JP5130791B2 - Water-based paint composition for wood and antifouling treated wood using the same - Google Patents

Water-based paint composition for wood and antifouling treated wood using the same Download PDF

Info

Publication number
JP5130791B2
JP5130791B2 JP2007151468A JP2007151468A JP5130791B2 JP 5130791 B2 JP5130791 B2 JP 5130791B2 JP 2007151468 A JP2007151468 A JP 2007151468A JP 2007151468 A JP2007151468 A JP 2007151468A JP 5130791 B2 JP5130791 B2 JP 5130791B2
Authority
JP
Japan
Prior art keywords
wood
acid
cationic
parts
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007151468A
Other languages
Japanese (ja)
Other versions
JP2008303291A (en
Inventor
弘之 武衛
大英 中熊
知宏 木村
晃 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2007151468A priority Critical patent/JP5130791B2/en
Publication of JP2008303291A publication Critical patent/JP2008303291A/en
Application granted granted Critical
Publication of JP5130791B2 publication Critical patent/JP5130791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、有機成分と無機成分とを含有する木材用水性塗料組成物、及びこれを用いて得られる木材の質感を保持した防汚性等に優れる防汚処理木材に関する。   The present invention relates to an aqueous coating composition for wood containing an organic component and an inorganic component, and an antifouling-treated wood excellent in antifouling property and the like, which retains the texture of wood obtained using the same.

内装用途の木質建材は塗装品と未塗装品に大別される。塗装品は、着色により色調を揃え、塗装塗膜による保護層によって耐磨耗性や耐汚染性・耐薬品性などを付与することができる。特にフローリング用途では、基材が平面であり塗工が容易であることと、塗装膜によって表面を保護することができるため、素材の表面材を0.3mm程度まで薄くする事で大幅なコストダウンを図り、塗装複合フローリングとして大量に供給されてきた。このような塗装品用の木工用塗料としては、例えば、フッ素樹脂水分散体に顔料を配合したものが提案されている(例えば、特許文献1参照。)。しかしながら、木目を残すためには、顔料の配合割合の調整が必要であり、木材特有の凹凸感を損なわずに意匠性が高いものを簡便な方法で得ることは難しい。   Wooden building materials for interior use are broadly divided into painted and unpainted products. Painted products have a uniform color tone and can be given abrasion resistance, contamination resistance, chemical resistance, and the like by a protective layer of a paint film. Especially in flooring applications, since the base material is flat and easy to coat, and the surface can be protected by a coating film, the surface material of the material can be reduced to about 0.3 mm, which greatly reduces costs. Have been supplied in large quantities as painted composite flooring. As such a woodworking paint for a coated product, for example, a mixture of a fluororesin water dispersion and a pigment has been proposed (for example, see Patent Document 1). However, in order to leave the grain, it is necessary to adjust the blending ratio of the pigment, and it is difficult to obtain a high design property without impairing the unevenness characteristic of wood.

木質材料は細孔構造を持ち汚染物質を吸収し材料内に拡散させる性質がある。従って、未塗装品の場合には、施工後、無垢(未塗装)建材用のワックスなどで保護層を設け、また定期的に該保護層を塗り直す等のメンテナンスが必要である。メンテナンスを行っていても、一度汚染物質が保護層を破って基材内部に浸透・拡散してしまうとその除去が困難である点から、未塗装品は汚染しにくい素材を厳選する必要があり、結果としてトータルコストが高くなる点から、高級住宅向けにして供給されてきた。   Woody material has a pore structure and absorbs contaminants and diffuses into the material. Therefore, in the case of an unpainted product, maintenance such as providing a protective layer with a wax for solid (unpainted) building material after construction and periodically repainting the protective layer is necessary. Even if maintenance is performed, it is difficult to remove contaminants once they break through the protective layer and penetrate and diffuse inside the substrate. As a result, it has been supplied for high-end homes due to the high total cost.

しかしながら、趣向の多様化に伴い、一般住宅向けにも木質材料の視覚・触覚的な素材感を残した内装材の提供が要求されている。従って、使用可能な材料の種類を増やし、より安価な製品を供給可能にすることと、メンテナンスの簡素化を図ることのためには、木材の視覚・触覚的な素材感を残しながら、特に内部への汚染物質の吸収・拡散を抑えて除去不可能な汚染痕を残さない加工技術が要求されている。   However, with the diversification of tastes, it is required to provide interior materials that leave the visual and tactile feel of wooden materials for general housing. Therefore, in order to increase the types of materials that can be used, to supply cheaper products, and to simplify maintenance, while maintaining the visual and tactile texture of wood, There is a demand for processing technology that suppresses the absorption and diffusion of contaminants to the surface, leaving no unremovable contamination marks.

一方、コーティング材料などの分野では、柔軟性・成形加工性などの取扱い性と、硬さ・耐熱性・耐候性等の耐用性とを同時に実現する必要性が高まっており、有機ポリマーと無機ポリマーとの有機無機複合塗膜が種々提案されている(例えば、特許文献2参照。)。特許文献2で提案された水性塗料組成物は、水酸基を有する有機化合物の水混和物とポリアルコキシシランと触媒とを含む組成物であり、透明均一で硬質かつ耐水性を有する有機無機複合塗膜を得ることができるため、木材に塗布することができれば、木目を残しながら耐水性を付与することが可能と考えられる。しかし、該組成物は保存中にもポリアルコキシシランの加水分解と縮合反応が進行し続けるために保存安定性が悪く、また、得られる塗膜は鉛筆硬度(2H〜6H程度)を満たすレベルでの硬さでしかなく、十分な耐摩耗性を発現するものではない。更に、アミノプラスト樹脂等の硬化剤を併用する硬化反応である点から、薄膜での塗装が困難であり、且つ100℃以上の高温を必要とし、これを木材に塗布し乾燥しようとすると、木材自体の変形を引き起こす可能性があるため、木材用途に展開することが不可能である。   On the other hand, in the field of coating materials and the like, there is an increasing need to simultaneously realize handling properties such as flexibility and moldability and durability such as hardness, heat resistance, and weather resistance. Various organic-inorganic composite coating films have been proposed (for example, see Patent Document 2). The water-based coating composition proposed in Patent Document 2 is a composition containing a water admixture of an organic compound having a hydroxyl group, a polyalkoxysilane, and a catalyst, and is a transparent, uniform, hard and water-resistant organic-inorganic composite coating film Therefore, if it can be applied to wood, it is considered possible to impart water resistance while leaving the grain. However, the composition has poor storage stability because the hydrolysis and condensation reaction of the polyalkoxysilane continues to proceed during storage, and the resulting coating film has a level that satisfies the pencil hardness (about 2H to 6H). However, it does not exhibit sufficient wear resistance. Furthermore, since it is a curing reaction using a curing agent such as an aminoplast resin, coating with a thin film is difficult, and a high temperature of 100 ° C. or higher is required. Since it can cause deformation of itself, it cannot be deployed in wood applications.

特開2004−137445号公報JP 2004-137445 A 特開平8−319457号公報JP-A-8-319457

上記実情に鑑み、本発明が解決しようとする課題は、木材特有の凹凸感や木目を損なわずに、特に内部への汚染物質の吸収・拡散を抑えて除去不可能な汚染痕を残さない木材用水性塗料組成物及びこれを用いて得られる防汚処理木材を提供することにある。   In view of the above circumstances, the problem to be solved by the present invention is wood that does not leave a contamination mark that cannot be removed by suppressing the absorption and diffusion of contaminants into the interior, without impairing the texture and grain peculiar to wood. Another object of the present invention is to provide a water-based paint composition for use and an antifouling treated wood obtained using the same.

上記の課題を解決するために、本発明者らは、鋭意検討を行ったところ、特定の構造単位を有するカチオン性の樹脂の存在下で、金属アルコキシドのゾル−ゲル反応を行うことによって、ナノスケールで有機成分と無機成分との複合化を達成することができ、これを木材上に形成することにより上記性能を有する木材が得られることを見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, by performing a sol-gel reaction of a metal alkoxide in the presence of a cationic resin having a specific structural unit , It was found that a composite of an organic component and an inorganic component can be achieved on a scale, and that the wood having the above performance can be obtained by forming it on the wood, and the present invention has been completed.

即ち、本発明は、下記一般式(I)で表される構造単位を有するカチオン性樹脂(A)の水性分散体と、金属アルコキシド又はその縮合物(B)と、酸触媒(C)とを含有することを特徴とする木材用水性塗料組成物を提供するものである。更に、本発明は、カチオン性樹脂の水性分散体と、金属アルコキシド又はその縮合物と、酸触媒とを含有する木材用水性塗料組成物を木材上に塗布し、乾燥して得られることを特徴とする防汚処理木材を提供するものである。 That is, the present invention comprises an aqueous dispersion of a cationic resin (A) having a structural unit represented by the following general formula (I), a metal alkoxide or a condensate thereof (B), and an acid catalyst (C). It is intended to provide an aqueous paint composition for wood characterized by containing. Furthermore, the present invention is obtained by applying an aqueous coating composition for wood containing an aqueous dispersion of a cationic resin, a metal alkoxide or a condensate thereof, and an acid catalyst onto wood and drying it. The antifouling treated wood is provided.

Figure 0005130791
Figure 0005130791
(式(I)中、R(In the formula (I), R 1 は脂肪族環式構造を含んでいてもよいアルキレン鎖、2価フェノール類の残基、又はポリオキシアルキレン鎖であり、RIs an alkylene chain optionally containing an aliphatic cyclic structure, a residue of a dihydric phenol, or a polyoxyalkylene chain, and R 2 及びRAnd R 3 は、互いに独立して脂肪族環式構造を含んでいてもよいアルキル基であり、RAre alkyl groups which may contain an aliphatic cyclic structure independently of each other, and R 4 は水素原子又は四級化反応により導入された四級化剤の残基であり、X−はアニオン性の対イオンである。)Is a hydrogen atom or a residue of a quaternizing agent introduced by a quaternization reaction, and X- is an anionic counter ion. )

本発明によれば、保存安定性が良好な有機成分と無機成分とを含有する木材用水性塗料組成物を提供することができる。該木材用水性塗料組成物を用いて得られる処理木材は、高い耐磨耗性、耐水性、防汚性をバランス良く有しながらも、木材特有の凹凸感や木目を損なうことがないため、高級志向が求められる用途等に好適に用いることができる。   ADVANTAGE OF THE INVENTION According to this invention, the water-based coating composition for wood containing the organic component and inorganic component with favorable storage stability can be provided. Treated wood obtained by using the water-based paint composition for wood has a high balance of wear resistance, water resistance, and antifouling properties, but does not impair the unevenness and grain characteristic of wood. It can be suitably used for applications that require luxury orientation.

本発明の木材用水性塗料組成物は、特定の構造単位を有するカチオン性樹脂(A)の水性分散体と、金属アルコキシド又はその縮合物(B)と、酸触媒(C)とを含有することを特徴とする。 The aqueous coating composition for wood according to the present invention contains an aqueous dispersion of a cationic resin (A) having a specific structural unit, a metal alkoxide or a condensate thereof (B), and an acid catalyst (C). It is characterized by.

自然界での珪藻類、スポンジ類生き物(いわゆる、バイオシリカ)の多くは、シリカと有機物質との複合膜で自分たちの細胞を保護していることが最近の研究から知られている。特に、バイオシリカの複合膜では、シリカがカチオン性ポリマーまたはカチオン性タンパク質と複合されることにより、その膜の機能が発現されることが示唆された(W.E.G.Muller Ed.,Silicon Biomineralizattion:Biology−Biotechnology−Molecular Biology−Biotechnology,2003,Springer)。カチオン性ポリマー又はカチオン性タンパク質の働きについて未だに完全解明されてないが、基本的に、シリカ縮合化における触媒効果、シリカゾル形成とゾル融合における空間次元の誘導(即ち、一定形状のハイブリッド膜を形成すること)、ナノレベルハイブリッド構造形成におけるポリマーとシリカとの接着効果などを有すると考えられている。   Recent studies have shown that many diatom and sponge creatures in nature (so-called biosilica) protect their cells with a composite membrane of silica and organic matter. In particular, in the composite membrane of biosilica, it was suggested that the function of the membrane is expressed by combining silica with a cationic polymer or a cationic protein (WEGG Muller Ed., Silicon). Biomineralization: Biology-Biotechnology-Molecular Biology-Biotechnology, 2003, Springer). Although the function of the cationic polymer or the cationic protein has not been fully elucidated yet, basically, the catalytic effect in the silica condensation, the induction of the spatial dimension in the silica sol formation and sol fusion (that is, to form a hybrid membrane with a fixed shape) It is considered to have an adhesive effect between a polymer and silica in forming a nano-level hybrid structure.

有機無機複合塗膜創製において、バイオシリカの仕組みを理解した上での設計思想は極めて重要であると考えられる。特に、バイオシリカに複合される多くのカチオン性タンパク質は、親水表面を持っていても、実は水中不溶である特徴を有する。本発明者らは、この点に着目し、それをカチオン性の表面を持つ樹脂粒子と同類化することを考案した。即ち、本発明では、カチオン性ポリマーとしてカチオン性樹脂(A)の水性分散体を用いることにより、該カチオン性樹脂の存在下で金属アルコキシド又はその縮合物(B)の酸触媒(C)によるゾル−ゲル反応を行うことで、有機成分であるカチオン性樹脂からなる微粒子と、無機成分である金属アルコキシド又はその縮合物から得られる金属酸化物のマトリックスとを、高度に複合化させ得ることを見出したことに基づくものである。   In creating organic-inorganic composite coatings, the design concept based on an understanding of the mechanism of biosilica is considered to be extremely important. In particular, many cationic proteins complexed with biosilica have the characteristic of being insoluble in water even if they have a hydrophilic surface. The present inventors paid attention to this point, and devised to associate it with resin particles having a cationic surface. That is, in the present invention, by using an aqueous dispersion of the cationic resin (A) as the cationic polymer, a sol of the metal alkoxide or its condensate (B) by the acid catalyst (C) in the presence of the cationic resin. -It has been found that by performing a gel reaction, fine particles made of a cationic resin as an organic component and a metal oxide matrix obtained from a metal alkoxide or a condensate thereof as an inorganic component can be highly complexed. It is based on that.

本発明の木材用水性塗料組成物において、金属アルコキシド又はその縮合物(B)の初期加水分解は酸触媒(C)によって促進されるが、その後の縮合反応はカチオン性樹脂(A)により抑制され、系全体は、金属ゾル表面のヒドロキシ基と、カチオン性樹脂(A)水性分散体の樹脂微粒子表面のカチオンとのイオン的な相互作用に支配される。その結果、ゾルの成長は一定の大きさで止まり、カチオン性樹脂(A)水性分散体の微粒子表面にアニオンゾルが濃縮され、安定性が良好な水性分散液を得ることができる。この水性分散液を塗装することにより、金属酸化物を連続相とするゲル化膜が形成され、その連続相中に、カチオン性樹脂(A)からなる樹脂微粒子が凝集されずに粒子一個一個が均一に分散し複合化された、ナノオーダーの繰り返し構造を有する塗膜を得ることができる。このようにして得られた塗膜では、有機成分と無機成分の複合効果が最大限に発現され、耐摩耗性・耐水性・耐汚染性などの塗膜物性が大きく向上する。このような構造およびその構造由来の効果は、アニオン性樹脂水性分散体やノニオン性樹脂水性分散体を用いることでは得られないものである。   In the aqueous coating composition for wood of the present invention, the initial hydrolysis of the metal alkoxide or its condensate (B) is promoted by the acid catalyst (C), but the subsequent condensation reaction is suppressed by the cationic resin (A). The entire system is governed by ionic interactions between the hydroxy groups on the surface of the metal sol and the cations on the surface of the resin fine particles of the cationic resin (A) aqueous dispersion. As a result, the growth of the sol stops at a certain size, the anion sol is concentrated on the surface of the fine particles of the cationic resin (A) aqueous dispersion, and an aqueous dispersion having good stability can be obtained. By coating this aqueous dispersion, a gelled film having a metal oxide as a continuous phase is formed. In the continuous phase, the resin fine particles made of the cationic resin (A) are not aggregated, and each particle is individually agglomerated. It is possible to obtain a coating film having a nano-order repeating structure that is uniformly dispersed and compounded. In the coating film thus obtained, the combined effect of the organic component and the inorganic component is maximized, and the coating film properties such as wear resistance, water resistance and stain resistance are greatly improved. Such a structure and the effect derived from the structure cannot be obtained by using an aqueous anionic resin dispersion or an aqueous nonionic resin dispersion.

以下、本発明で用いる材料について詳述する。
〔カチオン性樹脂(A)〕
本発明で用いるカチオン性樹脂(A)とは、カチオン性の官能基を有する有機化合物であって、水性媒体中で安定に分散した水性分散体を形成するものである。前記水性媒体としては、水を主成分とする均一溶媒系であれば特に限定はされない。このような溶媒系としては、メタノール、エタノール、イソプロパノール、ブタノールといったアルコール系の水溶性有機溶媒と水とを混和させた溶媒系や、テトラヒドロフラン、ブチルセロソルブといったエーテル系の水溶性有機溶媒と水とを混和させた溶媒系が挙げられる。この中で最も好適な水性媒体としては、イソプロパノール/水の混合溶媒系である。また、このような水溶性の有機溶媒を添加する量としては、木材用水性塗料組成物全体中に含まれる水の量に対して、50質量%以下にすることが好ましく、特に20質量%以下にすることが好ましい。
Hereinafter, materials used in the present invention will be described in detail.
[Cationic resin (A)]
The cationic resin (A) used in the present invention is an organic compound having a cationic functional group, and forms an aqueous dispersion that is stably dispersed in an aqueous medium. The aqueous medium is not particularly limited as long as it is a homogeneous solvent system mainly containing water. Examples of such solvent systems include a solvent system in which an alcohol-based water-soluble organic solvent such as methanol, ethanol, isopropanol, and butanol is mixed with water, and an ether-based water-soluble organic solvent such as tetrahydrofuran and butyl cellosolve in water. And the solvent system used. The most preferred aqueous medium is an isopropanol / water mixed solvent system. The amount of the water-soluble organic solvent added is preferably 50% by mass or less, particularly 20% by mass or less, based on the amount of water contained in the whole wood-based water-based coating composition. It is preferable to make it.

前記カチオン性樹脂(A)は水性媒体中で分散するものであり、その分散した樹脂粒子の平均粒子径としては、得られる複合塗膜の耐汚染性、耐磨耗性、および透明性を兼備する点から、0.005μm〜1μmであることが好ましく、より好ましくは0.01〜0.4μmである。   The cationic resin (A) is dispersed in an aqueous medium, and the average particle size of the dispersed resin particles combines the stain resistance, abrasion resistance, and transparency of the resulting composite coating film. From the point to do, it is preferable that it is 0.005 micrometer-1 micrometer, More preferably, it is 0.01-0.4 micrometer.

前記カチオン性の官能基としては、例えば、第一級から第三級のアミノ基や、ホスフィノ基の塩酸、硝酸、酢酸、硫酸、プロピオン酸、酪酸、(メタ)アクリル酸、マレイン酸等の酸との反応物、四級アンモニウム基、四級ホスホニウム基などが挙げられる。   Examples of the cationic functional group include primary to tertiary amino groups and phosphino groups such as hydrochloric acid, nitric acid, acetic acid, sulfuric acid, propionic acid, butyric acid, (meth) acrylic acid, and maleic acid. And the like, quaternary ammonium groups, quaternary phosphonium groups, and the like.

前記カチオン性の官能基の含有量としては、カチオン性樹脂(A)が水性媒体中で溶解することがなく、安定な分散体を形成できる範囲であれば、特に限定されるものではない。従って、カチオン性樹脂(A)の分子量・分岐度等のカチオン性の官能基以外の構造等によって、好ましいカチオン性官能基の含有量が異なるものであるが、通常、該カチオン性樹脂(A)固形分中に、カチオン当量として0.01〜1当量/kg含有していれば水性分散体とすることができ、特にカチオン性樹脂(A)の水性媒体中への分散性と得られる塗膜の耐水性とのバランスに優れる点から、0.02〜0.8当量/kg含有していることが好ましく、0.03〜0.6当量/kg含有していることが特に好ましい。   The content of the cationic functional group is not particularly limited as long as the cationic resin (A) does not dissolve in an aqueous medium and can form a stable dispersion. Therefore, the content of the preferred cationic functional group varies depending on the structure other than the cationic functional group such as the molecular weight and the degree of branching of the cationic resin (A). Usually, the cationic resin (A) If the solid content contains 0.01 to 1 equivalent / kg as a cation equivalent, an aqueous dispersion can be obtained. In particular, the dispersibility of the cationic resin (A) in an aqueous medium and the resulting coating film can be obtained. From the point which is excellent in balance with water resistance, it is preferable to contain 0.02-0.8 equivalent / kg, and it is especially preferable to contain 0.03-0.6 equivalent / kg.

カチオン性樹脂(A)のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算値で求められる数平均分子量(Mn)としては、カチオン性樹脂(A)が水性媒体中で溶解せずに安定な分散体を形成できる範囲であれば特に限定されるものではなく、通常1,000〜5,000,000の範囲であり、好ましくは、5,000〜1,000,000の範囲である。   As the number average molecular weight (Mn) obtained by gel permeation chromatography (GPC) of the cationic resin (A) in terms of polystyrene, the cationic resin (A) is a stable dispersion without being dissolved in the aqueous medium. If it is the range which can form, it will not specifically limit, Usually, it is the range of 1,000-5,000,000, Preferably, it is the range of 5,000-1,000,000.

カチオン性樹脂(A)としては、ウレタン樹脂を使用することができる。 It is a cationic resin (A), the can be used urethane resins.

前記ウレタン樹脂は、製造の容易さ、後述する金属酸化物(B’)との親和性の良さという観点から好適である。このウレタン樹脂を、カチオン性ウレタン樹脂(A−1)と以下、呼称する。 The urethane resin, ease of manufacture, a viewpoint RaYoshimi suitable that the affinity of the goodness of the later-described metal oxide (B '). The this urethane resin, the following cationic urethane resin (A-1), referred to.

カチオン性ウレタン樹脂(A−1)は、ポリイソシアネート、ポリオール、及び必要に応じて併用される鎖伸長剤からなる、カチオン性の官能基を有するウレタン樹脂である。   The cationic urethane resin (A-1) is a urethane resin having a cationic functional group, which is composed of a polyisocyanate, a polyol, and a chain extender used in combination as necessary.

カチオン性ウレタン樹脂(A−1)の原料として用いることができるポリイソシアネートとしては、有機ポリイソシアネートとして、例えば、鎖状脂肪族ポリイソシアネート、環状脂肪族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネート、アミノ酸誘導体から得られるポリイソシアネート等の各種のものを例示できる。   Examples of the polyisocyanate that can be used as the raw material for the cationic urethane resin (A-1) include organic polyisocyanates such as chain aliphatic polyisocyanates, cyclic aliphatic polyisocyanates, aromatic polyisocyanates, and aromatic aliphatic polyisocyanates. Various things, such as polyisocyanate obtained from an isocyanate and an amino acid derivative, can be illustrated.

鎖状脂肪族ポリイソシアネートの具体例としては、メチレンジイソシアネート、イソプロピレンジイソシアネート、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、ダイマー酸が有するカルボキシル基をイソシアネート基に置き換えたダイマー酸ジイソシアネート等が挙げられる。   Specific examples of the chain aliphatic polyisocyanate include methylene diisocyanate, isopropylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexa Examples include methylene diisocyanate and dimer acid diisocyanate in which a carboxyl group of dimer acid is replaced with an isocyanate group.

環状脂肪族ポリイソシアネートの具体例としては、シクロヘキサン−1,4−ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、1,3−ジ(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート等が挙げられる。   Specific examples of the cycloaliphatic polyisocyanate include cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,3-di (isocyanatemethyl) cyclohexane, methylcyclohexane diisocyanate, and the like. .

芳香族ポリイソシアネートの具体例としては、4,4’−ジフェニルジメチルメタンジイソシアネート等のジアルキルジフェニルメタンジイソシアネート、4,4’−ジフェニルテトラメチルメタンジイソシアネート等のテトラアルキルジフェニルメタンジイソシアネート、1,5−ナフチレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、4,4’−ジベンジルイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート等が挙げられる。   Specific examples of the aromatic polyisocyanate include dialkyldiphenylmethane diisocyanate such as 4,4′-diphenyldimethylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate such as 4,4′-diphenyltetramethylmethane diisocyanate, 1,5-naphthylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-dibenzyl isocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, etc. .

芳香脂肪族ポリイソシアネートの具体例としては、キシリレンジイソシアネート、m−テトラメチルキシリレンジイソシアネート等が挙げられる。また、アミノ酸誘導体から得られるポリイソシアネートの具体例としては、リジンジイソシアネート等が挙げられる。   Specific examples of the araliphatic polyisocyanate include xylylene diisocyanate and m-tetramethylxylylene diisocyanate. Specific examples of polyisocyanates obtained from amino acid derivatives include lysine diisocyanate.

カチオン性ウレタン樹脂(A−1)の原料として用いることができるポリオールとしては、一分子中に2個以上のヒドロキシ基を有する各種化合物を挙げることができ、得られる有機無機複合塗膜の可とう性に優れる点から、高分子ポリオールを使用するのが好ましい。高分子ポリオールとしては、例えば、酸化エチレン、酸化プロピレン、酸化イソブチレン、テトラヒドロフラン等の重合体または共重合体等のポリエーテルポリオール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、オクタンジオール、1,4−ブチンジオール、ジプロピレングリコール等の飽和もしくは不飽和の各種の低分子グリコール類またはn−ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル等のアルキルグリシジルエーテル類、バーサティック酸グリシジルエステル等のモノカルボン酸グリシジルエステル類と、アジピン酸、マレイン酸、フマル酸、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、しゅう酸、マロン酸、グルタル酸、ピメリン酸、アゼライン酸、セバシン酸、スベリン酸等の二塩基酸またはこれらに対応する酸無水物やダイマー酸などを脱水縮合して得られるポリエステルポリオール類;環状エステル化合物を開環重合して得られるポリエステルポリオール類;その他ポリカーボネートポリオール類、ポリブタジエンジオール、ポリイソプレンジオール、ポリクロロプレンジオール、ポリブタジエングリコールの水素化物、ポリイソプレングリコールの水素化物等のポリオレフィンジオール類、ビスフェノールAに酸化エチレンまたは酸化プロピレンを付加して得られたグリコール類、2つ以上のヒドロキシ基およびメルカプト基等の連鎖移動基を1つ有する連鎖移動剤の存在下にアルキル(メタ)アクリレート等の各種のラジカル重合性不飽和単量体を重合させて得られるアクリルポリマー等のマクロモノマー、ポリジメチルシロキサン等のポリアルコキシシラン類、ヒマシ油ポリオール、塩素化ポリプロピレンポリオール等が挙げられる。   Examples of the polyol that can be used as a raw material of the cationic urethane resin (A-1) include various compounds having two or more hydroxy groups in one molecule, and the resulting organic-inorganic composite coating film is flexible. From the viewpoint of excellent properties, it is preferable to use a polymer polyol. Examples of the polymer polyol include polyether polyols such as polymers or copolymers such as ethylene oxide, propylene oxide, isobutylene oxide, and tetrahydrofuran; ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1 , 3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, octanediol, 1, Various saturated or unsaturated low molecular weight glycols such as 4-butynediol and dipropylene glycol, or alkyl glycidyl ethers such as n-butyl glycidyl ether and 2-ethylhexyl glycidyl ether, glycated versatic acid Monocarboxylic acid glycidyl esters such as ester, adipic acid, maleic acid, fumaric acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, azelaic acid, sebacic acid Polyester polyols obtained by dehydration condensation of dibasic acids such as suberic acid or acid anhydrides or dimer acids corresponding thereto; polyester polyols obtained by ring-opening polymerization of cyclic ester compounds; other polycarbonate polyols Polyolefin diols such as polybutadiene diol, polyisoprene diol, polychloroprene diol, polybutadiene glycol hydride, polyisoprene glycol hydride, and the like obtained by adding ethylene oxide or propylene oxide to bisphenol A In the presence of a chain transfer agent having one chain transfer group such as two or more hydroxy groups and mercapto groups, various radically polymerizable unsaturated monomers such as alkyl (meth) acrylates are polymerized. Examples thereof include macromonomers such as acrylic polymers, polyalkoxysilanes such as polydimethylsiloxane, castor oil polyol, chlorinated polypropylene polyol, and the like.

前述のポリイソシアネートとポリオールとを用いて、本発明で用いることができるカチオン性ウレタン樹脂(A−1)の水性分散体を製造する方法としては、特に限定されるものではないが、カチオン性の官能基を該ウレタン樹脂(A−1)の主鎖に導入する方法としては、例えば、特開2002−307811号公報に記載のように、前記ポリイソシアネートと前記ポリオールと、分子中に三級アミノ基を有する鎖伸長剤を用いてウレタン樹脂を合成し、該樹脂中の三級アミノ基を酸で中和もしくは四級塩化した後に水性媒体中に分散させる方法や、特開2001−64346号公報に記載のように、前記ポリイソシアネートと前記ポリオールと、一級と二級のアミノ基を有するポリアミン化合物とを反応させてウレタン樹脂を合成し、該樹脂中の二級アミンを中和して水性媒体中に分散させる方法等を挙げることができる。   The method for producing an aqueous dispersion of the cationic urethane resin (A-1) that can be used in the present invention using the above-described polyisocyanate and polyol is not particularly limited. As a method for introducing a functional group into the main chain of the urethane resin (A-1), for example, as described in JP-A No. 2002-307811, the polyisocyanate, the polyol, and a tertiary amino acid in the molecule are used. A urethane resin is synthesized using a chain extender having a group, a tertiary amino group in the resin is neutralized or quaternized with an acid, and then dispersed in an aqueous medium, or JP-A-2001-64346 As described above, a urethane resin is synthesized by reacting the polyisocyanate, the polyol, and a polyamine compound having primary and secondary amino groups, And a method of dispersing in an aqueous medium or the like to neutralize the secondary amine in the lipid.

また、カチオン性ウレタン樹脂(A−1)に含まれるカチオン性を有する官能基を該樹脂の最も長い結合長に対して分岐した部分(側鎖)に有する樹脂は、該カチオン性の官能基の自由度が大きいため、水性分散体とするために必要な水性媒体との会合構造を容易に形成することが可能であり、より安定な水性分散体が得られる点、更には、金属アルコキシド又はその縮合物(B)のゾル−ゲル反応によって生じるアニオンゾルの樹脂粒子表面への効率的な濃縮が可能で、より保存安定性に優れる木材用水性塗料組成物が得られる点から、本発明で好適に用いることができる。   Further, the resin having a cationic functional group contained in the cationic urethane resin (A-1) in a portion (side chain) branched with respect to the longest bond length of the resin is the cationic functional group. Since the degree of freedom is large, it is possible to easily form an association structure with an aqueous medium necessary for obtaining an aqueous dispersion, and a more stable aqueous dispersion can be obtained. It is suitable in the present invention from the point that an anionic sol produced by the sol-gel reaction of the condensate (B) can be efficiently concentrated on the resin particle surface, and a wood-based aqueous coating composition having better storage stability can be obtained. Can be used.

本発明に用いるカチオン樹脂(A)としては、前記側鎖にカチオン性の官能基を有するカチオン性ウレタン樹脂である下記一般式(I)で表される構造単位を含有するカチオン性ウレタン樹脂(a)を用いる The cationic resin (A) used in the present invention is a cationic urethane resin containing a structural unit represented by the following general formula (I), which is a cationic urethane resin having a cationic functional group in the side chain. a) is used .

Figure 0005130791
Figure 0005130791
(式(I)中、R(In the formula (I), R 1 は脂肪族環式構造を含んでいてもよいアルキレン鎖、2価フェノール類の残基、又はポリオキシアルキレン鎖であり、RIs an alkylene chain optionally containing an aliphatic cyclic structure, a residue of a dihydric phenol, or a polyoxyalkylene chain, and R 2 及びRAnd R 3 は、互いに独立して脂肪族環式構造を含んでいてもよいアルキル基であり、RAre alkyl groups which may contain an aliphatic cyclic structure independently of each other, and R 4 は水素原子又は四級化反応により導入された四級化剤の残基であり、X−はアニオン性の対イオンである。)Is a hydrogen atom or a residue of a quaternizing agent introduced by a quaternization reaction, and X- is an anionic counter ion. )

前記構造単位を有するカチオン性ウレタン樹脂(a)の製造方法としては、特に限定されるものではないが、工業的に入手容易でかつ安価な原料を用いる製造方法としては、下記一般式[IV]で示される1分子中にエポキシ基を2個有する化合物(a−1)と二級アミン(a−2)とを反応させて得られる三級アミノ基含有ポリオールと、前述のポリイソシアネートとを反応させる方法が最も有用である。   The production method of the cationic urethane resin (a) having the structural unit is not particularly limited, but as a production method using an industrially easily available and inexpensive raw material, the following general formula [IV] A tertiary amino group-containing polyol obtained by reacting a compound (a-1) having two epoxy groups in one molecule and a secondary amine (a-2) shown in FIG. The method of letting go is the most useful.

Figure 0005130791
(式[IV]中、R1は、脂肪族環式構造を含んでいてもよいアルキレン鎖、2価フェノール類の残基、又はポリオキシアルキレン鎖を表す。)
Figure 0005130791
(In the formula [IV], R1 represents an alkylene chain which may contain an aliphatic cyclic structure, a residue of a dihydric phenol, or a polyoxyalkylene chain.)

前記1分子中にエポキシ基を2個有する化合物(a−1)としては、例えば、下記の化合物を、単独で、あるいは2種以上を併用して使用することができる。   As the compound (a-1) having two epoxy groups in one molecule, for example, the following compounds can be used alone or in combination of two or more.

前記一般式[IV]中のRが、脂肪族環式構造を含んでいてもよいアルキレン鎖であるものとしては、例えば、エタンジオール−1,2−ジグリシジルエーテル、プロパンジオール−1,2−ジグリシジルエーテル、プロパンジオール−1,3−ジグリシジルエーテル、ブタンジオール−1,4−ジグリシジルエーテル、ペンタンジオール−1,5−ジグリシジルエーテル、3−メチル−ペンタンジオール−1,5−ジグリシジルエーテル、ネオペンチルグリコール−ジグリシジルエーテル、ヘキサンジオール−1,6−ジグリシジルエーテル、ポリブタジエングリコール−ジグリシジルエーテル、シクロヘキサンジオール−1,4−ジグリシジルエーテル、2,2−ビス(4−ヒドロキシシクロヘキシル)−プロパン(水素添加ビスフェノールA)のジグリシジルエーテル、水素添加ジヒドロキシジフェニルメタン異性体混合物(水素添加ビスフェノールF)のジグリシジルエーテル等を挙げることができる。 Examples of those in which R 1 in the general formula [IV] is an alkylene chain which may contain an aliphatic cyclic structure include ethanediol-1,2-diglycidyl ether, propanediol-1,2 -Diglycidyl ether, propanediol-1,3-diglycidyl ether, butanediol-1,4-diglycidyl ether, pentanediol-1,5-diglycidyl ether, 3-methyl-pentanediol-1,5-di Glycidyl ether, neopentyl glycol-diglycidyl ether, hexanediol-1,6-diglycidyl ether, polybutadiene glycol-diglycidyl ether, cyclohexanediol-1,4-diglycidyl ether, 2,2-bis (4-hydroxycyclohexyl) ) -Propane (hydrogenated bisphenol Examples thereof include diglycidyl ether of diol A), diglycidyl ether of hydrogenated dihydroxydiphenylmethane isomer mixture (hydrogenated bisphenol F), and the like.

また、前記一般式[IV]中のRが、2価フェノール類の残基であるものとしては、例えば、レゾルシノール−ジグリシジルエーテル、ハイドロキノン−ジグリシジルエーテル、2,2−ビス(4−ヒドロキシフェニル)−プロパン(ビスフェノールA)のジグリシジルエーテル、ジヒドロキシジフェニルメタンの異性体混合物(ビスフェノールF)のジグリシジルエーテル、4,4−ジヒドロキシ−3−3’−ジメチルジフェニルプロパンのジグリシジルエーテル、4,4−ジヒドロキシジフェニルシクロヘキサンのジグリシジルエーテル、4,4−ジヒドロキシジフェニルのジグリシジルエーテル、4,4−ジヒドロキシジベンゾフェノンのジグリシジルエーテル、ビス(4−ヒドロキシフェニル)−1,1−エタンのジグリシジルエーテル、ビス(4−ヒドロキシフェニル)−1,1−イソブタンのジグリシジルエーテル、ビス(4−ヒドロキシ−3−tert−ブチルフェニル)−2,2−プロパンのジグリシジルエーテル、ビス(2−ヒドロキシナフチル)メタンのジグリシジルエーテル、ビス(4−ヒドロキシフェニル)スルホン(ビスフェノールS)のジグリシジルエーテル等を挙げることができる。 Examples of R 1 in the general formula [IV] that is a residue of a dihydric phenol include resorcinol-diglycidyl ether, hydroquinone-diglycidyl ether, 2,2-bis (4-hydroxy Phenyl) -propane (bisphenol A) diglycidyl ether, dihydroxydiphenylmethane isomer mixture (bisphenol F), diglycidyl ether, 4,4-dihydroxy-3-3'-dimethyldiphenylpropane diglycidyl ether, 4,4 Diglycidyl ether of dihydroxydiphenylcyclohexane, diglycidyl ether of 4,4-dihydroxydiphenyl, diglycidyl ether of 4,4-dihydroxydibenzophenone, diglycidyl ether of bis (4-hydroxyphenyl) -1,1-ethane Terbis, diglycidyl ether of bis (4-hydroxyphenyl) -1,1-isobutane, diglycidyl ether of bis (4-hydroxy-3-tert-butylphenyl) -2,2-propane, bis (2-hydroxynaphthyl) ) Diglycidyl ether of methane, diglycidyl ether of bis (4-hydroxyphenyl) sulfone (bisphenol S), and the like.

また、前記一般式[IV]中のRがポリオキシアルキレン鎖であるものとしては、例えば、ジエチレングリコール−ジグリシジルエーテル、ジプロピレングリコール−ジグリシジルエーテル、更にオキシアルキレンの繰り返し単位数が3〜60のポリオキシアルキレングリコール−ジグリシジルエーテル、例えば、ポリオキシエチレングリコール−ジグリシジルエーテル及びポリオキシプロピレングリコール−ジグリシジルエーテル、エチレンオキサイド−プロピレンオキサイド共重合体のジグリシジルエーテル、ポリオキシテトラエチレングリコール−ジグリシジルエーテル等を挙げることができる。 Moreover, as what R < 1 > in the said general formula [IV] is a polyoxyalkylene chain, the number of repeating units of diethylene glycol-diglycidyl ether, dipropylene glycol-diglycidyl ether, and oxyalkylene is 3-60, for example. Polyoxyalkylene glycol-diglycidyl ethers such as polyoxyethylene glycol-diglycidyl ether and polyoxypropylene glycol-diglycidyl ether, diglycidyl ether of ethylene oxide-propylene oxide copolymer, polyoxytetraethylene glycol-di A glycidyl ether etc. can be mentioned.

これらの中でも、得られるカチオン性ウレタン樹脂(a)の水分散性をより向上させることができることから、上記一般式[IV]のRが、ポリオキシアルキレン鎖であるポリオキシアルキレングリコールのジグリシジルエーテル、特に、ポリオキシエチレングリコール−ジグリシジルエーテル、ポリオキシプロピレングリコール−ジグリシジルエーテル、エチレンオキサイド−プロピレンオキサイド共重合体のジグリシジルエーテルが好適である。 Among these, since the water dispersibility of the resulting cationic urethane resin (a) can be further improved, R 1 in the above general formula [IV] is a polyoxyalkylene glycol diglycidyl which is a polyoxyalkylene chain. Ethers, particularly polyoxyethylene glycol-diglycidyl ether, polyoxypropylene glycol-diglycidyl ether, and diglycidyl ether of ethylene oxide-propylene oxide copolymer are preferred.

前記一般式[IV]のRがポリオキシアルキレン鎖であるポリオキシアルキレングリコールのジグリシジルエーテルのエポキシ当量は、カチオン性ウレタン樹脂(a)中のカチオン濃度の設計を広範囲に行える点で、好ましくは1000g/当量以下、より好ましくは500g/当量以下、特に好ましくは300g/当量以下である。 The epoxy equivalent of the diglycidyl ether of polyoxyalkylene glycol in which R 1 in the general formula [IV] is a polyoxyalkylene chain is preferable in that the cation concentration in the cationic urethane resin (a) can be designed over a wide range. Is 1000 g / equivalent or less, more preferably 500 g / equivalent or less, particularly preferably 300 g / equivalent or less.

前記二級アミン(a−2)としては、種々の化合物を使用できるが、反応制御の容易さの点で、分岐状又は直鎖状の脂肪族二級アミンが好ましい。   Although various compounds can be used as the secondary amine (a-2), a branched or straight chain aliphatic secondary amine is preferable from the viewpoint of easy reaction control.

前記二級アミン(a−2)としては、例えば、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジ−tert−ブチルアミン、ジ−sec−ブチルアミン、ジ−n−ペンチルアミン、ジ−n−ペプチルアミン、ジ−n−オクチルアミン、ジイソオクチルアミン、ジノニルアミン、ジイソノニルアミン、ジ−n−デシルアミン、ジ−n−ウンデシルアミン、ジ−n−ドデシルアミン、ジ−n−ペンタデシルアミン、ジ−n−オクタデシルアミン、ジ−n−ノナデシルアミン、ジ−n−エイコシルアミンなどが挙げられる。   Examples of the secondary amine (a-2) include dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-tert-butylamine, di-sec-butylamine, di-n. -Pentylamine, di-n-peptylamine, di-n-octylamine, diisooctylamine, dinonylamine, diisononylamine, di-n-decylamine, di-n-undecylamine, di-n-dodecylamine, di- Examples include n-pentadecylamine, di-n-octadecylamine, di-n-nonadecylamine, and di-n-eicosylamine.

これらの中で、三級アミノ基含有ポリオールを製造する際に揮発し難いこと、あるいは、含有する三級アミノ基の一部又は全てを酸で中和、又は四級化剤で四級化する際に立体障害を軽減できること、などの理由から、炭素数2〜18の範囲の脂肪族二級アミンが好ましく、炭素数3〜8の範囲の脂肪族二級アミンがより好ましい。   Among these, it is difficult to volatilize when producing a tertiary amino group-containing polyol, or a part or all of the contained tertiary amino group is neutralized with an acid or quaternized with a quaternizing agent. In particular, an aliphatic secondary amine having 2 to 18 carbon atoms is preferable, and an aliphatic secondary amine having 3 to 8 carbon atoms is more preferable because steric hindrance can be reduced.

1分子中にエポキシ基を2個有する化合物(a−1)と二級アミン(a−2)との反応は、エポキシ基とNH基の当量比[NH基/エポキシ基]で、好ましくは0.5/1〜1.1/1の範囲、より好ましくは0.9/1〜1/1の範囲となるように配合し、無触媒で、常温下又は加熱下で容易に行うことができる。このとき必要に応じて、有機溶剤を用いても良い。   The reaction between the compound (a-1) having two epoxy groups in one molecule and the secondary amine (a-2) is an equivalent ratio [NH group / epoxy group] of the epoxy group and NH group, preferably 0. 0.5 / 1 to 1.1 / 1, more preferably 0.9 / 1 to 1/1, and can be easily carried out at room temperature or under heating without catalyst. . At this time, an organic solvent may be used as necessary.

また、反応温度は、好ましくは室温〜160℃の範囲であり、より好ましくは60〜120℃の範囲である。反応時間は、特に限定しないが、通常30分〜14時間の範囲である。反応の終点は、赤外分光法(IR法)にて、エポキシ基に起因する842cm−1付近の吸収ピークの消失によって確認できる。 The reaction temperature is preferably in the range of room temperature to 160 ° C, more preferably in the range of 60 to 120 ° C. Although reaction time is not specifically limited, Usually, it is the range of 30 minutes-14 hours. The end point of the reaction can be confirmed by the disappearance of the absorption peak near 842 cm −1 due to the epoxy group by infrared spectroscopy (IR method).

前記の反応で得られた三級アミノ基含有ポリオールは、予め含有する三級アミノ基の一部又は全てを酸で中和、又は四級化剤で四級化してから、前記ポリイソシアネートと反応させてもよく、また、ポリイソシアネートと反応させてポリウレタン樹脂としてから、三級アミノ基の中和又は四級化により、カチオン性ウレタン樹脂(a)としても良い。更に、水性分散体とする工程が、ウレタン樹脂の合成途中、又は合成後のいずれでもよく、必要に応じて用いられるポリアミン等の活性水素含有化合物である鎖伸長剤の種類・使用量等によって選択することができる。   The tertiary amino group-containing polyol obtained by the above reaction is reacted with the polyisocyanate after neutralizing a part or all of the tertiary amino group previously contained with an acid or quaternizing with a quaternizing agent. Alternatively, it may be reacted with polyisocyanate to obtain a polyurethane resin, and then a cationic urethane resin (a) may be obtained by neutralization or quaternization of a tertiary amino group. Furthermore, the step of making the aqueous dispersion may be either during or after the synthesis of the urethane resin, and is selected depending on the type and amount of the chain extender that is an active hydrogen-containing compound such as polyamine used as necessary. can do.

上記の三級アミノ基の一部又は全てを中和する際に使用することができる酸としては、例えば、蟻酸、酢酸、プロピオン酸、コハク酸、グルタル酸、酪酸、乳酸、リンゴ酸、クエン酸、酒石酸、マロン酸、アジピン酸などの有機酸類や、スルホン酸、パラトルエンスルホン酸、メタンスルホン酸等の有機スルホン酸類、及び、塩酸、硫酸、硝酸、リン酸、硼酸、亜リン酸、フッ酸等の無機酸等を使用することができる。これらの酸は単独使用してもよく2種以上を組み合わせて使用してもよい。   Examples of the acid that can be used for neutralizing a part or all of the tertiary amino group include formic acid, acetic acid, propionic acid, succinic acid, glutaric acid, butyric acid, lactic acid, malic acid, and citric acid. , Organic acids such as tartaric acid, malonic acid, adipic acid, organic sulfonic acids such as sulfonic acid, paratoluenesulfonic acid, methanesulfonic acid, and hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, phosphorous acid, hydrofluoric acid Inorganic acids such as can be used. These acids may be used alone or in combination of two or more.

また、前記三級アミノ基の一部又は全てを四級化する際に使用することができる四級化剤としては、例えば、ジメチル硫酸、ジエチル硫酸等のジアルキル硫酸類や、メチルクロライド、エチルクロライド、ベンジルクロライド、メチルブロマイド、エチルブロマイド、ベンジルブロマイド、メチルヨーダイド、エチルヨーダイド、ベンジルヨーダイドなどのハロゲン化アルキル類、メタンスルホン酸メチル、パラトルエンスルホン酸メチル等のアルキル又はアリールスルホン酸メチル類、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、アリルグリシジルエーテル、ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル等のエポキシ類などを使用することができ、これらは単独使用でもよく2種以上を併用してもよい。   Examples of the quaternizing agent that can be used for quaternizing a part or all of the tertiary amino group include dialkyl sulfates such as dimethyl sulfate and diethyl sulfate, methyl chloride, and ethyl chloride. Alkyl halides such as benzyl chloride, methyl bromide, ethyl bromide, benzyl bromide, methyl iodide, ethyl iodide, benzyl iodide, and alkyl or aryl sulfonates such as methyl methanesulfonate and methyl paratoluenesulfonate Epoxy such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, allyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, and phenyl glycidyl ether Etc. can be used like, they may be used in combination well 2 or more types may be used alone.

三級アミノ基の中和又は四級化に使用する酸や四級化剤の量は、特に制限はないが、得られるカチオン性ポリウレタン樹脂(a)の優れた分散安定性を発現させるために、三級アミノ基1当量に対して、0.1〜3当量の範囲であることが好ましく、0.3〜2.0当量の範囲であることがより好ましい。   The amount of acid or quaternizing agent used for neutralization or quaternization of the tertiary amino group is not particularly limited, but in order to express the excellent dispersion stability of the obtained cationic polyurethane resin (a). The amount is preferably in the range of 0.1 to 3 equivalents and more preferably in the range of 0.3 to 2.0 equivalents with respect to 1 equivalent of the tertiary amino group.

更に、得られる塗膜の耐水性をより向上させる目的で、シラノール基を含有する構造単位をカチオン性ウレタン樹脂(a)に導入することが好ましい。シラノール基を含有する構造単位を導入すると、有機成分であるカチオン性ウレタン樹脂(a)からなる粒子と、金属アルコキシド又はその縮合物(B)により形成される無機の金属酸化物(B’)からなるマトリクスとの間に架橋構造が形成されるため、より強固な塗膜を得ることができ、塗装後の処理木材表面の耐磨耗性に優れる。   Furthermore, in order to further improve the water resistance of the resulting coating film, it is preferable to introduce a structural unit containing a silanol group into the cationic urethane resin (a). When a structural unit containing a silanol group is introduced, from particles composed of a cationic urethane resin (a), which is an organic component, and an inorganic metal oxide (B ′) formed from a metal alkoxide or a condensate (B) thereof. Since a cross-linked structure is formed with the resulting matrix, a stronger coating film can be obtained, and the treated wood surface after coating is excellent in wear resistance.

シラノール基を含有する構造単位としては、下記一般式[II]で表される構造単位を例示できる。   As a structural unit containing a silanol group, the structural unit represented by the following general formula [II] can be illustrated.

Figure 0005130791
(式[II]中、R5は水素原子、アルキル基、アリール基又はアラルキル基であり、R6はハロゲン原子、アルコキシル基、アシルオキシ基、フェノキシ基、イミノオキシ基又はアルケニルオキシ基であり、nは0、1又は2である。)
Figure 0005130791
(In the formula [II], R5 is a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, R6 is a halogen atom, an alkoxyl group, an acyloxy group, a phenoxy group, an iminooxy group or an alkenyloxy group, and n is 0, 1 or 2)

前記一般式[II]で表される構造単位をカチオン性ウレタン樹脂(a)に導入するためには、下記一般式[III]で示されるシラノール基含有化合物を用いることが好ましい。   In order to introduce the structural unit represented by the general formula [II] into the cationic urethane resin (a), it is preferable to use a silanol group-containing compound represented by the following general formula [III].

Figure 0005130791
(式[III]中、R5は水素原子、アルキル基、アリール基又はアラルキル基であり、R6はハロゲン原子、アルコキシル基、アシルオキシ基、フェノキシ基、イミノオキシ基又はアルケニルオキシ基であり、nは0、1又は2であり、Yは活性水素基を少なくとも1個以上含有する有機残基である。)
Figure 0005130791
(In the formula [III], R5 is a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, R6 is a halogen atom, an alkoxyl group, an acyloxy group, a phenoxy group, an iminooxy group or an alkenyloxy group, and n is 0, 1 or 2 and Y is an organic residue containing at least one active hydrogen group.)

前記一般式[III]で示される化合物としては、該一般式中のYがアミノ基又はメルカプト基であるものが入手が容易で好ましく、例えば、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−ヒドロキシルエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−ヒドロキシルエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、γ−(2−ヒドロキシルエチル)アミノプロピルメチルジメトキシシラン、γ−(2−ヒドロキシルエチル)アミノプロピルメチルジエトキシシランまたはγ−(N,N−ジ−2−ヒドロキシルエチル)アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシランまたはγ−(N−フェニル)アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトフェニルトリメトキシシランなどが挙げられる。   As the compound represented by the general formula [III], those in which Y in the general formula is an amino group or a mercapto group are easily available, and for example, γ- (2-aminoethyl) aminopropyltrimethoxysilane. , Γ- (2-hydroxylethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropyltriethoxysilane, γ- (2-hydroxylethyl) aminopropyltriethoxysilane, γ- (2-aminoethyl) ) Aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldiethoxysilane, γ- (2-hydroxylethyl) aminopropylmethyldimethoxysilane, γ- (2-hydroxylethyl) aminopropylmethyldiethoxysilane Or γ- (N, N-di-2-hydroxyl ether L) Aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane or γ- (N-phenyl) aminopropyl Examples include trimethoxysilane, γ-mercaptopropyltrimethoxysilane, and γ-mercaptophenyltrimethoxysilane.

これらのシラノール基含有化合物の使用量としては、後述する金属酸化物(B’)と、カチオン性ウレタン樹脂(a)とがより強固に複合化された塗膜が得られ、耐水性に優れる木材が得られる点から、最終的に得られるカチオン性ウレタン樹脂(a)に対して、前記一般式[II]で表される構造単位を、0.1〜20質量%の範囲で含有させることができるように併用することが好ましく、0.5〜10質量%の範囲で含有させるように用いることがより好ましい。   The amount of these silanol group-containing compounds used is a wood having a water-resistant coating film in which a metal oxide (B ′) described later and a cationic urethane resin (a) are more strongly combined. Is obtained, the structural unit represented by the general formula [II] is contained in the range of 0.1 to 20% by mass with respect to the finally obtained cationic urethane resin (a). It is preferable to use together so that it may be used, and it is more preferable to use so that it may contain in 0.5-10 mass%.

これらのシラノール基含有化合物を、前述の三級アミノ基含有ポリオールとポリイソシアネートとの反応時に併用することによって、得られるカチオン性ウレタン樹脂(a)中にシラノール基を導入することができる。   By using these silanol group-containing compounds in combination with the above-mentioned tertiary amino group-containing polyol and polyisocyanate, silanol groups can be introduced into the resulting cationic urethane resin (a).

前記カチオン性ウレタン樹脂(a)は、前述の三級アミノ基含有ポリオールと、ポリイソシアネートと、必要に応じて併用する前記シラノール基含有化合物とを反応させることによって合成可能であるが、このとき、前述のその他のポリオールを併用することもできる。   The cationic urethane resin (a) can be synthesized by reacting the above-mentioned tertiary amino group-containing polyol, polyisocyanate, and the silanol group-containing compound used in combination as necessary. Other polyols described above can also be used in combination.

前記反応は無触媒下で製造することも可能であるが、種々の触媒、例えば、オクチル酸第一錫、ジブチル錫ジラウレート、ジブチル錫ジマレート、ジブチル錫ジフタレート、ジブチル錫ジメトキシド、ジブチル錫ジアセチルアセテート、ジブチル錫ジバーサテート等の錫化合物、テトラブチルチタネート、テトライソプロピルチタネート、トリエタノールアミンチタネート等のチタネート化合物、その他、三級アミン類、四級アンモニウム塩等を使用してもよい。   The reaction can be produced without a catalyst, but various catalysts such as stannous octylate, dibutyltin dilaurate, dibutyltin dimaleate, dibutyltin diphthalate, dibutyltin dimethoxide, dibutyltin diacetylacetate, dibutyl Tin compounds such as tin diversate, titanate compounds such as tetrabutyl titanate, tetraisopropyl titanate and triethanolamine titanate, tertiary amines, quaternary ammonium salts and the like may be used.

上記のようにして得られるカチオン性ウレタン樹脂(a)の水性分散体中に含まれる有機溶剤は、必要により、反応の途中又は反応終了後に、例えば減圧蒸留などの方法により除去することが好ましい。   The organic solvent contained in the aqueous dispersion of the cationic urethane resin (a) obtained as described above is preferably removed, for example, by a method such as distillation under reduced pressure during or after the reaction.

本発明で用いるカチオン性ウレタン樹脂(A−1)は、樹脂の分散安定性を阻害しない範囲で、ヒドロキシ基、カルボキシル基、エポキシ基といった反応性官能基を有していても良い。また、カチオン性ウレタン樹脂(A−1)は分散安定性を高めるために、ノニオン性の親水性基、例えば、ポリエチレンオキサイド鎖や、ポリアミド鎖などを分子中に有していても良い。更に、安定な水性分散体とするために、乳化剤を併用したものであっても良い。   The cationic urethane resin (A-1) used in the present invention may have a reactive functional group such as a hydroxy group, a carboxyl group, and an epoxy group as long as the dispersion stability of the resin is not inhibited. In addition, the cationic urethane resin (A-1) may have a nonionic hydrophilic group such as a polyethylene oxide chain or a polyamide chain in the molecule in order to improve dispersion stability. Furthermore, in order to obtain a stable aqueous dispersion, an emulsifier may be used in combination.

〔金属アルコキシド(B)〕
本発明で用いる金属アルコキシド又はその縮合物(B)中の金属としては、珪素、チタン、アルミニウムを好ましい例として挙げることができる。
[Metal alkoxide (B)]
Preferred examples of the metal in the metal alkoxide or its condensate (B) used in the present invention include silicon, titanium, and aluminum.

珪素アルコキシド又はその縮合物としては、一般的にゾル−ゲル反応で用いられるアルコキシシランであれば、特に限定されるものではない。例示するならば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3,4−エポキシシクロヘキシルエチルトリメトキシシラン、3,4−エポキシシクロヘキシルエチルトリメトキシシラン等のトリアルコキシシラン類、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシランまたはこれらの部分縮合物等が挙げられる。   The silicon alkoxide or its condensate is not particularly limited as long as it is an alkoxysilane generally used in a sol-gel reaction. For example, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxy Silane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycid Xylpropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane , Phenyltrimethoxysilane, phenyltriethoxysilane, 3,4-epoxycyclohexylethyltrimethoxysilane, trialkoxysilanes such as 3,4-epoxycyclohexylethyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyl Examples include dimethoxysilane, diethyldiethoxysilane, and partial condensates thereof.

チタンアルコキシドとしては、例えば、チタンイソプロポキシド、チタンラクテート、チタントリエタノールアミネートなどが挙げられ、アルミニウムアルコキシドとしては、例えば、アルミニウムイソプロポキシドなどが挙げられる。   Examples of the titanium alkoxide include titanium isopropoxide, titanium lactate, and titanium triethanolamate. Examples of the aluminum alkoxide include aluminum isopropoxide.

これらの中でも、工業的入手のしやすさから、珪素アルコキシド又はその縮合物を用いるのが好適である。その中でも最も好適なのは、テトラメトキシシラン及びその縮合物である。また、カチオン性樹脂(A)中のカチオン性官能基と反応する官能基を有するアルコキシシランを併用することにより、塗膜の架橋をさらに緻密にすることができ、耐水性等の塗膜物性をより向上させることもできる。この場合に最も好適なのは、3−グリシドキシプロピルトリメトキシシランである。   Among these, it is preferable to use silicon alkoxide or a condensate thereof from the viewpoint of industrial availability. Of these, tetramethoxysilane and its condensate are most preferred. Moreover, by using together the alkoxysilane which has a functional group which reacts with the cationic functional group in the cationic resin (A), the cross-linking of the coating film can be made more precise, and the coating film properties such as water resistance can be improved. It can also be improved. Most preferred in this case is 3-glycidoxypropyltrimethoxysilane.

前記テトラメトキシシラン及びその縮合物と3−グリシドキシプロピルトリメトキシシランとを併用する場合には、それぞれの完全加水分解縮合後の質量比(テトラメトキシシラン及びその縮合物の完全加水分解後の質量)/(3−グリシドキシプロピルトリメトキシシランの完全加水分解後の質量)が60/40〜90/10の範囲であることが好ましく、特に70/30〜80/20の範囲であることが特に好ましい。   When the tetramethoxysilane and its condensate and 3-glycidoxypropyltrimethoxysilane are used in combination, the mass ratio after complete hydrolysis and condensation of each (after the complete hydrolysis of tetramethoxysilane and its condensate) (Mass) / (mass after complete hydrolysis of 3-glycidoxypropyltrimethoxysilane) is preferably in the range of 60/40 to 90/10, particularly in the range of 70/30 to 80/20. Is particularly preferred.

また、前記カチオン性樹脂(A)の質量と金属アルコキシド又はその縮合物(B)の加水分解縮合後の質量(B1)との比が、(A)/(B1)で表される質量比で10/90〜70/30の範囲であることが好ましく、20/80〜70/30であることがより好ましく、30/70〜70/30であるのがさらに好ましい。金属アルコキシドの加水分解反応式は以下の通りである。   Moreover, the ratio of the mass of the cationic resin (A) to the mass (B1) after hydrolysis condensation of the metal alkoxide or its condensate (B) is a mass ratio represented by (A) / (B1). The range is preferably 10/90 to 70/30, more preferably 20/80 to 70/30, and still more preferably 30/70 to 70/30. The hydrolysis reaction formula of metal alkoxide is as follows.

Figure 0005130791
〔式中、Rは有機基であり、Rはアルキル基であり、Xは(m+n)価の金属原子である。〕
Figure 0005130791
[Wherein, R 1 is an organic group, R 2 is an alkyl group, and X is a (m + n) -valent metal atom. ]

従って、完全加水分解縮合後の金属アルコキシドの質量(B1)は、(仕込み量)/(加水分解反応前の金属アルコキシドの式量)×(加水分解反応後の金属アルコキシドの式量)で計算することができる。   Therefore, the mass (B1) of the metal alkoxide after complete hydrolysis condensation is calculated by (charge amount) / (formula amount of metal alkoxide before hydrolysis reaction) × (formula amount of metal alkoxide after hydrolysis reaction). be able to.

〔酸触媒(C)〕
本発明で用いる酸触媒(C)としては、各種の酸触媒を用いることができる。例示するならば、塩酸、ホウ酸、硫酸、フッ酸、リン酸といった無機酸や、酢酸、フタル酸、マレイン酸、フマル酸、パラトルエンスルホン酸、などといった有機酸を用いることができる。また、これらの酸は単独、もしくは2種以上を併用してもよい。これらの中でも、目的とするpHの範囲への調整が容易であり、得られる木材用水性塗料組成物の保存安定性が良好で、且つ得られる防汚処理木材の耐水性に優れる点から、マレイン酸を用いることが好ましい。
[Acid catalyst (C)]
As the acid catalyst (C) used in the present invention, various acid catalysts can be used. For example, inorganic acids such as hydrochloric acid, boric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and organic acids such as acetic acid, phthalic acid, maleic acid, fumaric acid, and paratoluenesulfonic acid can be used. These acids may be used alone or in combination of two or more. Among these, it is easy to adjust to the target pH range, the storage stability of the obtained water-based coating composition for wood is good, and the water resistance of the resulting antifouling treated wood is excellent. It is preferable to use an acid.

また、カチオン性樹脂(A)の水性分散体に酸触媒(C)を加えた後の液のpHとしては、酸による機械の腐食等の問題が起こりにくく、且つ、得られる木材用水性塗料組成物の保存安定性が良好である点から、通常1.0〜4.0の範囲で、好ましくは1.0〜3.0の範囲で、さらに好ましくは2.0〜3.0の範囲である。この範囲にpHを調整することが耐汚染性に優れる防汚処理木材を得るために重要であり、特にカチオン性樹脂(A)として市販の製品を用いる場合には、酸触媒(C)を徐々に滴下しながら、pHの調整を行うことが好ましい。   Further, the pH of the solution after adding the acid catalyst (C) to the aqueous dispersion of the cationic resin (A) is less likely to cause problems such as corrosion of the machine due to the acid, and the obtained aqueous paint composition for wood From the point that the storage stability of the product is good, it is usually in the range of 1.0 to 4.0, preferably in the range of 1.0 to 3.0, more preferably in the range of 2.0 to 3.0. is there. It is important to adjust the pH within this range in order to obtain an antifouling-treated wood having excellent antifouling properties. In particular, when a commercially available product is used as the cationic resin (A), the acid catalyst (C) is gradually added. It is preferable to adjust the pH while dropping the solution.

〔木材用水性塗料組成物〕
本発明の木材用水性塗料組成物の調整方法としては、カチオン性樹脂(A)の水性分散体と、酸触媒(C)とを混合し均一化した後、金属アルコキシド又はその縮合物(B)を混合するのが最も好適である。また、金属アルコキシド又はその縮合物(B)の加水分解により生成するアルコールは、残存したまま本発明の木材用水性塗料組成物としても良く、また、種々の方法、例えば減圧下で放置又は加温することにより、該アルコールを除去したのち、木材用水性塗料組成物としても良い。
[Water-based paint composition for wood]
As a method for preparing the aqueous coating composition for wood according to the present invention, an aqueous dispersion of a cationic resin (A) and an acid catalyst (C) are mixed and homogenized, and then a metal alkoxide or a condensate thereof (B). Is most preferably mixed. In addition, the alcohol produced by hydrolysis of the metal alkoxide or its condensate (B) may be left as the water-based coating composition for wood of the present invention, and may be allowed to stand or warm under various methods such as reduced pressure. By doing this, after removing the alcohol, a water-based paint composition for wood may be used.

本発明の木材用水性塗料組成物には、本発明の効果を妨げない範囲で、各種の増粘剤、濡れ剤、チキソ剤などの添加剤、あるいはフィラー等を加えても良い。更に、前記カチオン性樹脂(A)中の官能基と反応するような架橋剤、例えば、ポリエポキシ化合物や、ジアルデヒド化合物、ジカルボン酸化合物といった架橋剤を併用しても良い。   Various additives such as thickeners, wetting agents, thixotropic agents, fillers, and the like may be added to the water-based paint composition for wood of the present invention as long as the effects of the present invention are not hindered. Further, a crosslinking agent that reacts with the functional group in the cationic resin (A), for example, a crosslinking agent such as a polyepoxy compound, a dialdehyde compound, or a dicarboxylic acid compound may be used in combination.

また、本発明の木材用水性塗料組成物は、クリアー塗料組成物として好適に用いることができるが、各種顔料分散体、染料などを混入して、従来使用されてきた塗装処理木材にも、特に耐摩耗性や耐汚染性に優れる点から応用することができる。   In addition, the water-based paint composition for wood of the present invention can be suitably used as a clear paint composition. It can be applied from the viewpoint of excellent wear resistance and stain resistance.

本発明の木材用水性塗料組成物の不揮発分としては特に限定されるものではなく、塗工方法に適した粘度を勘案した不揮発分であればよいが、通常、10質量%以上、50質量%以下であることが、保存安定性が良好である点から好ましい。   The non-volatile content of the wood-based water-based paint composition of the present invention is not particularly limited, and may be any non-volatile content taking into consideration the viscosity suitable for the coating method, but is usually 10% by mass or more and 50% by mass. The following is preferable from the viewpoint of good storage stability.

本発明の木材用水性塗料組成物の木材への塗工方法に関しては、特に限定されるものではなく、例えば、刷毛塗り法、刷毛塗りワイピング法、ロールコーター法、フローコーター法、スプレー法・ディッピング(浸漬)法などの各種の塗工方法で塗装することができる。この中で塗布量の制御が容易であることからロールコーター法、フローコーター法が特に好ましい。   The method for coating the wood-based water-based paint composition of the present invention on wood is not particularly limited. For example, brush coating method, brush coating wiping method, roll coater method, flow coater method, spray method / dipping It can be applied by various coating methods such as an (immersion) method. Among these, the roll coater method and the flow coater method are particularly preferable because the coating amount can be easily controlled.

本発明の木材用水性塗料組成物の塗装対象は、木材であれば良く、特に限定されるものではない。例えば、桐、ナラ、ブナ、カエデ等の国産広葉樹、松、桧、杉等の国産針葉樹、黒檀、チーク、ゴム等の南洋材、ウォルナット、オーク、チェリー等の北米材、マコレ、ブビンガ、カヤ等のアフリカ材に用いることができる。   The coating object of the wood-based water-based coating composition of the present invention is not particularly limited as long as it is wood. For example, domestic hardwoods such as paulownia, oak, beech, maple, etc., domestic conifers such as pine, oak, cedar, etc., Southwestern wood such as ebony, teak, rubber, etc., North American wood such as walnut, oak, cherry, macore, bubinga, kaya, etc. It can be used for African materials.

さらに、基材への密着性向上、基材の着色、基材の保護などを目的として、日やけ防止剤、着色ステイン、ウッドシーラー等を前記各種木材に塗装したのち、本発明の木材用水性塗料組成物を塗装することもできる。   Furthermore, for the purpose of improving adhesion to the base material, coloring the base material, protecting the base material, and the like, after applying sunscreen agents, colored stains, wood sealers, etc. to the above-mentioned various woods, the aqueous water for wood of the present invention The coating composition can also be applied.

また、塗装後の乾燥条件としては特に限定されるものではないが、木材自身の変形をおこさずに塗膜が得られる点から、20℃〜120℃の間で、10秒〜24時間乾燥させることが好ましく、60℃〜100℃の間で、10秒〜30分で乾燥させることがさらに好ましい。   Moreover, it is although it does not specifically limit as drying conditions after coating, It is made to dry for 10 second-24 hours between 20 degreeC-120 degreeC from the point from which a coating film is obtained without causing deformation | transformation of wood itself. It is preferable that the drying be performed between 60 ° C. and 100 ° C. for 10 seconds to 30 minutes.

本発明で得られる処理木材の表面は、金属酸化物(B’)からなるマトリクス中に、カチオン性樹脂(A)の粒子が分散している。   On the surface of the treated wood obtained in the present invention, particles of the cationic resin (A) are dispersed in a matrix made of a metal oxide (B ′).

前記金属酸化物(B’)は、前述の金属アルコキシド又はその縮合物(B)の加水分解・縮合反応によって得られるものであり、塗膜中では、マトリクスを形成している。これは、前述のようにカチオン性樹脂(A)が水性分散体中で形成する微粒子の表面を取り囲むように金属ゲルが濃縮されているため、水性媒体が揮発した後は、近接する微粒子の該表面の金属ゲルが架橋することによって形成されるものである。したがって、カチオン性樹脂(A)の微粒子同士は凝縮することがなく塗膜中で分散していることになる。このような構造であることが、薄膜でも耐汚染性、耐磨耗性や耐水性が高く、木材特有の凹凸感や木目を損なわず、意匠性が高い防汚処理木材が得られることになる。   The metal oxide (B ′) is obtained by hydrolysis / condensation reaction of the metal alkoxide or the condensate (B) described above, and forms a matrix in the coating film. This is because the metal gel is concentrated so as to surround the surface of the fine particles formed by the cationic resin (A) in the aqueous dispersion as described above. It is formed by cross-linking the surface metal gel. Therefore, the fine particles of the cationic resin (A) are not condensed and are dispersed in the coating film. With such a structure, even with a thin film, antifouling treated wood with high stain resistance, abrasion resistance and water resistance, high design quality without damaging the texture and grain peculiar to wood can be obtained. .

本発明の防汚処理木材は、カチオン性樹脂(A)の水分散体に酸触媒(C)を添加した後、金属アルコキシド又はその縮合物(B)を加えて得られる木材用水性塗料組成物を基板上に塗布し、乾燥することで、カチオン性樹脂(A)からなる粒子が、金属酸化物(B’)からなるマトリクス中に分散している複合塗膜を木材表面に作製することにより得られることを特徴とする。該製造方法は、特別な装置を必要とせず、また、空気中の水分等を利用しない点から、環境依存性がなく、したがって応用範囲に制限されることがないため、工業的に簡便で有用なものである。   The antifouling treated wood of the present invention is an aqueous coating composition for wood obtained by adding an acid catalyst (C) to an aqueous dispersion of a cationic resin (A) and then adding a metal alkoxide or a condensate (B) thereof. By applying a coating on a substrate and drying, a composite coating film in which particles made of a cationic resin (A) are dispersed in a matrix made of a metal oxide (B ′) is produced on the wood surface. It is characterized by being obtained. The manufacturing method is industrially simple and useful because it does not require any special equipment and does not use moisture in the air, so it has no environmental dependency and is therefore not limited to the application range. It is a thing.

木材用水性塗料用組成物の塗布量(乾燥後)としては、特に限定されるものではないが、十分な性能バランスを有し、かつ木材表面の凹凸・木目などの質感を損なわない点から、1g/m〜50g/mの範囲で塗布することが好ましく、より好ましくは1g/m〜20g/mの範囲である。 The coating amount of the waterborne paint composition for wood (after drying) is not particularly limited, but has a sufficient balance of performance and does not impair the texture of the wood surface, such as unevenness and grain, preferably it is applied in a range of 1g / m 2 ~50g / m 2 , more preferably from 1g / m 2 ~20g / m 2 .

本発明で得られる防汚処理済木材の用途としては、特に限定されるものではなく、例えば、床材、巾木・階段・手すり等の造作材、ドア及びその部材、柱、壁材、テーブル、イス、整理箪笥等の家具に好適に用いることができる。このような処理を施した木材は、施工後のメンテナンスをほとんど必要とせず、無垢材が使用できなかった調味料・化粧品・洗剤・漂白剤などの汚染物質の曝露の可能性の高いキッチンや洗面所などの水回り用の部材等にも用いることが可能であり、メンテナンスを軽減するとともに耐久性を向上させることができる。   The use of the antifouling treated wood obtained in the present invention is not particularly limited. For example, flooring materials, construction materials such as baseboards, stairs and handrails, doors and members thereof, columns, wall materials, tables It can be suitably used for furniture such as chairs and organizers. Wood treated in this way requires little post-installation maintenance, and kitchens and washrooms are likely to be exposed to pollutants such as seasonings, cosmetics, detergents, and bleaching agents where solid wood could not be used. It can also be used for water-related members such as places, so that maintenance can be reduced and durability can be improved.

以下、実施例によって本発明をさらに具体的に説明するが、本発明は実施例のみに限定されるものではない。特に断らない限り、「部」及び「%」は、「質量部」及び「質量%」を表す。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples. Unless otherwise specified, “parts” and “%” represent “parts by mass” and “mass%”.

(合成例1)カチオン性ウレタン樹脂(A−1−1)の水分散体の調製
温度計、撹拌装置、還流冷却管及び滴下装置を備えた4ツ口フラスコに、ポリプロピレングリコール−ジグリシジルエーテル(エポキシ当量201g/当量)590部を仕込んだ後、フラスコ内を窒素置換した。次いで、前記フラスコ内の温度が70℃になるまでオイルバスを用いて加熱した後、滴下装置を使用してジ−n−ブチルアミン378部を30分間で滴下し、滴下終了後、90℃で10時間反応させた。反応終了後、赤外分光光度計(FT/IR−460Plus、日本分光株式会社製)を用いて、反応生成物のエポキシ基に起因する842cm−1付近の吸収ピークが消失していることを確認し、3級アミノ基含有ポリオール(アミン当量339g/当量、水酸基当量339g/当量)を得た。
(Synthesis example 1) Preparation of aqueous dispersion of cationic urethane resin (A-1-1) Polypropylene glycol-diglycidyl ether (into a four-necked flask equipped with a thermometer, a stirring device, a reflux condenser, and a dropping device) After 590 parts of epoxy equivalent 201 g / equivalent), the inside of the flask was purged with nitrogen. Subsequently, after heating using the oil bath until the temperature in the said flask becomes 70 degreeC, 378 parts of di-n-butylamine is dripped in 30 minutes using a dripping apparatus, and 10 degreeC is 90 degreeC after completion | finish of dripping. Reacted for hours. After completion of the reaction, using an infrared spectrophotometer (FT / IR-460Plus, manufactured by JASCO Corporation), it is confirmed that the absorption peak near 842 cm −1 due to the epoxy group of the reaction product has disappeared. A tertiary amino group-containing polyol (amine equivalent 339 g / equivalent, hydroxyl equivalent 339 g / equivalent) was obtained.

温度計、撹拌装置、還流冷却管及び滴下装置を備えた4ツ口フラスコ内で、ニッポラン980R〔日本ポリウレタン工業株式会社製ポリカーボネートポリオール、分子量2000〕500部と、ネオペンチルグリコール/1,4−ブタンジオール/テレフタル酸/アジピン酸からなるポリエステルポリオール(分子量2000)500部とを、酢酸エチル558部に溶解した。次いで、4,4’−ジシクロヘキシルメタンジイソシアネート236部とオクチル酸第一錫0.2部を加え、75℃で2時間反応させた後、前記3級アミノ基含有ポリオール66.2部を添加し、4時間反応させることにより、末端にイソシアネート基を有するウレタンプレポリマーを得た。次いで、前記ウレタンプレポリマー溶液に酢酸エチル478部とイソプロピルアルコール918部とを加えて均一混合した後、80%水和ヒドラジン17部を加え、鎖伸長反応を1時間行った。次いで氷酢酸11.7部を添加して中和した後、イオン交換水3610部を滴下することにより水分散化を行い、更に引き続いて減圧下脱溶剤することにより、不揮発分35%で、pH4.2、粒子径0.2μm(大塚電子株式会社製粒径アナライザーFPAR−1000により測定。)、カチオン当量0.15当量/kgのカチオン性ポリウレタン樹脂(A−1−1)の水分散体を得た。   In a four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, and a dropping device, 500 parts of Nipponran 980R [Nippon Polyurethane Industry Co., Ltd., Polycarbonate polyol, molecular weight 2000], neopentyl glycol / 1,4-butane 500 parts of a polyester polyol (molecular weight 2000) composed of diol / terephthalic acid / adipic acid was dissolved in 558 parts of ethyl acetate. Next, after adding 236 parts of 4,4′-dicyclohexylmethane diisocyanate and 0.2 part of stannous octylate and reacting at 75 ° C. for 2 hours, 66.2 parts of the tertiary amino group-containing polyol was added, By making it react for 4 hours, the urethane prepolymer which has an isocyanate group at the terminal was obtained. Next, 478 parts of ethyl acetate and 918 parts of isopropyl alcohol were added to the urethane prepolymer solution and mixed uniformly, and then 17 parts of 80% hydrated hydrazine was added to carry out a chain extension reaction for 1 hour. Next, 11.7 parts of glacial acetic acid was added for neutralization, and 3610 parts of ion-exchanged water was added dropwise to carry out water dispersion, followed by desolvation under reduced pressure to obtain a non-volatile content of 35% and a pH of 4 2. An aqueous dispersion of a cationic polyurethane resin (A-1-1) having a particle size of 0.2 μm (measured by a particle size analyzer FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.) and a cation equivalent of 0.15 equivalent / kg. Obtained.

(合成例2)カチオン性ポリウレタン樹脂(A−1−2)の水分散体の調製
温度計、撹拌装置、還流冷却管及び滴下装置を備えた4ツ口フラスコ内で、ニッポラン980R 1000部を、酢酸エチル600部に溶解した。次いで、4,4’−ジシクロヘキシルメタンジイソシアネート262部とオクチル酸第一錫0.2部を加え、75℃で2時間反応させた後、前記3級アミノ基含有ポリオール95部を添加し4時間反応させた後、60℃に冷却し、Z−6011〔東レダウコーニング社製γ―アミノプロピルトリエトキシシラン〕44部を添加して、更に1時間反応させることにより、末端にイソシアネート基を有するウレタンプレポリマーを得た。次いで、前記ウレタンプレポリマー溶液に酢酸エチル515部とイソプロピルアルコール986部とを加えて均一混合した後、80%水和ヒドラジン15部を加え、鎖伸長反応を1時間行った。次いで氷酢酸16.8部を添加して中和した後、イオン交換水3800部を滴下することにより水分散化を行い、更に引き続いて減圧下脱溶剤することにより、不揮発分35%で、pH4.1、粒子径0.15μm、カチオン当量0.2当量/kgのカチオン性ウレタン樹脂(A−1−2)の水分散体を得た。
(Synthesis Example 2) Preparation of aqueous dispersion of cationic polyurethane resin (A-1-2) In a four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, and a dropping device, 1000 parts of NIPPOLAN 980R were Dissolved in 600 parts of ethyl acetate. Next, 262 parts of 4,4′-dicyclohexylmethane diisocyanate and 0.2 part of stannous octylate were added and reacted at 75 ° C. for 2 hours, and then 95 parts of the tertiary amino group-containing polyol was added and reacted for 4 hours. After cooling to 60 ° C., 44 parts of Z-6011 [γ-aminopropyltriethoxysilane manufactured by Toray Dow Corning Co., Ltd.] was added, and the mixture was further reacted for 1 hour to make a urethane prepolymer having an isocyanate group at the terminal. A polymer was obtained. Next, 515 parts of ethyl acetate and 986 parts of isopropyl alcohol were added to the urethane prepolymer solution and mixed uniformly, and then 15 parts of 80% hydrated hydrazine was added to carry out a chain extension reaction for 1 hour. Next, after 16.8 parts of glacial acetic acid was added for neutralization, 3800 parts of ion-exchanged water was added dropwise to carry out water dispersion, followed by desolvation under reduced pressure to obtain a non-volatile content of 35% and a pH of 4 An aqueous dispersion of a cationic urethane resin (A-1-2) having a particle diameter of 0.15 μm and a cation equivalent of 0.2 equivalent / kg was obtained.

(合成例3)カチオン性ポリウレタン樹脂(A−1−3)の水分散体の調製
温度計、撹拌装置、還流冷却管及び滴下装置を備えた4ツ口フラスコ内で、ニッポラン980R 640部を、メチルエチルケトン390部に溶解した。次いで、イソホロンジイソシアネート133部とオクチル酸第一錫0.2部を加え、75℃で2時間反応させた後、前記3級アミノ基含有ポリオールを122部を添加し4時間反応させた後、60℃に冷却し、Z−6011 22部を添加して、1時間反応させることにより、末端にイソシアネート基を有するウレタンプレポリマーを得た。次いで、前記ウレタンプレポリマー溶液にジメチル硫酸45部を加えて更に60℃で2時間反応させて4級化した後、イオン交換水2080部を滴下することにより水分散化を行い、更に引き続いて減圧下脱溶剤することにより、不揮発分35%で、pH6.5、粒子径0.05μm、カチオン当量0.39当量/kgのカチオン性ポリウレタン樹脂粒子(A−1−3)の水分散体を得た。
(Synthesis example 3) Preparation of aqueous dispersion of cationic polyurethane resin (A-1-3) In a four-necked flask equipped with a thermometer, a stirring device, a reflux condenser, and a dropping device, 640 parts of Nipponran 980R Dissolved in 390 parts of methyl ethyl ketone. Next, 133 parts of isophorone diisocyanate and 0.2 part of stannous octylate were added and reacted at 75 ° C. for 2 hours, and then 122 parts of the tertiary amino group-containing polyol was added and reacted for 4 hours. After cooling to ° C., 22 parts of Z-6011 were added and reacted for 1 hour to obtain a urethane prepolymer having an isocyanate group at the terminal. Next, 45 parts of dimethylsulfuric acid was added to the urethane prepolymer solution, and the mixture was further reacted at 60 ° C. for 2 hours for quaternization. Then, 2080 parts of ion-exchanged water was added dropwise to carry out water dispersion, followed by reduced pressure. By removing the solvent below, an aqueous dispersion of cationic polyurethane resin particles (A-1-3) having a nonvolatile content of 35%, a pH of 6.5, a particle diameter of 0.05 μm, and a cation equivalent of 0.39 equivalent / kg is obtained. It was.

参考合成例)カチオン性アクリル樹脂の水分散体(A−2−1)の調製
攪拌機、温度計、滴下漏斗、還流冷却管および不活性ガスの送入管と排出管とを備えた反応容器に、窒素を導入しながら、メタクリロキシエチルトリメチルアンモニウムクロライド12部、n−ドデシルメルカプタン0.4部、2,2’−アゾビス(2−メチルプロピオンアミジン)ジハイドロクロライド 1部、イオン交換水540部を入れ、攪拌しながら内温を80℃に上げ、同温で1時間維持して反応させることによって反応生成物を得た。次に、該反応生成物の存在する反応容器に、別の容器中で予め混合した単量体混合物(ブチルアクリレート220部、メチルメタクリレート180部)と、重合開始剤水溶液(2,2’−アゾビス(2−メチルプロピオンアミジン)ジハイドロクロライドの5%水溶液)40部を、各々別の滴下漏斗から3時間かけて滴下し重合させた。滴下中は反応容器内温度を80℃に維持した。滴下終了後、さらに液温を80℃で1時間攪拌し、次いで25℃に冷却し、イオン交換水にて不揮発分が35%になるように調整し、PH3.5、粒子径0.3μm、カチオン当量0.14当量/kgのカチオン性アクリル樹脂(A−2−1)の水分散体を得た。
( Reference synthesis example 1 ) Preparation of aqueous dispersion (A-2-1) of cationic acrylic resin Reaction equipped with stirrer, thermometer, dropping funnel, reflux condenser, inert gas inlet and outlet While introducing nitrogen into the container, 12 parts of methacryloxyethyltrimethylammonium chloride, 0.4 part of n-dodecyl mercaptan, 1 part of 2,2′-azobis (2-methylpropionamidine) dihydrochloride, ion-exchanged water 540 A reaction product was obtained by adding a portion, raising the internal temperature to 80 ° C. while stirring, and maintaining the same temperature for 1 hour for reaction. Next, a monomer mixture (220 parts of butyl acrylate and 180 parts of methyl methacrylate) preliminarily mixed in another container and a polymerization initiator aqueous solution (2,2′-azobis) in a reaction container in which the reaction product is present. 40 parts of (2-methylpropionamidine) dihydrochloride 5% aqueous solution) were dropped from another dropping funnel over 3 hours and polymerized. During the dropping, the temperature inside the reaction vessel was maintained at 80 ° C. After completion of the dropwise addition, the liquid temperature was further stirred at 80 ° C. for 1 hour, then cooled to 25 ° C., adjusted with ion-exchanged water so that the non-volatile content was 35%, PH 3.5, particle size 0.3 μm, An aqueous dispersion of a cationic acrylic resin (A-2-1) having a cation equivalent of 0.14 equivalent / kg was obtained.

参考合成例)カチオン性アクリル樹脂の水分散体(A−2−2)の調製
攪拌機、温度計、滴下漏斗、還流冷却管および不活性ガスの送入管と排出管とを備えた反応容器にプロピレングリコール−n−プロピルエーテル425部を仕込み、窒素雰囲気下で攪拌しながら100℃に保ち、ジメチルアミノエチルメタクリレート35部、メチルメタクリレート300部、ブチルアクリレート165部からなる混合物500部を約3時間かけてゆっくりと滴下した。並行して、t−ブチルパーオキシ−2−エチルヘキサノエート(商品名パーブチルO、日本油脂株式会社製)10部、プロピレングリコール−n−プロピルエーテル65部からなる溶液を約3時間かけてゆっくりと滴下した。滴下終了から1時間後、パーブチルO 2.5部、プロピレングリコール−n−プロピルエーテル10部からなる溶液を加え、さらに液温を100℃で3時間保ち重合反応を完結させた。次いで、氷酢酸13.5部を添加してよく撹拌混合して中和させた後、イオン交換水980部を滴下して、水分散化を行った後、更に引き続いて減圧下脱溶剤することにより、不揮発分35%、PH5.8、粒子径0.1μm、カチオン当量0.44当量/kgのカチオン性アクリル樹脂(A−2−2)の水分散体を得た。
( Reference synthesis example 2 ) Preparation of aqueous dispersion (A-2-2) of cationic acrylic resin Reaction equipped with stirrer, thermometer, dropping funnel, reflux condenser, inert gas inlet and outlet 425 parts of propylene glycol-n-propyl ether is charged in a container and kept at 100 ° C. with stirring in a nitrogen atmosphere, and about 500 parts of a mixture consisting of 35 parts of dimethylaminoethyl methacrylate, 300 parts of methyl methacrylate and 165 parts of butyl acrylate is added. Drip slowly over time. In parallel, a solution consisting of 10 parts of t-butyl peroxy-2-ethylhexanoate (trade name Perbutyl O, manufactured by NOF Corporation) and 65 parts of propylene glycol-n-propyl ether is slowly added over about 3 hours. And dripped. One hour after the completion of dropping, a solution consisting of 2.5 parts of perbutyl O and 10 parts of propylene glycol-n-propyl ether was added, and the liquid temperature was kept at 100 ° C. for 3 hours to complete the polymerization reaction. Next, after adding 13.5 parts of glacial acetic acid and neutralizing by thorough stirring and mixing, 980 parts of ion-exchanged water is added dropwise to carry out water dispersion, followed by further desolvation under reduced pressure. Thus, an aqueous dispersion of a cationic acrylic resin (A-2-2) having a nonvolatile content of 35%, a pH of 5.8, a particle diameter of 0.1 μm, and a cation equivalent of 0.44 equivalent / kg was obtained.

(比較合成例1)
攪拌機、温度計、還流冷却管および不活性ガスの送入管と排出管とを備えた反応容器に116部のヘキサメチレンジアミンを仕込み、窒素雰囲気下で攪拌しながら50℃に保ち、210部のプロピレンカーボネートを約一時間かけてゆっくりと滴下した。反応容器を90〜100℃に保ちながら20時間反応させたところ、白色ワックス状の軟固体である、ヘキサメチレンジアミンのビスヒドロキシカルバメート(以下、A’−1と称す)を得た。酸滴定の結果、アミン含量は0.1%以下であった。
(Comparative Synthesis Example 1)
A reaction vessel equipped with a stirrer, thermometer, reflux condenser and inert gas inlet and outlet was charged with 116 parts of hexamethylenediamine and maintained at 50 ° C. with stirring under a nitrogen atmosphere. Propylene carbonate was slowly added dropwise over about 1 hour. When the reaction vessel was kept at 90 to 100 ° C. for 20 hours, hexamethylenediamine bishydroxycarbamate (hereinafter referred to as A′-1), which was a white waxy soft solid, was obtained. As a result of acid titration, the amine content was 0.1% or less.

(比較合成例2)
攪拌機、温度計、滴下漏斗、還流冷却管および不活性ガスの送入管と排出管とを備えた反応容器にプロピレングリコール−n−プロピルエーテル425部を仕込み、窒素雰囲気下で攪拌しながら100℃に保ち、ジメチルアミノエチルメタクリレート100部、メチルメタクリレート260部、ブチルアクリレート140部からなる混合物500部を約3時間かけてゆっくりと滴下した。並行して、パーブチルO 10部、プロピレングリコール−n−プロピルエーテル65部からなる溶液を約3時間かけてゆっくりと滴下した。滴下終了後から更に1時間後、パーブチルO 2.5部、プロピレングリコール−n−プロピルエーテル10部からなる溶液を加え、さらに液温を100℃で3時間保ち重合反応を完結させた。次いで、氷酢酸38.2部を添加してよく撹拌混合して中和させた後、イオン交換水980部を滴下して攪拌し、更に引き続いて減圧下脱溶剤することにより、不揮発分35%、PH6.0、カチオン当量1.27当量/kgのカチオン性アクリル樹脂(A’−2)の透明な水溶液を得た。
(Comparative Synthesis Example 2)
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a reflux condenser, and an inert gas inlet and outlet tube was charged with 425 parts of propylene glycol-n-propyl ether and stirred at 100 ° C. in a nitrogen atmosphere. Then, 500 parts of a mixture consisting of 100 parts of dimethylaminoethyl methacrylate, 260 parts of methyl methacrylate and 140 parts of butyl acrylate was slowly added dropwise over about 3 hours. In parallel, a solution consisting of 10 parts perbutyl O and 65 parts propylene glycol-n-propyl ether was slowly added dropwise over about 3 hours. One hour after the completion of the dropping, a solution comprising 2.5 parts of perbutyl O and 10 parts of propylene glycol-n-propyl ether was added, and the polymerization temperature was further maintained at 100 ° C. for 3 hours to complete the polymerization reaction. Next, after 38.2 parts of glacial acetic acid was added and well mixed by stirring and neutralized, 980 parts of ion-exchanged water was added dropwise and stirred, followed by desolvation under reduced pressure to obtain a non-volatile content of 35%. A transparent aqueous solution of a cationic acrylic resin (A′-2) having a pH of 6.0 and a cation equivalent of 1.27 equivalents / kg was obtained.

[塗料組成物]
(実施例1)
合成例1で得られたカチオン性ウレタン樹脂(A−1−1)の水分散体20部、イオン交換水5部、2−プロパノール(以下、IPAと称す)8部を撹拌混合した後、10%マレイン酸水溶液7部を徐々に滴下した。このときの混合液のPHは1.6であった。引き続き、撹拌しながらテトラメトキシシラン縮合物(メチルシリケート51:多摩化学工業株式会社製品。以下、MS−51と称す。)14.4部と3−グリシドキシプロピルトリメトキシシラン(以下、GPTMSと称す。)4.3部からなる混合液を徐々に加えて、一時間攪拌し、木材用水性塗料組成物(1)を得た。
[Coating composition]
Example 1
After stirring and mixing 20 parts of an aqueous dispersion of the cationic urethane resin (A-1-1) obtained in Synthesis Example 1, 5 parts of ion-exchanged water, and 8 parts of 2-propanol (hereinafter referred to as IPA), 10 7 parts of a% maleic acid aqueous solution was gradually added dropwise. The pH of the mixed solution at this time was 1.6. Subsequently, 14.4 parts of tetramethoxysilane condensate (methyl silicate 51: product of Tama Chemical Industry Co., Ltd., hereinafter referred to as MS-51) and 3-glycidoxypropyltrimethoxysilane (hereinafter referred to as GPTMS) are stirred. The mixed liquid consisting of 4.3 parts was gradually added and stirred for 1 hour to obtain an aqueous wood coating composition (1) for wood.

(実施例2〜16及び参考例1〜7
実施例1と同様に、表1〜3の配合で木材用水性塗料組成物を調整し、木材用水性塗料組成物(2)〜(23)を得た。
(Examples 2 to 16 and Reference Examples 1 to 7 )
In the same manner as in Example 1, the wood-based water-based coating composition was prepared with the formulations shown in Tables 1 to 3 to obtain wood-based water-based coating compositions (2) to (23).

(比較例1)
比較合成例1で合成した、水酸基含有ポリマーA’−1を15部、イオン交換水を15部、メタノール5部を混合した溶液に、テトラエトキシシラン(以下、TEOSと称す。)20部、硬化剤として、メラミン樹脂サイメル303(サイテック株式会社製)0.5部を加えて均一溶液を作成した。この溶液に、触媒として0.3部の濃塩酸を加えて、約30℃で一時間加熱し、比較用の水性塗料組成物(1’)を得た。
(Comparative Example 1)
20 parts of tetraethoxysilane (hereinafter referred to as TEOS) and curing were added to a solution obtained by mixing 15 parts of the hydroxyl group-containing polymer A′-1 synthesized in Comparative Synthesis Example 1, 15 parts of ion-exchanged water, and 5 parts of methanol. As an agent, 0.5 part of melamine resin Cymel 303 (manufactured by Cytec Corporation) was added to prepare a uniform solution. To this solution, 0.3 part of concentrated hydrochloric acid as a catalyst was added and heated at about 30 ° C. for 1 hour to obtain a comparative aqueous coating composition (1 ′).

(比較例2)
比較合成例2で得られたカチオン性アクリル樹脂(A−2’)の水溶液20部、イオン交換水8.5部、2−プロパノール(以下、IPAと称す)8部を撹拌混合した後、10%マレイン酸水溶液3.9部を徐々に滴下した。このときの混合液のpHは2.3であった。引き続き、撹拌しながらMS−51を14.4部とGPTMSを4.3部からなる混合液を徐々に加えて、一時間攪拌し、比較用の水性塗料組成物(2’)を得た。
(Comparative Example 2)
After stirring and mixing 20 parts of the aqueous solution of the cationic acrylic resin (A-2 ′) obtained in Comparative Synthesis Example 2, 8.5 parts of ion-exchanged water, and 8 parts of 2-propanol (hereinafter referred to as IPA), 10 parts 3.9 parts of a% maleic acid aqueous solution was gradually added dropwise. The pH of the mixed solution at this time was 2.3. Subsequently, a mixed liquid consisting of 14.4 parts of MS-51 and 4.3 parts of GPTMS was gradually added with stirring, followed by stirring for 1 hour to obtain a comparative aqueous coating composition (2 ′).

(木材用水性塗料組成物の安定性評価方法)
実施例1〜16、参考例1〜7、及び比較例1〜2で得られた水性塗料組成物を23℃で保管したときの塗液状態を目視で観察し、ゲル化が起こるまでの日数を記載した。
(Stability evaluation method of water-based paint composition for wood)
The number of days until gelation occurs by visually observing the coating liquid state when the aqueous coating compositions obtained in Examples 1 to 16, Reference Examples 1 to 7 , and Comparative Examples 1 to 2 are stored at 23 ° C. Was described.

Figure 0005130791
Figure 0005130791

Figure 0005130791
Figure 0005130791

Figure 0005130791
Figure 0005130791

Figure 0005130791
Figure 0005130791

表1〜4の脚注
(A)/(B1):カチオン性樹脂(A)の質量と金属アルコキシド又はその縮合物(B)の加水分解縮合後の質量(B1)との比
SF650:スーパーフレックス650、第一工業製薬株式会社製 カチオン性ウレタン樹脂の水性分散体、不揮発分25%、平均粒径0.01μm
UW550CS:アクリットUW550−CS、大成ファインケミカル株式会社製 カチオン性アクリル樹脂の水性分散体、不揮発分34%、平均粒径0.04μm
MTMS:メチルトリメトキシシラン
Footnotes in Tables 1 to 4 (A) / (B1): ratio of the mass of the cationic resin (A) to the mass (B1) after hydrolytic condensation of the metal alkoxide or its condensate (B) SF650: Superflex 650 Manufactured by Daiichi Kogyo Seiyaku Co., Ltd. Cationic urethane resin aqueous dispersion, 25% non-volatile content, average particle size 0.01 μm
UW550CS: Acryt UW550-CS, manufactured by Taisei Fine Chemical Co., Ltd. Cationic acrylic resin aqueous dispersion, non-volatile content 34%, average particle size 0.04 μm
MTMS: Methyltrimethoxysilane

[塗膜]
(実施例1732、参考例8〜14
実施例1〜16及び参考例1〜7で得た木材用水性塗料組成物(1)〜(23)を、ブナ材(12mm厚)上にスポンジ状ゴムロールを具備したナチュラルコーター(図1参照)を用いて乾燥後の塗布量が約5g/m2になるように塗布した後、90℃に設定した温風乾燥機で90秒乾燥して防汚処理木材を得た。
塗装工程:
(i)スポンジナチュラル(スポンジ状ゴムロール)コーターで塗布・含浸
(ii)リバース(掻き取り)コーターで、塗料を基材に押し込みながら、表面の余剰塗料を掻き取る。
(iii)ナチュラル(ゴム)コーターで薄く押さえ塗布する。
[Coating]
(Examples 17 to 32, and Reference Examples 8 to 14)
Natural coater (see FIG. 1) in which the aqueous coating compositions for wood (1) to (23) obtained in Examples 1 to 16 and Reference Examples 1 to 7 are provided with a sponge rubber roll on a beech material (12 mm thick). Was applied so that the coating amount after drying was about 5 g / m 2, and then dried for 90 seconds with a warm air dryer set at 90 ° C. to obtain antifouling treated wood.
Painting process:
(I) Applying and impregnating with a sponge natural (sponge-like rubber roll) coater (ii) Using a reverse (scraping) coater, scrape excess paint on the surface while pushing the paint into the substrate.
(Iii) Apply thinly with a natural (rubber) coater.

(比較例3〜4)
比較例1〜2で得た水性塗料組成物(1’)〜(2’)を実施例と同様にしてブナ材上に塗布し比較用試験木材を得た。この時、比較例1で得られた水性塗料組成物を用いた比較例3では、乾燥後も木材表面にややタックが残っていた。耐汚染性試験、耐薬品性試験はそのままの表面にて行った。
(Comparative Examples 3-4)
The aqueous paint compositions (1 ′) to (2 ′) obtained in Comparative Examples 1 and 2 were applied onto beech materials in the same manner as in Examples to obtain comparative test wood. At this time, in Comparative Example 3 using the water-based coating composition obtained in Comparative Example 1, some tack remained on the wood surface even after drying. The contamination resistance test and the chemical resistance test were performed on the surface as they were.

(比較例5)
基材として用いたブナ材(未塗布品)を比較用試験木材とした。
(Comparative Example 5)
A beech material (uncoated product) used as a base material was used as a comparative test wood.

(評価)
得られた防汚処理木材、比較用試験木材に対して下記の試験を行った。
耐汚染性試験:農林水産省告示第233号による「合板の日本農林規格」第8条 「特殊加工化粧板の規格」中の「表面性能の基準」の「耐汚染性」および「耐薬品性」に定められている試験項目に準じた試験方法で試験を行った。
(Evaluation)
The following tests were performed on the obtained antifouling treated wood and comparative test wood.
Contamination resistance test: “Contamination resistance” and “Chemical resistance” in “Standards of surface performance” in Article 8 “Standards for Specially Treated Decorative Plates” in “Japanese Agricultural Standards for Plywood” by Ministry of Agriculture, Forestry and Fisheries Notification No. 233 The test was conducted by a test method according to the test items defined in “1.

耐汚染性試験の汚染物質として黒マジック・赤マジック・青マジック(JIS S6307 マーキングペンに定めるもの)・黒インキ・青インキ・赤クレヨンを用い、24時間試験を行った。耐薬品性試験の薬品として5%酢酸水溶液・1%炭酸ナトリウム・60%エタノール水溶液・JASラッカーシンナー(JIS K5538 ラッカー系シンナー)を用い24時間、試験を行った。結果を表5〜8にまとめた。   A black magic, red magic, blue magic (as defined in JIS S6307 marking pen), black ink, blue ink, and red crayon were used as contaminants in the stain resistance test, and the test was conducted for 24 hours. The test was conducted for 24 hours using 5% acetic acid aqueous solution, 1% sodium carbonate, 60% ethanol aqueous solution, JAS lacquer thinner (JIS K5538 lacquer thinner) as chemicals for chemical resistance test. The results are summarized in Tables 5-8.

判定基準(目視)
耐汚染性試験
◎ :汚れ残りなし
○ :やや汚れ残りがあるが、実用上の問題がない
△ :少し汚れ残りがあるが、内部には浸透していない。
× :汚れ残りがある。
××:汚れが拡散しており、内部にまで浸透し除去不可能。
耐薬品性試験
◎:変色なし
○:やや変色があるが、実用上の問題がない。
△:少し変色があるが、内部には浸透していない。
×:変色あり
Judgment criteria (visual)
Contamination resistance test ◎: No dirt residue ○: There is a little dirt residue, but there is no practical problem. △: There is a little dirt residue, but it does not penetrate inside.
X: Dirt remains.
XX: Dirt is diffused and penetrates into the interior and cannot be removed.
Chemical resistance test ◎: No discoloration ○: There is a slight discoloration, but there is no practical problem.
Δ: There is a slight discoloration, but it does not penetrate inside.
×: Discoloration

Figure 0005130791
Figure 0005130791

Figure 0005130791
Figure 0005130791

Figure 0005130791
Figure 0005130791

Figure 0005130791
Figure 0005130791

実施例で得られた防汚処理木材表面は、目視によって未塗装品(比較例5)との区別はつかないほど木目が残っており、ワックス等を塗布したときのテカリなどもなかった。さらに基材として用いたブナ材の凹凸が損なわれていない(図面参照。尚、SEM写真測定に用いた機器は株式会社キーエンス製リアルサーフェスビュー顕微鏡VE−7800である。)。   The antifouling-treated wood surface obtained in the examples had a grain that was indistinguishable from an unpainted product (Comparative Example 5) by visual observation, and there was no shine when applying wax or the like. Furthermore, the unevenness of the beech material used as a base material is not damaged (see the drawing. Note that the equipment used for SEM photo measurement is a real surface view microscope VE-7800 manufactured by Keyence Corporation).

実施例で用いた塗装機である。It is the coating machine used in the Example. 実施例24で得られた防汚処理木材の試験後の写真である。2 is a photograph of the antifouling treated wood obtained in Example 24 after a test. 参考で得られた防汚処理木材の試験後の写真である。It is a photograph after the test of the antifouling treated wood obtained in Reference Example 8 . 比較例5(未塗装品)の試験後の写真である。It is the photograph after the test of the comparative example 5 (unpainted goods). 実施例24で得られた防汚処理木材の表面のSEM写真である。2 is a SEM photograph of the surface of an antifouling treated wood obtained in Example 24. 参考で得られた防汚処理木材の表面のSEM写真である。 10 is a SEM photograph of the surface of an antifouling treated wood obtained in Reference Example 8 . 比較例5(未塗装品)の表面のSEM写真である。It is a SEM photograph of the surface of comparative example 5 (unpainted article).

Claims (5)

下記一般式(I)で表される構造単位を有するカチオン性樹脂(A)の水性分散体と、金属アルコキシド又はその縮合物(B)と、酸触媒(C)とを含有することを特徴とする木材用水性塗料組成物。
Figure 0005130791
(式(I)中、R は脂肪族環式構造を含んでいてもよいアルキレン鎖、2価フェノール類の残基、又はポリオキシアルキレン鎖であり、R 及びR は、互いに独立して脂肪族環式構造を含んでいてもよいアルキル基であり、R は水素原子又は四級化反応により導入された四級化剤の残基であり、X−はアニオン性の対イオンである。)
It contains an aqueous dispersion of a cationic resin (A) having a structural unit represented by the following general formula (I), a metal alkoxide or a condensate thereof (B), and an acid catalyst (C). Water-based paint composition for wood.
Figure 0005130791
(In the formula (I), R 1 is an alkylene chain that may contain an aliphatic cyclic structure, a residue of a dihydric phenol, or a polyoxyalkylene chain, and R 2 and R 3 are independent of each other. R 4 is a hydrogen atom or a residue of a quaternizing agent introduced by a quaternization reaction, and X − is an anionic counter ion. is there.)
前記金属アルコキシド又はその縮合物(B)が、珪素アルコキシド又はその縮合物である請求項1記載の木材用水性塗料組成物。 The metal alkoxide or its condensation product (B) is a silicon alkoxide or its condensate in a claim 1 Symbol placement wood aqueous coating composition. 前記金属アルコキシド又はその縮合物がテトラアルコキシシラン又はその縮合物と3−グリシドキシプロピルトリメトキシシランとを併用するものである請求項1又は2記載の木材用水性塗料組成物。 The aqueous coating composition for wood according to claim 1 or 2, wherein the metal alkoxide or the condensate thereof is a combination of tetraalkoxysilane or the condensate thereof and 3-glycidoxypropyltrimethoxysilane. 前記カチオン性樹脂(A)の質量と金属アルコキシド又はその縮合物(B)の加水分解縮合後の質量(B1)との比が、(A)/(B1)で表される質量比で10/90〜70/30の範囲である請求項1〜の何れか1項記載の水性塗料組成物。 The ratio of the mass of the cationic resin (A) to the mass (B1) after hydrolytic condensation of the metal alkoxide or its condensate (B) is 10 / in the mass ratio represented by (A) / (B1). It is the range of 90-70 / 30, The water-based coating composition in any one of Claims 1-3 . 請求項1〜の何れか1項記載の木材用水性塗料組成物を木材上に塗布し、乾燥して得られることを特徴とする防汚処理木材。 An antifouling-treated wood obtained by applying the aqueous coating composition for wood according to any one of claims 1 to 4 onto wood and drying it.
JP2007151468A 2007-06-07 2007-06-07 Water-based paint composition for wood and antifouling treated wood using the same Active JP5130791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151468A JP5130791B2 (en) 2007-06-07 2007-06-07 Water-based paint composition for wood and antifouling treated wood using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151468A JP5130791B2 (en) 2007-06-07 2007-06-07 Water-based paint composition for wood and antifouling treated wood using the same

Publications (2)

Publication Number Publication Date
JP2008303291A JP2008303291A (en) 2008-12-18
JP5130791B2 true JP5130791B2 (en) 2013-01-30

Family

ID=40232293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151468A Active JP5130791B2 (en) 2007-06-07 2007-06-07 Water-based paint composition for wood and antifouling treated wood using the same

Country Status (1)

Country Link
JP (1) JP5130791B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5774812B2 (en) * 2009-10-05 2015-09-09 アイカ工業株式会社 Construction method
JP6057238B2 (en) * 2012-11-09 2017-01-11 株式会社リコー Processing liquid for processing recording medium and image forming method using the same
WO2014199527A1 (en) * 2013-06-10 2014-12-18 株式会社ネオス Aqueous primer composition for paint removal use, and paint removal method
JP6202378B2 (en) * 2013-08-01 2017-09-27 サイデン化学株式会社 Emulsion composition for one-component aqueous sealer and method for producing emulsion composition for one-component aqueous sealer
EP3597706B1 (en) * 2018-07-16 2020-08-26 Flooring Technologies Ltd. Composition for coating and sealing of edges of wood fibre board
JP7269078B2 (en) * 2019-04-10 2023-05-08 ケミプロ化成株式会社 Protective agent for wood and surface-treated wood members

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588847B2 (en) * 1995-02-28 2004-11-17 中央理化工業株式会社 Curable composition and method for producing the same
JP4110402B2 (en) * 2003-06-19 2008-07-02 信越化学工業株式会社 Silicone coating composition
US20070178318A1 (en) * 2004-02-27 2007-08-02 Mitsubishi Chemical Corporation Silicon-containing liquid composition
WO2006003829A1 (en) * 2004-06-30 2006-01-12 Dainippon Ink And Chemicals, Inc. Aqueous coating composition
US20080248281A1 (en) * 2004-07-28 2008-10-09 Dainippon Ink & Chemicals, Inc Organic-Inorganic Composite Coating Film and Aqueous Coating Composition
JP4135761B2 (en) * 2005-12-12 2008-08-20 Dic株式会社 Water-based coating composition, organic-inorganic composite coating film and method for producing the same

Also Published As

Publication number Publication date
JP2008303291A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5130791B2 (en) Water-based paint composition for wood and antifouling treated wood using the same
JP5419693B2 (en) Silane coating material and method for producing a silane coating
CN101679598B (en) Method for the production of a coating material
JP4135761B2 (en) Water-based coating composition, organic-inorganic composite coating film and method for producing the same
JP5525152B2 (en) UV-curable coating composition, method for producing the same, and resin-coated article coated therewith
JP6197334B2 (en) Aqueous resin composition and article obtained by applying the same
US9604250B2 (en) Refinish coating system and repairing method for automotive resin glazing
JPH0426622B2 (en)
WO2007069588A1 (en) Aqueous coating composition, organic/inorganic composite coating film and method for producing same
JP2009235238A (en) Aqueous coating composition, organic-inorganic composite coating film, metal alkoxide condensate dispersion, and production method thereof
JP2006192734A (en) Antistaining sheet
JP4522579B2 (en) COMPOSITE, SUBSTRATE COATED WITH COATED COMPOSITION COMPRISING THE COMPOSITE, AND METHOD FOR PRODUCING SUBSTRATE WITH COATED
JPWO2016047415A1 (en) Aqueous urethane resin composition, coating agent and article
JP4099726B2 (en) Water-based coating composition, organic-inorganic composite coating film and method for producing the same
JP7060609B2 (en) Method of forming a surface protective film on the floor
JPH09302286A (en) Method for forming coating film
JPWO2002088268A1 (en) Hard coat composition and resin product provided with hard coat
WO2004048487A1 (en) Coating composition and coated plastic lenses
JP2008274242A (en) Aqueous coating composition, organic-inorganic composite coating film, silane condensate dispersion and method for producing the same
JPH10219190A (en) Multi-package water-based coating composition
JP2010138274A (en) Aqueous coating agent
JP5710178B2 (en) Curable resin composition and hard coat film or sheet
JP4581216B2 (en) Method for hydrophilizing glass container surface with resin coating and resin coated glass container having hydrophilic surface produced by the method
JP2012126819A (en) Urethane resin composition, coating agent, coating agent for plastic substrate, and cured product obtained using these, and cured products obtained by using these, and methods for manufacturing the cured products
JP5652375B2 (en) Laminated coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5130791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250