JP5134195B2 - Temperature-responsive hollow fiber membrane, temperature-responsive hollow fiber membrane module, and filtration device using the same - Google Patents

Temperature-responsive hollow fiber membrane, temperature-responsive hollow fiber membrane module, and filtration device using the same Download PDF

Info

Publication number
JP5134195B2
JP5134195B2 JP2005247560A JP2005247560A JP5134195B2 JP 5134195 B2 JP5134195 B2 JP 5134195B2 JP 2005247560 A JP2005247560 A JP 2005247560A JP 2005247560 A JP2005247560 A JP 2005247560A JP 5134195 B2 JP5134195 B2 JP 5134195B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
temperature
responsive
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005247560A
Other languages
Japanese (ja)
Other versions
JP2007061677A (en
Inventor
学 桜井
秀司 関
秀樹 中村
正 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005247560A priority Critical patent/JP5134195B2/en
Publication of JP2007061677A publication Critical patent/JP2007061677A/en
Application granted granted Critical
Publication of JP5134195B2 publication Critical patent/JP5134195B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

本発明は、河川水、雨水貯水、廃水等の水処理に適した温度応答性中空糸膜、温度応答性中空糸膜モジュール及びそれを用いたろ過装置に関する。   The present invention relates to a temperature-responsive hollow fiber membrane, a temperature-responsive hollow fiber membrane module, and a filtration device using the temperature-responsive hollow fiber membrane suitable for water treatment of river water, rainwater storage, wastewater, and the like.

従来、水処理分野において、河川水、雨水貯水、廃水等の原水をろ過処理して工業用水を得る方法として、例えば、中空糸型の精密ろ過膜、限外ろ過膜、ナノろ過膜などの中空糸膜が用いられている。このような中空糸膜により、原水中から微生物、藻類、粘土等の不溶性の固形分を取り除いている。近年では、中空糸膜の素材として親水性材料を用いたり、疎水性材料で構成されている場合でも中空糸の膜面を重クロム酸カリの硫酸溶液等で親水化処理することで、ろ過速度を向上させることが検討されている(例えば、特許文献1参照)。   Conventionally, in the field of water treatment, as a method for obtaining industrial water by filtering raw water such as river water, rainwater storage, wastewater, etc., for example, hollow fibers such as microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, etc. Yarn membrane is used. Such hollow fiber membranes remove insoluble solids such as microorganisms, algae, and clay from raw water. In recent years, a hydrophilic material is used as the material of the hollow fiber membrane, or even if it is made of a hydrophobic material, the membrane surface of the hollow fiber is hydrophilized with a sulfuric acid solution of potassium dichromate, etc. (See, for example, Patent Document 1).

しかし、このような中空糸膜を装填したろ過装置を用いて原水を通水すると、中空糸の膜面などに原水中の固形分が堆積して、ろ過抵抗が増加する。そのため、所定量の処理水を得るためには高い圧力で運転しなければならず、ろ過装置の運転に消費するエネルギーが増加しやすくなる。   However, when raw water is passed using a filtration device loaded with such a hollow fiber membrane, solid content in the raw water is deposited on the membrane surface of the hollow fiber and the filtration resistance increases. Therefore, in order to obtain a predetermined amount of treated water, it must be operated at a high pressure, and the energy consumed for the operation of the filtration device tends to increase.

そこで、中空糸膜が所定の差圧上昇を示した時点で、ろ過処理された処理水や圧縮空気等を用いて逆圧洗浄(逆洗)を行い、膜面に堆積した固形分を取り除いている。
特開平5−23553号公報
Therefore, when the hollow fiber membrane shows a predetermined differential pressure increase, it is subjected to back pressure washing (back washing) using filtered treated water, compressed air, etc., and the solid content deposited on the membrane surface is removed. Yes.
Japanese Patent Laid-Open No. 5-23553

しかしながら、上述したような従来の中空糸膜を用いた場合には、長時間(数百時間から数千時間)にわたるろ過運転によって膜面に固形分が付着、堆積し、ろ過処理後に逆洗を行っても固形分を完全に除去することができず、中空糸膜の差圧を回復させ難い。このため、膜寿命が短くなり、頻繁に中空糸膜を交換する必要があった。   However, when the conventional hollow fiber membrane as described above is used, solid content adheres and accumulates on the membrane surface by filtration operation for a long time (several hundred hours to thousands of hours), and backwashing is performed after the filtration treatment. Even if it is performed, the solid content cannot be completely removed, and it is difficult to recover the differential pressure of the hollow fiber membrane. For this reason, the membrane life was shortened, and it was necessary to frequently replace the hollow fiber membrane.

本発明は、このような課題に対処するためになされたもので、中空糸膜の洗浄効果が高く、長期間にわたり膜面の差圧上昇を抑制することが可能な温度応答性中空糸膜、温度応答性中空糸膜モジュール及びそれを用いた装置を提供することを目的とする。   The present invention has been made in order to cope with such a problem, a temperature-responsive hollow fiber membrane having a high cleaning effect on the hollow fiber membrane and capable of suppressing an increase in the differential pressure on the membrane surface over a long period of time, An object is to provide a temperature-responsive hollow fiber membrane module and an apparatus using the same.

すなわち、請求項1に記載の温度応答性中空糸膜は、高分子材料からなる中空糸膜基体
と、前記中空糸膜基体の外表面側のみにN−イソプロピルアクリルアミドのグラフト重合
により形成された所定の温度で可逆的に膨張/収縮する高分子鎖からなる孔径調整材とか
らなり、この孔径調整材は逆洗時に加温制御された原水によって加温されて前記高分子鎖
が収縮して孔径を拡張させることを特徴とする。
That is, the temperature-responsive hollow fiber membrane according to claim 1 is a hollow fiber membrane substrate made of a polymer material, and a predetermined formed by N-isopropylacrylamide graft polymerization only on the outer surface side of the hollow fiber membrane substrate. reversibly expanding / contracting Ri Do and a hole diameter adjustment member made of a polymer chain, said polymer chain the pore size adjusting agent is warmed by raw water which is warmed controlled during backwashing at a temperature
There characterized Rukoto dilates pore diameter contracts.

また、請求項4に記載の温度応答性中空糸膜モジュールは、高分子材料からなる中空糸
膜基体と前記中空糸膜基体の外表面側のみにN−イソプロピルアクリルアミドのグラフト
重合により形成された所定の温度で可逆的に膨張/収縮する高分子鎖からなる孔径調整材
とからなる中空糸膜の多数本を、原水口と処理水口とを有する容器内に配置し、その端部
外周を固定部材により固定してなり、前記孔径調整材は逆洗時に加温制御された原水によ
って加温されて前記高分子鎖が収縮して孔径を拡張させることを特徴とする。
The temperature-responsive hollow fiber membrane module according to claim 4 is a hollow fiber membrane substrate made of a polymer material and a predetermined formed by N-isopropylacrylamide graft polymerization only on the outer surface side of the hollow fiber membrane substrate. A large number of hollow fiber membranes comprising a pore diameter adjusting material comprising a polymer chain that reversibly expands / shrinks at a temperature of 5 ° C are disposed in a container having a raw water inlet and a treated water inlet, and the outer periphery of the end is a fixing member Ri Na and fixed by, the pore size adjusting agent in the raw water that has been warmed controlled during backwash
The polymer chains are warmed I is characterized Rukoto dilates pore diameter contracts.

請求項6に記載のろ過装置は、前記容器内を前記固定部材により前記中空糸膜の位置する原水側と前記中空糸膜の端部が開口する処理水側とに区画する請求項4記載の温度応答性中空糸膜モジュールと、前記温度応答性中空糸膜モジュール内の原水側を加熱する加熱器とを具備することを特徴とする。   The filtration device according to claim 6, wherein the container is partitioned by the fixing member into a raw water side where the hollow fiber membrane is located and a treated water side where an end of the hollow fiber membrane is opened. It comprises a temperature-responsive hollow fiber membrane module and a heater for heating the raw water side in the temperature-responsive hollow fiber membrane module.

本発明によれば、中空糸膜の洗浄効果が高く、長期間にわたり膜面の差圧上昇を抑制することができる。   According to the present invention, the cleaning effect of the hollow fiber membrane is high, and an increase in the differential pressure on the membrane surface can be suppressed over a long period of time.

以下、本発明を図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1に示すように、本発明において使用される温度応答性中空糸膜1は、中空糸膜2の外表面側にN‐イソプロピルアクリルアミドをグラフト重合してなる孔径調整材3を有しており、常温で平均直径(長径と短径の平均)0.1μm程度の孔径4を有している。このような該中空糸膜1を用いて、固形分5を含む河川水、雨水貯水、廃水等の原水を中空糸膜外表面側から内表面側に通水して、膜面に固形分5を捕捉する。   As shown in FIG. 1, the temperature-responsive hollow fiber membrane 1 used in the present invention has a pore diameter adjusting material 3 formed by graft polymerization of N-isopropylacrylamide on the outer surface side of the hollow fiber membrane 2. The pore diameter 4 has an average diameter (average of major axis and minor axis) of about 0.1 μm at room temperature. Using the hollow fiber membrane 1 as described above, raw water such as river water, rainwater storage water, waste water and the like containing the solid content 5 is passed from the outer surface side to the inner surface side of the hollow fiber membrane, and the solid content 5 is supplied to the membrane surface. To capture.

N−イソプロピルアクリルアミドは、単独では温度応答性を有していないが、これを重合した高分子は温度応答性を有する。図2に示すように、中空糸膜2にグラフト重合されたN‐イソプロピルアクリルアミドの高分子鎖(孔径調整材)はその側鎖にアミド基をもち、32℃以下において水和して膨張するが、32℃を超えると脱水和して収縮する。   N-isopropylacrylamide alone does not have temperature responsiveness, but a polymer obtained by polymerizing this has temperature responsiveness. As shown in FIG. 2, the N-isopropylacrylamide polymer chain grafted onto the hollow fiber membrane 2 has an amide group in its side chain and hydrates and expands at 32 ° C. or lower. When it exceeds 32 ° C, it dehydrates and contracts.

このような温度変化に対応したN‐イソプロピルアクリルアミドの高分子鎖の膨張/収縮の変化を利用して、ろ過及び逆洗を行う。すなわち、本発明の温度応答性中空糸膜を用いて、原水を該中空糸膜外表面側から内表面側に通水して外表面側に原水中の固形分を捕捉する。この後、該中空糸膜内表面側から外表面側に逆洗する際に、該中空糸膜の外表面側に滞留している原水を40〜60℃に加温してN‐イソプロピルアクリルアミドの高分子鎖を収縮させる。このとき、該高分子鎖の脱水和による収縮にともなって、温度応答性中空糸膜の孔径が拡張(開口)する。例えば、図3に示すように、平均直径0.2μm程度の孔径を有する中空糸膜に上記重合剤をグラフト重合させて0.1μm程度の孔径をもつ温度応答性中空糸膜を作製した場合、所定温度に原水を制御して該高分子鎖を収縮させることにより、電子顕微鏡で膜面観察した結果、該中空糸膜の孔径を最大0.2μm程度(孔径伸縮率50%)まで開口させることができる。これによって、逆洗時に、該中空糸膜外表面側で捕捉され、堆積した不溶性の固形分を除去し易くすることができ、膜面の差圧上昇を抑制することができる。   Filtration and backwashing are performed using the change in expansion / contraction of the polymer chain of N-isopropylacrylamide corresponding to such temperature change. That is, using the temperature-responsive hollow fiber membrane of the present invention, raw water is passed from the outer surface side of the hollow fiber membrane to the inner surface side, and solids in the raw water are captured on the outer surface side. Then, when backwashing from the inner surface side of the hollow fiber membrane to the outer surface side, the raw water staying on the outer surface side of the hollow fiber membrane is heated to 40 to 60 ° C. Shrink polymer chains. At this time, the pore diameter of the temperature-responsive hollow fiber membrane expands (opens) as the polymer chain shrinks due to dehydration. For example, as shown in FIG. 3, when a temperature-responsive hollow fiber membrane having a pore diameter of about 0.1 μm is produced by graft polymerization of the above polymerizing agent to a hollow fiber membrane having an average diameter of about 0.2 μm, As a result of observing the membrane surface with an electron microscope by controlling the raw water to a predetermined temperature and observing the membrane surface, the pore diameter of the hollow fiber membrane is opened to a maximum of about 0.2 μm (pore diameter expansion / contraction ratio 50%). Can do. As a result, it is possible to easily remove the insoluble solid matter that is trapped and deposited on the outer surface side of the hollow fiber membrane during backwashing, and the increase in the differential pressure on the membrane surface can be suppressed.

原水中に含まれる固形分としては、例えばバクテリア、シリカコロイド、ベントナイト、粘土などが挙げられ、例えば、雨水貯水の場合には、その大きさは0.27〜140μmに分布している。図4に示すように、これら固形分5は、カルボキシル基、アミノ基、水酸基などを有しており、従来の中空糸膜では、この固形分5は水素結合により中空糸膜2の膜面に付着するため、単に逆洗するだけでは除去し難い。このため、逆洗時に、固形分5を捕捉した膜外表面側の原水を40〜60℃に加温することで、上記効果に加えて、固形分と膜表面との結合力を弱めて剥離しやすくすることができる。   As solid content contained in raw | natural water, bacteria, a silica colloid, bentonite, clay etc. are mentioned, for example, In the case of rainwater storage, the magnitude | size is distributed to 0.27-140 micrometers. As shown in FIG. 4, these solid contents 5 have a carboxyl group, an amino group, a hydroxyl group, and the like. In the conventional hollow fiber membrane, the solid content 5 is formed on the membrane surface of the hollow fiber membrane 2 by hydrogen bonding. Because it adheres, it is difficult to remove by simply backwashing. For this reason, at the time of backwashing, by heating the raw water on the outer membrane surface side that has captured the solid content 5 to 40 to 60 ° C., in addition to the above effects, the bonding strength between the solid content and the membrane surface is weakened and peeled off. Can be easier.

本発明において使用される中空糸膜としては、その膜径は、特に限定されるものではないが、内径が0.3〜1.4mm、外径が1.0〜1.9mmであるものが好ましい。その膜構造についても特に限定はなく、例えば中空糸の内表面から外表面に実質的に連通した孔を有する多孔質構造、又は中空糸の内表面から外表面に実質的に連通した孔の無い均質構造、多孔質膜の表面に実質的に連通した孔の無いスキン層を有する構造等の非対称膜構造のいずれでもよい。ここでいう非対称膜とは、膜構造が均一でない不均質膜、多孔質と均質膜を張り合わせる等により作られる複合膜等、構造が対称でない膜の総称である。細孔の寸法は、捕捉する固形分の大きさに応じて適宜選択されるが、グラフト重合される外表面側の孔径が平均直径にして0.1〜0.2μm程度であることが好ましい。中空糸膜の素材としては、例えば、ポリアクリロニトリル、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、酢酸セルロース、ポリエチレン、ポリプロピレン等が挙げられる。   As the hollow fiber membrane used in the present invention, the membrane diameter is not particularly limited, but those having an inner diameter of 0.3 to 1.4 mm and an outer diameter of 1.0 to 1.9 mm. preferable. There is no particular limitation on the membrane structure, for example, a porous structure having pores substantially communicating from the inner surface to the outer surface of the hollow fiber, or no pores substantially communicating from the inner surface to the outer surface of the hollow fiber. Either a homogeneous structure or an asymmetric membrane structure such as a structure having a skin layer substantially free of pores communicating with the surface of the porous membrane may be used. The asymmetric membrane here is a general term for membranes having non-symmetrical structures, such as heterogeneous membranes having non-uniform membrane structures, and composite membranes formed by bonding porous and homogeneous membranes. The size of the pores is appropriately selected according to the size of the solid content to be captured, but the pore size on the outer surface side to be graft polymerized is preferably about 0.1 to 0.2 μm in terms of average diameter. Examples of the material for the hollow fiber membrane include polyacrylonitrile, polysulfone, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, cellulose acetate, polyethylene, and polypropylene.

次に、本発明の温度応答性中空糸膜の製造方法の一例を図5及び図6を用いて説明する。図5は、本発明の温度応答性中空糸膜の製造工程の一例を示し、図6は、本発明の温度応答性中空糸膜の製造装置の一例を示している。図6に示す製造装置10は、孔径0.2μm程度のポリエチレン等からなる中空糸膜束11を配置したモジュール反応槽12を有しており、このモジュール反応槽12と連結するように、5%のN‐イソプロピルアクリルアミド溶液が貯蔵された重合剤貯槽13、オゾン発生器14、コンプレッサー15及び水が貯蔵された洗浄水貯槽16がそれぞれ設けられている。なお、重合剤貯槽13には、その下方に加熱器17が設けられている。   Next, an example of the manufacturing method of the temperature-responsive hollow fiber membrane of this invention is demonstrated using FIG.5 and FIG.6. FIG. 5 shows an example of the manufacturing process of the temperature-responsive hollow fiber membrane of the present invention, and FIG. 6 shows an example of the temperature-responsive hollow fiber membrane manufacturing apparatus of the present invention. A manufacturing apparatus 10 shown in FIG. 6 has a module reaction tank 12 in which a hollow fiber membrane bundle 11 made of polyethylene or the like having a pore diameter of about 0.2 μm is arranged, and 5% so as to be connected to the module reaction tank 12. A polymerization agent storage tank 13 storing an N-isopropylacrylamide solution, an ozone generator 14, a compressor 15, and a washing water storage tank 16 storing water are provided. The polymerization agent storage tank 13 is provided with a heater 17 below it.

まず、複数の中空糸膜をU字状に集束固定してなる中空糸膜束11の先端に、Nガスを導入可能な導入管付きのキャップ18を装着して、0.5kg/cmのN2ガスを流入する。ここで用いるNガスとしては、中空糸膜のバブルポイントが240〜260KPaであり、オゾン発生器14のガス圧が700KPaであることから、500KPa程度であることが好ましい。これによって、後述するオゾンが中空糸膜の細孔内部に侵入することを防ぎ、重合剤を中空糸膜の外表面側のみにグラフト重合させることができる。 First, a cap 18 with an introduction tube capable of introducing N 2 gas is attached to the tip of a hollow fiber membrane bundle 11 formed by converging and fixing a plurality of hollow fiber membranes in a U shape, and 0.5 kg / cm 2 Of N 2 gas. The N 2 gas used here is preferably about 500 KPa because the bubble point of the hollow fiber membrane is 240 to 260 KPa and the gas pressure of the ozone generator 14 is 700 KPa. Thereby, ozone which will be described later can be prevented from entering the pores of the hollow fiber membrane, and the polymerization agent can be graft polymerized only on the outer surface side of the hollow fiber membrane.

続いて、図6に示すように、中空糸膜束11の先端にキャップ18を装着した状態で容器内に配置する。この後、0.4g/hのオゾン発生器14(ガス流量0.07L/min、オゾン濃度0.114g/l)により15〜20g/mのオゾンガスをオゾン供給管19を介してモジュール反応槽12内に供給し、3〜10分程度曝露する(S1)。図7に示すように、長過ぎると、後述するグラフト重合時に過剰に重合され中空糸膜の圧力損失が大きくなる恐れがある。また、曝露時間を上記範囲にすることで、オゾンによる酸化劣化によって膜が脆弱化するのを回避し、膜強度の低下を初期の5〜10%程度(オゾン曝露後350g荷重/本)に抑えることができる。 Then, as shown in FIG. 6, it arrange | positions in a container in the state which attached the cap 18 to the front-end | tip of the hollow fiber membrane bundle 11. FIG. Thereafter, a module reaction tank is supplied with 15 to 20 g / m 3 of ozone gas through an ozone supply pipe 19 by a 0.4 g / h ozone generator 14 (gas flow rate 0.07 L / min, ozone concentration 0.114 g / l). 12 and exposed for about 3 to 10 minutes (S1). As shown in FIG. 7, when too long, there exists a possibility that it may superpose | polymerize at the time of the graft polymerization mentioned later, and the pressure loss of a hollow fiber membrane may become large. In addition, by setting the exposure time within the above range, the film is prevented from becoming weak due to oxidative deterioration due to ozone, and the decrease in film strength is suppressed to about 5 to 10% (350 g load / book after ozone exposure) of the initial stage. be able to.

オゾンによる曝露終了後、空気供給管20を介してコンプレッサー15から圧縮空気をモジュール反応槽12に供給し、余剰なオゾンを排ガス管21へ排出し、さらに続けて30分間ほど圧縮空気を送り、中空糸膜束11を空気に曝す(S2)。   After the exposure with ozone is completed, compressed air is supplied from the compressor 15 to the module reaction tank 12 through the air supply pipe 20, and excess ozone is discharged to the exhaust gas pipe 21. The thread membrane bundle 11 is exposed to air (S2).

この後、5%のN‐イソプロピルアクリルアミド溶液が貯蔵された重合剤貯槽13を、加熱器17で60℃に温めてモジュール反応槽12に供給し、これを再び重合剤貯槽13に送り、加熱循環させながら、中空糸膜束11をN‐イソプロピルアクリルアミド溶液に5分間浸漬して膜表面をグラフト重合させる(S3)。上述したように、オゾンによる曝露時間を3〜10分程度にすることで、重合剤を中空糸の膜面あたり20〜44μg/cm2グラフト重合させることができる。これによって、中空糸膜外表面側の平均直径0.2μmの孔径を0.1μm程度にすることができる。ここで、図8に、走査型電子顕微鏡による、中空糸膜におけるグラフト重合前後の孔径状態を示す。aは、グラフト重合前の孔径状態を示している。図8に示すように、10分を超えてオゾン曝露すると(d)、中空糸膜にN‐イソプロピルアクリルアミドが過剰にグラフト重合され、目詰まりを生じる。オゾン曝露時間を3〜10分にすることで(b、c)、0.1μm程度の孔径となるように、所定量の重合剤を膜表面にグラフト重合させることができる。 Thereafter, the polymerization agent storage tank 13 in which a 5% N-isopropylacrylamide solution is stored is heated to 60 ° C. by the heater 17 and supplied to the module reaction tank 12, which is sent again to the polymerization agent storage tank 13 for heating circulation. Then, the hollow fiber membrane bundle 11 is immersed in an N-isopropylacrylamide solution for 5 minutes to graft polymerize the membrane surface (S3). As described above, by setting the exposure time with ozone to about 3 to 10 minutes, the polymerization agent can be 20 to 44 μg / cm 2 graft-polymerized per membrane surface of the hollow fiber. Thereby, the hole diameter of the average diameter of 0.2 μm on the outer surface side of the hollow fiber membrane can be reduced to about 0.1 μm. Here, FIG. 8 shows a pore diameter state before and after graft polymerization in the hollow fiber membrane by a scanning electron microscope. a shows the pore diameter state before graft polymerization. As shown in FIG. 8, when ozone exposure is performed for more than 10 minutes (d), N-isopropylacrylamide is excessively grafted onto the hollow fiber membrane, resulting in clogging. By setting the ozone exposure time to 3 to 10 minutes (b, c), a predetermined amount of the polymerizing agent can be graft-polymerized on the film surface so that the pore diameter is about 0.1 μm.

重合反応終了後、重合剤をモジュール反応槽12から反応液排出管22を介して排出する。そして、注入ポンプで洗浄水貯槽16から水をモジュール反応槽12に供給して、中空糸膜に残留する未反応の重合剤を洗浄し、コンプレッサー15で乾燥する(S4)。なお、未反応の重合剤を完全に取り除くには、水で30分程度洗浄することが好ましい。未反応の重合剤が中空糸膜に過剰に残留している場合には、更に、モジュール反応槽12に洗浄水貯槽16から水を供給して、中空糸膜を浸漬することが好ましい。   After the completion of the polymerization reaction, the polymerization agent is discharged from the module reaction tank 12 through the reaction liquid discharge pipe 22. Then, water is supplied from the washing water storage tank 16 to the module reaction tank 12 with an injection pump, and the unreacted polymer agent remaining in the hollow fiber membrane is washed and dried by the compressor 15 (S4). In order to completely remove the unreacted polymerization agent, it is preferable to wash with water for about 30 minutes. When the unreacted polymer agent remains excessively in the hollow fiber membrane, it is preferable to further supply water from the washing water storage tank 16 to the module reaction tank 12 to immerse the hollow fiber membrane.

このようにして温度応答性中空糸膜を得ることができる。得られた該中空糸膜について、赤外線スペクトル分光器を用いて膜表面を調べた。結果を図9に示す。図9に示す赤外線スペクトルでは、アミド基に由来する波長1520cm−1(主としてNH変角運動によるものと考えられる。)に強い吸収をもつため、N‐イソプロピルアクリルアミドがグラフト重合されていることが確認できる。 In this way, a temperature-responsive hollow fiber membrane can be obtained. About the obtained hollow fiber membrane, the membrane surface was examined using an infrared spectrum spectrometer. The results are shown in FIG. In the infrared spectrum shown in FIG. 9, it is confirmed that N-isopropylacrylamide is graft-polymerized because it has strong absorption at a wavelength of 1520 cm −1 (presumably due to NH bending motion) derived from the amide group. it can.

なお、本発明の温度応答性中空糸膜の製造方法は上記に限定されるものではなく、以下に示す製造方法を用いてもよい。図10は、本発明の温度応答性中空糸膜の製造装置の一例を示している。図11は、図10に示すオゾン曝露室の拡大図である。図6と同一部分には、同一符号を付し、その説明を一部省略する。図10に示す製造装置30では、リール31で巻き取られた複数本の中空糸膜32を引き出し、オゾン曝露室33、重合剤貯槽34及び洗浄槽35の順に移動速度20cm/minで連続的に処理した後、リール31で巻き取り回収する。これによって、本発明の温度応答性中空糸膜を得ることができる。   In addition, the manufacturing method of the temperature-responsive hollow fiber membrane of this invention is not limited to the above, You may use the manufacturing method shown below. FIG. 10 shows an example of an apparatus for producing a temperature-responsive hollow fiber membrane of the present invention. FIG. 11 is an enlarged view of the ozone exposure chamber shown in FIG. The same parts as those in FIG. 6 are denoted by the same reference numerals, and the description thereof is partially omitted. In the manufacturing apparatus 30 shown in FIG. 10, a plurality of hollow fiber membranes 32 wound up by a reel 31 are drawn out, and the ozone exposure chamber 33, the polymerizer storage tank 34 and the cleaning tank 35 are sequentially moved at a moving speed of 20 cm / min. After processing, the reel 31 is wound up and collected. Thereby, the temperature-responsive hollow fiber membrane of the present invention can be obtained.

まず、図11に示すオゾン曝露室33(長さ140cm)において、0.48g/hのオゾン発生器14(流量0.07L/min、オゾン濃度0.114g/l)から供給されるオゾンの濃度を15〜20g/mに調整して、リール31から引き出された中空糸膜32を7分ほど曝露する。なお、オゾンの漏洩を防止するため、空気封入室36にコンプレッサー37から0.07L/minの圧縮空気を供給することが好ましい。余剰なオゾン又は圧縮空気は排ガス管38を介して排出する。 First, in the ozone exposure chamber 33 (length 140 cm) shown in FIG. 11, the concentration of ozone supplied from the ozone generator 14 (flow rate 0.07 L / min, ozone concentration 0.114 g / l) of 0.48 g / h. Is adjusted to 15 to 20 g / m 3 and the hollow fiber membrane 32 drawn from the reel 31 is exposed for about 7 minutes. In order to prevent ozone leakage, it is preferable to supply 0.07 L / min of compressed air from the compressor 37 to the air sealing chamber 36. Excess ozone or compressed air is discharged through the exhaust pipe 38.

この後、駆動リール39を用いて、オゾン曝露された中空糸膜32を20cm/minで移動させながら30分間空気中に曝す。駆動リール39の荷重としては、オゾン曝露によって中空糸膜32が脆弱になることから300g以下であることが好ましい。   Thereafter, using the drive reel 39, the hollow fiber membrane 32 exposed to ozone is exposed to the air for 30 minutes while moving at 20 cm / min. The load of the drive reel 39 is preferably 300 g or less because the hollow fiber membrane 32 becomes brittle when exposed to ozone.

次に、加熱器17で60℃に加温された5%のN‐イソプロピルアクリルアミド溶液が入った重合剤貯槽34内(長さ100cm)に、中空糸膜32を通して5分間グラフト重合する。   Next, graft polymerization is carried out for 5 minutes through the hollow fiber membrane 32 in the polymerization agent storage tank 34 (length 100 cm) containing 5% N-isopropylacrylamide solution heated to 60 ° C. by the heater 17.

続いて、洗浄槽35で中空糸膜32に付着した未反応の重合剤を洗浄して除去し、リール31で巻き取る。具体的には、洗浄槽35の長さを140cm程度、中空糸膜32の洗浄槽35の通過時間を7分間程度とし、洗浄槽35には、洗浄水貯槽16から水などを洗浄槽容積の4倍となる流量で供給する。なお、排液は排液管40を介して排出する。このようにして容易に収率良く温度応答性ろ過膜を得ることができる。   Subsequently, unreacted polymerization agent adhering to the hollow fiber membrane 32 is removed by washing in the washing tank 35, and the reel 31 is wound up. Specifically, the length of the washing tank 35 is about 140 cm, the passage time of the hollow fiber membrane 32 through the washing tank 35 is about 7 minutes, and the washing tank 35 is filled with water from the washing water storage tank 16 in the washing tank volume. Supply at 4 times the flow rate. The drainage is discharged through the drainage tube 40. In this way, a temperature-responsive filtration membrane can be easily obtained with good yield.

次に、本発明の温度応答性中空糸膜モジュールを用いたろ過装置について図面を参照して詳細に説明する。   Next, a filtration device using the temperature-responsive hollow fiber membrane module of the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
本発明の第1の実施形態について、図12を参照して説明する。図12は、本実施形態に係るろ過装置である。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIG. FIG. 12 shows a filtration device according to this embodiment.

図12に示すように、ろ過装置51は、複数の温度応答性中空糸膜から構成された中空糸膜束52を容器53内に配置した温度応答性中空糸膜モジュール(以下、中空糸膜モジュール54とする。)と、該中空糸膜モジュール54の原水側54aと原水循環管60を介して連結された加熱器55とを備えている。   As shown in FIG. 12, the filtration device 51 includes a temperature-responsive hollow fiber membrane module (hereinafter referred to as a hollow fiber membrane module) in which a hollow fiber membrane bundle 52 composed of a plurality of temperature-responsive hollow fiber membranes is disposed in a container 53. And a heater 55 connected to the raw water side 54a of the hollow fiber membrane module 54 via the raw water circulation pipe 60.

中空糸膜モジュール54は、固定部材56(ポッティング剤)によって、各中空糸膜の外表面側と接し且つ原水を供給する原水口を有する原水側54aと、各中空糸膜の内表面側とそれぞれの開口端を介して連通し且つ処理水を取り出す処理水口を有する処理水側54bとに区分けされており、原水側54aと処理水側54bとの間での物質移動は該中空糸膜の膜面のみを介して行われる。なお、原水側54aには、その下方にコンプレッサー59と連通し圧縮空気を放出する空気放出管57(第1空気供給系統)が設けられている。   The hollow fiber membrane module 54 includes a raw water side 54a that is in contact with the outer surface side of each hollow fiber membrane and has a raw water inlet for supplying raw water by a fixing member 56 (potting agent), and an inner surface side of each hollow fiber membrane, respectively. The treated water side 54b has a treated water port that communicates through the open end of the treated water and takes out treated water, and the mass transfer between the raw water side 54a and the treated water side 54b is the membrane of the hollow fiber membrane. Done only through the plane. The raw water side 54a is provided with an air discharge pipe 57 (first air supply system) below which communicates with the compressor 59 and discharges compressed air.

中空糸膜束52は、複数の温度応答性中空糸膜をU字状に折り曲げて一方の側(図12では上方側)に各端部を集束させるように束ねたものであり、各中空糸膜の内表面側と連通する開口端は固定部材56により支持固定されている。なお、該中空糸膜の固定方法は、特に限定されるものではなく、例えば、中空糸膜の両開口端を開口状態を維持して対向するように固定部材間に橋渡しするように固定する方法、中空糸膜の一方の端部を封止し、他方の端部を開口状態として固定部材に固定する方法等を用いることもできる。   The hollow fiber membrane bundle 52 is formed by bundling a plurality of temperature-responsive hollow fiber membranes in a U shape so that each end is focused on one side (upper side in FIG. 12). An opening end communicating with the inner surface side of the membrane is supported and fixed by a fixing member 56. The method for fixing the hollow fiber membrane is not particularly limited. For example, the hollow fiber membrane is fixed so as to be bridged between fixing members so that both open ends of the hollow fiber membrane are opposed to each other while maintaining the open state. Alternatively, a method of sealing one end of the hollow fiber membrane and fixing the other end to the fixing member in an open state can be used.

加熱器55は、原水側54aと連結するように設けられており、該中空糸膜モジュール54内の膜外表面側と接する原水を40〜60℃に加温する。すなわち、加熱器55には、第2空気配管58(第2空気供給系統)を介してコンプレッサー59から圧縮空気が送られている。これによって、原水循環管60を介して送られた中空糸膜モジュール54内の原水を加熱器55で40〜60℃に加温し、矢印で示す方向に循環させて該モジュール54内の原水を40〜60℃に制御する。   The heater 55 is provided so as to be connected to the raw water side 54a, and warms the raw water in contact with the outer membrane surface side in the hollow fiber membrane module 54 to 40 to 60 ° C. That is, compressed air is sent from the compressor 59 to the heater 55 via the second air pipe 58 (second air supply system). As a result, the raw water in the hollow fiber membrane module 54 sent through the raw water circulation pipe 60 is heated to 40 to 60 ° C. by the heater 55 and circulated in the direction indicated by the arrow so that the raw water in the module 54 is circulated. Control to 40-60 ° C.

次に、本実施形態における温度応答性中空糸膜モジュールを用いたろ過装置51の使用方法の一例を示す。   Next, an example of the usage method of the filtration apparatus 51 using the temperature-responsive hollow fiber membrane module in this embodiment is shown.

まず、温度応答性中空糸膜を装填した中空糸膜モジュール54を用いて、原水をろ過処理する。原水の供給は、原水移送ポンプ61を駆動源としている。この原水移送ポンプ61によって原水を原水管62を介して圧送し、中空糸膜の外表面側から内表面側に流すことにより、原水中の固形分を中空糸膜の外表面側に捕捉する。中空糸膜で処理された処理水は処理水管63へ送られる。中空糸膜の膜面差圧が初期圧より0.5kg/cm程度上昇した時点で、ろ過処理を停止する。 First, raw water is filtered using a hollow fiber membrane module 54 loaded with a temperature-responsive hollow fiber membrane. The supply of raw water uses the raw water transfer pump 61 as a drive source. The raw water is pumped by the raw water transfer pump 61 through the raw water pipe 62 and flows from the outer surface side of the hollow fiber membrane to the inner surface side, thereby capturing the solid content in the raw water on the outer surface side of the hollow fiber membrane. The treated water treated with the hollow fiber membrane is sent to the treated water pipe 63. When the membrane surface differential pressure of the hollow fiber membrane rises by about 0.5 kg / cm 2 from the initial pressure, the filtration treatment is stopped.

ここで、以下の手順により、膜面に捕捉され、堆積した固形分の洗浄除去を行う。第2空気配管58を介してコンプレッサー59から送られた圧縮空気を加熱器55に供給することによって、原水循環管60を介して原水側54aから供給された原水を加熱器55で40〜60℃に温めた後、原水側54aに送る。これを繰り返し行い、原水を加熱循環させて液温を40〜60℃に制御する。   Here, the solid content captured and deposited on the film surface is removed by the following procedure. By supplying the compressed air sent from the compressor 59 via the second air pipe 58 to the heater 55, the raw water supplied from the raw water side 54 a via the raw water circulation pipe 60 is converted to 40-60 ° C. by the heater 55. To warm water side 54a. This is repeated and the raw water is heated and circulated to control the liquid temperature at 40-60 ° C.

次に、第1空気配管64を介して空気放出管57から圧縮空気を放出し、中空糸膜の外表面に堆積、付着している固形分を振動剥離する。これと同時に、逆圧洗浄手段として第3空気配管65を介してコンプレッサー59から供給される圧縮空気(3.0kg/cm)によって、処理水側54bに滞留する処理水をろ過運転時とは逆方向の原水側54aに流し込み、各中空糸膜の内表面側から外表面側に逆洗する。処理水側54bの処理水が、原水側54aに混入するため一時液温が40℃未満に低下するが、第2空気配管58を介して圧縮空気を加熱器55に供給し、原水側54aを加熱循環させることで40〜60℃まで上昇させる。なお、逆洗時に供給された余剰な圧縮空気は、空気排出ライン66へ排出される。 Next, compressed air is discharged from the air discharge pipe 57 through the first air pipe 64, and the solid content deposited and attached to the outer surface of the hollow fiber membrane is vibrationally peeled off. At the same time, with the compressed air (3.0 kg / cm 2 ) supplied from the compressor 59 via the third air pipe 65 as the back pressure washing means, the treated water staying on the treated water side 54b is filtered. Pour into the raw water side 54a in the reverse direction and backwash from the inner surface side to the outer surface side of each hollow fiber membrane. Since the treated water on the treated water side 54b is mixed into the raw water side 54a, the temporary liquid temperature falls below 40 ° C., but compressed air is supplied to the heater 55 via the second air pipe 58, and the raw water side 54a is The temperature is raised to 40-60 ° C by heating and circulating. Excess compressed air supplied during backwashing is discharged to the air discharge line 66.

逆洗終了後、中空糸膜の膜面差圧を測定し、再び、ろ過処理を行う。以上の操作を繰り返し行う。ろ過量に対する膜面差圧を図13に示す。   After the backwashing is completed, the membrane surface pressure difference of the hollow fiber membrane is measured, and the filtration treatment is performed again. Repeat the above operation. The membrane surface differential pressure with respect to the filtration amount is shown in FIG.

図13中、(A)は、本実施形態に係る温度応答性中空糸膜を用いた場合のろ過量に対する膜面差圧を示しており、(B)は、N−イソプロピルアクリルアミドがグラフト重合されていない従来の中空糸膜を用いた場合の膜面差圧を示している。図13に示すように、本実施形態に係る温度応答性中空糸膜によれば、膜面に付着した固形分などをより完全に除去することが可能なため、逆洗後の膜面差圧の上昇を抑制することできる。   In FIG. 13, (A) shows the membrane surface differential pressure with respect to the filtration amount when the temperature-responsive hollow fiber membrane according to the present embodiment is used, and (B) shows that N-isopropylacrylamide is graft-polymerized. The membrane surface differential pressure | voltage at the time of using the conventional hollow fiber membrane which has not been shown is shown. As shown in FIG. 13, according to the temperature-responsive hollow fiber membrane according to the present embodiment, it is possible to more completely remove the solid content and the like attached to the membrane surface. Can be suppressed.

したがって、本実施形態によれば、原水側の液温を40〜60℃に制御することで、N−イソプロピルアクリルアミドの高分子鎖を収縮させて温度応答性中空糸膜の孔径を最大0.2μmまで開口させることができる。これによって、逆洗時に、膜面に目詰まった固形分を剥離し易くして洗浄効果を高めることができ、膜面差圧の上昇を効果的に抑制することができる。さらには、設備稼働率の向上が図れるとともに、運転に消費するエネルギーも削減することができる。また、処理水の消費量を低減することができるため、処理水の回収率を向上することができる。   Therefore, according to this embodiment, by controlling the liquid temperature on the raw water side to 40 to 60 ° C., the polymer chain of N-isopropylacrylamide is contracted, and the pore diameter of the temperature-responsive hollow fiber membrane is 0.2 μm at the maximum. Can be opened. Thereby, at the time of backwashing, the solid content clogged on the film surface can be easily peeled off to enhance the cleaning effect, and the increase in the film surface differential pressure can be effectively suppressed. Furthermore, the facility operation rate can be improved and the energy consumed for operation can be reduced. Moreover, since the consumption of treated water can be reduced, the recovery rate of treated water can be improved.

(第2の実施形態)
本発明の第2の実施形態に係るろ過装置について、図14及び図15を参照して説明する。図14は、本実施形態に係るろ過装置である。図15は、図14に示す加熱器の拡大図である。なお、第1の実施形態のろ過装置の構成と同一の構成部分には、同一の符号を付して、その説明を簡略または省略する。
(Second Embodiment)
A filtration device according to a second embodiment of the present invention will be described with reference to FIGS. 14 and 15. FIG. 14 shows a filtration device according to this embodiment. FIG. 15 is an enlarged view of the heater shown in FIG. In addition, the same code | symbol is attached | subjected to the component same as the structure of the filtration apparatus of 1st Embodiment, and the description is simplified or abbreviate | omitted.

図14に示すように、ろ過装置70では、加熱器71を中空糸膜モジュール54内に設けてもよい。すなわち、ここで用いる加熱器71は、空気放出管57の下方に配置されており、図15に示すように伝熱管72に熱水流路のための穴73が複数設けられている。このような加熱器71で原水側54aの原水を40〜60℃に加温し、空気放出管57から放出される圧縮空気(300L/h/m)でこれを対流させることにより、膜外表面側と接する原水の液温を40〜60℃に制御する。中空糸膜の逆洗は、原水側54aの液温が40〜60℃に保たれた時に行われる。すなわち、原水側54aが所定温度に制御された時点で、第3空気配管65を介した流量40,000L/h/m2の圧縮空気により、処理水側54bに滞留する処理水を原水側54aに流し込み、中空糸膜を逆洗する。このとき、空気放出管57から放出される圧縮空気で、原水側54aの膜表面に付着した固形分を強制的に剥離する。 As shown in FIG. 14, in the filtration device 70, a heater 71 may be provided in the hollow fiber membrane module 54. That is, the heater 71 used here is disposed below the air discharge pipe 57, and a plurality of holes 73 for a hot water flow path are provided in the heat transfer pipe 72 as shown in FIG. By heating the raw water on the raw water side 54 a to 40-60 ° C. with such a heater 71 and convection with compressed air (300 L / h / m 2 ) discharged from the air discharge pipe 57, The temperature of the raw water in contact with the surface side is controlled to 40 to 60 ° C. The back washing of the hollow fiber membrane is performed when the liquid temperature of the raw water side 54a is kept at 40 to 60 ° C. That is, when the raw water side 54a is controlled to a predetermined temperature, the treated water staying in the treated water side 54b is compressed by the compressed air having a flow rate of 40,000 L / h / m 2 through the third air pipe 65 to the raw water side 54a. The hollow fiber membrane is back-washed. At this time, the solid content adhering to the membrane surface on the raw water side 54a is forcibly separated by the compressed air discharged from the air discharge pipe 57.

したがって、本実施形態によれば、原水側を40〜60℃に加温して対流させることによって温度分布の偏りを抑制することができ、逆洗時に該中空糸膜の高い洗浄効果を発揮することができる。さらには、簡便な装置及び操作で長期にわたり膜性能を維持することができる。   Therefore, according to this embodiment, it is possible to suppress the uneven temperature distribution by heating the raw water side to 40 to 60 ° C. and causing it to convect, and exhibit a high cleaning effect of the hollow fiber membrane during backwashing. be able to. Furthermore, the membrane performance can be maintained over a long period of time with a simple apparatus and operation.

(第3の実施形態)
本発明の第3の実施形態に係るろ過装置について、図16を参照して説明する。図16は、本実施形態に係るろ過装置である。
(Third embodiment)
A filtration device according to a third embodiment of the present invention will be described with reference to FIG. FIG. 16 shows a filtration device according to this embodiment.

図16に示すように、ろ過装置80では、中空糸膜モジュール54の下方に加熱器81を備えた飽和蒸気発生器82を設けてもよい。原水管62を介して原水を飽和蒸気発生器82に送り、ここで加熱器81により原水を60℃以上好ましくは100℃以上に温めて飽和蒸気を発生させて、原水側54aに300L/h/m3で供給する。そして、空気放出管57から放出される圧縮空気で、この飽和蒸気を対流させて原水側54aの温度を40〜60℃に制御する。逆洗は、このようにして原水側54aを40〜60℃に保たれた時点で行われる。逆洗の操作は、第1及び第2の実施形態と同様にして行う。 As shown in FIG. 16, in the filtration device 80, a saturated steam generator 82 including a heater 81 may be provided below the hollow fiber membrane module 54. The raw water is sent to the saturated steam generator 82 via the raw water pipe 62, and the raw water is heated to 60 ° C. or higher, preferably 100 ° C. or higher by the heater 81 to generate saturated steam, and 300 L / h / Supply at m 3 . The saturated steam is convected by the compressed air discharged from the air discharge pipe 57 to control the temperature of the raw water side 54a to 40 to 60 ° C. Backwashing is performed when the raw water side 54a is maintained at 40 to 60 ° C. in this way. The backwashing operation is performed in the same manner as in the first and second embodiments.

したがって、本実施形態によれば、原水側を所定温度に制御することによって、逆洗時に該中空糸膜の優れた洗浄効果が得られ、膜寿命を長期間保つことができる。   Therefore, according to this embodiment, by controlling the raw water side to a predetermined temperature, an excellent cleaning effect of the hollow fiber membrane can be obtained during backwashing, and the membrane life can be maintained for a long time.

本発明に係る温度応答性中空糸膜の断面図。Sectional drawing of the temperature-responsive hollow fiber membrane which concerns on this invention. 本発明に係る温度応答性中空糸膜において膜面にグラフト重合した重合剤の分子構造を示す図。The figure which shows the molecular structure of the polymerization agent graft-polymerized on the film | membrane surface in the temperature-responsive hollow fiber membrane which concerns on this invention. 本発明に係る温度応答性中空糸膜の孔径伸縮率と液温との関係を示す図。The figure which shows the relationship between the hole diameter expansion-contraction rate of the temperature-responsive hollow fiber membrane which concerns on this invention, and liquid temperature. 重合剤でグラフト重合されていない膜面に対する固形分の付着を示す図。The figure which shows adhesion of the solid content with respect to the film | membrane surface which is not graft-polymerized with a polymerization agent. 本発明に係る温度応答性中空糸膜の製造工程の一例を示す図。The figure which shows an example of the manufacturing process of the temperature-responsive hollow fiber membrane which concerns on this invention. 本発明に係る温度応答性中空糸膜の製造装置の一例を示す図。The figure which shows an example of the manufacturing apparatus of the temperature-responsive hollow fiber membrane which concerns on this invention. オゾン曝露時間とグラフト重合する量との関係を示す図。The figure which shows the relationship between ozone exposure time and the quantity which is graft-polymerized. 本発明に係る温度応答性中空糸膜の孔径状態とオゾン曝露時間との関係を示す図。The figure which shows the relationship between the hole diameter state of the temperature-responsive hollow fiber membrane which concerns on this invention, and ozone exposure time. 本発明に係る温度応答性中空糸膜の赤外吸収スペクトルを示す図。The figure which shows the infrared absorption spectrum of the temperature-responsive hollow fiber membrane which concerns on this invention. 本発明に係る温度応答性中空糸膜の製造装置の一例を示す図。The figure which shows an example of the manufacturing apparatus of the temperature-responsive hollow fiber membrane which concerns on this invention. 図10に示すオゾン曝露室の拡大断面図。The expanded sectional view of the ozone exposure chamber shown in FIG. 第1の実施形態に係るろ過装置を示す図。The figure which shows the filtration apparatus which concerns on 1st Embodiment. 膜面差圧とろ過量との関係を示す図。The figure which shows the relationship between a membrane surface differential pressure | voltage and filtration amount. 第2の実施形態に係るろ過装置を示す図。The figure which shows the filtration apparatus which concerns on 2nd Embodiment. 図14に示す加熱器の拡大断面図。The expanded sectional view of the heater shown in FIG. 第3の実施形態に係るろ過装置を示す図。The figure which shows the filtration apparatus which concerns on 3rd Embodiment.

符号の説明Explanation of symbols

1…温度応答性中空糸膜、2…中空糸膜、3…孔径調整材、4…孔径、5…固形分、51、70,80…ろ過装置、52…中空糸膜束、54…中空糸膜モジュール、54a…原水側、54b…処理水側、55,71,81…加熱器、57…空気放出管、59…コンプレッサー、62…原水管、63…処理水管、82…飽和蒸気発生器。   DESCRIPTION OF SYMBOLS 1 ... Temperature-responsive hollow fiber membrane, 2 ... Hollow fiber membrane, 3 ... Pore diameter adjusting material, 4 ... Pore diameter, 5 ... Solid content, 51, 70, 80 ... Filtration apparatus, 52 ... Hollow fiber membrane bundle, 54 ... Hollow fiber Membrane module, 54a ... raw water side, 54b ... treated water side, 55, 71, 81 ... heater, 57 ... air discharge pipe, 59 ... compressor, 62 ... raw water pipe, 63 ... treated water pipe, 82 ... saturated steam generator.

Claims (9)

高分子材料からなる中空糸膜基体と、前記中空糸膜基体の外表面側のみにN−イソプロ
ピルアクリルアミドのグラフト重合により形成された所定の温度で可逆的に膨張/収縮す
る高分子鎖からなる孔径調整材とからなり、この孔径調整材は逆洗時に加温制御された原
水によって加温されて前記高分子鎖が収縮して孔径を拡張させることを特徴とする温度応
答性中空糸膜。
A pore diameter comprising a hollow fiber membrane substrate made of a polymer material and a polymer chain reversibly expanded / contracted at a predetermined temperature formed by graft polymerization of N-isopropylacrylamide only on the outer surface side of the hollow fiber membrane substrate. Ri Do from the adjustment member, the hole diameter adjustment member is Hara warmed controlled during backwash
Temperature responsive hollow fiber membrane wherein the polymer chains are heated by water, characterized in Rukoto dilates pore diameter contracts.
40℃〜60℃における最大孔径が0.2μmであることを特徴とする請求項1に記載
の温度応答性中空糸膜。
The temperature-responsive hollow fiber membrane according to claim 1, wherein the maximum pore diameter at 40 ° C to 60 ° C is 0.2 µm.
前記N−イソプロピルアクリルアミドは、前記中空糸膜基体に対して20〜44μg/
cm2グラフト重合されていることを特徴とする請求項1に記載の温度応答性中空糸膜。
The N-isopropylacrylamide is 20 to 44 μg / g with respect to the hollow fiber membrane substrate.
The temperature-responsive hollow fiber membrane according to claim 1, which is cm2 graft-polymerized.
高分子材料からなる中空糸膜基体と前記中空糸膜基体の外表面側のみにN−イソプロピ
ルアクリルアミドのグラフト重合により形成された所定の温度で可逆的に膨張/収縮する
高分子鎖からなる孔径調整材とからなる中空糸膜の多数本を、原水口と処理水口とを有す
る容器内に配置し、その端部外周を固定部材により固定してなり、前記孔径調整材は逆洗
時に加温された原水によって加温制御されて前記高分子鎖が収縮して孔径を拡張させるこ
とを特徴とする温度応答性中空糸膜モジュール。
Pore diameter adjustment comprising a hollow fiber membrane substrate made of a polymer material and a polymer chain reversibly expanded / contracted at a predetermined temperature formed by graft polymerization of N-isopropylacrylamide only on the outer surface side of the hollow fiber membrane substrate the number of hollow fiber membranes made of a wood, placed in a container having a raw water inlet process Mizuguchi, Ri Na secure the end outer periphery by the fixing member, the pore size adjusting agent is backwashed
Sometimes warmed temperature responsive hollow fiber membrane module in which the polymer chains are warmed control is characterized Rukoto dilates pore diameter shrinks by raw water.
前記中空糸膜は、U字状に折り曲げられて集束固定されていることを特徴とする請求項
4に記載の温度応答性中空糸膜モジュール。
The temperature-responsive hollow fiber membrane module according to claim 4, wherein the hollow fiber membrane is bent and fixed in a U shape.
前記容器内を前記固定部材により前記中空糸膜の位置する原水側と前記中空糸膜の端部
が開口する処理水側とに区画する請求項4記載の温度応答性中空糸膜モジュールと、
前記温度応答性中空糸膜モジュール内の原水側を加熱する加熱器と
を具備することを特徴とするろ過装置。
The temperature-responsive hollow fiber membrane module according to claim 4, wherein the container is partitioned into a raw water side where the hollow fiber membrane is located and a treated water side where an end of the hollow fiber membrane is opened by the fixing member.
A filtration device comprising: a heater for heating the raw water side in the temperature-responsive hollow fiber membrane module.
前記温度応答性中空糸膜モジュール内の処理水側に処理水を流入させる逆圧洗浄手段と
、該モジュール内の原水側に圧縮空気を供給する第1空気供給系統とをさらに具備するこ
とを特徴とする請求項6に記載のろ過装置。
The apparatus further comprises a back pressure washing means for flowing treated water into the treated water side in the temperature-responsive hollow fiber membrane module, and a first air supply system for supplying compressed air to the raw water side in the module. The filtration device according to claim 6.
前記加熱器は、前記温度応答性中空糸膜モジュール内の原水側を循環させる第2空気供
給系統に連結されていることを特徴とする請求項6に記載のろ過装置。
The said heater is connected with the 2nd air supply system which circulates the raw | natural water side in the said temperature-responsive hollow fiber membrane module, The filtration apparatus of Claim 6 characterized by the above-mentioned.
前記加熱器は、前記温度応答性中空糸膜モジュール内に配置されていることを特徴とす
る請求項6に記載のろ過装置。
The said heater is arrange | positioned in the said temperature-responsive hollow fiber membrane module, The filtration apparatus of Claim 6 characterized by the above-mentioned.
JP2005247560A 2005-08-29 2005-08-29 Temperature-responsive hollow fiber membrane, temperature-responsive hollow fiber membrane module, and filtration device using the same Expired - Fee Related JP5134195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247560A JP5134195B2 (en) 2005-08-29 2005-08-29 Temperature-responsive hollow fiber membrane, temperature-responsive hollow fiber membrane module, and filtration device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247560A JP5134195B2 (en) 2005-08-29 2005-08-29 Temperature-responsive hollow fiber membrane, temperature-responsive hollow fiber membrane module, and filtration device using the same

Publications (2)

Publication Number Publication Date
JP2007061677A JP2007061677A (en) 2007-03-15
JP5134195B2 true JP5134195B2 (en) 2013-01-30

Family

ID=37924505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247560A Expired - Fee Related JP5134195B2 (en) 2005-08-29 2005-08-29 Temperature-responsive hollow fiber membrane, temperature-responsive hollow fiber membrane module, and filtration device using the same

Country Status (1)

Country Link
JP (1) JP5134195B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896783B2 (en) * 2007-03-20 2012-03-14 株式会社東芝 Membrane filtration system and membrane cleaning method
JP4896782B2 (en) * 2007-03-20 2012-03-14 株式会社東芝 Membrane filtration system and membrane cleaning method
JP2008259945A (en) * 2007-04-11 2008-10-30 Toshiba Corp Filter device and cleaning method of filter device
JP2008259995A (en) * 2007-04-13 2008-10-30 Toshiba Corp Cleaning method and filter apparatus
IT1392342B1 (en) * 2008-09-18 2012-02-28 Marchesini TINNING SYSTEM OF A COVERING FABRIC WITH A CAVITY, USING MICRO-VALVES FORMED BY FIBER PRODUCED IN THE CHEMICAL REACTION OF A POLYMER THAT COMES IN CONTACT WITH A FLUID THAT THEN EXPANDS WITH ACCUMULATION WITHIN A HIGH BARRIER EFFECT.
JP6429356B2 (en) * 2013-12-20 2018-11-28 東レ株式会社 Temperature-responsive microporous membrane and solid polymer electrolyte membrane using the same
CN104928851B (en) * 2015-06-24 2017-03-01 东华大学 The preparation method of silver-carrying nano particle temperature stimulating responsive Hybrid nanofibers film
CN107281943B (en) * 2016-04-12 2020-04-03 青岛大学 Temperature-controllable switch type nanofiltration membrane and preparation method thereof
KR20220117604A (en) * 2021-02-17 2022-08-24 코오롱인더스트리 주식회사 Fuel cell humidifier

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106600A (en) * 1983-10-21 1985-06-12 Ebara Infilco Co Ltd Drying method of water-containing organic material
JPH0332729A (en) * 1989-06-30 1991-02-13 Biomaterial Universe Kk Filter membrane responding to temperature
JPH1043560A (en) * 1996-07-30 1998-02-17 Nitto Denko Corp Method for washing separation membrane and solid-liquid separation using separation membrane
JPH11290850A (en) * 1998-04-10 1999-10-26 Hitachi Ltd Water treatment method and apparatus
JPH11347382A (en) * 1998-06-04 1999-12-21 Nitto Denko Corp Shape memory separation membrane system module
JP2000079329A (en) * 1998-07-01 2000-03-21 Toray Ind Inc Filter membrane module
JP2002346560A (en) * 2001-05-28 2002-12-03 Takehisa Yamaguchi Method for treating water and membrane for water treatment

Also Published As

Publication number Publication date
JP2007061677A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP5134195B2 (en) Temperature-responsive hollow fiber membrane, temperature-responsive hollow fiber membrane module, and filtration device using the same
JP5171942B2 (en) Membrane bag having seamless membrane material, use thereof and filtration apparatus using the same
AU2005270675B9 (en) Integrated permeate channel membrane
JP4382294B2 (en) Method for producing hollow fiber membrane bundle
US6159373A (en) Cleaning of hollow fibre membranes
JP5418739B1 (en) Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method
US20090050555A1 (en) Permselective Membrane Module And Method For Manufacturing The Same
JP2003181247A (en) Treatment system having spiral membrane element and its operating method
TW200400848A (en) Porous membrane and process for producing the same
US7950528B2 (en) Hollow fiber membrane and method for manufacturing the same
JP4896783B2 (en) Membrane filtration system and membrane cleaning method
JP5795459B2 (en) Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using the same, immersion filtration device, and immersion filtration method
JP4583671B2 (en) Operating method and cleaning method of spiral membrane element and spiral membrane module
JP2018103184A (en) Manufacturing method of hollow fiber type semipermeable membrane
JP6070260B2 (en) Hollow fiber type semipermeable membrane, manufacturing method and module thereof
JP6618708B2 (en) Method for operating hollow fiber membrane module and filtration device
JP4556150B2 (en) Polymer porous membrane
JP2001252543A (en) Reverse osmosis composite membrane
JP2011031245A (en) Membrane filtration system
JP2008289959A (en) Membrane filtration system
JP2008289958A (en) Membrane filtration system
JP2001252538A (en) Reverse osmosis composite membrane
JP2011056340A (en) Membrane filtration system
JP4583558B2 (en) Method of operating spiral membrane element and spiral membrane module
JP2017070915A (en) Washing method of hollow fiber membrane module and filtration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101210

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees