JP5139067B2 - Efficient novel loop sequences for shRNA expression - Google Patents

Efficient novel loop sequences for shRNA expression Download PDF

Info

Publication number
JP5139067B2
JP5139067B2 JP2007535531A JP2007535531A JP5139067B2 JP 5139067 B2 JP5139067 B2 JP 5139067B2 JP 2007535531 A JP2007535531 A JP 2007535531A JP 2007535531 A JP2007535531 A JP 2007535531A JP 5139067 B2 JP5139067 B2 JP 5139067B2
Authority
JP
Japan
Prior art keywords
sequence
loop
shrna
rna
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007535531A
Other languages
Japanese (ja)
Other versions
JPWO2007032428A1 (en
Inventor
純一 峰野
高嗣 上野
幸子 岡本
英人 蝶野
達哉 安藤
博幸 伊豆
郁之進 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Bio Inc
Original Assignee
Takara Bio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Bio Inc filed Critical Takara Bio Inc
Priority to JP2007535531A priority Critical patent/JP5139067B2/en
Publication of JPWO2007032428A1 publication Critical patent/JPWO2007032428A1/en
Application granted granted Critical
Publication of JP5139067B2 publication Critical patent/JP5139067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/51Methods for regulating/modulating their activity modulating the chemical stability, e.g. nuclease-resistance

Description

本発明は、医学、細胞工学、遺伝子工学、発生工学などの分野において有用な、RNAによる遺伝子抑制の効果を向上させることを可能にする方法、およびそれに関連する一連の技術に関する。   The present invention relates to a method and a series of techniques related to it, which are useful in the fields of medicine, cell engineering, genetic engineering, developmental engineering, etc., and make it possible to improve the effect of RNA gene suppression.

近年、小さなRNAによる遺伝子発現抑制が次々と発見されている。siRNA(short interfering RNA)と呼ばれる21mer〜23merの二本鎖RNAは配列特異的に遺伝子発現を抑制する。1998年にFireら(非特許文献1)が線虫にて二本鎖RNAが配列特異的に遺伝子のサイレングを引き起こすことを発見して以来、21〜23merにプロセッシングされたRNAがmRNAを切断する機構(非特許文献2)やRISC(RNA−induced silencing complex)の存在(非特許文献3)、Dicerのクローニング(非特許文献4)を経て、2001年にElbashirら(非特許文献5)により哺乳類細胞でもsiRNAによる配列特異的な発現抑制が可能であることが証明され、siRNAを用いた研究は一気に盛んになった。
一方、発生など多くのステージでの発現制御に大きな役割を果たしているmiRNA(microRNA)は、short hairpin構造(pre−miRNA)で細胞質に移行し、Dicerにより切断され成熟miRNAになる。miRNAは、一般に3’非翻訳領域に相補的に結合することにより、発現を翻訳段階で抑制するといわれている。
In recent years, gene expression suppression by small RNAs has been discovered one after another. A 21-mer to 23-mer double-stranded RNA called siRNA (short interfering RNA) suppresses gene expression in a sequence-specific manner. Since 1998, Fire et al. (Non-patent Document 1) discovered that double-stranded RNA causes gene silencing in a nematode sequence-specifically, RNA processed by 21-23mer cleaves mRNA. After the mechanism (Non-Patent Document 2) and the presence of RISC (RNA-induced silencing complex) (Non-Patent Document 3) and the cloning of Dicer (Non-Patent Document 4), in 2001, Elbashir et al. It has been proved that sequence-specific expression suppression by siRNA is also possible in cells, and research using siRNA has become very popular.
On the other hand, miRNA (microRNA) that plays a major role in expression control in many stages such as development, moves to the cytoplasm with a short hairpin structure (pre-miRNA), and is cleaved by Dicer to become mature miRNA. It is said that miRNA generally suppresses expression at the translational stage by binding complementarily to the 3 ′ untranslated region.

哺乳類細胞において、siRNAやmiRNAを人為的に細胞内で発現させる場合、発現ベクターからshRNA(short hairpin RNA)を発現させることが一般的である。このとき、センス配列とアンチセンス配列の間のループ配列が、細胞質への移行や、Dicerによる認識に重要であると言われており、最近の報告ではshRNAのループ配列にmiRNA由来の配列がよく使用されている。しかしながら、shRNAにおけるループ配列の重要性を示唆する報告があるにも拘らず、効果的なループ配列の検索はMiyagishiらの研究(非特許文献6)を除けばほとんど行われていない。   In mammalian cells, when siRNA or miRNA is artificially expressed in cells, it is common to express shRNA (short hairpin RNA) from an expression vector. At this time, the loop sequence between the sense sequence and the antisense sequence is said to be important for translocation to the cytoplasm and recognition by Dicer. In recent reports, miRNA-derived sequences are often used as shRNA loop sequences. It is used. However, despite the reports suggesting the importance of loop sequences in shRNA, effective loop sequence searches are rarely performed except for the study by Miyagishi et al. (Non-patent Document 6).

Fire A、他5名、Nature、1998年、Vol.391、p.806−811Fire A, 5 others, Nature, 1998, Vol. 391, p. 806-811 Zamore PO、他3名、Cell、2000年、Vol,101、p.25−33Zamore PO, 3 others, Cell, 2000, Vol, 101, p. 25-33 Hammond SM、他3名、Nature、2000年、Vol.404、p.293−296Hammond SM, 3 others, Nature, 2000, Vol. 404, p. 293-296 Bernstein E、他3名、Nature、2001年、Vol.409、p.363−366Bernstein E, 3 others, Nature, 2001, Vol. 409, p. 363-366 Elbashir SM、他5名、Nature、2001年、Vol.411、p.494−498Elbashir SM, 5 others, Nature, 2001, Vol. 411, p. 494-498 Miyagishi M、他4名、J.Gene Med.、2004年、Vol.6、p.715−723Miyagi M, 4 others, J. et al. Gene Med. 2004, Vol. 6, p. 715-723

本発明の目的は、上記従来技術を鑑みて行われたものであり、shRNAを利用した遺伝子抑制における効果の高いループ(loop)配列を提供することにある。本発明のループ配列を用いて、より強い抑制効果が得られれば、例えば遺伝子の機能解析実験などに大きな影響を及ぼすと考えられる。また、shRNAを利用した遺伝子抑制を利用した治療においては、その治療効果を左右する可能性がある。   An object of the present invention is to provide a loop sequence having a high effect in gene suppression using shRNA. If a stronger inhibitory effect can be obtained using the loop sequence of the present invention, it is considered to have a great influence on, for example, gene function analysis experiments. Moreover, in the treatment using gene suppression using shRNA, there is a possibility that the therapeutic effect is influenced.

本発明者らは鋭意研究の結果、次のような網羅的なループ配列検索を実施し、効果的なループ配列を見出した。これらの新規ループ配列は、従来使用されている配列と比べて高い遺伝子抑制効果を示すことを確認し、発明を完成した。すなわち、ヒト細胞で発現している短いRNAを精製し、マイクロビーズを用いた網羅的遺伝子発現解析技術(MPSS)を利用してスクリーニングし、その配列を解析した。また、配列情報を元にデータベースでの解析を行い、ヒトゲノムに100%マッチする配列の中から、既知のmiRNA、rRNA、tRNAにヒットしない配列を抽出し、二次構造予測から新規microRNAの候補を得た。得られた新規microRNA候補より無作為に9種類の配列を選択し、ステムループ配列よりループ配列を得た。こうして選択したループ配列を含むshRNA発現ベクターを構築し、本発明を完成させた。   As a result of diligent research, the present inventors conducted the following comprehensive loop sequence search and found an effective loop sequence. These novel loop sequences were confirmed to show a higher gene suppression effect than the conventionally used sequences, and the invention was completed. That is, short RNA expressed in human cells was purified, screened using a comprehensive gene expression analysis technique (MPSS) using microbeads, and the sequence was analyzed. In addition, the database is analyzed based on the sequence information, and sequences that do not hit any known miRNA, rRNA, or tRNA are extracted from sequences that match 100% with the human genome, and new microRNA candidates are selected from secondary structure prediction. Obtained. Nine types of sequences were randomly selected from the obtained novel microRNA candidates, and a loop sequence was obtained from the stem loop sequence. An shRNA expression vector containing the loop sequence thus selected was constructed, and the present invention was completed.

すなわち、本発明の第1の発明は、標的遺伝子の遺伝子抑制に有用なshRNAのループ配列のスクリーニング方法であって、以下の工程を包含する方法に関する。
(1)生体試料から低分子のRNAを抽出する工程、
(2)(1)で得られた低分子RNAの塩基配列を決定する工程、
(3)前記生体のゲノム情報を基に、(2)で得られた塩基配列の前後のゲノム配列を取得し、(2)で得られた塩基配列およびその前後のゲノム配列からなる一連の配列から、以下の(A)かつ(B)に該当する配列を選択する工程、
(A)一定の長さ当たりの自由エネルギーが最も低い領域の配列であって、ステムループ構造を形成する配列、
(B)(2)で得られた塩基配列がステムループ構造のステム領域に存在する配列、
(4)(3)で得られたゲノム配列から、ループ配列を決定し、当該ループ配列の両端に標的遺伝子配列およびその逆方向の相補配列がステム領域を形成するように連結されたshRNAを構築する工程、
(5)(4)で得られたshRNAを用いて標的遺伝子の遺伝子抑制効果を確認する工程。
That is, the first invention of the present invention relates to a method for screening a shRNA loop sequence useful for gene suppression of a target gene, which comprises the following steps.
(1) a step of extracting low molecular weight RNA from a biological sample,
(2) determining the base sequence of the low molecular weight RNA obtained in (1),
(3) Based on the genome information of the living body, the genome sequences before and after the base sequence obtained in (2) are obtained, and a series of sequences consisting of the base sequence obtained in (2) and the genomic sequences before and after that A step of selecting a sequence corresponding to the following (A) and (B):
(A) a sequence of a region having the lowest free energy per certain length, which forms a stem-loop structure;
(B) a sequence in which the base sequence obtained in (2) is present in the stem region of the stem-loop structure,
(4) A loop sequence is determined from the genome sequence obtained in (3), and a shRNA in which the target gene sequence and the complementary sequence in the opposite direction are connected to both ends of the loop sequence so as to form a stem region is constructed. The process of
(5) A step of confirming the gene suppression effect of the target gene using the shRNA obtained in (4).

本発明の第2の発明は、本発明の第1の発明の方法により得られる、遺伝子抑制に有用なshRNAのループ配列を含有する核酸に関する。   The second invention of the present invention relates to a nucleic acid containing a shRNA loop sequence useful for gene suppression obtained by the method of the first invention of the present invention.

本発明の第2の発明において、ループ配列が以下から選択される塩基配列から選択される配列であってもよい:
(1)配列表の配列番号12〜20のいずれか1つに記載の塩基配列;または
(2)配列表の配列番号12〜20のいずれか1つに記載の塩基配列において1個以上の塩基の欠失、付加、挿入もしくは置換の少なくとも1つを有する塩基配列。
In the second invention of the present invention, the loop sequence may be a sequence selected from a base sequence selected from the following:
(1) the base sequence described in any one of SEQ ID NOS: 12 to 20 in the sequence listing; or (2) one or more bases in the base sequence described in any one of SEQ ID NOS: 12 to 20 in the sequence listing A nucleotide sequence having at least one of deletion, addition, insertion or substitution.

本発明の第3の発明は、本発明の第2の発明の核酸を含有するshRNAを発現するためのベクターに関する。   The third invention of the present invention relates to a vector for expressing shRNA containing the nucleic acid of the second invention of the present invention.

本発明の第4の発明は、本発明の第2の発明の核酸、もしくは本発明の第3の発明のベクターを含むキットに関する。   The fourth invention of the present invention relates to a kit comprising the nucleic acid of the second invention of the present invention or the vector of the third invention of the present invention.

本発明の配列を含むshRNA発現ベクターは、従来良く使用されているループ配列と比較して高い遺伝子抑制効果を提供することが可能となる。   The shRNA expression vector containing the sequence of the present invention can provide a high gene suppression effect compared with a loop sequence that is often used conventionally.

本発明のスクリーニング方法および核酸の遺伝子抑制の効果を示す図である。It is a figure which shows the effect of the screening method and nucleic acid gene suppression of this invention. 本発明のスクリーニング方法および核酸の遺伝子抑制の効果を示す図である。It is a figure which shows the effect of the screening method and nucleic acid gene suppression of this invention. 本発明のスクリーニング方法および核酸の遺伝子抑制の効果を示す図である。It is a figure which shows the effect of the screening method and nucleic acid gene suppression of this invention. 本発明のスクリーニング方法および核酸の遺伝子抑制の効果を示す図である。It is a figure which shows the effect of the screening method and nucleic acid gene suppression of this invention. 本発明のスクリーニング方法および核酸の遺伝子抑制の効果を示す図である。It is a figure which shows the effect of the screening method and nucleic acid gene suppression of this invention.

本明細書において「ステムループ(ヘアピンループ)構造」とは、一本鎖RNA又はDNA上に存在する逆方向反復配列間で水素結合によって生じる二本鎖の部分(ステム)とそれに挟まれたループの部分からなる構造を示す。つまりステム領域は、2つの領域の塩基配列が互いに相補的であり、かつ逆方向に存在している。水素結合する逆方向反復配列は完全に相補的であっても良く、部分的に相補的であってもよい。ループ部分の構造は一部にステム領域があっても良く、ステム領域にバルジが挿入されていても良い。ステムループ構造は、核酸の二次構造予測アルゴリズムにより予測、確認することができる。このアルゴリズムは、例えば、Vienna RNA Package(Hofacker Iら、Nucleic Acids Research,Vol.31(13),p.3429−31(2003))、MFOLD(Zuker Mら、Nucleic Acids Research,Vol.31(13),p.3406−15(2003))が挙げられる。   In this specification, “stem loop (hairpin loop) structure” means a double-stranded part (stem) generated by hydrogen bonding between inverted repeats existing on single-stranded RNA or DNA and a loop sandwiched between them. The structure which consists of these parts is shown. That is, in the stem region, the base sequences of the two regions are complementary to each other and exist in opposite directions. The hydrogenated inverted repeats may be completely complementary or partially complementary. The structure of the loop portion may have a stem region in part, and a bulge may be inserted in the stem region. The stem loop structure can be predicted and confirmed by a secondary structure prediction algorithm for nucleic acids. This algorithm is described in, for example, Vienna RNA Package (Hofacker I et al., Nucleic Acids Research, Vol. 31 (13), p. 3429-31 (2003)), MFOLD (Zuker M et al., Nucleic Acids Research, Vol. ), P. 3406-15 (2003)).

本明細書において「shRNA」とは、ステムループ構造を有するRNAを示す。shRNAは一本鎖RNAであり、一本鎖RNA上に存在する逆方向反復配列がそれぞれアニーリングし、ステム領域と呼ばれる二本鎖RNA(double stranded RNA:dsRNA)部分を形成する。前記逆方向反復配列に挟まれる部分をループ領域という。ループ領域の配列をループ配列という。   As used herein, “shRNA” refers to RNA having a stem-loop structure. The shRNA is a single-stranded RNA, and inverted repeats present on the single-stranded RNA are annealed to form a double-stranded RNA (double RNA: dsRNA) portion called a stem region. The portion sandwiched between the inverted repeat sequences is called a loop region. The loop region array is called a loop array.

本明細書において「遺伝子抑制に有用」とは、遺伝子の発現抑制を行う際に使用することが可能であることを示し、特に遺伝子抑制を強く誘導すること、つまり遺伝子の発現を強く抑制することをいう。遺伝子抑制に有用なshRNAのループ配列とは、遺伝子抑制を行うときに利用可能であるshRNAのループ配列であり、特に限定はされないが例えば、一般にshRNA発現ベクターのループ構造に利用されていた、配列番号21に示す配列のループ領域(Brummelkamp et al. Science. 2002 296:550−553.)と比較して、遺伝子抑制の効果が高いループ配列が遺伝子抑制に特に有用である。   In this specification, “useful for gene suppression” means that it can be used when gene expression is suppressed, and particularly strongly induces gene suppression, that is, strongly suppresses gene expression. Say. The shRNA loop sequence useful for gene suppression is a shRNA loop sequence that can be used when gene suppression is performed. Although not particularly limited, for example, a sequence generally used for the loop structure of an shRNA expression vector Compared with the loop region of the sequence shown in No. 21 (Brummelkamp et al. Science. 2002 296: 550-553.), A loop sequence having a high effect of gene suppression is particularly useful for gene suppression.

本明細書において「自由エネルギー」とは、Zuker法(Zuker Mら、RNA biochemistry and biotechnology,(Kluwer Academic Publishers),p.11−43(1999))により与えられる値であり、RNAの高次構造を予測するために使用される。   As used herein, “free energy” is a value given by the Zuker method (Zuker M et al., RNA biochemistry and biotechnology, (Kluwer Academic Publishers), p. 11-43 (1999)), and is a higher order structure of RNA. Used to predict.

1.遺伝子抑制に有用なshRNAのループ配列のスクリーニング方法
本発明の遺伝子抑制に有用なshRNAのループ配列のスクリーニング方法は以下の工程を包含する。
(1)生体試料から低分子のRNAを抽出する工程、
(2)(1)で得られた低分子RNAの塩基配列を決定する工程、
(3)前記生体のゲノム情報を基に、(2)で得られた塩基配列の前後のゲノム配列を取得し、(2)で得られた塩基配列およびその前後のゲノム配列からなる一連の配列から、以下の(A)かつ(B)に該当する配列を選択する工程、
(A)一定の長さ当たりの自由エネルギーが最も低い領域の配列であって、ステムループ構造を形成する配列、
(B)(2)で得られた塩基配列がステムループ構造のステム領域に存在する配列、
(4)(3)で得られたゲノム配列から、ループ配列を決定し、当該ループ配列の両端に標的遺伝子配列およびその逆方向の相補配列がステム領域を形成するように連結されたshRNAを構築する工程、
(5)(4)で得られたshRNAを用いて標的遺伝子の遺伝子抑制効果を確認する工程。
1. Screening method of shRNA loop sequence useful for gene suppression The screening method of shRNA loop sequence useful for gene suppression of the present invention includes the following steps.
(1) a step of extracting low molecular weight RNA from a biological sample,
(2) determining the base sequence of the low molecular weight RNA obtained in (1),
(3) Based on the genome information of the living body, the genome sequences before and after the base sequence obtained in (2) are obtained, and a series of sequences consisting of the base sequence obtained in (2) and the genomic sequences before and after that A step of selecting a sequence corresponding to the following (A) and (B):
(A) a sequence of a region having the lowest free energy per certain length, which forms a stem-loop structure;
(B) a sequence in which the base sequence obtained in (2) is present in the stem region of the stem-loop structure,
(4) A loop sequence is determined from the genome sequence obtained in (3), and a shRNA in which the target gene sequence and the complementary sequence in the opposite direction are connected to both ends of the loop sequence so as to form a stem region is constructed. The process of
(5) A step of confirming the gene suppression effect of the target gene using the shRNA obtained in (4).

本発明のスクリーニング方法において、生体試料はRNAを含有すると考えられる試料であれば特に限定は無く、培養細胞、組織、器官、体液などいずれの由来であっても良い。さらに、遺伝子抑制を行う生体由来の生体試料であることが好ましいが、遺伝子抑制に有用であれば遺伝子抑制を行う生体以外の生物由来の生体試料であっても良い。これらの生体試料よりRNAを抽出する方法は、当業者に公知の方法を使用すればよく、生体試料に最適化されたキットが数多く市販されている。   In the screening method of the present invention, the biological sample is not particularly limited as long as it is a sample considered to contain RNA, and may be derived from any of cultured cells, tissues, organs, body fluids and the like. Furthermore, it is preferably a biological sample derived from a living body that performs gene suppression, but may be a biological sample derived from a living organism other than the living body that performs gene suppression if it is useful for gene suppression. As a method for extracting RNA from these biological samples, a method known to those skilled in the art may be used, and many kits optimized for biological samples are commercially available.

本発明のスクリーニング方法において、低分子のRNAは一般的なmRNA、tRNA、rRNAよりも低分子量のRNAを意味し、miRNA程度の長さのRNAが特に好適である。特に限定はされないが例えば、10〜100塩基、好ましくは15〜50塩基、より好ましくは17〜30塩基、特に好ましくは21〜27塩基の長さのRNAである。低分子のRNAを抽出する方法は、RNAを分子量により分画できる方法であれば特に限定されないが、例えばゲル電気泳動法による切り出し、カラム分画法による分取、フィルターによるろ過法などが挙げられる。   In the screening method of the present invention, low molecular RNA means RNA having a lower molecular weight than general mRNA, tRNA, and rRNA, and RNA having a length of about miRNA is particularly suitable. Although not particularly limited, for example, RNA having a length of 10 to 100 bases, preferably 15 to 50 bases, more preferably 17 to 30 bases, and particularly preferably 21 to 27 bases. The method for extracting low molecular weight RNA is not particularly limited as long as RNA can be fractionated by molecular weight. Examples thereof include excision by gel electrophoresis, fractionation by column fractionation, and filtration by a filter. .

前記低分子RNAの塩基配列を決定する方法は、一般のRNA配列決定方法を使用することがきる。特に限定はされないが、例えばRNAよりcDNAを合成し、チェーンターミネーション法、MPSS法(日本特許公開第2000−515006号公報およびBrenner S.他23名 Nature Biotechnology 2000年 vol.18、p630−634)等により配列を決定すればよい。配列が決定された低分子RNAの塩基配列は、由来する生体のゲノムデータベースなどを用いてゲノム配列に一致する配列を選択することが好ましい。つまり、ゲノム塩基配列に一致しない低分子RNA配列は、除外することが好ましい。さらに、mRNA、tRNA、rRNAである配列をデータベースと比較して除外することが好ましい。前記検討を行うことによりノイズを除去することができるため、後に行う選択の効率を向上させることができる。前記データベースは、特に限定はされないが例えば、UCSCゲノムデータベース、NCBI Refseqデータベース、the European ribosomal RNAデータベース、the Genomic tRNAデータベースが利用できる。   As a method for determining the base sequence of the low-molecular RNA, a general RNA sequencing method can be used. Although not particularly limited, for example, cDNA is synthesized from RNA, and chain termination method, MPSS method (Japanese Patent Publication No. 2000-515006 and Brenner S. et al. 23 Nature Biotechnology 2000 vol. 18, p630-634), etc. The sequence may be determined by As the base sequence of the low molecular weight RNA whose sequence has been determined, it is preferable to select a sequence that matches the genomic sequence using the genome database of the organism from which it was derived. That is, it is preferable to exclude low molecular RNA sequences that do not match the genomic base sequence. Furthermore, it is preferable to exclude sequences that are mRNA, tRNA, and rRNA in comparison with the database. Since noise can be removed by performing the above examination, the efficiency of selection performed later can be improved. The database is not particularly limited, and for example, a UCSC genome database, an NCBI Refseq database, the European ribosomal RNA database, and the Genomic tRNA database can be used.

次に、決定した低分子RNA塩基配列を基に、由来する生体のゲノム情報から低分子RNA塩基配列の前後のゲノム配列を取得する。この低分子RNA塩基配列およびその前後の配列にステムループ構造のループ領域の配列が含まれることが考えられる。ループ配列を選択する低分子RNA塩基配列およびその前後の配列の長さは、特に限定はされないが例えば、20〜500塩基、40〜300塩基、60〜260塩基、80〜220塩基、110〜200塩基が好適である。この低分子RNA塩基配列を含む前後のゲノム配列から、(A)Zuker法により自由エネルギーを計算し、自由エネルギーが低くなる領域、好ましくは自由エネルギーが最も低くなる領域の配列を選択する。つまり、前記低分子RNA塩基配列を含む前後のゲノム配列の中で、一定の長さの領域(例えば110塩基の領域)を、端より1塩基ずつずらした領域についてそれぞれ自由エネルギーを算出し、例えば最も自由エネルギーが低い領域を選択する。最も低い自由エネルギーは、−25.0kcal/mol以下、好ましくは−30.0kcal/mol以下、より好ましくは−85.0〜−30.0kcal/mol以下であることが望ましい。さらに、最も自由エネルギーが低い領域であって、ステムループ構造を形成すると予想される配列を選択する。また、(B)低分子RNAの塩基配列がステムループ構造のステム領域に存在する配列を選択する。これらの選択は、例えば、Vienna RNA PackageのRNA fold、mfoldを利用することができる。すなわち、特定の配列と、その逆方向の相補配列を含むゲノム配列はステムループ構造を形成すると予想され、前記2つの配列にはさまれた配列がループ配列である。   Next, based on the determined low molecular RNA base sequence, the genomic sequences before and after the low molecular RNA base sequence are obtained from the genomic information of the living organism. It is conceivable that the sequence of the loop region of the stem loop structure is included in this low molecular RNA base sequence and the sequences before and after that. The length of the low-molecular RNA base sequence for selecting the loop sequence and the sequence before and after it are not particularly limited, but for example, 20 to 500 bases, 40 to 300 bases, 60 to 260 bases, 80 to 220 bases, 110 to 200 bases A base is preferred. From the genomic sequences before and after this low molecular RNA base sequence, (A) the free energy is calculated by the Zuker method, and the region of the region where the free energy is low, preferably the region where the free energy is the lowest, is selected. That is, in the genomic sequences before and after the low molecular RNA base sequence, free energy is calculated for each region where a region of a certain length (for example, a region of 110 bases) is shifted by one base from the end, for example, Select the region with the lowest free energy. The lowest free energy is −25.0 kcal / mol or less, preferably −30.0 kcal / mol or less, more preferably −85.0 to −30.0 kcal / mol or less. In addition, the region that has the lowest free energy and is expected to form a stem-loop structure is selected. Further, (B) a sequence in which the base sequence of the low molecular RNA is present in the stem region of the stem loop structure is selected. For these selections, for example, RNA fold and mfold of Vienna RNA Package can be used. That is, a genomic sequence including a specific sequence and a complementary sequence in the opposite direction is expected to form a stem-loop structure, and a sequence sandwiched between the two sequences is a loop sequence.

次に、ゲノム配列から選択したループ配列と、遺伝子抑制を行う標的遺伝子またはその一部の配列およびその逆方向の相補配列を含有するステム領域とからなるshRNAを構築する。このshRNAは化学的に合成してもよく、RNAポリメラーゼにより転写されるようなDNAを作製し、RNA転写システムにより生成してもよい。   Next, an shRNA consisting of a loop sequence selected from the genome sequence and a stem region containing a target gene for gene repression or a partial sequence thereof and a complementary sequence in the reverse direction is constructed. This shRNA may be chemically synthesized, or DNA that can be transcribed by RNA polymerase may be prepared and generated by an RNA transcription system.

前記で構築したshRNAの遺伝子抑制における効果を確認することにより、ループ領域の遺伝子抑制に与える影響を評価することができる。強い遺伝子抑制を起こすshRNAのループ配列は、遺伝子抑制に有用なループ配列である。遺伝子抑制の効果を確認する方法は、特に限定はされないが例えば、shRNAを直接細胞に導入する方法、shRNAが細胞内で転写されるDNA構築物を細胞内に導入する方法があり、細胞内の標的遺伝子の転写、翻訳を検出することにより確認することができる。遺伝子抑制を確認するためのベクター、宿主、およびそれらのキットが数多く市販されている。本発明のスクリーニング方法において、これらのキットを好適に使用することができる。特に限定はされないが、例えば、蛍光タンパク質を発現している細胞に、本発明のスクリーニング方法により得られたループ配列と、蛍光タンパク質をコードする核酸の一部をステム領域とする配列を含むshRNAを導入し、細胞の蛍光タンパク質を定量することによりループ領域の遺伝子抑制に与える影響を評価することができる。   By confirming the effect of shRNA constructed as described above on gene repression, the effect of the loop region on gene repression can be evaluated. The loop sequence of shRNA that causes strong gene suppression is a loop sequence useful for gene suppression. The method for confirming the effect of gene suppression is not particularly limited. For example, there are a method of directly introducing shRNA into a cell, a method of introducing a DNA construct into which shRNA is transcribed in the cell, and an intracellular target. It can be confirmed by detecting the transcription and translation of the gene. Many vectors, hosts, and kits for confirming gene suppression are commercially available. These kits can be suitably used in the screening method of the present invention. Although not particularly limited, for example, shRNA containing a loop sequence obtained by the screening method of the present invention and a sequence having a part of a nucleic acid encoding the fluorescent protein as a stem region is applied to a cell expressing the fluorescent protein. Introducing and quantifying fluorescent protein in cells can evaluate the effect on gene suppression in the loop region.

本発明のスクリーニング方法により選択されたループ配列を含むshRNAは、siRNAやmiRNAの機構により、効果的に遺伝子発現を抑制することができ、遺伝子機能解析、遺伝子治療などに有用である。   The shRNA containing the loop sequence selected by the screening method of the present invention can effectively suppress gene expression by the mechanism of siRNA or miRNA, and is useful for gene function analysis, gene therapy, and the like.

2.遺伝子抑制に有用なshRNAのループ配列を含有する核酸、ベクター、キット
本発明の遺伝子抑制に有用なshRNAのループ配列を含有する核酸は、前記1.記載のスクリーニング方法により得られたループ配列を含有する核酸である。本発明のshRNAのループ配列の長さは、2〜200塩基、好ましくは4〜50塩基、特に好ましくは8〜20塩基である。このような塩基配列は例えば、配列表の配列番号12〜20に記載のループ配列が挙げられる。また、配列表の配列番号12〜20のいずれかに記載の配列において1個以上、好ましくは1個又は複数個、特に好ましくは1個又は数個、さらに好ましくは1〜10個の塩基の欠失、付加、挿入もしくは置換の少なくとも1つを有する配列で示され、かつ遺伝子抑制に有用なものが挙げられる。ここで、配列表の配列番号12〜20のいずれかに記載の配列において1個以上の塩基の欠失、付加、挿入もしくは置換の少なくとも1つを有する配列としては、例えば配列番号12〜20のいずれかに記載のヌクレオチドに50%以上のホモロジーを有する核酸配列、好ましくは前記のヌクレオチドに70%以上のホモロジーを有する核酸配列、特に好ましくは前記のヌクレオチドに90%以上のホモロジーを有する核酸配列が例示される。当業者は、本発明の核酸配列を基に、容易にループ配列を含有するshRNAを作製、発注することができ、用意したshRNAを標的遺伝子を発現する細胞などに導入して容易に遺伝子抑制の効果が確認できるため、本発明の核酸を基に1個以上の塩基の欠失、付加、挿入もしくは置換の少なくとも1つを行った核酸も本発明に含まれると解釈されるべきである。
2. Nucleic acid, vector, kit containing shRNA loop sequence useful for gene suppression The nucleic acid containing the shRNA loop sequence useful for gene suppression of the present invention is the above-mentioned 1. A nucleic acid containing a loop sequence obtained by the described screening method. The length of the loop sequence of the shRNA of the present invention is 2 to 200 bases, preferably 4 to 50 bases, particularly preferably 8 to 20 bases. Examples of such base sequences include loop sequences described in SEQ ID NOs: 12 to 20 in the Sequence Listing. Moreover, in the sequence | arrangement in any one of sequence number 12-20 of a sequence table, 1 or more, Preferably 1 or more, Especially preferably, 1 or several, More preferably, the lack of 1-10 bases Examples thereof include those represented by sequences having at least one of deletion, addition, insertion or substitution, and useful for gene suppression. Here, as a sequence having at least one of deletion, addition, insertion or substitution of one or more bases in the sequence described in any one of SEQ ID NOs: 12 to 20 in the sequence listing, for example, SEQ ID NO: 12-20 A nucleic acid sequence having 50% or more homology to any nucleotide, preferably a nucleic acid sequence having 70% or more homology to the nucleotide, particularly preferably a nucleic acid sequence having 90% or more homology to the nucleotide Illustrated. A person skilled in the art can easily prepare and order shRNA containing a loop sequence based on the nucleic acid sequence of the present invention, and easily introduce the prepared shRNA into a cell expressing a target gene or the like for gene repression. Since the effect can be confirmed, a nucleic acid in which at least one of deletion, addition, insertion or substitution of one or more bases has been performed based on the nucleic acid of the present invention should be construed to be included in the present invention.

さらに、本発明の核酸は、前記の核酸にストリンジェントな条件でハイブリダイズ可能であり、遺伝子抑制に有用な核酸を包含する。前記のストリンジェントな条件としては、1989年、コールド・スプリング・ハーバー・ラボラトリー発行、J.サムブルック(J. Sambrook)ら編集、モレキュラー・クローニング:ア・ラボラトリー・マニュアル第2版(Molecular Cloning : A Laboratory Manual 2nd ed.)等に記載された条件が例示される。具体的には、例えば0.5% SDS、5×デンハルツ溶液、0.01% 変性サケ精子DNAを含む6×SSC中、プローブとともに65℃にて12〜20時間インキュベートする条件が挙げられる。プローブにハイブリダイズした核酸は、例えば0.5% SDSを含む0.1×SSC中、37℃で洗浄して非特異的に結合したプローブを除去した後に検出することができる。   Furthermore, the nucleic acid of the present invention includes a nucleic acid that can hybridize to the above-described nucleic acid under stringent conditions and is useful for gene suppression. The stringent conditions are described in 1989, Cold Spring Harbor Laboratory, J. Am. Examples of the conditions described in J. Sambrook et al., Molecular Cloning: A Laboratory Manual 2nd Edition (Molecular Cloning: A Laboratory Manual 2nd ed.) And the like are exemplified. Specifically, for example, conditions of incubating with a probe at 65 ° C. for 12 to 20 hours in 6 × SSC containing 0.5% SDS, 5 × Denharz solution, and 0.01% denatured salmon sperm DNA can be mentioned. The nucleic acid hybridized to the probe can be detected after removing the non-specifically bound probe by washing at 37 ° C. in 0.1 × SSC containing 0.5% SDS, for example.

本発明の核酸を挟んで標的遺伝子の塩基配列またはその一部の塩基配列と、その相補的な配列が互いに逆方向に配置されたRNAは、前記標的遺伝子を効果的に抑制することができるため、dsRNAを利用する遺伝子抑制に有用である。ステム領域の長さは、遺伝子抑制において利用できるdsRNAを生成する長さであれば特に限定はないが、例えば、10〜200塩基、好ましくは14〜30塩基、特に好ましくは19〜24塩基である。   RNA in which a base sequence of a target gene or a part of the base sequence and a complementary sequence thereof are arranged in opposite directions across the nucleic acid of the present invention can effectively suppress the target gene. It is useful for gene suppression using dsRNA. The length of the stem region is not particularly limited as long as it is a length that generates dsRNA that can be used in gene suppression, and is, for example, 10 to 200 bases, preferably 14 to 30 bases, and particularly preferably 19 to 24 bases. .

また、本発明の核酸を適切な発現ベクターに挿入した、遺伝子抑制に有用なベクターも本発明に含まれる。本発明のベクターは、本発明のループ配列を含有するshRNAが転写されるものであれば、つまり、遺伝子抑制を行う生物で機能するプロモーター、3’UTR、5’UTRなどの転写調節配列、ターミネーター、ポリAシグナルなど転写終結配列を有するベクターであれば何でもよい。例えばpSINsi−hU6などのpSINsiベクターシリーズ(タカラバイオ社製)、pBAsiベクターシリーズ(タカラバイオ社製)、piGENEベクター(iGENE社製)、pSIRENベクター(クローンテック)のプロモーター下流に本発明のループ配列を挿入したベクターは、標的とする遺伝子またはその一部の配列を組み込めば直ちにshRNA発現ベクターとなるため、有用である。その場合、標的遺伝子またはその一部の配列は、shRNAのステム領域を形成するように逆方向反復配列となり、かつループ配列を挟むようにベクターを構築すればよい。   In addition, a vector useful for gene suppression in which the nucleic acid of the present invention is inserted into an appropriate expression vector is also included in the present invention. As long as the shRNA containing the loop sequence of the present invention is transcribed, the vector of the present invention, that is, a transcriptional regulatory sequence such as a promoter, 3′UTR, 5′UTR, terminator, etc. Any vector having a transcription termination sequence such as a poly A signal may be used. For example, the pSINsi-hU6 and other pSINsi vector series (Takara Bio), pBAsi vector series (Takara Bio), piGENE vector (iGENE), and pSIREN vector (Clontech) downstream of the loop sequence of the present invention. The inserted vector is useful because it immediately becomes a shRNA expression vector when a target gene or a partial sequence thereof is incorporated. In that case, the vector may be constructed so that the target gene or a partial sequence thereof is an inverted repeat sequence so as to form a shRNA stem region, and the loop sequence is sandwiched.

さらに、本発明のshRNAのループ配列を含有する核酸、または本発明のベクターを少なくとも1つ含むキットも本発明に含まれる。本発明のキットは、さらに宿主となる生物、細胞、組織、器官を含んでいてもよく、これらの宿主で標的遺伝子が転写、発現するためのベクター、核酸構築物を含んでいてもよい。また、宿主へ核酸を導入するための形質転換用試薬を含んでいてもよい。   Furthermore, a kit containing at least one nucleic acid containing the shRNA loop sequence of the present invention or a vector of the present invention is also included in the present invention. The kit of the present invention may further contain a host organism, cell, tissue, organ, and may contain a vector or nucleic acid construct for transcription and expression of the target gene in these hosts. Further, a transformation reagent for introducing the nucleic acid into the host may be included.

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。
また、本明細書に記載の操作のうち、基本的な操作については2001年、コールド スプリング ハーバー ラボラトリー発行、T.マニアティス(T.Maniatis)ら編集、モレキュラー クローニング:ア ラボラトリー マニュアル第3版(Molecular Cloning:A Laboratory Manual 3rd ed.)に記載の方法によった。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.
Among the operations described in this specification, the basic operations are described in 2001, issued by Cold Spring Harbor Laboratory. Edited by T. Maniatis et al., Molecular Cloning: The method described in A Laboratory Manual 3rd edition (Molecular Cloning: A Laboratory Manual 3rd ed.).

さらに、以下に示す大腸菌を用いたプラスミドの構築には、特に記載のない限り大腸菌TOP10(Invitrogen社製)を宿主として使用した。また、形質転換された大腸菌は30μg/mlのクロラムフェニコールを含むLB培地(トリプトン 1%、酵母エキス 0.5%、NaCl 0.5%、pH7.0)、あるいは上記培地に1.5%の寒天を加え固化させたLB−クロラムフェニコールプレートを用いて37℃で好気的に培養した。   Furthermore, E. coli TOP10 (manufactured by Invitrogen) was used as a host in the following plasmid construction using E. coli unless otherwise specified. The transformed E. coli is LB medium (tryptone 1%, yeast extract 0.5%, NaCl 0.5%, pH 7.0) containing 30 μg / ml chloramphenicol, or 1.5% in the above medium. The cells were aerobically cultured at 37 ° C. using LB-chloramphenicol plates solidified by adding% agar.

実施例1 試料の調製
(1)RNAの抽出
ヒト胎児腎臓由来293T/17細胞(ATCC CRL−11268)を、10% ウシ胎児血清(FBS;ギブコ社製)含有DMEM培地中で5%CO存在下、37℃で7日間培養した。細胞を回収し、トリゾル試薬(ギブコ社製)により全RNAを抽出した。
Example 1 Sample Preparation (1) RNA Extraction Human fetal kidney-derived 293T / 17 cells (ATCC CRL-11268) were present in DMEM medium containing 10% fetal bovine serum (FBS; manufactured by Gibco) in the presence of 5% CO 2. The cells were cultured at 37 ° C. for 7 days. Cells were collected, and total RNA was extracted with Trizol reagent (Gibco).

(2)低分子RNAの分離
293T/17細胞由来全RNA 1mgをMicrocon 30(ミリポア社製)にて低分子RNAの濃縮を行った。濃縮した低分子RNAを15% TBE−ウレアゲル(Invtrogen社製)にて電気泳動を行った。電気泳動後、21塩基から27塩基付近を切り出し、低分子RNAをゲルより分離した。
(2) Separation of low molecular weight 1 mg of 293T / 17 cell-derived total RNA was concentrated with Microcon 30 (Millipore). The concentrated small RNA was electrophoresed on 15% TBE-urea gel (Invtrogen). After electrophoresis, about 21 to 27 bases were excised and low molecular RNA was separated from the gel.

(3)低分子RNA タグライブラリー作製
米国公開公報第2004/0002104号記載のタグベクターpMBS1をBamHIおよびBbsI(いずれもニュー イングランド バイオラブ(NEB)社製)により消化したあと、ウシ小腸アルカリホスファターゼ(CIAP、タカラバイオ社製)により脱リン酸化処理を行った。
(3) Preparation of small RNA tag library After digesting the tag vector pMBS1 described in US Publication No. 2004/0002104 with BamHI and BbsI (both made by New England Biolab (NEB)), bovine intestinal alkaline phosphatase ( CIAP (manufactured by Takara Bio Inc.) was used for dephosphorylation.

293T/17細胞由来、低分子RNA 30ngに大腸菌C75アルカリホスファターゼ(BAP C75、タカラバイオ社製)を作用させ、脱リン酸化を行った。続いて、この低分子RNAの3’末端に5’側の6塩基分がRNA、その他がDNAとなっている配列表の配列番号1に示される合成RNA/DNAキメラオリゴをT4 RNA Ligase(タカラバイオ社製)で連結した。その後15% TBE−ウレアゲル(Invtrogen社製)で電気泳動を行った。電気泳動後、目的産物の切り出しを行いゲルより分離した。
この合成オリゴ連結低分子RNAを T4 polynucleotide kinase(タカラバイオ社製)を作用させることにより、5’末端のリン酸化を行った。その後5’末端に3’側の6塩基分がRNA、その他がDNAとなっている配列表の配列番号2に示される合成DNA/RNA キメラオリゴをT4 RNA Ligase(タカラバイオ社製)で連結した。さらに、15% TBE−ウレアゲル (Invtrogen社製)で電気泳動を行った。電気泳動後、目的産物のゲル抜きを行いゲルより分離した。
E. coli C75 alkaline phosphatase (BAP C75, manufactured by Takara Bio Inc.) was allowed to act on 30 ng of low-molecular RNA derived from 293T / 17 cells to perform dephosphorylation. Subsequently, the synthetic RNA / DNA chimera oligo shown in SEQ ID NO: 1 in the sequence listing in which 6 bases on the 5 ′ side are RNA at the 3 ′ end of this low molecular RNA and the others are DNA is T4 RNA Ligase (Takara Bio). ). Thereafter, electrophoresis was performed with 15% TBE-urea gel (manufactured by Invtrogen). After electrophoresis, the target product was excised and separated from the gel.
This synthetic oligo-linked small RNA was subjected to T4 polynucleotide kinase (manufactured by Takara Bio Inc.) to phosphorylate the 5 ′ end. Thereafter, a synthetic DNA / RNA chimera oligo represented by SEQ ID NO: 2 in the sequence listing in which 6 bases on the 3 ′ side were RNA at the 5 ′ end and DNA was the other was ligated with T4 RNA Ligase (Takara Bio Inc.). Furthermore, electrophoresis was performed with 15% TBE-urea gel (Invtrogen). After electrophoresis, the target product was removed from the gel.

この両末端へ合成オリゴを連結させた低分子RNAを鋳型とし、配列表の配列番号3で示されるプライマーを用いてdCTP、dATP、dGTP、dTTPを基質としてM−MLV RTase(タカラバイオ社製)で逆転写反応を行った。このDNAを鋳型とし、配列表の配列番号4で示されるFAM標識オリゴヌクレオチドと、配列表の配列番号5で示されるFAM標識オリゴヌクレオチドをプライマーに用いて、PCRを行った。PCR反応は、Pyrobest DNA polymerase(タカラバイオ社製)を使用し、5’−メチル化−dCTP、dATP、dGTP、dTTPを基質として行った。このPCR産物をフェノール処理、クロロホルム処理、エタノール沈殿によってDNAを精製した。   M-MLV RTase (manufactured by Takara Bio Inc.) using as a template low molecular RNA with synthetic oligos linked to both ends and using the primer shown in SEQ ID NO: 3 in the sequence listing as a substrate for dCTP, dATP, dGTP, and dTTP. A reverse transcription reaction was performed. Using this DNA as a template, PCR was performed using the FAM-labeled oligonucleotide represented by SEQ ID NO: 4 in the Sequence Listing and the FAM-labeled oligonucleotide represented by SEQ ID NO: 5 in the Sequence Listing as primers. The PCR reaction was performed using Pyrobest DNA polymerase (manufactured by Takara Bio Inc.) with 5'-methylated-dCTP, dATP, dGTP, and dTTP as substrates. This PCR product was purified by phenol treatment, chloroform treatment and ethanol precipitation.

精製したPCR産物をSfaNI(NEB社製)にて消化を行い、DNAを精製した。このDNAについて15% アクリルアミドゲルによる電気泳動を行い、目的のDNA断片のバンドを切り出し、ゲルよりDNA断片の抽出を行った。
前記の方法により得られたcDNA断片と前述の直鎖化したpMBS1とを、T4 DNA Ligase(タカラバイオ社製)にて連結し、得られた組換えプラスミドを用いたエレクトロポレーションにより大腸菌TOP10を形質転換した。形質転換体の一部をLB−クロラムフェニコールプレートに接種し、生じたコロニー数から独立したクローン数を算出するとともに、残りの形質転換体をLB−クロラムフェニコール含有LB培地に接種し、クローン数64万相当の培養物からQIAGEN Plasmid Midi Kit(キアゲン社製)を用いてプラスミドDNAを精製し、タグライブラリーを得た。
The purified PCR product was digested with SfaNI (NEB) to purify the DNA. This DNA was electrophoresed on a 15% acrylamide gel, the band of the target DNA fragment was cut out, and the DNA fragment was extracted from the gel.
The cDNA fragment obtained by the above method and the linearized pMBS1 described above were ligated with T4 DNA Ligase (manufactured by Takara Bio Inc.), and E. coli TOP10 was obtained by electroporation using the obtained recombinant plasmid. Transformed. A part of the transformant is inoculated on an LB-chloramphenicol plate, the number of clones is calculated from the number of colonies generated, and the remaining transformant is inoculated on an LB medium containing LB-chloramphenicol. Plasmid DNA was purified from a culture with a clone number of 640,000 using QIAGEN Plasmid Midi Kit (Qiagen) to obtain a tag library.

実施例2 マイクロビーズの調製
上記のタグライブラリーを鋳型にしてPCRを行った。PCRは5’−メチル化−dCTP、dATP、dGTP、dTTPを基質とし、プライマーには配列表の配列番号6で示されるオリゴヌクレオチドと、配列番号7で示されるFAM標識オリゴヌクレオチドと配列表の配列番号7で示されるビオチン化オリゴヌクレオチドを9:1の比率で混合したものを用い、Ex Taq Hot Start Version (タカラバイオ社製)にて反応した。PCR産物を精製した後、制限酵素PacI(NEB社製)による消化を行い、さらに、dGTP存在下でT4 DNAポリメラーゼ(NEB社製)を作用させ、タグ部分の1本鎖化を行った後、DNAを精製した。
Example 2 Preparation of Microbeads PCR was performed using the above tag library as a template. PCR uses 5′-methylated-dCTP, dATP, dGTP, and dTTP as substrates, and the primer is the oligonucleotide shown in SEQ ID NO: 6 in the sequence listing, the FAM-labeled oligonucleotide shown in SEQ ID NO: 7 and the sequence in the sequence listing A biotinylated oligonucleotide represented by No. 7 was mixed at a ratio of 9: 1 and reacted with Ex Taq Hot Start Version (manufactured by Takara Bio Inc.). After purifying the PCR product, digestion with restriction enzyme PacI (manufactured by NEB), and further, T4 DNA polymerase (manufactured by NEB) was allowed to act in the presence of dGTP, and the tag portion was single-stranded, DNA was purified.

1本鎖タグつき標的DNA断片30μgと、アンチタグが結合したマイクロビーズ(Solexa社製)7.2×10個を混合し、100μlの500mM NaCl、11.6 mM リン酸ナトリウム、0.01% Tween20、3.5% デキストラン硫酸中で69℃、3日間ハイブリダイズさせた。反応は2本分行った。マイクロビーズを10mM Tris−HCl(pH8)、1mM EDTA、0.01% Tween 20で洗浄し、2本分のマイクロビーズを1本にまとめた。30 μg of a single-stranded tagged target DNA fragment and 7.2 × 10 7 anti-tag-bound microbeads (manufactured by Solexa) were mixed, and 100 μl of 500 mM NaCl, 11.6 mM sodium phosphate, 0.01% Hybridization was performed at 69 ° C. for 3 days in Tween 20, 3.5% dextran sulfate. Two reactions were performed. The microbeads were washed with 10 mM Tris-HCl (pH 8), 1 mM EDTA, 0.01% Tween 20, and two microbeads were combined into one.

洗浄後のマイクロビーズにT4 DNAリガーゼを作用させることによって標的DNA断片とアンチタグの間に共有結合を形成させた。その後、600μgダイナビーズM−280ストレプトアビジン(磁性ストレプトアビジンビーズ、ダイナル社製)に25℃で30分間結合させ、MPC(ダイナル社製)に1分間静置した後、上清を除去した。10mM Tris−HCl(pH8)、1mM EDTA、0.01% Tween 20 1mlにて再懸濁し、MPC(ダイナル社製)に静置した後、上清を除去するという洗浄操作を繰り返し、1本鎖タグつき標的DNA断片の載ったマイクロビーズのみを分離した。   By allowing T4 DNA ligase to act on the washed microbeads, a covalent bond was formed between the target DNA fragment and the anti-tag. Then, it was made to bind to 600 μg Dynabead M-280 streptavidin (magnetic streptavidin beads, manufactured by Dynal) for 30 minutes at 25 ° C., and left to stand for 1 minute in MPC (manufactured by Dynal), and then the supernatant was removed. Repeated washing operation of resuspending in 1 ml of 10 mM Tris-HCl (pH 8), 1 mM EDTA, 0.01% Tween 20 and allowing to stand on MPC (manufactured by Dynal), and then removing the supernatant. Only the microbeads carrying the tagged target DNA fragment were isolated.

分離したマイクロビーズをMboI(タカラバイオ社製)にて消化し、ダイナビーズM−280ストレプトアビジンより切り出した。さらにdGTP存在下Klenow Fragmentをマイクロビーズに作用させた後、2等分し、2種類のアダプターDNAをT4 DNAリガーゼを用いて連結した。なお、アダプターDNAは、配列表の配列番号8で示されるオリゴヌクレオチドと配列表の配列番号9で示されるオリゴヌクレオチドをアニールさせたもの、および配列表の配列番号10で示されるオリゴヌクレオチドと配列表の配列番号11で示されるオリゴヌクレオチドをアニールさせたものである。   The separated microbeads were digested with MboI (manufactured by Takara Bio Inc.) and cut out from Dynabeads M-280 streptavidin. Further, Klenow Fragment was allowed to act on the microbeads in the presence of dGTP, and then divided into two equal parts, and two types of adapter DNAs were ligated using T4 DNA ligase. The adapter DNA is obtained by annealing the oligonucleotide shown in SEQ ID NO: 8 in the sequence listing and the oligonucleotide shown in SEQ ID NO: 9 in the sequence listing, and the oligonucleotide shown in SEQ ID NO: 10 in the sequence listing and the sequence listing. The oligonucleotide shown in SEQ ID NO: 11 is annealed.

実施例3.MPSS解析によるmicroRNA候補配列の抽出
(1)MPSS解析
上記のマイクロビーズを、日本特許公開第2000−515006号公報およびBrenner S.他23名 Nature Biotechnology 2000年 vol.18、p630−634に開示された技術を用いて、マイクロビーズ上に固定化された標的DNAの配列22塩基分を読み取り、同じ配列をまとめて個数を算出した。次に、算出した個数を合計し、個々の配列の個数を合計個数で割り算して100万を掛け、100万個あたりの個々の配列の個数を算出した。
Example 3 Extraction of MicroRNA Candidate Sequences by MPSS Analysis (1) MPSS Analysis The above microbeads were obtained from Japanese Patent Publication No. 2000-515006 and Brenner S. et al. 23 others Nature Biotechnology 2000 vol. 18, using the technique disclosed in p630-634, the sequence of 22 base sequences of the target DNA immobilized on the microbeads was read, and the number of the same sequences was calculated. Next, the calculated numbers were summed up, and the number of individual arrays was divided by the total number and multiplied by 1 million to calculate the number of individual arrays per million.

(2)MPSSデータよりの新規microRNA候補配列の抽出
上記のMPSS解析により得られた4737の配列を、UCSCゲノムデータベース(http://genome.ucsc.edu)にホモロジー検索を行い、ゲノム配列にマッチした906の配列を抽出した。その後、SangerマイクロRNAデータベース(http://microrna.sanger.ac.uk/)、NCBI Refseqデータベース(http://www.ncbi.nlm.nih.gov/RefSeq/)、the European ribosomal RNAデータベース(http://www.psb.ugent.be/rRNA/)、the Genomic tRNAデータベース(http://lowelab.ucsc.edu/GtRNAdb/)にホモロジー検索を行い、どのデータベースにもマッチしない243の配列を抽出した。その後、抽出した配列がマッチしたゲノム配列情報よりその配列の両末端を88塩基分延ばし、198塩基の配列を取得し、この配列の端から110塩基の配列を1塩基ずつずらして、88の互いに1塩基異なる110塩基の配列を作成した。この110塩基の配列の2次構造予測をVienna RNA Package(http://www.tbi.univie.ac.at/~ivo/RNA/)のRNA foldを用いて行い、自由エネルギーが最小で、かつ、ステムループを形成し、かつ、ステム部分にあるMPSS解析により得られた22塩基の配列中16塩基以上が相補鎖側と相補的であるものを抽出し、42の新規microRNAの候補を得た。得られた新規microRNA候補より無作為に9種類の配列を選択し、ステムループ配列よりループ配列を得た(配列表の配列番号12〜20に示す)。選択した9種類の自由エネルギーは、−84.1〜−32.7kcal/molであった。
(2) Extraction of novel microRNA candidate sequences from MPSS data The homology search of the 4737 sequences obtained by the above MPSS analysis was performed on the UCSC genome database (http://genome.ucsc.edu) to match the genome sequence 906 sequences were extracted. Subsequently, the Sanger micro RNA database (http://microrna.sanger.ac.uk/), NCBI Refseq database (http://www.ncbi.nlm.nih.gov/RefSeq/), the European ribosomal RNA database (http : //www.psb.ugent.be/rRNA/), a homology search to the Genomic tRNA database (http://lowelab.ucsc.edu/GtRNAdb/) to extract 243 sequences that do not match any database did. Thereafter, both ends of the sequence are extended by 88 bases from the genomic sequence information that matches the extracted sequence, a 198 base sequence is obtained, and the 110 base sequence is shifted from the end of this sequence by one base at a time. 110 base sequences differing by one base were prepared. The secondary structure prediction of the 110 base sequence is performed using the RNA fold of the Vienna RNA Package (http://www.tbi.univie.ac.at/~ivo/RNA/), and the free energy is minimal. In the 22-base sequence obtained by MPSS analysis in the stem portion, 16 stems or more complementary to the complementary strand side were extracted, and 42 novel microRNA candidates were obtained. . Nine kinds of sequences were randomly selected from the obtained novel microRNA candidates, and loop sequences were obtained from the stem loop sequences (shown in SEQ ID NOs: 12 to 20 in the Sequence Listing). The nine selected free energies were -84.1 to -32.7 kcal / mol.

実施例4 各種ループ配列を有するshRNA発現ベクターの作製
緑色蛍光タンパク質rsGFPの標的配列A(GGAGTTGTCCCAATTCTTG)(配列番号27)および標的配列B(GACACGTGCTGAAGTCAAG)(配列番号28)に対するshRNA発現ベクターを以下の手順で作製した。標的配列について配列番号12から20のループ配列を有するステムループ構造のshRNA(すなわち、いずれかのループ配列の両端に配列番号27または28の配列およびその逆方向の相補配列が連結したRNA)を発現するための合成オリゴDNAを発現ベクターpSINsi−hU6(タカラバイオ社製)のhU6プロモーターの下流に、製品説明書の手順に従って挿入しプラスミドベクターを構築した。対照として、これまでshRNA発現ベクターのループ構造に利用されていた、配列番号21に示す配列のループ(Brummelkamp et al. Science. 2002 296:550−553.)を発現するベクターを作製した。ネガティブコントロールとして、何も挿入しないベクターを作製した。得られた各種ベクターは大腸菌JM109に形質転換し、プラスミドDNAをQIAGEN Plasmid Midi Kit(キアゲン社製)を用いて精製し、トランスフェクション用DNAとして供した。
Example 4 Preparation of shRNA Expression Vector Having Various Loop Sequences shRNA expression vectors for green fluorescent protein rsGFP target sequence A (GGAGTTGTCCCAATTTCTG) (SEQ ID NO: 27) and target sequence B (GACACGTGCTGAAGTCAAG) (SEQ ID NO: 28) were obtained by the following procedure. Produced. Expression of stem-loop structure shRNA having the loop sequence of SEQ ID NO: 12 to 20 with respect to the target sequence (that is, RNA in which the sequence of SEQ ID NO: 27 or 28 and the complementary sequence in the opposite direction are connected to both ends of either loop sequence) A synthetic oligo DNA was inserted into the downstream of the hU6 promoter of the expression vector pSINsi-hU6 (manufactured by Takara Bio Inc.) in accordance with the procedure of the product instructions to construct a plasmid vector. As a control, a vector expressing the loop of the sequence shown in SEQ ID NO: 21 (Brummelkamp et al. Science. 2002 296: 550-553.), Which had been used for the loop structure of the shRNA expression vector so far, was prepared. As a negative control, a vector into which nothing was inserted was prepared. The obtained various vectors were transformed into E. coli JM109, and the plasmid DNA was purified using QIAGEN Plasmid Midi Kit (manufactured by Qiagen) and used as transfection DNA.

実施例5 各種ループ配列を有するshRNA発現レトロウイルスベクターの作製
実施例4で調製したプラスミドベクターを293T/17細胞に、Retorovirus Packaging Kit Ampho(タカラバイオ社製)を用いて製品プロトコールに従いトランスフェクションし、各種アンフォトロピックウイルス上清液を獲得し、0.45μmフィルター(Milex HV、ミリポア社製)にてろ過し、使用するまで−80℃超低温フリーザーで保存した。
Example 5 Preparation of shRNA-expressing retroviral vector having various loop sequences The plasmid vector prepared in Example 4 was transfected into 293T / 17 cells using Retrovirus Packaging Kit Ampho (manufactured by Takara Bio Inc.) according to the product protocol. Various amphotropic virus supernatants were obtained, filtered through a 0.45 μm filter (Milex HV, manufactured by Millipore), and stored in a -80 ° C. ultra-low temperature freezer until use.

実施例6 レトロウイルスベクターによる遺伝子抑制効果の確認
標的遺伝子rsGFPを安定に発現しているHT1080細胞(ATCC CCL−121)およびK562細胞(ATCC CCL−243)は以下の手順で作製した。
rsGFP発現ベクターpQBI25(Qbiogene社製)を制限酵素NheI及びNotIで切断し、775bpのGFP遺伝子断片を得た。次にpQBI polII(Qbiogene社製)を制限酵素NheI及びNotIで切断してrsGFP−NeoR融合遺伝子を除去し、先に得た775bpのrsGFP遺伝子断片を挿入し、polIIプロモーター制御下でrsGFP遺伝子が発現するベクターpQBI polII(neo−)を得た。pQBI polII(neo−)を制限酵素XhoIで消化し、polIIプロモーター制御下、GFP発現ユニットを含むDNA断片を得、その末端をDNA blunting kit(タカラバイオ社製)を用いて平滑化した。レトロウイルスベクタープラスミドpDON−AI(タカラバイオ社製)を制限酵素XhoIとSphIで消化して得られたベクター断片4.58kbpの末端をDNA blunting kit(タカラバイオ社製)を用いて平滑化したのち、アルカリフォスファターゼ(タカラバイオ社製)を用いて脱リン酸化した。この平滑化したベクターに先の平滑化したpolIIプロモーター制御下rsGFP発現ユニットを含むDNA断片をDNA Ligation Kit(タカラバイオ社製)を用いて挿入し、rsGFP発現組換えレトロウイルスベクターpDOG−polIIを得た。また、平滑化したベクターに平滑化したGFP遺伝子を挿入してrsGFP発現組換えレトロウイルスベクターpDOGを得た。
Example 6 Confirmation of Gene Suppression Effect by Retroviral Vector HT1080 cells (ATCC CCL-121) and K562 cells (ATCC CCL-243) stably expressing the target gene rsGFP were prepared by the following procedure.
The rsGFP expression vector pQBI25 (manufactured by Qbiogene) was cleaved with restriction enzymes NheI and NotI to obtain a GFP gene fragment of 775 bp. Next, pQBI polII (manufactured by Qbiogene) is cleaved with restriction enzymes NheI and NotI to remove the rsGFP-NeoR fusion gene, and the previously obtained 775 bp rsGFP gene fragment is inserted, and the rsGFP gene is expressed under the control of the polII promoter. The vector pQBI polII (neo-) was obtained. pQBI pol II (neo-) was digested with the restriction enzyme Xho I to obtain a DNA fragment containing a GFP expression unit under the control of the pol II promoter, and its ends were blunted using a DNA blunting kit (manufactured by Takara Bio Inc.). After blunting the end of the vector fragment 4.58 kbp obtained by digesting the retroviral vector plasmid pDON-AI (Takara Bio) with restriction enzymes XhoI and SphI using a DNA blunting kit (Takara Bio) Then, dephosphorylation was performed using alkaline phosphatase (manufactured by Takara Bio Inc.). A DNA fragment containing an rsGFP expression unit under the control of the previously smoothed pol II promoter was inserted into this smoothed vector using DNA Ligation Kit (manufactured by Takara Bio Inc.) to obtain an rsGFP-expressing recombinant retroviral vector pDOG-pol II. It was. Moreover, the smoothed GFP gene was inserted into the smoothed vector to obtain an rsGFP-expressing recombinant retroviral vector pDOG.

これらプラスミドベクターをレトロウイルス調製用細胞G3T−hi(タカラバイオ社製)に、Retorovirus Packaging Kit Amphoを用いて製品プロトコールに従いトランスフェクションし、各種アンフォトロピックウイルス上清液を獲得し、0.45μmフィルター(Milex HV、ミリポア社製)にてろ過し、使用するまで−80℃超低温フリーザーで保存した。
HT1080細胞を6穴組織培養用プレート(岩城硝子社製)に、1ウェルあたり5×10個播種し、10% ウシ胎児血清(FBS)含有DMEM培地中で5%CO存在下、37℃で24時間培養した。
These plasmid vectors were transfected into retrovirus preparation cells G3T-hi (manufactured by TAKARA BIO INC.) Using Retrovirus Packaging Kit Ampho according to the product protocol to obtain various amphotropic virus supernatants, and 0.45 μm filters (Milex HV, manufactured by Millipore) and stored in an -80 ° C ultra-low temperature freezer until use.
HT1080 cells were seeded on a 6-well tissue culture plate (Iwaki Glass Co., Ltd.) at 5 × 10 4 cells per well, and in 10% fetal bovine serum (FBS) -containing DMEM medium at 37 ° C. in the presence of 5% CO 2. For 24 hours.

アンフォトロピックDOGウイルス液を段階希釈し、ポリブレン(臭化ヘキサジメトリン;シグマ社製)8μg/ml存在下で感染を行った。感染後3日間培養し、GFP発現をフローサイトメーター(FACS Vantage,Becton Dickinson社製)で分析し、導入効率20%以下のサンプルからGFP陽性細胞をソーティングにより回収し、培養を行い、GFP安定発現細胞HT1080−GFPとした。
K562細胞は10% ウシ胎児血清(FBS)含有RPMI1640培地中で5%CO存在下、37℃で培養した。
The amphotropic DOG virus solution was serially diluted, and infection was carried out in the presence of 8 μg / ml of polybrene (hexadimethrine bromide; Sigma). After culturing for 3 days, GFP expression was analyzed by a flow cytometer (FACS Vantage, manufactured by Becton Dickinson), GFP positive cells were collected from a sample with an introduction efficiency of 20% or less by sorting, cultured, and cultured for stable GFP expression. Cells were HT1080-GFP.
K562 cells were cultured at 37 ° C. in the presence of 5% CO 2 in RPMI 1640 medium containing 10% fetal bovine serum (FBS).

アンフォトロピックDOG−polIIウイルス液を段階希釈し、レトロネクチン(登録商標、タカラバイオ社製)を用いた標準的な方法で感染を行った。感染後3日間培養し、GFP発現をフローサイトメーターで分析し、導入効率20%以下のサンプルからGFP陽性細胞をソーティングにより回収し、培養を行い、GFP安定発現細胞K562−GFPとした。   The amphotropic DOG-pol II virus solution was serially diluted, and infection was performed by a standard method using RetroNectin (registered trademark, manufactured by Takara Bio Inc.). The cells were cultured for 3 days after infection, and GFP expression was analyzed with a flow cytometer. GFP positive cells were collected from a sample with an introduction efficiency of 20% or less by sorting and cultured to obtain GFP stably expressing cells K562-GFP.

このようにして調製したHT1080−GFPおよびK562−GFPに実施例5で調製したレトロウイルスベクターを感染した。HT1080−GFPにはウイルスベクターを10倍および100倍希釈し、ポリブレン8μg/ml存在下で感染を行った。K562−GFPにはウイルスベクターを原液および10倍希釈し、レトロネクチンを用いた標準的な方法で感染を行った。感染から24時間経過した後、HT1080−GFPはG418(ジェネティシン;インビトロジェン社製)を500μg/ml含有する増殖培地に、K562−GFPはG418を1000μg/ml含有する増殖培地に交換し、2週間選択培養を行った。
2週間選択培養し、siRNAを安定に発現している細胞を獲得後、フローサイトメーターで分析し、GFPの蛍光強度を算出した。対照実験群の蛍光強度に対する各実験群での蛍光強度の割合を算出することによって遺伝子抑制効果を評価した。標的配列AでのHT1080−GFPの結果を図1に、標的配列AでのK562−GFPの結果を図2に示す。標的配列BでのHT1080−GFPの結果を図3に、標的配列BでのK562−GFPの結果を図4に示す。図中、縦軸はGFPの蛍光強度についてネガティブコントロール(Negative control)を100としたときの相対値で示す(Relative GFP mean (%))。横軸の数字は配列番号を示す。図に示されるように、配列番号21に示されるループ配列と比較して、配列番号12、13、14、15、16、18、19、20に示されるループ配列の遺伝子抑制効果が高いことが示された。
HT1080-GFP and K562-GFP thus prepared were infected with the retroviral vector prepared in Example 5. HT1080-GFP was diluted 10-fold and 100-fold with a viral vector and infected in the presence of 8 μg / ml polybrene. K562-GFP was infected by a standard method using retronectin after diluting the viral vector with a stock solution and 10-fold. After 24 hours from the infection, HT1080-GFP was replaced with a growth medium containing 500 μg / ml of G418 (Geneticin; manufactured by Invitrogen), and K562-GFP was replaced with a growth medium containing 1000 μg / ml of G418 and selected for 2 weeks. Culture was performed.
After selective culture for 2 weeks to obtain cells stably expressing siRNA, the cells were analyzed with a flow cytometer, and the fluorescence intensity of GFP was calculated. The gene suppression effect was evaluated by calculating the ratio of the fluorescence intensity in each experimental group to the fluorescence intensity of the control experimental group. The result of HT1080-GFP at the target sequence A is shown in FIG. 1, and the result of K562-GFP at the target sequence A is shown in FIG. The result of HT1080-GFP in the target sequence B is shown in FIG. 3, and the result of K562-GFP in the target sequence B is shown in FIG. In the figure, the vertical axis indicates the relative value of GFP fluorescence intensity when the negative control (Negative control) is 100 (Relative GFP mean (%)). The numbers on the horizontal axis indicate the sequence numbers. As shown in the figure, the gene suppression effect of the loop sequences shown in SEQ ID NOs: 12, 13, 14, 15, 16, 18, 19, and 20 is higher than that of the loop sequence shown in SEQ ID NO: 21. Indicated.

実施例7 各種ループ配列を有するshRNA発現ベクターの作製
ヒトインテグリンα4 の標的配列(GAGTGTTTGTGTACATCAA)(配列番号29)に対するshRNA発現ベクターを以下の手順で作製した。標的配列について実施例4にて使用した配列番号13、19、及び近年siRNA効果が高いとされよく使用されているmicroRNA−30のステムループ配列(Boden et al. Nucleic Acids Research 2004 32(3):1154−1158)である配列番号22のループ配列を有するshRNA(すなわち、いずれかのループ配列の両端に配列番号29およびその逆方向の相補配列が連結したRNA)を発現するための合成オリゴDNAを発現ベクターpSINsi−hU6(タカラバイオ社製)のhU6プロモーターの下流に、製品説明書の手順に従って挿入しプラスミドベクターを構築した。対照として、これまでshRNA発現ベクターのループ構造に利用されていた、配列番号21に示す配列のループ(Brummelkamp et al. Science. 2002 296:550−553.)を発現するベクターを作製した。ネガティブコントロールとして、実施例4で作製した配列番号27に示すrsGFPの標的配列Aと配列番号21に示す配列のループを有するプラスミドベクターを使用した。得られた各種ベクターにて大腸菌JM109を形質転換し、プラスミドDNAをQIAGEN Plasmid Midi Kit(キアゲン社製)を用いて精製し、トランスフェクション用DNAとして供した。
Example 7 Preparation of shRNA Expression Vector Having Various Loop Sequences An shRNA expression vector for human integrin α4 target sequence (GAGTGTTGGTTACACAA) (SEQ ID NO: 29) was prepared by the following procedure. SEQ ID NOs: 13 and 19 used in Example 4 for the target sequence, and the stem-loop sequence of microRNA-30, which has recently been used with high siRNA effect (Boden et al. Nucleic Acids Research 2004 32 (3): 1154-1158), a synthetic oligo DNA for expressing shRNA having the loop sequence of SEQ ID NO: 22 (that is, RNA having SEQ ID NO: 29 and a complementary sequence in the opposite direction linked to either end of the loop sequence) A plasmid vector was constructed by inserting it into the downstream of the hU6 promoter of the expression vector pSINsi-hU6 (manufactured by Takara Bio Inc.) according to the procedure described in the product instructions. As a control, a vector expressing the loop of the sequence shown in SEQ ID NO: 21 (Brummelkamp et al. Science. 2002 296: 550-553.), Which had been used for the loop structure of the shRNA expression vector so far, was prepared. As a negative control, a plasmid vector having an rsGFP target sequence A shown in SEQ ID NO: 27 and a loop of the sequence shown in SEQ ID NO: 21 prepared in Example 4 was used. Escherichia coli JM109 was transformed with the various vectors obtained, and the plasmid DNA was purified using QIAGEN Plasmid Midi Kit (manufactured by Qiagen) and used as transfection DNA.

実施例8 各種ループ配列を有するshRNA発現レトロウイルスベクターの作製
実施例7で調製したプラスミドベクターをレトロウイルス調製用細胞G3T−hi(タカラバイオ社製)に、Retorovirus Packaging Kit Ampho(タカラバイオ社製)を用いて製品プロトコールに従いトランスフェクションし、各種アンフォトロピックウイルス上清液を獲得し、0.45μmフィルター(Milex HV、ミリポア社製)にてろ過し、使用するまで−80℃超低温フリーザーで保存した。各ウイルス作製は2例ずつ行った。
Example 8 Preparation of shRNA-expressing retroviral vector having various loop sequences The plasmid vector prepared in Example 7 was added to retrovirus preparation cell G3T-hi (manufactured by Takara Bio Inc.) and Retrovirus Packaging Kit Ampho (manufactured by Takara Bio Inc.). Was used to obtain various amphotropic virus supernatants, filtered through a 0.45 μm filter (Milex HV, manufactured by Millipore), and stored in a -80 ° C. ultra-low temperature freezer until use. . Each virus was prepared in two cases.

実施例9 レトロウイルスベクターのタイター測定
実施例8で調製したレトロウイルスベクターを段階希釈し、HT1080細胞(ATCC CCL−121)へポリブレン8μg/ml存在下で感染させ、感染から24時間経過した後、G418(ジェネティシン;インビトロジェン社製)を500μg/ml含有する増殖培地に交換し、2週間選択培養を行った。形成されたコロニー数よりレトロウイルスベクターのタイターを算出した。
Example 9 Retrovirus vector titer measurement The retrovirus vector prepared in Example 8 was serially diluted and infected with HT1080 cells (ATCC CCL-121) in the presence of 8 μg / ml of polybrene. After 24 hours from the infection, G418 (Geneticin; manufactured by Invitrogen) was replaced with a growth medium containing 500 μg / ml, and selective culture was performed for 2 weeks. The retrovirus vector titer was calculated from the number of colonies formed.

実施例10 レトロウイルスベクターによる遺伝子抑制効果の確認
HL60(ATCC CCL−240)細胞に実施例8で調製し、実施例9にてタイター測定を行ったレトロウイルスベクターをMOI2にてレトロネクチンを用いた標準的な方法で感染を行った。感染から24時間経過した後、G418を1000μg/ml含有する増殖培地に交換し、2週間選択培養を行った。
Example 10 Confirmation of Gene Suppression Effect by Retroviral Vector A retroviral vector prepared in Example 8 for HL60 (ATCC CCL-240) cells and titered in Example 9 was used as a standard using retronectin at MOI2. Infection was performed in a typical way. After 24 hours from the infection, G418 was replaced with a growth medium containing 1000 μg / ml, and selective culture was performed for 2 weeks.

2週間選択培養し、siRNAを安定に発現している細胞を回収し、QIAGEN RNeasy Mini Kit(キアゲン社製)にて全RNAの抽出及びDNAseI処理を行った。抽出した全RNAをランダムプライマー(6mer)を用いて、Reverse Transcriptase M−MLV(タカラバイオ社製)にて逆転写反応を行い、SYBR Premix Ex Taq(タカラバイオ社製)及び 配列番号23、24のインテグリンα4増幅用プライマーを用いてリアルタイムPCRを行い、インテグリンα4の遺伝子発現量の相対値を算出した。全RNA量の補正は配列番号25、26のGAPDH遺伝子増幅用プライマーを用いて行った。   After selective culturing for 2 weeks, cells stably expressing siRNA were collected, and total RNA was extracted and treated with DNAseI with QIAGEN RNeasy Mini Kit (Qiagen). The extracted total RNA was subjected to reverse transcription reaction with Reverse Transscriptase M-MLV (manufactured by Takara Bio Inc.) using a random primer (6mer), SYBR Premix Ex Taq (manufactured by Takara Bio Inc.) and SEQ ID NOS: 23 and 24. Real-time PCR was performed using the integrin α4 amplification primer, and the relative value of the integrin α4 gene expression level was calculated. The total RNA amount was corrected using the GAPDH gene amplification primers of SEQ ID NOs: 25 and 26.

対照実験群のインテグリンα4発現相対値に対する各実験群での発現相対値の割合を算出することによって遺伝子抑制効果を評価した。結果を図5に示す。図中、縦軸はインテグリンα4発現量についてネガティブコントロール(Negative control)を100としたときの相対値で示す(Relative integrin α4 mean (%))。横軸の数字は配列番号を示す。図5に示されるように、配列番号21に示されるループ配列、配列番号22に示されるmicroRNA−30のループ配列と比較して、配列番号13、19、に示されるループ配列の遺伝子抑制効果が高いことが示された。さらに今回比較したループ配列の遺伝子抑制効果の高さの順番は、実施例4、5、6にて行ったGFPに対する遺伝子抑制効果の結果と一致した。   The gene suppression effect was evaluated by calculating the ratio of the expression relative value in each experimental group to the integrin α4 expression relative value in the control experimental group. The results are shown in FIG. In the figure, the vertical axis indicates the integrin α4 expression level as a relative value when the negative control (Negative control) is 100 (Relative integrin α4 mean (%)). The numbers on the horizontal axis indicate the sequence numbers. As shown in FIG. 5, compared with the loop sequence shown in SEQ ID NO: 21 and the loop sequence of microRNA-30 shown in SEQ ID NO: 22, the gene suppression effect of the loop sequences shown in SEQ ID NOs: 13 and 19 is higher. It was shown to be expensive. Furthermore, the order of the gene suppressive effect of the loop sequences compared this time was consistent with the results of the gene suppressive effect on GFP performed in Examples 4, 5, and 6.

本発明により、遺伝子抑制に有用なshRNAのループ領域をコードする核酸を簡便にスクリーニングすることが可能となる。さらに、遺伝子抑制に有用で、従来使用されているshRNAのループ配列よりも遺伝子抑制作用の大きいshRNAのループ領域をコードする核酸、該核酸を含有するベクター、前記核酸またはベクターを含有するキットを提供することが可能となる。   According to the present invention, nucleic acids encoding shRNA loop regions useful for gene suppression can be easily screened. Furthermore, a nucleic acid encoding a shRNA loop region useful for gene suppression and having a gene suppression effect larger than that of a conventionally used shRNA loop sequence, a vector containing the nucleic acid, and a kit containing the nucleic acid or vector are provided. It becomes possible to do.

SEQ ID NO:1: Synthetic chimera oligonucleotide. "nucleotide 1 to 6 are ribonucleotide-other nucleotides are deoxyribonucleotides
SEQ ID NO:2: Synthetic chimera oligonucleotide. "nucleotide 17 to 22 are ribonucleotide-other nucleotides are deoxyribonucleotides
SEQ ID NO:3: Synthetic primer for revearse transcription.
SEQ ID NO:4: Synthetic primer.
SEQ ID NO:5: Synthetic primer.
SEQ ID NO:6: Synthetic primer.
SEQ ID NO:7: Synthetic primer.
SEQ ID NO:8: Synthetic oligonucleotide for adaptor DNA.
SEQ ID NO:9: Synthetic oligonucleotide for adaptor DNA.
SEQ ID NO:10: Synthetic oligonucleotide for adaptor DNA.
SEQ ID NO:11: Synthetic oligonucleotide for adaptor DNA.
SEQ ID NO:12: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:13: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:14: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:15: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:16: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:17: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:18: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:19: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:20: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:21: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:22: Nucleotide sequence for loop region of shRNA.
SEQ ID NO:23: Synthetic primer for amplification of integrin alpha 4 gene
SEQ ID NO:24: Synthetic primer for amplification of integrin alpha 4 gene
SEQ ID NO:25: Synthetic primer for amplification of GAPDH gene
SEQ ID NO:26: Synthetic primer for amplification of GAPDH gene
SEQ ID NO:27: Green fluorescence protein rsGFP target sequence A
SEQ ID NO:28: Green fluorescence protein rsGFP target sequence B
SEQ ID NO:29: Human integrin alpha 4 target sequence
SEQ ID NO: 1: Synthetic chimera oligonucleotide. "Nucleotide 1 to 6 are ribonucleotide-other nucleotides are deoxyribonucleotides
SEQ ID NO: 2: Synthetic chimera oligonucleotide. "Nucleotide 17 to 22 are ribonucleotide-other nucleotides are deoxyribonucleotides
SEQ ID NO: 3: Synthetic primer for revearse transcription.
SEQ ID NO: 4: Synthetic primer.
SEQ ID NO: 5: Synthetic primer.
SEQ ID NO: 6: Synthetic primer.
SEQ ID NO: 7: Synthetic primer.
SEQ ID NO: 8: Synthetic oligonucleotide for adaptor DNA.
SEQ ID NO: 9: Synthetic oligonucleotide for adaptor DNA.
SEQ ID NO: 10: Synthetic oligonucleotide for adaptor DNA.
SEQ ID NO: 11: Synthetic oligonucleotide for adaptor DNA.
SEQ ID NO: 12: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 13: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 14: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 15: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 16: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 17: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 18: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 19: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 20: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 21: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 22: Nucleotide sequence for loop region of shRNA.
SEQ ID NO: 23: Synthetic primer for amplification of integrin alpha 4 gene
SEQ ID NO: 24: Synthetic primer for amplification of integrin alpha 4 gene
SEQ ID NO: 25: Synthetic primer for amplification of GAPDH gene
SEQ ID NO: 26: Synthetic primer for amplification of GAPDH gene
SEQ ID NO: 27: Green fluorescence protein rsGFP target sequence A
SEQ ID NO: 28: Green fluorescence protein rsGFP target sequence B
SEQ ID NO: 29: Human integrin alpha 4 target sequence

Claims (4)

shRNAのためのループ配列である、配列表の配列番19に記載の塩基配列からなる核酸 a loop sequences for shRNA, nucleic acid comprising a base sequence described in SEQ ID NO 19 of the Sequence Listing. 請求項1記載の核酸を含有するshRNAを発現するためのベクター。  A vector for expressing shRNA comprising the nucleic acid according to claim 1. 請求項1記載の核酸、もしくは請求項2記載のベクターを含むキット。  A kit comprising the nucleic acid according to claim 1 or the vector according to claim 2. ループ配列が配列表の配列番号19に記載の塩基配列からなる核酸を含むshRNA。  ShRNA comprising a nucleic acid whose loop sequence consists of the base sequence set forth in SEQ ID NO: 19 in the Sequence Listing.
JP2007535531A 2005-09-14 2006-09-14 Efficient novel loop sequences for shRNA expression Active JP5139067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535531A JP5139067B2 (en) 2005-09-14 2006-09-14 Efficient novel loop sequences for shRNA expression

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005267673 2005-09-14
JP2005267673 2005-09-14
JP2007535531A JP5139067B2 (en) 2005-09-14 2006-09-14 Efficient novel loop sequences for shRNA expression
PCT/JP2006/318247 WO2007032428A1 (en) 2005-09-14 2006-09-14 NOVEL LOOP SEQUENCE EFFECTIVE FOR EXPRESSION OF shRNA

Publications (2)

Publication Number Publication Date
JPWO2007032428A1 JPWO2007032428A1 (en) 2009-03-19
JP5139067B2 true JP5139067B2 (en) 2013-02-06

Family

ID=37865012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007535531A Active JP5139067B2 (en) 2005-09-14 2006-09-14 Efficient novel loop sequences for shRNA expression

Country Status (2)

Country Link
JP (1) JP5139067B2 (en)
WO (1) WO2007032428A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022262A (en) * 2008-07-18 2010-02-04 Univ Of Tokyo HIGH-ACTIVITY shRNA AND METHOD FOR PRODUCING THE SAME
ES2599153T3 (en) * 2009-03-31 2017-01-31 Delta-Fly Pharma, Inc. RNAi molecule for thymidylate synthase and use thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6011058579; AMBROS, V. et al.: 'MicroRNAs and other tiny endogenous RNAs in C. elegans.' Current Biology Vol. 13, 2003, p. 807-818 *
JPN6011058581; BODEN, D. et al.: 'Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins.' Nucleic Acids Res. Vol. 32, No. 3, 2004, p. 1154-1158 *
JPN6011058584; MIYAGISHI, M. et al.: 'Optimization of an siRNA-expression system with an improved hairpin and its significantsuppressive e' J. Gene. Med. Vol. 6, 2004, p. 715-723 *
JPN6012003375; BEREZIKOV, E. et al.: 'Phylogenetic shadowing and computational identification of human microRNA genes.' Cell Vol. 120,, 200501, p. 21-24 *
JPN6012042499; Chen,W.J. et al.: 'Pseudochaenichthys georgianus cytochrome b gene, mitochondrial gene encoding mitochondria' GenBank: AF037119.1 VERSION: AF037119.1 GI:2921474, 19980302 *

Also Published As

Publication number Publication date
WO2007032428A1 (en) 2007-03-22
JPWO2007032428A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
US11427856B2 (en) Methods and kits for labeling cellular molecules
KR101237036B1 (en) Novel siRNA Structure for Minimizing Off-target Effects by Antisense Strand and the Use Thereof
US9783801B2 (en) Methods for creating and identifying functional RNA interference elements
Kluiver et al. Studying microRNAs in lymphoma
JP2015212310A (en) RANDOM RNAi LIBRARY, METHOD FOR GENERATING THE SAME, AND SCREENING METHOD UTILIZING THE SAME
JP5139067B2 (en) Efficient novel loop sequences for shRNA expression
JP2006515158A (en) Methods and kits for synthesizing siRNA expression cassettes
Ristori et al. miRNAs expression profile in zebrafish developing vessels
KR102193874B1 (en) Modified nucleic acids suppressing microRNA and use thereof
WO2010007797A1 (en) Highly active shrna and method for production thereof
US11371041B2 (en) Random RNA libraries, methods of generating same, and screening methods utilizing same
JP2017528151A (en) Method for screening interfering molecules
WO2023214939A1 (en) Ribozymes
Surdziel et al. Lentivirus-mediated antagomir expression
CN115491377A (en) Nucleotide sequence for inducing RNA interference, reducing and eliminating virus pollution in cells and application
McNulty Genomic and Epigenomic Attributes of Alpha Satellite Underlying Function Within the Human Centromere Region
CN105019034A (en) Construction method of high-flux transcriptome library
Ji et al. Construction of Hsp90β gene specific silencing plasmid and its transfection efficiency
WO2018003339A1 (en) Method for cell-specifically controlling nuclease
Vatolin et al. Extension of Endogenous Primers as a Tool to Detect Micro-RNA Targets
Vatolin et al. Extension of Endogenous Primers asa Tool to Detect Micro-RNA Targets
JPWO2005078093A1 (en) SiRNA molecules that suppress the expression of prion genes
JP2005006578A (en) Method for producing functional rna molecule by utilizing in-vitro transcription reaction
Salomon Single-Molecule Imaging Reveals that Argonaute Re-Shapes the Properties of its Nucleic Acid Guides: A Dissertation
Tyczewska Human ribonuclease Dicer inhibition using RNA aptamers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Ref document number: 5139067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250