JP5133614B2 - 3D shape measurement system - Google Patents

3D shape measurement system Download PDF

Info

Publication number
JP5133614B2
JP5133614B2 JP2007164750A JP2007164750A JP5133614B2 JP 5133614 B2 JP5133614 B2 JP 5133614B2 JP 2007164750 A JP2007164750 A JP 2007164750A JP 2007164750 A JP2007164750 A JP 2007164750A JP 5133614 B2 JP5133614 B2 JP 5133614B2
Authority
JP
Japan
Prior art keywords
light
light receiving
measurement
receiving unit
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007164750A
Other languages
Japanese (ja)
Other versions
JP2009002823A (en
Inventor
克夫 小船井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007164750A priority Critical patent/JP5133614B2/en
Publication of JP2009002823A publication Critical patent/JP2009002823A/en
Application granted granted Critical
Publication of JP5133614B2 publication Critical patent/JP5133614B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、3次元形状測定システムに関し、更に詳細には、特に転動しているタイヤの外形形状を測定するのに最適な3次元形状測定システムに関する。 The present invention relates to a three-dimensional shape measurement system, more particularly relates to the optimum three-dimensional shape measurement system, particularly for measuring the outer shape of the tire is rolling.

静止している物体の3次元形状を計測する手法としてモアレ法が知られている。一方、移動している物体、例えば回転しているタイヤの3次元形状を計測する場合にはこのモアレ法を用いることはできない。   A moire method is known as a method for measuring the three-dimensional shape of a stationary object. On the other hand, when measuring the three-dimensional shape of a moving object, for example, a rotating tire, this moire method cannot be used.

この対策として、特許文献1に、タイヤ表面に格子状の光マークを投射し、タイヤを回転させて転動タイヤの状態にして、この光マークの位置をビデオカメラ等の撮影装置によって3次元座標で撮影することが開示されている。このようにして3次元座標で撮影する手法では、撮影装置を短時間で容易に設定することができるという利点がある。   As a countermeasure, in Patent Document 1, a grid-shaped optical mark is projected on the tire surface, and the tire is rotated to form a rolling tire. It is disclosed to shoot with. In this way, the method of photographing with three-dimensional coordinates has an advantage that the photographing apparatus can be easily set in a short time.

しかし、特許文献1では、投射された光マークを少なくとも2台の撮影装置で同時に撮影する必要がある。このため、タイヤ表面の凹凸などによって一方又は両方の撮影装置の死角に光マークが投射されているときには計測不能になっており、計測できない部位が部分的に生じる可能性があった。また、このことは、タイヤ以外の一般的な測定対象物に対しても同様であった。   However, in Patent Document 1, it is necessary to photograph the projected light mark simultaneously with at least two photographing devices. For this reason, when the light mark is projected on the blind spot of one or both of the photographing devices due to unevenness on the tire surface, measurement is impossible, and there is a possibility that a part that cannot be measured is partially generated. This also applies to general measurement objects other than tires.

なお、非特許文献1に、時間変化に伴って光強度が増大する光(増加変調光)を被写体に投射してこの反射光を撮影装置で撮影し、更に、時間変化に伴って光強度が減少する光(減少変調光)を被写体に投射してこの反射光を同じ撮影装置で撮影し、両者の反射光の差を求めて撮影装置から被写体までの距離を算出することによって、被写体の3次元形状を求めることが開示されている。この手法では撮影装置の台数を複数台にしなくても済むので、上記のような死角が生じ難い。しかし、この手法では、被写体が移動しているときや、被写体に他から光(例えば室内の照明灯からの光)が投射されているときには正確に計測することができない。
特開2007−085836号公報 最新光三次元計測(朝倉書店出版)
In Non-Patent Document 1 , light (increasing modulated light) whose light intensity increases with time change is projected onto a subject, and the reflected light is photographed with a photographing device. Further, the light intensity increases with time change. By projecting diminishing light (decreasing modulated light) onto the subject and photographing the reflected light with the same photographing device, and calculating the distance from the photographing device to the subject by calculating the difference between the reflected light of the two, Determining a dimensional shape is disclosed. In this method, since it is not necessary to use a plurality of photographing apparatuses, it is difficult to cause the blind spots as described above. However, this method cannot accurately measure when the subject is moving or when light (for example, light from indoor lighting) is projected on the subject from elsewhere.
JP 2007-085836 A Latest optical 3D measurement (published by Asakura Shoten)

本発明は、上記事実を考慮して、測定対象物を高速で移動させても高精度で測定対象物の3次元形状を計測することができる3次元形状測定システムを提供することを目的とする。 The present invention aims to provide in view of the aforementioned, the three-dimensional shape measurement system capable of measuring the three-dimensional shape of the measurement object the measuring object with high accuracy by moving at high speed To do.

請求項1に記載の発明は、測定対象物に向けて、所定の変動周期で周期的に光量を変動させながら前記測定対象物の測定位置へ光を照射する光源と、前記光源から発せられて前記測定対象物の前記測定位置で反射した反射光を受光する第1、第2、第3及び第4の受光部と、前記反射光を前記第1の受光部から前記第4の受光部のそれぞれへ向け、均等な光量に分配するように設けられた複数のビームスプリッターと、前記複数のビームスプリッターにより分配された前記反射光を前記第1から前記第4の受光部のそれぞれで受光する際、前記変動周期に対して、前記第1の受光部が0〜πの位相角で受光し、前記第2の受光部がπ〜2πの位相角で受光し、前記第3の受光部が−π/2〜π/2の位相角で受光し、かつ前記第4の受光部がπ/2〜3π/2の位相角で受光するように受光期間を制御する制御手段と、前記第1から第4の受光部のそれぞれで受光された光量に基づき、位相シフト法を用いて前記測定対象物の前記測定位置までの距離を算出することで、前記測定対象物について前記測定位置ごとの3次元座標を求める演算処理手段と、前記演算処理手段により求められた前記測定位置ごとの前記3次元座標に基づき、前記測定対象物の3次元形状を表示する表示手段と、を含む
また、請求項2に記載の発明は、測定対象物に向けて、所定の変動周期で周期的に光量を変動させながら前記測定対象物の測定位置へ光を照射する光源と、
前記光源から発せられて前記測定対象物の前記測定位置で反射した反射光を受光する第1、第2及び第3の受光部と、前記反射光を前記第1の受光部から前記第3の受光部のそれぞれへ向け、均等な光量に分配するように設けられたキューブ型クロスプリズムと、前記キューブ型クロスプリズムにより分配された前記反射光を前記第1から前記第3の受光部のそれぞれで受光する際、前記変動周期に対して、前記第1の受光部が0〜πの位相角で受光し、前記第2の受光部がπ/2〜3π/2の位相角で受光し、かつ前記第3の受光部がπ〜2πの位相角で受光するように受光期間を制御する制御手段と、前記第1から第3の受光部のそれぞれで受光された光量に基づき、位相シフト法を用いて前記測定対象物の前記測定位置までの距離を算出することで、前記測定対象物について前記測定位置ごとの三次元座標を求める演算処理手段と、前記演算処理手段により求められた前記測定位置ごとの前記三次元座標に基づき、前記測定対象物の3次元形状を表示する表示手段と、を含む。
The invention according to claim 1 is emitted from the light source that irradiates the measurement position of the measurement object with light while periodically changing the amount of light toward the measurement object with a predetermined fluctuation period. First, second, third, and fourth light receiving portions that receive reflected light reflected at the measurement position of the measurement object, and the reflected light from the first light receiving portion to the fourth light receiving portion. Each of the first to fourth light receiving units receives the reflected light distributed by the plurality of beam splitters and the plurality of beam splitters provided so as to be distributed to each of the plurality of beam splitters. The first light receiving unit receives light at a phase angle of 0 to π, the second light receiving unit receives light at a phase angle of π to 2π, and the third light receiving unit is − Light is received at a phase angle of π / 2 to π / 2, and the fourth light receiving portion is π / And control means for controlling the light receiving period so as to receive at ~3π / 2 phase angle, based from the first to the fourth amount of light received by each light receiving portion of the measurement object by using the phase shift method wherein by calculating the distance to the measurement position, the arithmetic processing means asking you to 3-dimensional coordinates of each of the measurement positions for the measurement object, for each of the measurement positions obtained by the pre Ki演 calculation processing means -out based on the three-dimensional coordinates, including a display means for displaying the three-dimensional shape of the measurement object.
Further, the invention according to claim 2 is directed to a light source that irradiates the measurement position of the measurement object with light while periodically changing the amount of light toward the measurement object with a predetermined fluctuation period.
First, second, and third light receiving portions that receive reflected light emitted from the light source and reflected at the measurement position of the measurement object, and the reflected light from the first light receiving portion to the third light receiving portion. A cube-type cross prism that is provided so as to be distributed evenly to each light-receiving unit, and the reflected light distributed by the cube-type cross-prism is received by each of the first to third light-receiving units. When receiving light, the first light receiving unit receives light with a phase angle of 0 to π, the second light receiving unit receives light with a phase angle of π / 2 to 3π / 2 with respect to the fluctuation period, and Based on the control means for controlling the light receiving period so that the third light receiving portion receives light at a phase angle of π to 2π, and the light amount received by each of the first to third light receiving portions, a phase shift method is performed. To calculate the distance of the measurement object to the measurement position. The calculation processing means for obtaining the three-dimensional coordinates for each measurement position for the measurement object, and the three-dimensional coordinates of the measurement object based on the three-dimensional coordinates for each measurement position obtained by the calculation processing means. Display means for displaying a dimensional shape.

発明では、光源から発光されて測定対象物で反射でした反射光を受光部で受光する。また、光源から発せられる光量が周期的に変動するので、受光部で受光される反射光も周期的に変動する。 In the present invention, it receives the reflected light was reflected by the object is emitted from the light source at the light receiving portion. Further, since the amount of light emitted from the light source varies periodically, the reflected light received by the light receiving unit also varies periodically.

制御手段は、受光部により、光源の光量周期変動に対して位相が1/2周期ごとの受光期間で反射光を受光する。そして、演算処理手段は、各受光期間の受光量から測定対象物の測定位置における位相遅れを算出し、更に、この位相遅れに基づいて受光部から測定位置までの距離を算出する。
このようにして測定位置ごとに求めた距離に基づいて得られる3次元座標により測定対象物の形状を求める。
Control means, by the light receiving unit, phase contrast light intensity periodic variation of the light source to receive the reflected light by the light receiving period for each half cycle. Then, the arithmetic processing means calculates the phase lag at the measurement position of the measurement object from the received light amount of each light receiving period, further, it calculates the distance to the stereotactic location measuring light receiving unit based on the phase lag.
Thus by the three-dimensional coordinates obtained based on the distance obtained for each measurement position Ru seek shape of the measuring object.

ここで、請求項1に記載の発明では、第1から第4の受光部及び各受光部へ反射光を光量が均等となるように分配する複数のビームスプリッターを用い、0〜π、π〜2π及び−π/2〜π/2、π/2〜3π/2の受光期間で反射光を受光する。また、請求項2に記載の発明では、第1から第3の受光部及び各受光部へ反射光を光量が均等となるように分配するキューブ型クロスプリズムを用い、0〜π、π/2〜3π/2、π〜2πの受光期間で反射光を受光する。従って、極めて短時間(例えば数十ナノ秒)の撮影で測定対象物の3次元形状を測定することができる。 Here, in the first aspect of the invention, the first to fourth light receiving units and the plurality of beam splitters that distribute the reflected light to the respective light receiving units so that the amount of light is uniform are used, and 0 to π, π to Reflected light is received in a light receiving period of 2π, −π / 2 to π / 2, and π / 2 to 3π / 2. In the second aspect of the present invention, a cube-type cross prism that distributes the reflected light to the first to third light receiving portions and each light receiving portion so that the amount of light is uniform is used, and 0 to π and π / 2. The reflected light is received in the light receiving period of ˜3π / 2 and π˜2π. Therefore, it is possible to measure the three-dimensional shape of the measurement object by photographing for a very short time (for example, several tens of nanoseconds).

また、複数台にわたって撮影装置を設置しなくてもよい構成にすることが可能である。従って、複数台の撮影装置で撮影した画像の対応を図るという必要はないのでデータ処理が簡易であり、これにより、高解像度の3次元動画の即時出力が可能となる。 Further, it is possible to also be configured to not install the imaging device for several cars double. Therefore, it is not necessary to deal with images captured by a plurality of image capturing apparatuses, so that data processing is simple, and thus high-resolution 3D moving images can be output immediately.

更に、上記のように単一の反射光を受光することで、測定対象物表面の凹凸等による撮影装置の死角が大幅に生じ難くなる。従って、測定不能となる測定対象物部位が大幅に低減するので、高精度で測定することができる。 Further, by receiving a single reflected light as described above, the blind spot of the photographing apparatus due to the unevenness of the surface of the measurement object is hardly generated. Therefore, since the measurement object parts that cannot be measured are greatly reduced, measurement can be performed with high accuracy.

また、演算処理手段位相シフト法により前記位相遅れを算出するので、位相遅れの算出が容易である。 The arithmetic processing means so computes the phase delay by the phase shift method, it is easy to calculate the phase delay.

請求項3に記載の発明は、前記受光部のそれぞれにマイクロチャネルプレートを設け、前記制御手段は、前記マイクロチャネルプレートを通過する前記反射光を制御することで、前記受光部ごとの前記受光期間を制御する。
これにより、マイクロチャネルプレートの開閉を行うことで受光部が受光する波形の位相領域(受光期間)を設定することができ、受光部自体に光の開閉機構を設ける必要がない。
According to a third aspect of the present invention , a microchannel plate is provided in each of the light receiving portions, and the control means controls the reflected light passing through the microchannel plate , whereby the light receiving period for each of the light receiving portions. To control .
Thus, the phase region (light receiving period) of the waveform received by each light receiving unit can be set by opening and closing the microchannel plate, and it is not necessary to provide a light opening and closing mechanism in the light receiving unit itself.

なお、光源からの光以外の光(外光)を減衰させる光学フィルタを受光部に設けてもよい。この場合、通常、光源からの光の波長に対応させて非減衰の波長領域を光学フィルタに設定する。
また、光源をリング状にし、光源と受光部とを同軸配置としてもよい。これにより、出射光と反射光とで光路長をほぼ同一にすることが可能となる。
また、測定対象物に再帰反射物(ガラスビーズなど)を配置し、光源からの反射光を増大させる構成としてもよい。
Note that an optical filter that attenuates light (external light) other than light from the light source may be provided in the light receiving unit. In this case, a non-attenuating wavelength region is usually set in the optical filter in accordance with the wavelength of light from the light source.
Further, the light source is in a ring shape, a light source and the light receiver may be a coaxial arrangement. This makes it possible to make the optical path lengths substantially the same between the emitted light and the reflected light.
Moreover, it is good also as a structure which arrange | positions a retroreflection object (glass bead etc.) in a measuring object, and increases the reflected light from a light source.

さらに、光量動周期を短くして測定精度を向上させる観点で、光源と受光部とはなるだけ互いに近い位置に配置することが好ましい。 Furthermore, in view of improving the measurement accuracy by reducing the variations Doshu life of the light amount, it is preferred that only makes the light source and the light receiver are arranged close to each other.

このように、複数の受光部を備えた1台の撮影装置で計測することが可能であり、複数台にわたって撮影装置を設置して計測しなくてもよい。従って、複数台の撮影装置で撮影した画像の対応を図るという必要はないのでデータ処理が簡易であり、これにより、高解像度の3次元動画の即時出力が可能となる。 Thus, it is possible to measure with a single imaging device having a plurality of light receiving portions, but it may also not be measured by installing the imaging device over a plurality. Therefore, it is not necessary to deal with images captured by a plurality of image capturing apparatuses, so that data processing is simple, and thus high-resolution 3D moving images can be output immediately.

更に、上記のように1台の撮影装置を用いることにより、測定対象物表面の凹凸等による撮影装置の死角が大幅に生じ難くなる。従って、測定不能となる測定対象物部位が大幅に低減するので、高精度で測定することができる。 Furthermore, the Rukoto using one imaging device as described above, the blind spot of the imaging device due to the unevenness or the like of the measurement object surface is less likely to occur significantly. Therefore, since the measurement object parts that cannot be measured are greatly reduced, measurement can be performed with high accuracy.

更に、このように1台の撮影装置で計測することにより、タイヤ表面の凹凸等による撮影装置の死角が大幅に生じ難くなる。従って、測定不能となる測定対象物部位が大幅に低減するので、高精度で測定することができる。   Furthermore, by measuring with one imaging device in this way, the blind spot of the imaging device due to the unevenness of the tire surface or the like is significantly less likely to occur. Therefore, since the measurement object parts that cannot be measured are greatly reduced, measurement can be performed with high accuracy.

また、本発明は、前記測定対象物からの反射光を前記受光部で受光する際、二周期以上にわたって同じ位相で受光することがより好ましい。
これにより、受光した波形(光量)を増幅させたことと同等の効果を得ることができる。このことは、反射光の光強度(光量)が小さい場合に特にその効果が顕著となる。
In the present invention, it is more preferable that when the reflected light from the measurement object is received by the light receiving unit, the light is received in the same phase over two cycles or more.
Thereby, an effect equivalent to amplifying the received waveform (light quantity) can be obtained. This is particularly effective when the light intensity (light quantity) of the reflected light is small.

本発明によれば、測定対象物を高速で移動させても高精度で測定対象物の3次元形状を計測することができる。 According to the present invention, even when the measurement object is moved at a high speed Ru can measure the three-dimensional shape of the measuring object with high accuracy.

以下、実施形態を挙げ、本発明の実施の形態について説明する。なお、第2実施形態以下では、既に説明した構成要素と同様のものには同じ符号を付して、その説明を省略する。   Hereinafter, embodiments will be described and embodiments of the present invention will be described. In the second and subsequent embodiments, the same components as those already described are denoted by the same reference numerals, and description thereof is omitted.

[第1実施形態]
まず、第1実施形態について説明する。図1に示すように、本実施形態に係る3次元形状測定システム10は、転動している測定対象の空気入りタイヤ12に向けて発光する光源14と、空気入りタイヤ12からの反射光を受光する撮影装置(CCDカメラ)16と、撮影装置16で撮影された画像データを演算処理して空気入りタイヤ12の3次元座標を求める演算処理装置18と、この3次元座標に基づいて空気入りタイヤ12の3次元画像を表示する画像表示部20と、備えている。本実施形態では、光源14から発せられた光が空気入りタイヤ12に到達するまでの光路長と、空気入りタイヤ12で反射された反射光が撮影装置16に到達するまでの光路長とは、撮影装置16から空気入りタイヤ12までの距離dと同じにしている。
[First Embodiment]
First, the first embodiment will be described. As shown in FIG. 1, the three-dimensional shape measurement system 10 according to this embodiment includes a light source 14 that emits light toward a rolling pneumatic tire 12 to be measured, and reflected light from the pneumatic tire 12. An imaging device (CCD camera) 16 that receives light, an arithmetic processing unit 18 that calculates the three-dimensional coordinates of the pneumatic tire 12 by calculating the image data captured by the imaging device 16, and enters the air based on the three-dimensional coordinates And an image display unit 20 for displaying a three-dimensional image of the tire 12. In the present embodiment, the optical path length until the light emitted from the light source 14 reaches the pneumatic tire 12 and the optical path length until the reflected light reflected by the pneumatic tire 12 reaches the imaging device 16 are: The distance d from the imaging device 16 to the pneumatic tire 12 is the same.

光源14は、短い周期で光量を変動させながら発光する構成にされている。図3に、光源14からの出射光24(図1参照)の波形25と、タイヤ表面で反射して撮影装置16に取り込まれた反射光28(図1参照)の波形29とを示す。光源14から撮影装置16までの光路長によって、波形25と波形29とではタイムラグ(図3のΔt)が生じている。   The light source 14 is configured to emit light while changing the light amount in a short cycle. FIG. 3 shows a waveform 25 of the emitted light 24 (see FIG. 1) from the light source 14 and a waveform 29 of the reflected light 28 (see FIG. 1) reflected on the tire surface and taken into the imaging device 16. Due to the optical path length from the light source 14 to the imaging device 16, a time lag (Δt in FIG. 3) is generated between the waveform 25 and the waveform 29.

また、撮影装置16は、空気入りタイヤ12で反射して光学フィルター及び撮影装置16の撮影レンズを透過した反射光28を、図2に示すように、4本に均等な光強度で分配するように配置されたビームスプリッター30、32、34を有する。更に、撮影装置16は、ビームスプリッター30、32、34から出射した反射光(分配された光)をそれぞれ受光する4つの受光部38A〜Dを有する。受光部38A〜Dから空気入りタイヤ12までの距離は全て同じにされている。受光部38A〜Dは、例えば、1024×768画素のCCD撮像素子である。また、撮影装置16は、4つの受光部38A〜Dの入射側にそれぞれ配置されたMCP(マイクロチャネルプレート)40A〜Dを備えている。   Further, the photographing device 16 distributes the reflected light 28 reflected by the pneumatic tire 12 and transmitted through the optical filter and the photographing lens of the photographing device 16 to four light beams with equal light intensity as shown in FIG. Have beam splitters 30, 32, 34. Furthermore, the imaging device 16 includes four light receiving units 38A to 38D that receive reflected light (distributed light) emitted from the beam splitters 30, 32, and 34, respectively. The distances from the light receiving portions 38A to 38D to the pneumatic tire 12 are all the same. The light receiving portions 38A to 38D are, for example, CCD image sensors having 1024 × 768 pixels. In addition, the imaging device 16 includes MCPs (microchannel plates) 40A to 40D arranged on the incident sides of the four light receiving units 38A to 38D.

演算処理装置18は、タイヤ表面の各測定対象位置毎に受光部38からの距離を以下のようにして算出し、タイヤ表面の3次元座標を求めるようになっている。   The arithmetic processing unit 18 calculates the distance from the light receiving unit 38 for each measurement target position on the tire surface as follows, and obtains the three-dimensional coordinates of the tire surface.

上述したように、ビームスプリッター30、32、34は、撮影装置16に入射した反射光28を4つの反射光28A〜Dに分配する。MCP40Aは、図4(A)に示すように、位相角θが0〜180°(0〜Πラジアン)の反射光28Aが通過するように時刻TからTまでの間だけシャッターを開ける。この結果、受光部38Aで部分波形29Aが撮影される。MCP40Bは、図4(B)に示すように、位相角θが180〜360°(Π〜2Πラジアン)の反射光28Bが通過するように時刻TからTまでの間だけシャッターを開ける。この結果、受光部38Bで部分波形29Bが撮影される。MCP40Cは、図4(C)に示すように、位相角θが−90〜90°(−Π/2〜Π/2ラジアン)の反射光28Cが通過するように時刻T−1からTまでの間だけシャッターを開ける。この結果、受光部38Cで部分波形29Cが撮影される。MCP40Dは、図4(D)に示すように、位相角θが90〜270°(Π/2〜3Π/2ラジアン)の反射光28Dが通過するように時刻TからTまでの間だけシャッターを開ける。この結果、受光部38Dで部分波形29Dが撮影される。 As described above, the beam splitters 30, 32, and 34 distribute the reflected light 28 incident on the imaging device 16 into the four reflected lights 28A to 28D. MCP40A, as shown in FIG. 4 (A), opening the shutter only during a period from time T 0 so that the phase angle θ passes the reflected light 28A of 0~180 ° (0~Π radians) to T 2. As a result, the partial waveform 29A is photographed by the light receiving unit 38A. MCP40B, as shown in FIG. 4 (B), opening the shutter only during a period from time T 2, so that the phase angle θ passes the reflected light 28B of 180~360 ° (Π~2Π radians) to T 4. As a result, the partial waveform 29B is photographed by the light receiving unit 38B. MCP40C, as shown in FIG. 4 (C), from time T -1 such that the phase angle θ passes reflected light 28C of -90~90 ° (-Π / 2~Π / 2 radians) to T 1 Open the shutter only during. As a result, the partial waveform 29C is photographed by the light receiving unit 38C. MCP40D, as shown in FIG. 4 (D), only from time T 1 so that the phase angle θ passes reflected light 28D of 90~270 ° (Π / 2~3Π / 2 radians) to T 3 Open the shutter. As a result, the partial waveform 29D is photographed by the light receiving unit 38D.

以下、受光部38Aによる反射光28Aの総受光量をI、受光部38Bによる反射光28Bの総受光量をI、受光部38Cによる反射光28Cの総受光量をI−1、受光部38Dによる反射光28Dの総受光量をIとして説明を続ける。 Hereinafter, the total received light amount of the reflected light 28A by the light receiving unit 38A is I 0 , the total received light amount of the reflected light 28B by the light receiving unit 38B is I 2 , the total received light amount of the reflected light 28C by the light receiving unit 38C is I −1 , and the light receiving unit. continuing with the I 1 the total amount of received reflected light 28D by 38D.

本実施形態では、出射光24の光強度(光量)を例えば図3に示すように余弦波を描くような周期としている。ここで、本明細書では、余弦波とは、以下の式で示される波形のことをいう。   In the present embodiment, the light intensity (light quantity) of the emitted light 24 is set to a period in which a cosine wave is drawn as shown in FIG. Here, in this specification, the cosine wave refers to a waveform represented by the following expression.

Figure 0005133614
ここで、Iは受光した反射光の光量(出力強度)、fは周波数、tは経過時間、θは位相角、bは主として外光などの他の光の光量、をそれぞれ示す。なお、空気入りタイヤ12の反射率はaで反映されている。この式から判るように、位相を90°(Π/2ラジアン)ずらすようにbの値を設定すると上式は正弦波を示す式となる。従って、本明細書で余弦波とは正弦波をも含む定義となる。
Figure 0005133614
Here, I represents the light amount (output intensity) of the received reflected light, f represents the frequency, t represents the elapsed time, θ represents the phase angle, and b represents the light amount of other light such as external light. The reflectance of the pneumatic tire 12 is reflected by a. As can be seen from this equation, when the value of b is set so that the phase is shifted by 90 ° (Π / 2 radians), the above equation becomes an equation representing a sine wave. Therefore, in this specification, the cosine wave is defined to include a sine wave.

そして、位相シフト法を用いることにより、位相をずらしてIを4点で測定することで、すなわちI−1〜Iを求めることで、各測定対象位置における位相遅れTanθは以下の式で算出される。 Then, by using the phase shift method, the phase lag Tanθ at each measurement target position is calculated by the following equation by measuring I at four points while shifting the phase, that is, by obtaining I −1 to I 2. Is done.

Figure 0005133614
上式から判るように、このように位相シフト法で位相解析をすることによって、位相遅れTanθをI−1 〜Iのみによって求めることができ、aやbの影響を、すなわち反射率や外光の影響を受けない値として算出することができる。
Figure 0005133614
As can be seen from the above equation, by performing the phase analysis by the phase shift method in this way, the phase delay Tanθ can be obtained only by I −1 to I 2 , and the influence of a and b, that is, reflectance and external It can be calculated as a value that is not affected by light.

本実施形態では、撮影装置16と空気入りタイヤ12との距離dを波形25の1/2波長(すなわち波形29の1/2波長)とする。   In the present embodiment, the distance d between the photographing device 16 and the pneumatic tire 12 is set to a half wavelength of the waveform 25 (that is, a half wavelength of the waveform 29).

また、光源(LED)14による発光量をPとすると、受光部38A〜Dの撮影画素毎の受光量l(x、y)に、距離dによる時間遅れの変動成分が加えられ、p、l(x、y)は以下の式で求められる。なお、xは撮影された画像の左右方向座標を意味し、yは撮影された画像の上下方向座標を意味する。

Figure 0005133614
Figure 0005133614
If the light emission amount by the light source (LED) 14 is P, a fluctuation component of time delay due to the distance d is added to the light reception amount l (x, y) for each photographing pixel of the light receiving units 38A to 38D, and p, l (X, y) is obtained by the following equation. Note that x means the horizontal coordinate of the photographed image, and y means the vertical coordinate of the photographed image.
Figure 0005133614
Figure 0005133614

ここで、p、L(x、y)、L(x、y)は、それぞれ、発光量、背景(光源14以外からの光量)、変動量のことである。 Here, p, L 0 (x, y), and L 1 (x, y) are a light emission amount, a background (a light amount other than the light source 14), and a fluctuation amount, respectively.

また、T(m=−1〜4)は以下の式で求められる。 Further, T m (m = −1 to 4) is obtained by the following equation.

Figure 0005133614
ここで、Δtは上述したように波形25と波形29との間に生じたタイムラグを示す。
Figure 0005133614
Here, Δt represents a time lag generated between the waveform 25 and the waveform 29 as described above.

−1〜Iは以下の式で算出される。 I −1 to I 2 are calculated by the following equations.

Figure 0005133614
Figure 0005133614
Figure 0005133614
Figure 0005133614
Figure 0005133614
Figure 0005133614
Figure 0005133614
Figure 0005133614

数2で用いる「I−I」及び「I−1−I」は以下のように算出される。このように差を計算することによって、背景の外光の影響が相殺される。

Figure 0005133614
Figure 0005133614
“I 0 -I 2 ” and “I −1 -I 1 ” used in Equation 2 are calculated as follows. By calculating the difference in this way, the influence of background light from the background is offset.
Figure 0005133614
Figure 0005133614

従って、(I−I)/(I−1−I)は以下のように算出される。

Figure 0005133614
Therefore, (I 0 −I 2 ) / (I −1 −I 1 ) is calculated as follows.
Figure 0005133614

従って、タイムラグであるΔtは以下のように求めることができる。

Figure 0005133614
Therefore, Δt, which is a time lag, can be obtained as follows.
Figure 0005133614

このΔt(s)と光速c(m/s)とに基づいて距離dを求めることができる。距離dが波形29の半波長以下である場合には、(C/2)×Δtを計算することによって距離dが求められる。そして、各測定対象位置毎に距離dを求めることにより各測定対象位置の3次元座標を求めることができ、これに基づいて空気入りタイヤ12の3次元画像を画像表示部20に表示することができる。   The distance d can be obtained based on this Δt (s) and the speed of light c (m / s). When the distance d is equal to or less than the half wavelength of the waveform 29, the distance d is obtained by calculating (C / 2) × Δt. Then, by obtaining the distance d for each measurement target position, the three-dimensional coordinates of each measurement target position can be obtained, and based on this, a three-dimensional image of the pneumatic tire 12 can be displayed on the image display unit 20. it can.

このように、本実施形態では、受光部38で露光する時間を波形29の一周期(例えば数千万分の一秒)で済ませることができる。従って、空気入りタイヤ12が高速で転動していても高精度でその3次元形状を求めることができる。また、反射時間で計測するため測定対象の模様の影響が低減される。なお、光量変動が小さい場合であっても、二周期、三周期と繰り返して受光することにより総受光量を増大させて、3次元形状を高精度で求めることができる。   As described above, in the present embodiment, the exposure time of the light receiving unit 38 can be completed in one cycle of the waveform 29 (for example, tens of millionths of a second). Therefore, even if the pneumatic tire 12 rolls at high speed, the three-dimensional shape can be obtained with high accuracy. Further, since the measurement is performed with the reflection time, the influence of the pattern to be measured is reduced. Even when the light amount fluctuation is small, it is possible to obtain a three-dimensional shape with high accuracy by increasing the total amount of received light by repeatedly receiving light in two cycles and three cycles.

更に、本実施形態では、設置する撮影装置16が1台であり、複数台にわたって設置する必要がない。従って、タイヤ表面の凹凸等による撮影装置の死角が大幅に生じ難くなっているので測定不能となる部位が大幅に低減しており、しかも、複数台の撮影装置で撮影した画像の対応を図る必要がないのでデータ処理が簡易である。   Furthermore, in this embodiment, there is only one photographing device 16 to be installed, and there is no need to install over a plurality of devices. Therefore, since the blind spots of the imaging device due to the unevenness of the tire surface are much less likely to occur, the area where measurement is impossible is greatly reduced, and moreover, it is necessary to deal with images taken with multiple imaging devices Since there is no data processing, data processing is simple.

なお、反射光28の輝度(発光量)は以下の式で示すようにI−1〜Iの総和で求められる。

Figure 0005133614
In addition, the brightness | luminance (light emission amount) of the reflected light 28 is calculated | required by the sum total of I < -1 > -I < 2 > as shown by the following formula | equation.
Figure 0005133614

反射率Rは以下の式で求められる。

Figure 0005133614
The reflectance R is obtained by the following formula.
Figure 0005133614

(x、y)、L(x、y)は以下の式で求められる。

Figure 0005133614
Figure 0005133614
なお、数16、数17は、それぞれ、数14、数15と同じ式で示される。 L 0 (x, y) and L 1 (x, y) are obtained by the following equations.
Figure 0005133614
Figure 0005133614
Expressions 16 and 17 are represented by the same expressions as Expressions 14 and 15, respectively.

R、L(x、y)、L(x、y)などを用いて、距離dなどの算出値の信頼性確認を行うことが可能である。 Using R, L 0 (x, y), L 1 (x, y), etc., it is possible to confirm the reliability of the calculated value such as the distance d.

[第2実施形態]
次に、第2実施形態について説明する。図5に示すように、本実施形態に係る3次元形状測定システム50は、測定対象の空気入りタイヤ12に向けて発光する光源54と、空気入りタイヤ12からの反射光を受光する撮影装置(CCDカメラ)56と、撮影装置56で撮影された画像データを演算処理して空気入りタイヤ12の3次元座標を求める演算処理装置58と、この3次元座標に基づいて空気入りタイヤ12の3次元画像を表示する画像表示部20と、を備えている。
[Second Embodiment]
Next, a second embodiment will be described. As illustrated in FIG. 5, the three-dimensional shape measurement system 50 according to the present embodiment includes a light source 54 that emits light toward the pneumatic tire 12 to be measured, and an imaging device that receives reflected light from the pneumatic tire 12 ( CCD camera) 56, an arithmetic processing unit 58 for calculating the three-dimensional coordinates of the pneumatic tire 12 by calculating the image data taken by the photographing device 56, and the three-dimensional of the pneumatic tire 12 based on the three-dimensional coordinates And an image display unit 20 for displaying an image.

光源54としては、撮影装置56の撮影レンズ外周部に同軸配置されたリングタイプのLEDを設けている。図7に、光源54からの出射光64の波形65と、タイヤ表面で反射して撮影装置56に取り込まれた反射光68の波形69とを示す。波形65及び波形69は、図3に示したものと同等の形状であり、光源54から撮影装置56までの光路長によって、波形65と波形69とではタイムラグ(図7のΔt)が生じている。   As the light source 54, a ring type LED arranged coaxially on the outer periphery of the photographing lens of the photographing device 56 is provided. FIG. 7 shows a waveform 65 of the emitted light 64 from the light source 54 and a waveform 69 of the reflected light 68 reflected on the tire surface and taken into the photographing device 56. The waveform 65 and the waveform 69 have the same shape as that shown in FIG. 3, and a time lag (Δt in FIG. 7) is generated between the waveform 65 and the waveform 69 due to the optical path length from the light source 54 to the imaging device 56. .

撮影装置56は、第1実施形態で用いた撮影装置16に比べ、構成、作用が異なる。撮影装置56は、空気入りタイヤ12で反射して光学フィルター及び撮影装置56の撮影レンズを透過した反射光68を、図6に示すように3本に分配するビームスプリッター70を有する。ビームスプリッター70としては、例えばキューブ型クロスプリズムを用いる。   The imaging device 56 is different in configuration and operation from the imaging device 16 used in the first embodiment. The imaging device 56 includes a beam splitter 70 that distributes the reflected light 68 reflected by the pneumatic tire 12 and transmitted through the optical filter and the imaging lens of the imaging device 56 into three as shown in FIG. For example, a cube-type cross prism is used as the beam splitter 70.

更に、撮影装置56は、ビームスプリッター70から出射した反射光(分配された光)をそれぞれ受光する3つの受光部78A〜Cを有する。受光部78A〜Cから空気入りタイヤ12までの距離は全て同じにされている。受光部78は受光部38と同等の機能を有する。また、撮影装置56は、3つの受光部78A〜Cの入射側にそれぞれ配置されたMCP(マイクロチャネルプレート)80A〜Cを備えている。MCP80はMCP40と同等の機能を有する。   Furthermore, the imaging device 56 includes three light receiving units 78A to 78C that receive reflected light (distributed light) emitted from the beam splitter 70, respectively. The distances from the light receiving portions 78A to 78C to the pneumatic tire 12 are all the same. The light receiving unit 78 has the same function as the light receiving unit 38. In addition, the imaging device 56 includes MCPs (microchannel plates) 80A to 80C arranged on the incident sides of the three light receiving units 78A to 78C. The MCP 80 has a function equivalent to that of the MCP 40.

演算処理装置58は、タイヤ表面の各測定対象位置毎に受光部78からの距離を以下のようにして算出し、タイヤ表面の3次元座標を求めるようになっている。   The arithmetic processing unit 58 calculates the distance from the light receiving unit 78 for each measurement target position on the tire surface as follows, and obtains the three-dimensional coordinates of the tire surface.

ビームスプリッター70は、撮影装置56に入射した反射光68を3つの反射光68に分配する。MCP80Aは位相角θが0〜180°(0〜Πラジアン)の反射光68A(図8(A))が通過するようにシャッターの開閉を行う。この結果、受光部78Aで部分波形69Aが撮影される。MCP80Bは位相角θが90〜270°(Π/2〜3Π/2ラジアン)の反射光68B(図8(B)が通過するようにシャッターの開閉を行う。この結果、受光部78Bで部分波形69Bが撮影される。MCP80Cは位相角θが180〜360°(Π〜2Πラジアン)の反射光68C(図8(C)が通過するようにシャッターの開閉を行う。この結果、受光部78Cで部分波形69Cが撮影される。従って、測定された各反射光では、各位相角範囲の両端部分が互いにオーバーラップしている。   The beam splitter 70 distributes the reflected light 68 incident on the imaging device 56 into three reflected lights 68. The MCP 80A opens and closes the shutter so that the reflected light 68A (FIG. 8A) having a phase angle θ of 0 to 180 ° (0 to radians) passes. As a result, the partial waveform 69A is photographed by the light receiving unit 78A. The MCP 80B opens and closes the shutter so that the reflected light 68B (FIG. 8B) having a phase angle θ of 90 to 270 ° (Π / 2 to 3Π / 2 radians) passes. The MCP 80C opens and closes the shutter so that the reflected light 68C (FIG. 8C) having a phase angle θ of 180 to 360 ° (Π to 2Π radians) passes through. The partial waveform 69C is photographed, and therefore, in each measured reflected light, both end portions of each phase angle range overlap each other.

各測定対象位置における位相遅れTanθは以下の式で算出される。

Figure 0005133614
The phase delay Tanθ at each measurement target position is calculated by the following equation.
Figure 0005133614

この式が導かれる原理を以下に説明する。
仮に、受光部78が4つの受光部で構成されると仮定し、0〜180°(0〜Πラジアン)、180〜360°(Π〜2Πラジアン)、−90〜90°(−Π/2〜Π/2ラジアン)、90〜270°(Π/2〜3Π/2ラジアン)の4つの位相角範囲について4つの受光部でそれぞれ反射光を受光すると仮定する。そして、MCPがシャッターを開けている時間は、0〜180°では時刻T〜Tの間、180〜360°では時刻T〜Tの間、−90〜90°では時刻T−1〜Tの間、90〜270°では時刻T〜Tの間、と仮定する。この場合、4つの受光部の各受光量はI、I、I−1、Iとすることができる。ここでI、I、I−1、Iは以下の式で示される。
The principle from which this equation is derived will be described below.
Assuming that the light receiving unit 78 is composed of four light receiving units, 0 to 180 ° (0 to Π radians), 180 to 360 ° (Π to 2 Π radians), and −90 to 90 ° (−Π / 2). It is assumed that reflected light is received by each of the four light receiving portions in four phase angle ranges of ˜Π / 2 radians) and 90 to 270 ° (Π / 2 to 3Π / 2 radians). The time during which the MCP opens the shutter is from time T 0 to T 2 at 0 to 180 °, from time T 2 to T 4 at 180 to 360 °, and from time T −1 at −90 to 90 °. It is assumed that it is between time T 1 and T 3 at 90 to 270 ° between ˜T 1 . In this case, the received light amounts of the four light receiving units can be I 0 , I 1 , I −1 , and I 1 . Here, I 0 , I 1 , I −1 , and I 1 are represented by the following equations.

Figure 0005133614
Figure 0005133614
Figure 0005133614
Figure 0005133614
なお、数19〜数22は、それぞれ、数6〜数9と同じ式で示される。
Figure 0005133614
Figure 0005133614
Figure 0005133614
Figure 0005133614
Equations 19 to 22 are represented by the same equations as Equations 6 to 9, respectively.

「I−I」及び「I−1−I」は以下のように算出される。このように差を計算することによって、背景の外光の影響が相殺される。

Figure 0005133614
Figure 0005133614
なお、数23、数24は、それぞれ、数10、数11と同じ式で示される。 “I 0 -I 2 ” and “I −1 -I 1 ” are calculated as follows. By calculating the difference in this way, the influence of background light from the background is offset.
Figure 0005133614
Figure 0005133614
Note that Equations 23 and 24 are represented by the same equations as Equations 10 and 11, respectively.

なお、「I+I」及び「I−1+I」は以下のように算出される。このように和を計算することによって、背景が抽出される。

Figure 0005133614
Figure 0005133614
“I 0 + I 2 ” and “I −1 + I 1 ” are calculated as follows. The background is extracted by calculating the sum in this way.
Figure 0005133614
Figure 0005133614

これらの式からI−1を消去して余弦成分を求めると以下の式となる。

Figure 0005133614
If I- 1 is eliminated from these equations and the cosine component is obtained, the following equation is obtained.
Figure 0005133614

位相角θは、光量の変動量の正弦成分と余弦成分とから以下の式で求められる。

Figure 0005133614
なお、数28は数12と同じ式で示される。 The phase angle θ is obtained by the following expression from the sine component and the cosine component of the amount of fluctuation of the light amount.
Figure 0005133614
Equation 28 is expressed by the same equation as Equation 12.

従って、タイムラグΔt(x、y)は以下の式で求められる。

Figure 0005133614
なお、数29は数13と同じ式で示される。 Therefore, the time lag Δt (x, y) is obtained by the following equation.
Figure 0005133614
Equation 29 is expressed by the same equation as Equation 13.

第1実施形態でも説明したように、各測定対象位置毎にタイムラグΔt(x、y)に基づいて距離dを求めることにより各測定対象位置の3次元座標を求めることができ、これに基づいて空気入りタイヤ12の3次元画像を画像表示部20に表示することができる。従って、本実施形態により、受光部78の設置数を3つとし、波形69を形成する部分波形を4つではなく3つとしても、高速で転動する空気入りタイヤ12の3次元形状を高精度で測定することができる。   As described in the first embodiment, the three-dimensional coordinates of each measurement target position can be obtained by obtaining the distance d based on the time lag Δt (x, y) for each measurement target position. A three-dimensional image of the pneumatic tire 12 can be displayed on the image display unit 20. Therefore, according to the present embodiment, even if the number of the light receiving portions 78 is set to three and the number of partial waveforms forming the waveform 69 is three instead of four, the three-dimensional shape of the pneumatic tire 12 that rolls at high speed is increased. It can be measured with accuracy.

また、本実施形態では、光源54として、撮影装置56の撮影レンズ外周部に同軸配置されたリングタイプのLEDを設けている。従って、出射光64と反射光68とで光路長が全くと言っていいほど同一であり、しかも撮影装置56の光軸と同一の方向から投射することができる。   In the present embodiment, as the light source 54, a ring type LED arranged coaxially on the outer periphery of the photographing lens of the photographing device 56 is provided. Therefore, the outgoing light 64 and the reflected light 68 are almost identical in optical path length, and can be projected from the same direction as the optical axis of the photographing device 56.

なお、以下の式のようにΔt(x、y)を複素数で扱うと、1つの式で一周期を連続して扱うことができるので便利である。

Figure 0005133614
If Δt (x, y) is handled as a complex number as in the following formula, it is convenient because one cycle can be handled continuously with one formula.
Figure 0005133614

また、光量の変動量は以下のように2乗和によって求められる。

Figure 0005133614
Figure 0005133614
なお、数32は数15と同じ式で示される。 Further, the amount of fluctuation of the light quantity is obtained by the sum of squares as follows.
Figure 0005133614
Figure 0005133614
Equation 32 is expressed by the same equation as Equation 15.

また、背景の外光の光量は以下の式で求められる。

Figure 0005133614
Figure 0005133614
なお、数34は数14と同じ式で示される。 The amount of background external light can be obtained by the following equation.
Figure 0005133614
Figure 0005133614
Note that Equation 34 is expressed by the same equation as Equation 14.

<第2実施形態の実施例>
本実施例では、光源54を、50MHzの短い周期で光量を変動させることができるLEDとしている。これにより、反射による往復距離(2×d)での影響を抽出する上で好都合である。本実施形態では距離dを3.0mとしている。この結果、Δtは、光速cを3.0×10km/sとすると20nsになる。なお、光源54からの出射光64の周波数fをパラメータとして変化させたときに、距離dと周波数fとの関係を表1に示す。ここで本実施例では、周波数fを出射光64の波長が2dとなるように設定している。

Figure 0005133614
<Example of the second embodiment>
In the present embodiment, the light source 54 is an LED that can change the amount of light at a short cycle of 50 MHz. This is convenient for extracting the influence at the round trip distance (2 × d) due to reflection. In this embodiment, the distance d is set to 3.0 m. As a result, Δt is 20 ns when the speed of light c is 3.0 × 10 5 km / s. Table 1 shows the relationship between the distance d and the frequency f when the frequency f of the emitted light 64 from the light source 54 is changed as a parameter. In this embodiment, the frequency f is set so that the wavelength of the outgoing light 64 is 2d.
Figure 0005133614

LEDとしては近赤外線を発光するLEDが用いられている。これにより、撮影画素を構成するフォトダイオードの感度を高くすることができ、その上、近赤外線透過型の光学フィルターとの組み合わせにより蛍光灯などの悪影響を低減することを可能としている。   An LED that emits near infrared light is used as the LED. As a result, the sensitivity of the photodiode constituting the photographic pixel can be increased, and in addition, adverse effects such as fluorescent lamps can be reduced by combination with a near-infrared transmission optical filter.

図9の「部分波形3つ、受光部3つ」の欄に、位相角範囲の両端部が互いにオーバーラップするように位相角をずらして測定することを示す。受光部78Aでは部分波形69Aを計測する時間範囲82Aで、受光部78Bでは部分波形69Bを計測する時間範囲82Bで、受光部78Cでは部分波形69Cを計測する時間範囲82Cで、それぞれMCPのシャッターを開いて露光する。   The column of “three partial waveforms and three light receiving units” in FIG. 9 indicates that measurement is performed by shifting the phase angle so that both ends of the phase angle range overlap each other. The light receiving unit 78A has a time range 82A for measuring the partial waveform 69A, the light receiving unit 78B has a time range 82B for measuring the partial waveform 69B, and the light receiving unit 78C has a time range 82C for measuring the partial waveform 69C. Open and expose.

なお、二周期目で同じように受光部78A〜Cでそれぞれ時間範囲82A〜Cで露光することにより部分波形を計測してもよい。これにより、測定精度を高めることができる。このことは、反射光68の光量変化が小さい場合に特に有効である。   In the second cycle, the partial waveforms may be measured by exposing the light receiving units 78A to 78C in the time ranges 82A to C in the same manner. Thereby, measurement accuracy can be improved. This is particularly effective when the change in the amount of reflected light 68 is small.

また、図9の「部分波形3つ、受光部1つ」の欄に示すように、1つの受光部78Aで、一周期目で位相角0〜180°の反射光を、二周期目で位相角90〜270°の反射光を、三周期目で位相角180〜360°の反射光を測定してもよい。これにより、受光部の設置数を1つにすることができる。   Further, as shown in the column of “three partial waveforms and one light receiving unit” in FIG. 9, one light receiving unit 78 </ b> A reflects reflected light having a phase angle of 0 to 180 ° in the first cycle and phase in the second cycle. The reflected light having an angle of 90 to 270 ° may be measured, and the reflected light having a phase angle of 180 to 360 ° may be measured in the third period. Thereby, the installation number of a light-receiving part can be made into one.

[第3実施形態]
次に、第3実施形態について説明する。本実施形態では、第1実施形態で説明した3次元形状測定システム10を用い、位相角範囲の両端部が互いにオーバーラップする4つの波形を受光部38A〜Dでそれぞれ計測する。
[Third Embodiment]
Next, a third embodiment will be described. In the present embodiment, the three-dimensional shape measurement system 10 described in the first embodiment is used, and four waveforms in which both ends of the phase angle range overlap each other are measured by the light receiving units 38A to 38D.

このように位相角範囲の両端部が互いにオーバーラップするように測定することにより、第1実施形態に比べ、測定精度がより向上する。   Thus, by measuring so that the both ends of a phase angle range may mutually overlap, a measurement precision improves more compared with 1st Embodiment.

<第3実施形態の実施例>
図9の「部分波形4つ、受光部4つ」の欄に、位相角範囲の両端部が互いにオーバーラップするように位相角をずらして測定することを示す。受光部38Aでは時間範囲92Aで、受光部38Bでは時間範囲92Bで、受光部38Cでは時間範囲92Cで、受光部38Dでは時間範囲92Dで、それぞれMCP40A〜Dのシャッターを開いて露光する。
<Example of the third embodiment>
In the column of “four partial waveforms and four light receiving units” in FIG. 9, the measurement is performed by shifting the phase angle so that both ends of the phase angle range overlap each other. Exposure is performed by opening the shutters of the MCPs 40A to D in the time range 92A in the light receiving unit 38A, in the time range 92B in the light receiving unit 38B, in the time range 92C in the light receiving unit 38C, and in the time range 92D in the light receiving unit 38D.

なお、第2実施形態の実施例と同様、二周期目で同じように受光部38A〜Dでそれぞれ部分波形92A〜Dを計測してもよい。   As in the example of the second embodiment, the partial waveforms 92A to 92D may be measured by the light receiving units 38A to 38D in the same manner in the second period.

更に、図9の「部分波形4つ、受光部2つ」の欄に示すように、一周期目及び二周期目では、時間範囲92Aで受光部78Aを露光するとともに時間範囲92Bで受光部78Bを露光し、三周期目及び四周期目では、時間範囲92Cで受光部78Aを露光するとともに時間範囲92Dで受光部78Bを露光してもよい。これにより、受光部の設置数を2つに半減させることができる。   Further, as shown in the column of “four partial waveforms and two light receiving parts” in FIG. 9, in the first and second periods, the light receiving part 78A is exposed in the time range 92A and the light receiving part 78B in the time range 92B. In the third and fourth cycles, the light receiving unit 78A may be exposed in the time range 92C and the light receiving unit 78B may be exposed in the time range 92D. Thereby, the number of installation of a light-receiving part can be halved to two.

この場合、同様の原理により、図10に示すように、1つの波形の終端部分Eにおいて受光部38Bを時間範囲102Bで露光してIを測定するとともに受光部38Aを時間範囲102Aで露光してIを測定し、更に、この波形に連続する波形の始端部分Fにおいて受光部38Aを時間範囲102Cで露光してIを測定するとともに受光部38Bを時間範囲102Dで露光してI−1を測定し、これらの測定結果に基づいて空気入りタイヤ12の3次元座標を求めてもよい。これにより、受光部38A、38Bに極めて短時間で露光することによって空気入りタイヤ12の3次元座標を求めることができる。例えば、波形69の周期がT=1/30秒であっても、終端部分Eと始端部分Fとを露光する時間をΔt=1/10000秒とすることができる。また、図10に示したように、I〜Iを求める際に2回以上にわたって露光させてもよい。 In this case, the same principle, as shown in FIG. 10, by exposing the light receiving portion 38A while measuring I 1 by exposing the light receiving portion 38B in the time range 102B at the end portion E of one waveform in a time range 102A I 0 is measured, and the light receiving portion 38A is exposed in the time range 102C at the start portion F of the waveform continuous to this waveform to measure I 2 and the light receiving portion 38B is exposed in the time range 102D to obtain I −. 1 may be measured, and the three-dimensional coordinates of the pneumatic tire 12 may be obtained based on these measurement results. Thus, the three-dimensional coordinates of the pneumatic tire 12 can be obtained by exposing the light receiving portions 38A and 38B in a very short time. For example, even if the period of the waveform 69 is T L = 1/30 seconds, the time for exposing the end portion E and the start end portion F can be set to Δt s = 1/10000 seconds. Further, as shown in FIG. 10, it may be exposed for more than once when determining the I 0 ~I 2.

また、図9の「部分波形4つ、受光部1つ」の欄に示すように、受光部38Aのみを用い、一周期目では時間範囲92Aで露光することによりIを求め、二周期目では時間範囲92Bで露光することによりIを求め、三周期目では時間範囲92Cで露光することによりIを求め、四周期目では時間範囲92Dで露光することによりI−1を求めることを行ってもよい。これにより、受光部の設置数を1つにすることができる。 Further, as shown in the column of “four partial waveforms and one light receiving unit” in FIG. 9, only the light receiving unit 38A is used, and I 0 is obtained by performing exposure in the time range 92A in the first cycle, and the second cycle. in search of I 1 by exposing a time range 92B, obtains the I 2 by the third periods eyes to be exposed in a time range 92C, the determination of the I -1 by the four th cycle of exposing a time range 92D You may go. Thereby, the installation number of a light-receiving part can be made into one.

以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。例えば、これらの実施形態では、光源が発する出射光が正弦波或いは余弦波を描く周期の光として説明したが、本発明はこれに限らず、図11に示すように三角波形106を描く周期の光であってもよいし、図12に示すようにパルス波形108を描く周期の光であってもよい。   The embodiments of the present invention have been described above with reference to the embodiments. However, these embodiments are merely examples, and various modifications can be made without departing from the scope of the invention. For example, in these embodiments, the emitted light emitted from the light source has been described as light having a cycle in which a sine wave or cosine wave is drawn. However, the present invention is not limited to this, and the cycle in which the triangular waveform 106 is drawn as shown in FIG. It may be light, or may be light having a period for drawing the pulse waveform 108 as shown in FIG.

また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。   It goes without saying that the scope of rights of the present invention is not limited to these embodiments.

第1実施形態に係る3次元形状測定システムを示す模式図である。It is a mimetic diagram showing the three-dimensional shape measuring system concerning a 1st embodiment. 第1実施形態に係る3次元形状測定システムの撮影装置で、タイヤからの反射光をビームスプリッターで分けて各受光部で測定することを示す模式図である。It is a schematic diagram which shows dividing the reflected light from a tire with a beam splitter, and measuring with each light-receiving part with the imaging device of the three-dimensional shape measuring system which concerns on 1st Embodiment. 第1実施形態で、光源からの出射光とタイヤからの反射光とで位相差が生じていることを示すグラフ図である。In 1st Embodiment, it is a graph which shows that the phase difference has arisen with the emitted light from a light source, and the reflected light from a tire. 図4(A)から(D)は、それぞれ、第1実施形態で各受光部が受光する部分波形を示すグラフ図である。FIGS. 4A to 4D are graphs each showing a partial waveform received by each light receiving unit in the first embodiment. 第2実施形態に係る3次元形状測定システムを示す模式図である。It is a schematic diagram which shows the three-dimensional shape measuring system which concerns on 2nd Embodiment. 第2実施形態に係る3次元形状測定システムの撮影装置で、タイヤからの反射光をビームスプリッターで分けて各受光部で測定することを示す模式図である。It is a schematic diagram which shows dividing the reflected light from a tire with a beam splitter, and measuring with each light-receiving part with the imaging device of the three-dimensional shape measuring system which concerns on 2nd Embodiment. 第2実施形態で、光源からの出射光とタイヤからの反射光とで位相差が生じていることを示すグラフ図である。In 2nd Embodiment, it is a graph which shows that the phase difference has arisen with the emitted light from a light source, and the reflected light from a tire. 図8(A)から(C)は、それぞれ、第2実施形態で各受光部が受光する部分波形を示すグラフ図である。FIGS. 8A to 8C are graphs showing partial waveforms received by the respective light receiving portions in the second embodiment. 第3実施形態の実施例で、受光部が測定する部分波形の位相範囲を示す説明図である。In the Example of 3rd Embodiment, it is explanatory drawing which shows the phase range of the partial waveform which a light-receiving part measures. 第3実施形態の実施例の変形例で、受光部が測定する部分波形の位相範囲を示す説明図である。It is a modification of the Example of 3rd Embodiment, and is explanatory drawing which shows the phase range of the partial waveform which a light-receiving part measures. 第1実施形態〜第3実施形態で、光源が発する出射光の波形の変形例を示すグラフ図である。In 1st Embodiment-3rd Embodiment, it is a graph which shows the modification of the waveform of the emitted light which a light source emits. 第1実施形態〜第3実施形態で、光源が発する出射光の波形の変形例を示すグラフ図である。In 1st Embodiment-3rd Embodiment, it is a graph which shows the modification of the waveform of the emitted light which a light source emits.

符号の説明Explanation of symbols

10 3次元形状測定システム
14 光源
16 撮影装置(受光・演算処理手段)
18 演算処理装置(受光・演算処理手段)
28A〜D 反射光
30 ビームスプリッター
32 ビームスプリッター
34 ビームスプリッター
38A〜D 受光部
40A〜D MCP(マイクロチャネルプレート)
50 3次元形状測定システム
54 光源
56 撮影装置(受光・演算処理手段)
58 演算処理装置(受光・演算処理手段)
68A〜C 反射光
70 ビームスプリッター
78A〜C 受光部
80A〜C MCP(マイクロチャネルプレート)
d 距離
Tanθ 位相遅れ
10 Three-dimensional shape measurement system 14 Light source 16 Imaging device (light reception / arithmetic processing means)
18 Arithmetic processing device (light receiving / arithmetic processing means)
28A to D Reflected light 30 Beam splitter 32 Beam splitter 34 Beam splitter 38A to D Light receiving portions 40A to D MCP (microchannel plate)
50 Three-dimensional shape measurement system 54 Light source 56 Imaging device (light receiving / arithmetic processing means)
58 Arithmetic processing device (light receiving / arithmetic processing means)
68A-C Reflected light 70 Beam splitter 78A-C Light receiving part 80A-C MCP (microchannel plate)
d Distance Tanθ Phase lag

Claims (3)

測定対象物に向けて、所定の変動周期で周期的に光量を変動させながら前記測定対象物の測定位置へ光を照射する光源と、
前記光源から発せられて前記測定対象物の前記測定位置で反射した反射光を受光する第1、第2、第3及び第4の受光部と、
前記反射光を前記第1の受光部から前記第4の受光部のそれぞれへ向け、均等な光量に分配するように設けられた複数のビームスプリッターと、
前記複数のビームスプリッターにより分配された前記反射光を前記第1から前記第4の受光部のそれぞれで受光する際、前記変動周期に対して、前記第1の受光部が0〜πの位相角で受光し、前記第2の受光部がπ〜2πの位相角で受光し、前記第3の受光部が−π/2〜π/2の位相角で受光し、かつ前記第4の受光部がπ/2〜3π/2の位相角で受光するように受光期間を制御する制御手段と、
前記第1から第4の受光部のそれぞれで受光された光量に基づき、位相シフト法を用いて前記測定対象物の前記測定位置までの距離を算出することで、前記測定対象物について前記測定位置ごとの3次元座標を求める演算処理手段と、
記演算処理手段により求められた前記測定位置ごとの前記3次元座標に基づき、前記測定対象物の3次元形状を表示する表示手段と、
を含む3次元形状測定システム。
A light source that irradiates the measurement position of the measurement object with light while periodically changing the amount of light toward the measurement object with a predetermined fluctuation period ;
First, second, third, and fourth light receiving portions that receive reflected light emitted from the light source and reflected at the measurement position of the measurement object ;
A plurality of beam splitters provided so as to distribute the reflected light from the first light receiving unit to each of the fourth light receiving units, and to distribute the light equally.
When the reflected light distributed by the plurality of beam splitters is received by each of the first to fourth light receiving units, the first light receiving unit has a phase angle of 0 to π with respect to the fluctuation period. The second light receiving unit receives light with a phase angle of π to 2π, the third light receiving unit receives light with a phase angle of −π / 2 to π / 2, and the fourth light receiving unit. Control means for controlling the light receiving period so that light is received at a phase angle of π / 2 to 3π / 2,
Based on the amount of light received by each of the first to fourth light receiving units, a distance to the measurement position of the measurement object is calculated using a phase shift method , whereby the measurement position of the measurement object is measured. and arithmetic processing means asking you to three-dimensional coordinates of each,
And display means before based-out on the 3-dimensional coordinates of each of the measurement positions obtained by Ki演 calculation processing means for displaying the three-dimensional shape of the measurement object,
A three-dimensional shape measuring system.
測定対象物に向けて、所定の変動周期で周期的に光量を変動させながら前記測定対象物の測定位置へ光を照射する光源と、
前記光源から発せられて前記測定対象物の前記測定位置で反射した反射光を受光する第1、第2及び第3の受光部と、
前記反射光を前記第1の受光部から前記第3の受光部のそれぞれへ向け、均等な光量に分配するように設けられたキューブ型クロスプリズムと、
前記キューブ型クロスプリズムにより分配された前記反射光を前記第1から前記第3の受光部のそれぞれで受光する際、前記変動周期に対して、前記第1の受光部が0〜πの位相角で受光し、前記第2の受光部がπ/2〜3π/2の位相角で受光し、かつ前記第3の受光部がπ〜2πの位相角で受光するように受光期間を制御する制御手段と、
前記第1から第3の受光部のそれぞれで受光された光量に基づき、位相シフト法を用いて前記測定対象物の前記測定位置までの距離を算出することで、前記測定対象物について前記測定位置ごとの三次元座標を求める演算処理手段と、
前記演算処理手段により求められた前記測定位置ごとの前記三次元座標に基づき、前記測定対象物の3次元形状を表示する表示手段と、
を含む3次元形状測定システム。
A light source that irradiates the measurement position of the measurement object with light while periodically changing the amount of light toward the measurement object with a predetermined fluctuation period;
First, second, and third light receiving portions that receive reflected light emitted from the light source and reflected at the measurement position of the measurement object;
A cube-shaped cross prism that is provided so as to distribute the reflected light from the first light receiving unit to each of the third light receiving units in an equal amount of light;
When the reflected light distributed by the cube-type cross prism is received by each of the first to third light receiving units, the first light receiving unit has a phase angle of 0 to π with respect to the fluctuation period. For controlling the light receiving period so that the second light receiving unit receives light at a phase angle of π / 2 to 3π / 2 and the third light receiving unit receives light at a phase angle of π to 2π. Means,
Based on the amount of light received by each of the first to third light receiving units, a distance to the measurement position of the measurement object is calculated using a phase shift method , whereby the measurement position of the measurement object is measured. Arithmetic processing means for obtaining a three-dimensional coordinate for each;
Display means for displaying a three-dimensional shape of the measurement object based on the three-dimensional coordinates for each of the measurement positions determined by the arithmetic processing means;
A three-dimensional shape measuring system.
前記受光部のそれぞれにマイクロチャネルプレートを設け、前記制御手段は、前記マイクロチャネルプレートを通過する前記反射光を制御することで、前記受光部ごとの前記受光期間を制御する請求項1又は請求項2に記載の3次元形状測定システム。 2. The light receiving period for each light receiving unit is controlled by providing a micro channel plate in each of the light receiving units, and the control unit controls the reflected light passing through the micro channel plate. 3. The three-dimensional shape measurement system according to 2.
JP2007164750A 2007-06-22 2007-06-22 3D shape measurement system Expired - Fee Related JP5133614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164750A JP5133614B2 (en) 2007-06-22 2007-06-22 3D shape measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164750A JP5133614B2 (en) 2007-06-22 2007-06-22 3D shape measurement system

Publications (2)

Publication Number Publication Date
JP2009002823A JP2009002823A (en) 2009-01-08
JP5133614B2 true JP5133614B2 (en) 2013-01-30

Family

ID=40319364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164750A Expired - Fee Related JP5133614B2 (en) 2007-06-22 2007-06-22 3D shape measurement system

Country Status (1)

Country Link
JP (1) JP5133614B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818675B2 (en) * 2011-12-22 2015-11-18 株式会社Sumco Method for determining three-dimensional distribution of bubble distribution in silica glass crucible, method for producing silicon single crystal
JP5749150B2 (en) * 2011-12-22 2015-07-15 株式会社Sumco Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, method for producing silicon single crystal
CN104114976B (en) * 2011-12-27 2017-08-04 株式会社Sumco The method for measuring three-dimensional shape of silica glass crucible, the manufacture method of monocrystalline silicon
JP5657515B2 (en) * 2011-12-27 2015-01-21 株式会社Sumco Method for measuring three-dimensional shape of silica glass crucible, method for producing silicon single crystal
JP5923644B2 (en) * 2015-05-13 2016-05-24 株式会社Sumco Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, method for producing silicon single crystal
JP7401211B2 (en) 2019-06-25 2023-12-19 ファナック株式会社 Distance measuring device with external light illuminance measurement function and method for measuring external light illuminance

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187406A (en) * 1988-01-22 1989-07-26 Rikagaku Kenkyusho Method and device for detecting position of equal-interval interference fringe
DE3907430C1 (en) * 1988-12-23 1991-03-21 Klaus 8206 Bruckmuehl De Pfister
JPH08271848A (en) * 1995-03-29 1996-10-18 Hitachi Ltd Liquid crystal projector
JP4040825B2 (en) * 2000-06-12 2008-01-30 富士フイルム株式会社 Image capturing apparatus and distance measuring method
JP3621994B2 (en) * 2002-10-31 2005-02-23 独立行政法人産業技術総合研究所 Disturbance measuring device and high-precision optical interference measuring device in optical interferometer
JP4409331B2 (en) * 2004-03-30 2010-02-03 株式会社トプコン Optical image measuring device
JP4409334B2 (en) * 2004-03-31 2010-02-03 株式会社トプコン Optical image measuring device
JP4410603B2 (en) * 2004-05-21 2010-02-03 日本放送協会 3D information detection method and apparatus
JP4466260B2 (en) * 2004-07-30 2010-05-26 パナソニック電工株式会社 Image processing device
US8330814B2 (en) * 2004-07-30 2012-12-11 Panasonic Corporation Individual detector and a tailgate detection device
JP4939765B2 (en) * 2005-03-28 2012-05-30 株式会社日立製作所 Displacement measuring method and apparatus
JP4200328B2 (en) * 2005-04-18 2008-12-24 パナソニック電工株式会社 Spatial information detection system

Also Published As

Publication number Publication date
JP2009002823A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP5341351B2 (en) Measuring apparatus and method based on basic principle of confocal microscope system
JP5133614B2 (en) 3D shape measurement system
US9494418B2 (en) 3D dental camera for recording surface structures of an object measured by means of triangulation
RU2523092C2 (en) Method and apparatus for measuring profile of spherical incurved, particularly, cylindrical bodies
US9267790B2 (en) Measuring device of measurement object, calculating device, measurement method, and method for producing item
US10488501B2 (en) Device and method for calibrating a light propagation time camera
WO2017169732A1 (en) Measurement device and measurement method
US11493331B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring computer-readable storage medium, and three-dimensional shape measuring computer-readable storage device
JP2015175629A (en) Distance measuring apparatus, and distance measuring system
WO2012057284A1 (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, manufacturing method of structure, and structure manufacturing system
JP2020515811A (en) System for characterizing the surroundings of a vehicle
JP2018179918A (en) Shape measurement system, and shape measurement method
JP5587756B2 (en) Optical distance measuring device, distance measuring method of optical distance measuring device, and distance measuring program
JP6273109B2 (en) Optical interference measurement device
JP2017125707A (en) Measurement method and measurement device
WO2016002490A1 (en) Wavefront measurement device, and wavefront measurement method
JP6019886B2 (en) Shape measuring device
JP7438555B2 (en) 3D measurement method and 3D measurement device
CN204330129U (en) The brightness detection instrument of built-in light source
KR102040629B1 (en) Depth Extraction Apparatus Using Camera
JP2018159671A (en) Measuring device and program
JP2013228263A (en) White-color interferometer, image processing method and image processing program
US10921248B2 (en) Measurement apparatus and measurement method
JP2010210507A (en) Measuring device and measuring method
US3713739A (en) Method for gauging the linear cross-sectional dimensions of moving rolled products and an apparatus for its realization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5133614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees