JP5135576B2 - Ice making equipment - Google Patents

Ice making equipment Download PDF

Info

Publication number
JP5135576B2
JP5135576B2 JP2006271669A JP2006271669A JP5135576B2 JP 5135576 B2 JP5135576 B2 JP 5135576B2 JP 2006271669 A JP2006271669 A JP 2006271669A JP 2006271669 A JP2006271669 A JP 2006271669A JP 5135576 B2 JP5135576 B2 JP 5135576B2
Authority
JP
Japan
Prior art keywords
container
ice making
ice
temperature
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006271669A
Other languages
Japanese (ja)
Other versions
JP2008089251A (en
Inventor
靖司 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2006271669A priority Critical patent/JP5135576B2/en
Publication of JP2008089251A publication Critical patent/JP2008089251A/en
Application granted granted Critical
Publication of JP5135576B2 publication Critical patent/JP5135576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液体の固化方法、製氷方法および製氷装置に関する。   The present invention relates to a liquid solidification method, an ice making method, and an ice making device.

常温で液体である物質が固化した物、例えば水が氷結した氷は、一般家庭において広く普及している冷凍冷蔵庫によって簡単に入手することができる。しかし、一般家庭で普及している冷凍冷蔵庫により氷結させた氷は多結晶であり、単結晶氷とはならない。   A product obtained by solidifying a substance that is liquid at room temperature, for example, ice formed by freezing water, can be easily obtained by a refrigerator-freezer widely used in general households. However, ice frozen by a refrigerator-freezer popular in ordinary households is polycrystalline and does not become single crystal ice.

単結晶氷は透明度が高く、見た目にも美しいことから氷としての商品価値が高い。また、単結晶氷は硬度が高く氷解し難いという特性をも有している。このような特性があることから、従来技術においても種々の方法で単結晶氷を得る技術が開示されている(例えば、特許文献1参照)。   Single crystal ice is highly transparent and beautiful, so it has a high commercial value as ice. Single crystal ice also has a characteristic that it is hard and difficult to defrost. Because of these characteristics, techniques for obtaining single crystal ice by various methods have been disclosed in the prior art (see, for example, Patent Document 1).

また、単結晶氷である氷筍の結晶方位に直交する面の摩擦係数が低いことに着目して、人工的に氷筍を製造する方法が開示されている(例えば、特許文献2参照)。
特開平5−264137号公報 特開平11−236295号公報
Further, paying attention to the fact that the coefficient of friction of a surface orthogonal to the crystal orientation of ice cake which is single crystal ice is low, a method for artificially producing ice cake has been disclosed (for example, see Patent Document 2).
JP-A-5-264137 Japanese Patent Laid-Open No. 11-236295

しかし、特許文献1に開示される製氷装置にあっては、低温熱源である製氷板上において、静止状態または流動状態で水を徐々に氷結させている。このような製氷装置では、単結晶氷を製造することはできても任意形状の単結晶氷を製造することはできなかった。また、製氷板上に水を氷結させた場合には、氷結後に氷結板上から氷を剥がすことは容易でなかった。   However, in the ice making device disclosed in Patent Document 1, water is gradually frozen in a stationary state or a fluid state on an ice making plate that is a low-temperature heat source. In such an ice making apparatus, single crystal ice having an arbitrary shape could not be manufactured even though single crystal ice could be manufactured. In addition, when water is frozen on an ice plate, it is not easy to remove the ice from the ice plate after freezing.

また、特許文献2に開示された発明においては、氷結する単結晶氷は筍形状に製造することはできるものの、任意の形状の単結晶氷を製造することはできなかった。また、氷の結晶の方位も制御することはできなかった。   In the invention disclosed in Patent Document 2, single crystal ice that freezes can be manufactured in a bowl shape, but single crystal ice of any shape cannot be manufactured. Also, the orientation of ice crystals could not be controlled.

本発明は上述した事情に鑑みてなされたものであり、硬度および透明度が高く商品価値の高い単結晶氷を、任意形状をもって連続的に製造できる製氷方法および製氷装置を提供することを課題とする。   This invention is made | formed in view of the situation mentioned above, and makes it a subject to provide the ice making method and ice making apparatus which can manufacture single crystal ice with high hardness and transparency and high commercial value with arbitrary shapes continuously. .

請求項1記載の製氷装置の発明は、上部に開口部を有する容器と、前記開口部を覆う真空槽と、前記真空槽の上に設けられたペルチェ素子と、前記容器の内部と連通する緩衝容器とを備え、前記容器の上縁に載置された前記真空槽の下板に接するまで充填された前記容器内の水を単結晶氷に氷結させることを特徴とするものである。 The invention of the ice making device according to claim 1 includes a container having an opening in an upper part, a vacuum tank covering the opening, a Peltier element provided on the vacuum tank, and a buffer communicating with the inside of the container. And water in the container filled up to contact with a lower plate of the vacuum chamber placed on the upper edge of the container is frozen in single crystal ice.

請求項記載の発明は、請求項記載の製氷装置において、前記ペルチェ素子の上に放熱体を取り付けたことを特徴とするものである。 According to a second aspect of the invention, the ice making apparatus of claim 1, is characterized in that attached to the heat radiating member on the Peltier element.

請求項記載の発明は、請求項1または2記載の製氷装置において、前記容器が内容器と外容器とを備え、前記内容器と外容器との間の空隙を真空にした断熱容器からなることを特徴とするものである。 A third aspect of the invention is the ice making device according to the first or second aspect , wherein the container includes an inner container and an outer container, and a heat insulating container in which a gap between the inner container and the outer container is evacuated. It is characterized by this.

請求項記載の発明は、請求項1または2記載の製氷装置において、前記真空槽と前記容器の周囲が真空断熱材で覆われていることを特徴とするものである。 According to a fourth aspect of the present invention, in the ice making device according to the first or second aspect , the vacuum vessel and the container are covered with a vacuum heat insulating material .

請求項記載の発明は、請求項1〜4のいずれか1項に記載の製氷装置において、前記真空槽内の真空度が略0.01気圧であることを特徴とするものである。 The invention according to claim 5 is the ice making device according to any one of claims 1 to 4 , wherein the vacuum degree in the vacuum chamber is approximately 0.01 atm.

請求項記載の発明は、請求項1〜5のいずれか1項に記載の製氷装置において、少なくとも1以上の温度検出器を備えたことを特徴とするものである。 According to a sixth aspect of the invention, the ice making apparatus according to any one of claims 1 to 5, is characterized in that it comprises at least one or more temperature detectors.

発明によれば、硬くて透明度が高く、商品価値の高い単結晶氷を連続的に製造できる固化方法および製氷方法を実現できる。また、0℃よりもいくらか高い雰囲気温度で製氷できるため、製氷容器に対する凍結付着力が弱く、氷を製氷容器から容易に取り出すことができる製氷方法を実現できる。 According to the present invention, it is possible to realize a solidification method and an ice making method capable of continuously producing single crystal ice that is hard, has high transparency, and has high commercial value. Further, since ice making can be performed at an atmospheric temperature somewhat higher than 0 ° C., an ice making method can be realized in which freezing adhesion to the ice making container is weak and ice can be easily taken out from the ice making container.

また、本発明によれば、硬くて透明度が高く、商品価値の高い任意形状の単結晶の氷を連続的に製造できる製氷装置を実現できる。 According to the present invention, it is possible to realize an ice making apparatus that can continuously produce single-crystal ice having a hard shape, high transparency, and high commercial value.

以下、本発明を実施するための形態について図面を参照しながら説明する。図1は、本発明の実施例としての製氷装置10を示す縦断面図である。図2は、図1中のA−A矢視断面図である。本実施例では液体として安価で、取扱いが容易で、かつ入手も容易ということで水を用いて実験をした。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an ice making device 10 as an embodiment of the present invention. 2 is a cross-sectional view taken along the line AA in FIG. In this example, an experiment was conducted using water because it is inexpensive as a liquid, easy to handle, and easily available.

図1において、氷結させる水11を収容する容器12は有底筒状をしており、上部開口部13を除く周囲は断熱材14で覆われている。容器12の水平断面形状は矩形としているが、矩形以外の多角形とすることもできるし、単純な円形とすることもできる。容器12の底部近くの側面には孔15が設けられ、該孔15には前記断熱材14の外部まで延びるパイプ16の一端16aが液密に接続されている。そして、前記パイプ16の他端16bには緩衝容器17が液密に接続されている。容器12はステンレス鋼等の金属材料を用いて製作することも可能であるが、本実施例では透明なアクリル樹脂を用いて製作した。また、容器12と緩衝容器17とを接続するパイプ16の材料は熱伝導率が低い方が好ましく、非金属材料を用いるのが好適である。仮に、パイプ16を熱伝導率の高い材料で製作すると、パイプ16を経由して容器12と緩衝容器17との間の熱移動量が多くなってしまうからである。   In FIG. 1, a container 12 for storing water 11 to be frozen has a bottomed cylindrical shape, and the periphery except for the upper opening 13 is covered with a heat insulating material 14. Although the horizontal cross-sectional shape of the container 12 is a rectangle, it may be a polygon other than a rectangle or a simple circle. A hole 15 is provided in a side surface near the bottom of the container 12, and one end 16a of a pipe 16 extending to the outside of the heat insulating material 14 is liquid-tightly connected to the hole 15. A buffer container 17 is liquid-tightly connected to the other end 16b of the pipe 16. Although the container 12 can be manufactured using a metal material such as stainless steel, in this embodiment, it was manufactured using a transparent acrylic resin. The material of the pipe 16 that connects the container 12 and the buffer container 17 is preferably low in thermal conductivity, and it is preferable to use a non-metallic material. This is because if the pipe 16 is made of a material having high thermal conductivity, the amount of heat transfer between the container 12 and the buffer container 17 through the pipe 16 increases.

容器12の上部開口部13には箱状の真空槽18が配設される。本実施例の真空槽18は図2に示すように容器12の形状に対応して平面視矩形としているが、円形など他の形状であっても構わない。ここで肝心なことは容器の上部開口部13全体を真空槽18で覆うことである。そのため、本実施例では真空槽18の平面視寸法を容器12の開口部13より大きな寸法として製作されている。また、真空槽18の周囲は容器12と同様にして断熱材14で覆われる。このことにより周囲から真空槽18内へ熱が流入するのを極力抑制できる。   A box-shaped vacuum chamber 18 is disposed in the upper opening 13 of the container 12. The vacuum chamber 18 of this embodiment is rectangular in plan view corresponding to the shape of the container 12 as shown in FIG. 2, but may be other shapes such as a circle. What is important here is to cover the entire upper opening 13 of the container with a vacuum chamber 18. Therefore, in the present embodiment, the vacuum chamber 18 is manufactured with a plan view size larger than that of the opening 13 of the container 12. The periphery of the vacuum chamber 18 is covered with a heat insulating material 14 in the same manner as the container 12. As a result, heat can be prevented from flowing into the vacuum chamber 18 from the surroundings as much as possible.

断熱材14としては、発泡スチロール等の保温材を用いることができるが、汎用品として市販されている真空断熱材を用いることも可能である。また、コンパクトな寸法で断熱性能を重視する場合には、内容器と外容器とを有し、該内容器と外容器との間の空隙を真空にした真空断熱容器を用いるのが好適である。   As the heat insulating material 14, a heat insulating material such as polystyrene foam can be used, but a vacuum heat insulating material commercially available as a general-purpose product can also be used. In the case where heat insulation performance is emphasized with a compact size, it is preferable to use a vacuum heat insulating container having an inner container and an outer container and having a vacuum between the inner container and the outer container. .

本実施例では、真空槽18の材質も容器12と同じく合成樹脂材料を採用している。真空槽18を構成する上板19および下板20の厚さは、熱移動の効率を高めるという観点からすると極力薄い方が好ましい。しかし、真空槽18の外面には大気圧が作用するため、板厚が薄すぎると真空槽として必要十分な機械的強度を確保できず、板厚を薄くするにも限界がある。本実施例では真空槽18を構成する上板19および下板20の厚さを3〜4 mm としている。また、真空槽18の内部は略0.01気圧程度の真空度に設定している。真空槽18の内部を略0.01気圧程度の真空度に減圧するのは、空気分子の存在による対流現象を阻止するためである。したがって、真空槽内部の真空度は対流が発生しない程度で十分であり、必要以上に真空度を高める必要性はない。かかる理由から前記のような真空度に設定している。   In the present embodiment, the material of the vacuum chamber 18 is also a synthetic resin material as in the case of the container 12. The thicknesses of the upper plate 19 and the lower plate 20 constituting the vacuum chamber 18 are preferably as thin as possible from the viewpoint of increasing the efficiency of heat transfer. However, since atmospheric pressure acts on the outer surface of the vacuum chamber 18, if the plate thickness is too thin, the mechanical strength necessary and sufficient for the vacuum chamber cannot be secured, and there is a limit to reducing the plate thickness. In this embodiment, the thickness of the upper plate 19 and the lower plate 20 constituting the vacuum chamber 18 is 3 to 4 mm. The inside of the vacuum chamber 18 is set to a degree of vacuum of about 0.01 atm. The reason why the inside of the vacuum chamber 18 is reduced to a degree of vacuum of about 0.01 atm is to prevent the convection phenomenon due to the presence of air molecules. Therefore, it is sufficient that the degree of vacuum inside the vacuum chamber does not cause convection, and there is no need to increase the degree of vacuum more than necessary. For this reason, the degree of vacuum is set as described above.

真空槽18の上板19の上には低温熱源としてのペルチェ素子21が載置され、さらに該ペルチェ素子21の上には放熱体22としてのヒートシンク23と電動ファン24が備えられている。平板状のペルチェ素子21の両面のうち、低温側となる面は真空槽の上板19に当接され、高温側となる面はヒートシンク23の下面に当接される。なお、電動ファン24はヒートシンク23の上面に装着されるが、電動ファン24はヒートシンク23からの放熱を効率的に行うためのものであり、ヒートシンク23だけで十分な放熱性能を確保できる場合には、電動ファン24を省略することができる。   A Peltier element 21 serving as a low-temperature heat source is placed on the upper plate 19 of the vacuum chamber 18, and a heat sink 23 serving as a radiator 22 and an electric fan 24 are provided on the Peltier element 21. Of both surfaces of the flat Peltier element 21, the surface on the low temperature side is in contact with the upper plate 19 of the vacuum chamber, and the surface on the high temperature side is in contact with the lower surface of the heat sink 23. The electric fan 24 is mounted on the upper surface of the heat sink 23. However, the electric fan 24 is for efficiently radiating heat from the heat sink 23, and when the heat sink 23 alone can secure sufficient heat radiating performance. The electric fan 24 can be omitted.

また、本実施例においては、容器12内の各部の温度および真空槽18内の各部温度を把握すべく、適所に温度検出器としての熱電対が配設されている。具体的には、容器内の上部25および下部26と、真空槽内の上部27および下部28に各1個の熱電対が配設されている。さらに、ペルチェ素子の低温側29と、周囲温度を計測するため製氷装置の近傍30にも熱電対が備えられている。   Further, in this embodiment, thermocouples as temperature detectors are disposed at appropriate positions in order to grasp the temperatures of the respective parts in the container 12 and the temperatures of the respective parts in the vacuum chamber 18. Specifically, one thermocouple is disposed in each of the upper part 25 and the lower part 26 in the container and the upper part 27 and the lower part 28 in the vacuum chamber. In addition, thermocouples are also provided in the low temperature side 29 of the Peltier element and in the vicinity 30 of the ice making device for measuring the ambient temperature.

次に、上述した製氷装置10を用いて液体である水から氷を製造する方法について説明する。製氷装置10の運転開始に先立って、容器12内に水11が充填される。水11は容器12の上部開口部13まで充填される。具体的には緩衝容器17から水を注入して容器12内に水11を充填することができる。容器12の上部開口部13まで水を完全に充填することができるよう、容器12の上端部には空気抜きとしての細孔(図示せず)が設けられている。したがって、緩衝容器17から水11を注入して、細孔から水が溢れ出ることを確認して細孔に栓をすることにより容器12内に水を充填することができる。このとき、緩衝容器17内の水面レベル31は、容器開口部13の高さと等しくなっている。なお、緩衝容器17を設置する本来の目的は、容器12内の水11が氷結する際の体積変化を吸収するためである。   Next, a method for producing ice from water that is liquid using the above-described ice making apparatus 10 will be described. Prior to the start of the operation of the ice making device 10, the container 12 is filled with water 11. Water 11 is filled up to the upper opening 13 of the container 12. Specifically, water 11 can be filled into the container 12 by injecting water from the buffer container 17. The upper end of the container 12 is provided with pores (not shown) as an air vent so that water can be completely filled up to the upper opening 13 of the container 12. Therefore, water 11 can be filled into the container 12 by injecting water 11 from the buffer container 17 and confirming that water overflows from the pores and plugging the pores. At this time, the water surface level 31 in the buffer container 17 is equal to the height of the container opening 13. The original purpose of installing the buffer container 17 is to absorb the volume change when the water 11 in the container 12 freezes.

ここで、製氷装置10の設置される雰囲気温度は、2℃程度にコントロールされることが好ましい。雰囲気温度が常温であっても製氷できなくなることはないが、容器12内の温度と雰囲気温度との温度差が大きくなると、無駄な熱移動が生じてしまい製氷に要する時間が長くなるとともに、余分な電力を消費してしまうというデメリットが生じるからである。   Here, the ambient temperature in which the ice making apparatus 10 is installed is preferably controlled to about 2 ° C. Even if the ambient temperature is room temperature, it will not be impossible to make ice, but if the temperature difference between the temperature in the container 12 and the ambient temperature becomes large, wasteful heat transfer will occur and the time required for ice making will become longer and extra This is because there is a demerit that consumes a lot of power.

そして、ペルチェ素子21および電動ファン24に通電すると、ペルチェ素子21の下側、すなわち真空槽18の上板19に接する部分は−26℃程度まで冷却される。一方、ペルチェ素子21の上側、すなわちヒートシンク23に接する部分の温度は雰囲気温度以上に上昇し、発生した熱は電動ファン24によって生じる空気流に伝達されて放熱される。   When the Peltier element 21 and the electric fan 24 are energized, the lower side of the Peltier element 21, that is, the portion in contact with the upper plate 19 of the vacuum chamber 18 is cooled to about −26 ° C. On the other hand, the temperature of the upper side of the Peltier element 21, that is, the portion in contact with the heat sink 23 rises to the ambient temperature or higher, and the generated heat is transferred to the air flow generated by the electric fan 24 and radiated.

真空槽の上板19がペルチェ素子21により−26℃程度に冷却されると、真空槽の下板20との間に大きな温度差が生じる。真空槽の下板20は容器12の上縁に載置され、下板20の下面は水11に接していることから、下板20の温度は容器内の水11の温度に等しく、ペルチェ素子21に通電を開始した段階では10℃程度である。一方、真空槽18内は0.01気圧程度に減圧されていることから、真空槽の上板19と下板20との間に大きな温度差があっても、空気の対流による熱移動は生じない。真空槽の上板19と下板20との間の熱移動は、高温の下板20側から低温の上板19側への放射による熱移動に限られる。 When the upper plate 19 of the vacuum chamber is cooled to about −26 ° C. by the Peltier element 21, a large temperature difference is generated between the upper plate 19 and the lower plate 20 of the vacuum chamber. Since the lower plate 20 of the vacuum chamber is placed on the upper edge of the container 12, and the lower surface of the lower plate 20 is in contact with the water 11, the temperature of the lower plate 20 is equal to the temperature of the water 11 in the container, and the Peltier element At the stage when energization is started at 21, the temperature is about 10 ° C. On the other hand, since the vacuum chamber 18 is depressurized to about 0.01 atm, heat transfer occurs due to air convection even if there is a large temperature difference between the upper plate 19 and the lower plate 20 of the vacuum chamber. Absent. The heat transfer between the upper plate 19 and the lower plate 20 of the vacuum chamber is limited to the heat transfer by radiation from the high temperature lower plate 20 side to the low temperature upper plate 19 side.

図3〜図5は、本実施例による製氷装置10の運転中の各部温度の推移を示すデータである。各図とも横軸は氷結装置10の運転経過時間を示し、縦軸は温度を示している。図3に示すようにペルチェ素子21の低温側は運転開始後、急激に−26℃程度の温度まで冷却される。参考までに雰囲気温度も記録したが、雰囲気温度は略2℃程度に保持されている。   3-5 is data which shows transition of each part temperature during the driving | operation of the ice making apparatus 10 by a present Example. In each figure, the horizontal axis indicates the elapsed operation time of the icing device 10, and the vertical axis indicates the temperature. As shown in FIG. 3, the low temperature side of the Peltier element 21 is rapidly cooled to a temperature of about −26 ° C. after the start of operation. Although the atmospheric temperature was recorded for reference, the atmospheric temperature is maintained at about 2 ° C.

図4には、真空槽内の上部27および下部28の温度が記録されている。真空槽内の上部27温度および下部28温度とも運転開始後1時間程度で急激に低下して2℃以下になる。その後は0℃〜2℃程度の温度を保持するが、真空槽内の下部28温度に対して上部27温度の方が1℃程度低い状態で推移する。その理由は、真空槽内であることから空気の対流による熱移動はないものの、真空槽の上部27は低温熱源であるペルチェ素子21に近く、真空槽の下部28は高温熱源である水側に近いからである。真空槽18の内部では、下部側から上部側への放射による熱移動が行われる。   In FIG. 4, the temperatures of the upper part 27 and the lower part 28 in the vacuum chamber are recorded. Both the upper 27 temperature and the lower 28 temperature in the vacuum chamber rapidly decrease to about 2 ° C. or less in about 1 hour after the start of operation. After that, the temperature of about 0 ° C. to 2 ° C. is maintained, but the upper 27 temperature transitions about 1 ° C. lower than the lower 28 temperature in the vacuum chamber. The reason for this is that although there is no heat transfer due to air convection in the vacuum chamber, the upper portion 27 of the vacuum chamber is close to the Peltier element 21, which is a low temperature heat source, and the lower portion 28 of the vacuum chamber is located on the water side, which is a high temperature heat source. Because it is close. Inside the vacuum chamber 18, heat transfer is performed by radiation from the lower side to the upper side.

図5には、容器12である水槽内の上部25と下部26の温度が記録されている。上部25の温度は、運転開始後3時間程度で緩やかに低下して0℃に達する。その後は0℃近傍の温度に保持される。その理由は、運転開始後3時間程度で上部25は氷結してしまうからである。下部26の温度は、運転開始後3時間程度で2℃程度まで低下するが、その後は20時間経過する段階に至っても、略2℃程度のまま保持される。その理由は、水槽の下部26では20時間経過後も氷結していないことから氷点下にはなり得ず、0℃を若干上回る程度の温度に保持されるためである。   In FIG. 5, the temperature of the upper part 25 and the lower part 26 in the water tank which is the container 12 is recorded. The temperature of the upper part 25 gradually decreases and reaches 0 ° C. in about 3 hours after the start of operation. Thereafter, the temperature is maintained at around 0 ° C. The reason is that the upper part 25 freezes in about 3 hours after the start of operation. The temperature of the lower portion 26 decreases to about 2 ° C. in about 3 hours after the start of operation, but is maintained at about 2 ° C. even after 20 hours. The reason is that the lower portion 26 of the water tank is not frozen after 20 hours, so it cannot be below freezing point and is kept at a temperature slightly above 0 ° C.

本発明の氷結装置10による氷結は、水槽の上部開口部13からの熱放射により冷却されるものであることから、氷結は水槽の上部開口部13から始まる。恰も、厳冬期に水を入れた洗面器等を晴れた夜間に屋外に放置しておくと、朝になり洗面器に入れた水の表面が氷結する現象に似ている。ただし、この場合には空気中における冷却であることから、放射冷却の他に、対流や熱伝導による熱移動もあることは言うまでもない。   Since icing by the icing device 10 of the present invention is cooled by heat radiation from the upper opening 13 of the water tank, icing starts from the upper opening 13 of the water tank. The basin is similar to the phenomenon of freezing the surface of water in the basin in the morning when a basin filled with water in the severe winter season is left outdoors on a clear night. However, in this case, since it is cooling in the air, it goes without saying that there is also heat transfer by convection and heat conduction in addition to radiative cooling.

図6は、氷結装置10の運転開始後の経過時間に対する氷結した氷の厚さを記録したデータである。本実施例では運転開始後3時間程度で水槽の上部開口部13から氷結が始まる。その後、時間の経過とともに氷の厚さは増加し、運転開始後40時間程度で氷の厚さは25mmに達する。なお、図6に示すデータは、容器12の周囲を覆う断熱材14の一部に図示しない光源とカメラを配設して記録したものである。   FIG. 6 is data in which the thickness of frozen ice with respect to the elapsed time after the start of the operation of the icing device 10 is recorded. In this embodiment, freezing starts from the upper opening 13 of the water tank about 3 hours after the start of operation. Thereafter, the ice thickness increases with time, and the ice thickness reaches 25 mm after about 40 hours from the start of operation. The data shown in FIG. 6 is recorded by arranging a light source and a camera (not shown) in a part of the heat insulating material 14 covering the periphery of the container 12.

本実施例による製氷装置10により得られた氷を取り出して、氷の結晶構造を顕微鏡より観察したところ、結晶構造は単結晶であることが確認された。本発明の発明者は、単結晶氷が偶然できたものかどうかを確認すべく、実験条件を種々変更して実験を繰り返した。例えば、氷結対象として蒸留水と通常の水道水を用いて実験を行ったが、いずれの場合においても単結晶氷ができることが確認できた。また、水槽内に種氷を入れて製氷装置を運転した場合と種氷を入れないで運転した場合の双方での製氷を試みた。その結果、いずれの場合においても単結晶氷が製造できることが確認できた。本発明に係る製氷装置によれば、十分な再現性をもって単結晶氷を製造できるが、なぜ単結晶氷ができるのかについての理論的解明はなされていない。   When the ice obtained by the ice making apparatus 10 according to the present example was taken out and the crystal structure of the ice was observed with a microscope, it was confirmed that the crystal structure was a single crystal. The inventor of the present invention repeated the experiment while changing various experimental conditions in order to confirm whether the single crystal ice was made by chance. For example, experiments were carried out using distilled water and normal tap water as icing targets, and it was confirmed that single crystal ice was formed in any case. In addition, ice making was attempted both when the ice making apparatus was operated with seed ice in the water tank and when it was operated without seed ice. As a result, it was confirmed that single crystal ice could be produced in any case. According to the ice making device of the present invention, single crystal ice can be produced with sufficient reproducibility, but no theoretical clarification has been made as to why single crystal ice is formed.

上記した実施例の製氷方法によれば、硬くて透明度が高く、商品価値の高い単結晶氷を連続的に製造できる固化方法および製氷方法を実現できる。また、0℃よりもいくらか高い周囲温度で製氷できるため、製氷容器に対する凍結付着力が弱く、氷を製氷容器から容易に取り出すことができる製氷方法を実現できる。   According to the ice making method of the above-described embodiment, it is possible to realize a solidification method and an ice making method capable of continuously producing single crystal ice that is hard, has high transparency, and has high commercial value. In addition, since ice making can be performed at an ambient temperature somewhat higher than 0 ° C., an ice making method can be realized in which freezing adhesion to the ice making container is weak and ice can be easily taken out from the ice making container.

また、上記した実施例の製氷装置10によれば、硬くて透明度が高く、商品価値の高い任意形状の単結晶の氷を連続的に製造することができる。   In addition, according to the ice making device 10 of the above-described embodiment, it is possible to continuously produce single-crystal ice having an arbitrary shape that is hard, has high transparency, and has a high commercial value.

以上、本発明を実施例に基づいて説明したが、本発明は上述した実施例に限定されるものではなく、種々の変形実施をすることができる。上記実施例では固化する液体として水を用いたが、水以外の液体の固化にも適用することができる。たとえば、アルコール等の固化にも適用することができる。   As mentioned above, although this invention was demonstrated based on the Example, this invention is not limited to the Example mentioned above, A various deformation | transformation implementation can be performed. In the above embodiment, water is used as the solidifying liquid, but it can also be applied to solidifying liquids other than water. For example, it can be applied to solidification of alcohol or the like.

本発明の実施例を示す氷結装置の断面図である。It is sectional drawing of the freezing apparatus which shows the Example of this invention. 本発明の実施例である図1のA−A矢視図である。It is an AA arrow line view of FIG. 1 which is an Example of this invention. 本発明の製氷装置による製氷データを示す特性図である。It is a characteristic view which shows the ice making data by the ice making apparatus of this invention. 本発明の製氷装置の運転中の各部温度推移を示すデータである。It is data which shows each part temperature transition during the driving | operation of the ice making apparatus of this invention. 本発明の製氷装置の運転中の各部温度推移を示すデータである。It is data which shows each part temperature transition during the driving | operation of the ice making apparatus of this invention. 本発明の製氷装置の運転中の各部温度推移を示すデータである。It is data which shows each part temperature transition during the driving | operation of the ice making apparatus of this invention.

10 製氷装置
11 水
12 容器(水槽)
13 開口部(上部開口部)
14 断熱材(真空断熱材)
17 緩衝容器
21 低温熱源(ペルチェ素子)
22 放熱体
25〜30 温度検出器(熱電対)
10 Ice making equipment
11 water
12 Container (aquarium)
13 Opening (upper opening)
14 Insulation (vacuum insulation)
17 Buffer container
21 Low temperature heat source (Peltier element)
22 radiator
25-30 Temperature detector (thermocouple)

Claims (6)

上部に開口部を有する容器と、前記開口部を覆う真空槽と、前記真空槽の上に設けられたペルチェ素子と、前記容器の内部と連通する緩衝容器とを備え、前記容器の上縁に載置された前記真空槽の下板に接するまで充填された前記容器内の水を単結晶氷に氷結させることを特徴とする製氷装置。 A container having an opening at the top; a vacuum tank covering the opening; a Peltier element provided on the vacuum tank; and a buffer container communicating with the inside of the container ; An ice making device characterized in that water in the container filled until it comes into contact with a lower plate of the placed vacuum tank is frozen into single crystal ice. 前記ペルチェ素子の上に放熱体を取り付けたことを特徴とする請求項記載の製氷装置。 Ice making apparatus of claim 1, wherein a fitted with a heat radiator on the Peltier element. 前記容器が内容器と外容器とを有し、前記内容器と外容器との間の空隙を真空にした断熱容器からなることを特徴とする請求項1または2記載の製氷装置。 The ice making apparatus according to claim 1 or 2 , wherein the container includes an inner container and an outer container, and is composed of a heat insulating container in which a gap between the inner container and the outer container is evacuated. 前記真空槽と前記容器の周囲が真空断熱材で覆われていることを特徴とする請求項1または2記載の製氷装置。 The ice making device according to claim 1 or 2, wherein the vacuum vessel and the container are covered with a vacuum heat insulating material . 前記真空槽内の真空度が略0.01気圧であることを特徴とする請求項1〜4のいずれか1項に記載の製氷装置。 The ice making device according to any one of claims 1 to 4 , wherein a degree of vacuum in the vacuum chamber is approximately 0.01 atm. 少なくとも1以上の温度検出器を備えたことを特徴とする請求項1〜5のいずれか1項に記載の製氷装置。 The ice making device according to any one of claims 1 to 5 , further comprising at least one temperature detector.
JP2006271669A 2006-10-03 2006-10-03 Ice making equipment Active JP5135576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271669A JP5135576B2 (en) 2006-10-03 2006-10-03 Ice making equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271669A JP5135576B2 (en) 2006-10-03 2006-10-03 Ice making equipment

Publications (2)

Publication Number Publication Date
JP2008089251A JP2008089251A (en) 2008-04-17
JP5135576B2 true JP5135576B2 (en) 2013-02-06

Family

ID=39373584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271669A Active JP5135576B2 (en) 2006-10-03 2006-10-03 Ice making equipment

Country Status (1)

Country Link
JP (1) JP5135576B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453305B (en) 2008-03-31 2014-09-21 Permelec Electrode Ltd Manufacturing process of electrodes for electrolysis
JP7430896B2 (en) 2019-11-18 2024-02-14 国立大学法人長岡技術科学大学 Ice making method and ice making device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8200922A (en) * 1982-03-05 1983-10-03 Tno HEAT PUMP.
JPS6062539A (en) * 1983-07-06 1985-04-10 アクチ−セルスカベツト ト−マス ツス.サブロエ アンド カンパニ− Storing of ice and method of increasing said storing
JPS636370A (en) * 1986-06-26 1988-01-12 鹿島建設株式会社 Indirect cooling type direct contact system ice heat accumulator
JPS6463767A (en) * 1987-09-02 1989-03-09 Aisin Seiki Ice ball production unit
JPH05332652A (en) * 1992-06-02 1993-12-14 Miura Co Ltd Transparent ice making device
JPH0854164A (en) * 1994-08-12 1996-02-27 Toshiba Corp Automatic ice making device
JP2000121218A (en) * 1998-10-20 2000-04-28 Matsushita Refrig Co Ltd Ice maker for refrigerator
JP2002139268A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Ice maker and freezer/refrigerator comprising it
JP3812341B2 (en) * 2001-01-17 2006-08-23 松下電器産業株式会社 Ice making apparatus and ice making method
JP2004003754A (en) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd Ice making apparatus and refrigerator

Also Published As

Publication number Publication date
JP2008089251A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP2019535998A (en) Sanitary evaporator assembly
US20090049858A1 (en) Ice maker and refrigerator having the same
WO2009010424A3 (en) Device for producing ice cubes, refrigerating appliance comprising such a device, and method for producing ice cubes
JP5135576B2 (en) Ice making equipment
JP2009002549A (en) Heat pump water heater
WO2009013128A3 (en) Refrigerator with dispensing shutter
JP2003072897A (en) Cooling/heating tank
JPH1123169A (en) Heat pipe
CN204245821U (en) A kind of portable fast cold water-cup
JP3812341B2 (en) Ice making apparatus and ice making method
JP2007178041A (en) Ice making vessel and ice making device
AU2018276134B2 (en) Active crystallisation control in phase change material thermal storage systems
KR101593051B1 (en) Storage Tank of the ice thermal storage cooling system having flow path for increased efficiency of cold storage
KR102629209B1 (en) Arctic vessel window frame freeze prevention apparatus
JP2002295970A (en) Refrigerating body for cold insulating vehicle
RU2624197C1 (en) Method of producing ice blocks
US20170335794A1 (en) Ice storage unit
JP7430896B2 (en) Ice making method and ice making device
JP3107570U (en) Food cooler and cooler
CN207890207U (en) A kind of aquatic products refrigerated storage fresh keeping box
JP4379014B2 (en) Ice maker
FR2461215A1 (en) SYSTEM FOR THE WATERPROOF INSULATION OF THE EVAPORATOR OF REFRIGERATORS, PARTICULARLY ABSORPTION REFRIGERATORS
KR200318575Y1 (en) Ice container for thermal storage system
JP2005280731A (en) Ice-accumulated-type beverage feeder
JP2011121629A (en) Beverage dispenser using peltier element type cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150