects the transmitted X-rays of the subject that are arranged opposite to the means and detects them as digital image data, and performs image processing on the image data detected by the two-dimensional X-ray detection means An X-ray fluoroscopic apparatus comprising: an image processing unit to be applied; and an image display unit that displays a first X-ray image processed by the image processing unit,
The image processing means includes at least a frame memory for storing an image taken by injecting a contrast medium into the blood vessel of the subject by the contrast medium injecting means, and a moving state of the contrast medium from the image stored in the frame memory. the a contrast medium visible image generating means for generating a second image visualizing,
Further, a non-contrast agent injection unit that injects a non-contrast agent that transmits X-rays, a contrast agent injected from the contrast agent injection unit, and a non-contrast agent injected from the non-contrast agent injection unit are exclusively selected. The image stored in the frame memory has a constant interval between the contrast medium injected from the contrast medium injection means and the non-contrast medium injected from the non-contrast medium injection means. In this case, the contrast medium injection image in which the contrast medium stored in the frame memory is injected and the non-contrast medium in which the non-contrast medium is injected. An image connecting unit that connects a plurality of paired images with the injected image to obtain the second image, and an image that combines the second image obtained by the image connecting unit and the first image Specially equipped with synthesis means X-ray fluoroscopic imaging apparatus to.
前記フレームメモリに格納された画像は、前記被検体の血管内に予め塞栓物質を留置させた状態で撮影した画像及び前記造影剤注入手段で前記血管内に造影剤を注入して撮影した画像であって、前記造影剤可視化画像生成手段は、前記フレームメモリに格納した画像間の演算を行う演算手段と、該演算結果から前記注入した造影剤の先端位置を検出する造影剤先端位置検出手段と、該検出した造影剤先端位置情報から該造影剤の移動距離を算出する造影剤移動距離算出手段と、該移動距離を可視化情報に変換する造影剤移動距離可視化手段とを備えたことを特徴とする請求項1記載のX線透視撮影装置。 The image stored in the frame memory is an image taken in a state where an embolic substance is placed in advance in the blood vessel of the subject and an image taken by injecting a contrast agent into the blood vessel by the contrast agent injecting means. The contrast agent visualized image generation means includes a calculation means for calculating between images stored in the frame memory, and a contrast agent tip position detection means for detecting the tip position of the injected contrast agent from the calculation result. A contrast agent moving distance calculating means for calculating the moving distance of the contrast agent from the detected contrast agent tip position information; and a contrast agent moving distance visualizing means for converting the moving distance into visualization information. X-ray fluoroscopic apparatus according to claim 1.
JP2007112485A 2007-04-23 2007-04-23 X-ray fluoroscopic equipment Expired - Fee Related JP5140309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112485A JP5140309B2 (en) 2007-04-23 2007-04-23 X-ray fluoroscopic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112485A JP5140309B2 (en) 2007-04-23 2007-04-23 X-ray fluoroscopic equipment

Publications (3)

Publication Number Publication Date
JP2008264274A JP2008264274A (en) 2008-11-06
JP2008264274A5 JP2008264274A5 (en) 2010-06-03
JP5140309B2 true JP5140309B2 (en) 2013-02-06

Family

ID=40044616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112485A Expired - Fee Related JP5140309B2 (en) 2007-04-23 2007-04-23 X-ray fluoroscopic equipment

Country Status (1)

Country Link
JP (1) JP5140309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10762634B2 (en) 2014-09-11 2020-09-01 Canon Medical Systems Corporation Image processing device and X-ray diagnostic apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643286B1 (en) * 2014-09-04 2016-07-29 삼성전자주식회사 Medical imaging apparatus and controlling method thereof
EP3234909B8 (en) * 2014-12-18 2020-04-08 Koninklijke Philips N.V. Automatic embolization agent visualisation in x-ray interventions
JP6707320B2 (en) 2015-06-01 2020-06-10 キヤノンメディカルシステムズ株式会社 Image processing apparatus and X-ray diagnostic apparatus
US11191503B2 (en) * 2018-07-17 2021-12-07 International Business Machines Corporation Fluid-injector for a simultaneous anatomical and fluid dynamic analysis in coronary angiography

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321390A (en) * 2003-04-23 2004-11-18 Toshiba Corp X-ray diagnostic imaging device and its method
EP2684521A1 (en) * 2004-11-16 2014-01-15 Medrad Inc. Modeling of pharmaceutical propagation
DE102005039189B4 (en) * 2005-08-18 2010-09-09 Siemens Ag Image evaluation method for two-dimensional projection images and objects corresponding thereto

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10762634B2 (en) 2014-09-11 2020-09-01 Canon Medical Systems Corporation Image processing device and X-ray diagnostic apparatus

Also Published As

Publication number Publication date
JP2008264274A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
US10130324B2 (en) Image analysis device and X-ray diagnostic apparatus
US20200268335A1 (en) Medical image processing apparatus, x-ray diagnostic apparatus, medical image processing method and x-ray diagnostic method
JP6664873B2 (en) Image processing apparatus, X-ray diagnostic apparatus, and image processing program
JP5140309B2 (en) X-ray fluoroscopic equipment
JP5361410B2 (en) Image processing device
US8411925B2 (en) X-ray diagnosis apparatus and image processing apparatus
US10410342B2 (en) Device-based motion-compensated digital subtraction angiography
JP6707320B2 (en) Image processing apparatus and X-ray diagnostic apparatus
JP2011245158A (en) X-ray image diagnostic apparatus
JP5835333B2 (en) Image processing apparatus and radiation imaging apparatus including the same
JP2008228992A (en) X-ray diagnostic system
CN105411612A (en) Image processing device and X-ray diagnostic apparatus
JP7442976B2 (en) X-ray imaging device
US10016175B2 (en) X-ray diagnostic apparatus and image processing apparatus
JP2007289569A (en) Medical image processor and medical image processing method
JPH06165035A (en) X-ray diagnostic system
CN102793547B (en) Image processing apparatus and x-ray diagnosis apparatus
JP5433253B2 (en) X-ray diagnostic equipment
JP6971598B2 (en) X-ray diagnostic equipment, image processing equipment and image processing program
US11457885B2 (en) Image processing apparatus
JP5908241B2 (en) Medical image display device
WO2015197738A1 (en) Silhouette display for visual assessment of calcified rib-cartilage joints
JP3582618B2 (en) X-ray diagnostic imaging device
CN117398115A (en) Computer-implemented method, evaluation device, X-ray machine, program and data carrier
JP2023183004A (en) Medical image processing apparatus and medical image processing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees