JP5126874B2 - Method for producing liposome preparation - Google Patents

Method for producing liposome preparation Download PDF

Info

Publication number
JP5126874B2
JP5126874B2 JP2007134414A JP2007134414A JP5126874B2 JP 5126874 B2 JP5126874 B2 JP 5126874B2 JP 2007134414 A JP2007134414 A JP 2007134414A JP 2007134414 A JP2007134414 A JP 2007134414A JP 5126874 B2 JP5126874 B2 JP 5126874B2
Authority
JP
Japan
Prior art keywords
liposome
microchannel
liposomes
producing
liposome preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007134414A
Other languages
Japanese (ja)
Other versions
JP2008285459A (en
Inventor
洋 鈴木
知尚 勝田
滋雄 加藤
洋基 薄井
悦之 菰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2007134414A priority Critical patent/JP5126874B2/en
Publication of JP2008285459A publication Critical patent/JP2008285459A/en
Application granted granted Critical
Publication of JP5126874B2 publication Critical patent/JP5126874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、粒子径分布が調節されたリポソーム製剤の製造方法、および該方法により得られたリポソーム製剤に関する。   The present invention relates to a method for producing a liposome preparation having a regulated particle size distribution, and a liposome preparation obtained by the method.

リポソームは、主にリン脂質によって形成される二分子膜(リポソーム膜)の閉鎖小胞体であり、生体膜と類似の構造や機能を有するため、従来から様々な研究材料として用いられてきている。このリポソームは、内部に有する水相には水溶性の薬効成分を、二分子膜の内部には油溶性の薬効成分を保持するという、いわゆるカプセル構造を構築できることから、診断、治療、化粧などの様々な分野で用いられてきている。さらに、近年では、薬物送達システム(DDS)への応用が盛んに研究されている。   Liposomes are closed vesicles of bilayer membranes (liposome membranes) formed mainly by phospholipids and have similar structures and functions as biological membranes, and thus have been used as various research materials. Since this liposome can construct a so-called capsule structure that retains a water-soluble medicinal component in the aqueous phase inside and an oil-soluble medicinal component in the bilayer membrane, it can be used for diagnosis, treatment, makeup, etc. It has been used in various fields. Furthermore, in recent years, application to drug delivery systems (DDS) has been actively studied.

このような薬効成分を内包したリポソームは、通常、ロータリエバポレータ等を使い恒温槽にて丸底フラスコの回転条件下でフラスコの底部に脂質膜を形成させ、そこに内包物を含む水溶液を導入して、減圧条件下で形成される(非特許文献1)。そして、このようにして得られるリポソームは粒子径分布が広く、ゲルろ過等の処理を経て目的径のリポソームの回収を行っていた。しかし、その方法では回収されるリポソームは投入原料のせいぜい1%程度にしかならず、製造コストの高額化が大きな問題であった。   Liposomes encapsulating such medicinal ingredients usually form a lipid film at the bottom of the flask under the rotation of a round bottom flask in a thermostat using a rotary evaporator or the like, and introduce an aqueous solution containing the inclusions therein. And formed under reduced pressure conditions (Non-Patent Document 1). And the liposome obtained in this way has a wide particle size distribution, and the liposome of the target diameter was recovered through treatment such as gel filtration. However, in this method, the recovered liposome is only about 1% of the input raw material, and an increase in production cost has been a big problem.

マイクロ流路を使ったリポソームの製法としてはアンドレアス・ジャーン等の方法がある(非特許文献2)。この方法では、流路が十字構造となり、中央流路に内包物と脂質と有機溶媒の混合物を流し、両側流路から緩衝液を流し、この両者の混合速度(希釈過程)の調整によりリポソームの調製をおこなう技術がある。しかし、この方法では有機物がリポソーム製剤に残留しており、有機溶媒による生体への好ましくない影響が問題となる。
J.Mol.Biol.,13,238(1965):Bangham法 J.Am.Chem. Soc. 2004, 126, 2674-2675(Controlled Vesicle self-assembly in microfluidic channels with hydrodynamic focusing)
As a method for producing a liposome using a microchannel, there is a method such as Andreas Jahn (Non-patent Document 2). In this method, the flow path has a cross-shaped structure, and a mixture of inclusions, lipids, and an organic solvent flows in the central flow path, a buffer solution flows from the flow paths on both sides, and the mixing speed (dilution process) of the two adjusts the liposome. There is a technique to prepare. However, in this method, the organic substance remains in the liposome preparation, and an unfavorable influence on the living body due to the organic solvent becomes a problem.
J. Mol. Biol., 13,238 (1965): Bangham method J.Am.Chem. Soc. 2004, 126, 2674-2675 (Controlled Vesicle self-assembly in microfluidic channels with hydrodynamic focusing)

本発明は、リポソーム製剤の製造方法において、均一な粒子径のリポソームを効率的に調製する方法を提供することであり、および該方法により得られたリポソーム製剤を提供することを目的とする。   An object of the present invention is to provide a method for efficiently preparing liposomes having a uniform particle size in a method for producing a liposome preparation, and to provide a liposome preparation obtained by the method.

本発明のリポソーム製剤の製造方法は、マイクロ流路を使ってリポソームを製造するにあたり、マイクロ流路内にリン脂質膜を一端形成させ、その後内包対象物を導入し、その流速、流路内径を調整して、リポソームを形成させることによって、均一な粒子径のリポソーム製剤を調製することを特徴とする。   In the production method of the liposome preparation of the present invention, when producing a liposome using a microchannel, a phospholipid film is formed at one end in the microchannel, and then the inclusion target is introduced, and the flow rate and the channel inner diameter are determined. A liposome preparation having a uniform particle diameter is prepared by adjusting to form liposomes.

つまり、本発明は以下からなる。
1.内径が100〜1000μmであるマイクロ流路内に、有機溶媒に溶解させたリン脂質を導入し、有機溶媒を乾燥させてマイクロ流路の壁にリン脂質の薄膜を形成させ、0.01〜0.5m/秒の流速で、内包対象物を含む水溶液を流し、薄膜を剥がしとり、リポソームを生成させる工程を含む粒子径が均一化されたリポソーム製剤の製造方法。
2.リポソーム形成時の温度が、15〜70℃である前項1に記載のリポソーム製剤の製造方法。
3.有機溶媒を減圧留去してマイクロ流路の壁にリン脂質の薄膜を形成させる前項1又は2に記載のリポソーム製剤の製造方法。
4.マイクロ流路から排出されたリポソームを遠心分離する工程を含む前項1〜3のいずれか一に記載のリポソーム製剤の製造方法。
That is, this invention consists of the following.
1. A phospholipid dissolved in an organic solvent is introduced into a microchannel having an inner diameter of 100 to 1000 μm, and the organic solvent is dried to form a phospholipid thin film on the wall of the microchannel. A method for producing a liposome preparation having a uniform particle diameter, including a step of flowing an aqueous solution containing an inclusion target at a flow rate of 5 m / second, peeling off a thin film, and generating liposomes.
2. 2. The method for producing a liposome preparation according to item 1 above, wherein the temperature during liposome formation is 15 to 70 ° C.
3. 3. The method for producing a liposome preparation according to item 1 or 2, wherein the organic solvent is distilled off under reduced pressure to form a phospholipid thin film on the wall of the microchannel.
4). 4. The method for producing a liposome preparation according to any one of items 1 to 3, which comprises a step of centrifuging the liposome discharged from the microchannel.

本発明のリポソーム製剤の製造方法によれば、所望の粒子径のリポソームを効率的に所得可能であり、またその方法が簡便であることから工業的レベルでリポソームを調製するために優れた方法を提供する。   According to the method for producing a liposome preparation of the present invention, it is possible to efficiently obtain liposomes having a desired particle size, and since the method is simple, an excellent method for preparing liposomes at an industrial level. provide.

以下、本発明のリポソーム製剤の製造方法について詳細に説明する。   Hereinafter, the production method of the liposome preparation of the present invention will be described in detail.

本発明のリポソーム製剤の製造方法は、マイクロ流路内に、有機溶媒に溶解させたリン脂質を導入し、有機溶媒を乾燥させてマイクロ流路の壁にリン脂質の薄膜を形成させ、流速調整下で、内包対象物を含む水溶液を流し、薄膜を剥がしとり、リポソームを生成させる工程を含む方法である。   In the method for producing a liposome preparation of the present invention, a phospholipid dissolved in an organic solvent is introduced into a microchannel, the organic solvent is dried to form a phospholipid thin film on the wall of the microchannel, and the flow rate is adjusted. Below, it is a method including the process of flowing the aqueous solution containing the inclusion object, peeling off the thin film, and producing liposomes.

本発明のリポソーム製剤は、リポソームの水性分散液製剤又は凍結乾燥製剤として調製できる。好適な製剤は、内包対象物が水溶性薬剤等であり、水溶性薬剤が内包されたリポソームが水性溶媒中に分散している水性分散液として調製できる。このリポソームの水性分散液には、安定化剤、キレート剤、抗酸化剤、粘度調節剤、緩衝剤、pH調整剤などが溶解または分散していてもよい。このようなリポソームの水性分散液の調製は、各種の方法が知られているが、目的、特性、用途などに応じて適宜選択して行う。   The liposome preparation of the present invention can be prepared as an aqueous dispersion preparation or lyophilized preparation of liposome. A suitable preparation can be prepared as an aqueous dispersion in which the inclusion target is a water-soluble drug or the like and liposomes encapsulating the water-soluble drug are dispersed in an aqueous solvent. In the aqueous dispersion of liposomes, stabilizers, chelating agents, antioxidants, viscosity modifiers, buffers, pH adjusters, and the like may be dissolved or dispersed. Various methods are known for preparing such an aqueous dispersion of liposomes, and it is appropriately selected according to the purpose, characteristics, use and the like.

リポソームに内包される水溶性薬剤としては、造影剤、抗酸化剤、抗菌剤、抗炎症剤、血行促進剤、美白剤、肌荒れ防止剤、老化防止剤、発毛促進剤、保湿剤、ホルモン剤、ビタミン類、色素、およびタンパク質類などが挙げられる。   Examples of water-soluble drugs encapsulated in liposomes include contrast agents, antioxidants, antibacterial agents, anti-inflammatory agents, blood circulation promoters, whitening agents, skin roughening agents, anti-aging agents, hair growth promoters, moisturizers, hormone agents Vitamins, pigments, and proteins.

本発明の製造方法によって調製されるリポソームとしては、多重層膜からなるリポソーム(Multilamellar vesicles; MLV)、粒子径が大きい一枚膜のLUVからなるリポソーム(Large unilamellar veislcles)、粒子径が50nm未満の小さい一枚膜のSUVからなるリポソーム(Small unilamellar vesicles)が挙げられ、これらは混在していてもよい。
好適なリポソームは、通常、脂質二重膜から形成されている。その脂質膜の成分として、通常リン脂質が好ましく使用される。
Liposomes prepared by the production method of the present invention include multilamellar vesicles (MLV), single-layer LUV liposomes having a large particle size (Large unilamellar veislcles), particles having a particle size of less than 50 nm. Liposomes (small unilamellar vesicles) composed of small single-film SUVs may be mentioned, and these may be mixed.
Suitable liposomes are usually formed from lipid bilayers. As a component of the lipid membrane, usually phospholipid is preferably used.

本発明の製造方法で調製されるリポソームにおいて使用される原料のリン脂質は、中性リン脂質として、大豆、卵黄などから得られるレシチン、リゾレシチンおよび/またはこれらの水素添加物、水酸化物の誘導体を挙げることができる。これらは単独でも併用してもよい。その他のリン脂質として、卵黄、大豆またはその他、動植物に由来するホスファチジルコリン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロール、ホスファチジルエタノールアミン、スフィンゴミエリン、合成により得られるホスファチジン酸、ジパルミトイルホスファチジルコリン(DPPC)、ジステアロイルホスファチジルコリン(DSPC)、ジミリストリルホスファチジルコリン(DMPC)、ジオレイルホスファチジルコリン(DOPC)、ジパルミトイルホスファチジルグリセロール(DPPG)、ジステアロイルホスファチジルセリン(DSPS)、ジステアロイルホスファチジルグリセロール(DSPG)、ジパルミトイルホスファチジルイノシトール(DPPI)、ジステアロイルホスファチジルイノシトール(DSPI)、ジパルミトイルホスファチジン酸(DPPA)、ジステアロイルホスファチジン酸(DSPA)などを挙げることができる。   The raw material phospholipids used in the liposomes prepared by the production method of the present invention are neutral phospholipids such as lecithin, lysolecithin and / or hydrogenated products and hydroxide derivatives obtained from soybeans, egg yolks, etc. Can be mentioned. These may be used alone or in combination. Other phospholipids include egg yolk, soybean or other phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, sphingomyelin, synthetically obtained phosphatidic acid, dipalmitoyl phosphatidylcholine (DPPC), distearoyl Phosphatidylcholine (DSPC), Dimyristolphosphatidylcholine (DMPC), Dioleylphosphatidylcholine (DOPC), Dipalmitoylphosphatidylglycerol (DPPG), Distearoylphosphatidylserine (DSPS), Distearoylphosphatidylglycerol (DSPG), Dipalmitoylphosphatidylinositol (DPPI) ), Distearoyl phosphatidylinositol (DSPI), dipalmi Yl lysophosphatidic acid (DPPA), distearoyl lysophosphatidic acid (DSPA), and the like.

これらのリン脂質は通常、単独で使用されるが、2種以上併用して混合使用してもよい。2種以上の荷電リン脂質を使用する場合には、負電荷のリン脂質同士または正電荷のリン脂質同士で使用することが、リポソームの凝集防止の観点から望ましい。中性リン脂質と荷電リン脂質を併用する場合、重量比として通常、200:1〜3:1、好ましくは100:1〜4:1、より好ましくは40:1〜5:1である。   These phospholipids are usually used alone, but may be used in combination of two or more. When two or more kinds of charged phospholipids are used, it is desirable to use them between negatively charged phospholipids or between positively charged phospholipids from the viewpoint of preventing liposome aggregation. When neutral phospholipids and charged phospholipids are used in combination, the weight ratio is usually 200: 1 to 3: 1, preferably 100: 1 to 4: 1, and more preferably 40: 1 to 5: 1.

所望によりリポソームの膜構成成分として、上記脂質成分の他に他の成分を加えることもできる。その例として、膜安定化剤またはポリアルキレンオキシド基導入用アンカーとしてコレステロール、コレステロールエステルなどのステロール類、荷電物質であるジセチルホスフェートといったリン酸ジアルキルエステルなどが例示される。   If desired, other components in addition to the lipid component can be added as membrane constituents of the liposome. Examples thereof include sterols such as cholesterol and cholesterol esters as membrane stabilizers or anchors for introducing polyalkylene oxide groups, and dialkyl phosphates such as dicetyl phosphate which is a charged substance.

本発明の製造方法において、マイクロ流路とは、入口と出口を有する長さが 2mm〜5mの流路であり、その流路内径は100〜1000μm好ましくは200〜530μmであって、その流路内径は所望するリポソーム粒子径により調整される。マイクロ流路内へは、有機溶媒例えばクロロホルム、アルコール(イソプロピルアルコール)等でリン脂質を溶解し、これを導入する。有機溶剤とリン脂質の混合比は、リン脂質が溶解される十分量であれば特に限定されるものではないが、一般的には、2〜30mg/mlの濃度に調整され使用される。マイクロ流路に導入されるリン脂質含有有機溶剤は、マイクロ流路の体積に応じて流路が十分に満たされる量である。流路に導入された後、流路は回転、乾燥等によって、流路内から完全に有機溶剤が飛ばされ、流路内壁に薄膜が形成される。有機溶媒を飛ばすためには、温度 15〜40℃ で、約500〜4000分間程度をかけ一様な薄膜を形成させる。薄膜の厚さは、約2〜20μmである。
薄膜が形成された後、十分に(例えば500〜1500分間かけて)乾燥させ、次いでマイクロ流路内に内包物を含む水溶液例えば生理食塩水を導入させ、リポソーム形成を行う。このとき、水溶液の導入速度は、流速が、0.01〜0.5m/秒、好ましくは0.05〜0.3m/秒、より好ましくは0.1〜0.2m/秒である。流路内の水溶液温度は、15〜70℃、好ましくは50〜65℃、より好ましくは55〜62℃である。
この条件で、水溶液によって薄膜が剥がしとられ、流路からリポソームが排出されてくる。形成されたリポソームは、遠心分離等の手段で沈殿として回収される。回収されたリポソームは、所望により粒子径調整のためのろ過、製剤化のための付加処理、滅菌等が行われ、所望により凍結乾燥化及び/又は水溶液製剤として調製される。
In the manufacturing method of the present invention, the microchannel is a channel having an inlet and an outlet having a length of 2 mm to 5 m, and an inner diameter of the channel is 100 to 1000 μm, preferably 200 to 530 μm. The inner diameter is adjusted according to the desired liposome particle diameter. A phospholipid is dissolved in an organic solvent such as chloroform or alcohol (isopropyl alcohol) and introduced into the microchannel. The mixing ratio of the organic solvent and the phospholipid is not particularly limited as long as it is a sufficient amount for dissolving the phospholipid, but is generally adjusted to a concentration of 2 to 30 mg / ml and used. The amount of the phospholipid-containing organic solvent introduced into the microchannel is such that the channel is sufficiently filled according to the volume of the microchannel. After being introduced into the flow path, the organic solvent is completely blown out of the flow path by rotation, drying, etc., and a thin film is formed on the inner wall of the flow path. In order to fly the organic solvent, a uniform thin film is formed at a temperature of 15 to 40 ° C. for about 500 to 4000 minutes. The thickness of the thin film is about 2 to 20 μm.
After the thin film is formed, it is sufficiently dried (for example, over 500 to 1500 minutes), and then an aqueous solution containing inclusions, such as physiological saline, is introduced into the microchannel to form liposomes. At this time, the introduction speed of the aqueous solution is such that the flow rate is 0.01 to 0.5 m / second, preferably 0.05 to 0.3 m / second, and more preferably 0.1 to 0.2 m / second. The aqueous solution temperature in the flow path is 15 to 70 ° C, preferably 50 to 65 ° C, more preferably 55 to 62 ° C.
Under this condition, the thin film is peeled off by the aqueous solution, and the liposome is discharged from the channel. The formed liposome is recovered as a precipitate by means such as centrifugation. The collected liposome is subjected to filtration for particle size adjustment, addition treatment for formulation, sterilization, etc., if desired, and is prepared as a freeze-dried and / or aqueous solution formulation as desired.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

(製造例1)
リポソームの調製
卵黄レシチン0.3g、ジセチルホスフェート20mgに、クロロホルム10mlを添加した後、完全に溶解するまで攪拌した。温度を60℃に保ち、内径200、320および530μm、長さ 1.5mのマイクロ流路に十分量導入し、1000分間の減圧条件でクロロホルムを減圧留去し、リン脂質の薄膜をマイクロ流路の内壁に形成させた。ついで、マイクロ流路の入口から温度60℃の生理食塩水を流速0.05〜0.25m/秒の速度で導入させ、マイクロ流路の出口から形成されたリポソームの分散水溶液を得た。この水溶液を12000rpmの条件で遠心分離し、多重膜リポソームを沈殿として回収した。沈殿を凍結乾燥し、乾燥リポソーム製剤を調製した。
(Production Example 1)
Preparation of liposomes
After adding 10 ml of chloroform to 0.3 g of egg yolk lecithin and 20 mg of dicetyl phosphate, the mixture was stirred until completely dissolved. Keeping the temperature at 60 ° C., a sufficient amount was introduced into a microchannel having an inner diameter of 200, 320 and 530 μm and a length of 1.5 m, chloroform was distilled off under reduced pressure for 1000 minutes, and a phospholipid thin film was removed. Formed on the inner wall. Next, physiological saline at a temperature of 60 ° C. was introduced from the inlet of the microchannel at a flow rate of 0.05 to 0.25 m / sec to obtain a dispersed aqueous solution of liposomes formed from the outlet of the microchannel. This aqueous solution was centrifuged at 12000 rpm, and multilamellar liposomes were collected as a precipitate. The precipitate was lyophilized to prepare a dry liposome preparation.

(実験例1)
実施例に示した方法で得た、リポソームについて、マイクロ流路の内径の影響の測定、流路内に導入される水溶液の流速の影響の測定、温度の影響の測定、粒子径分布の測定、及び収率評価〔粒子径ピーク値から幅±25nmのリポソーム量(mg)/流路管内の卵黄レシチン量(mg)x 100〕を行った。
(Experimental example 1)
About the liposome obtained by the method shown in the Examples, measurement of the influence of the inner diameter of the microchannel, measurement of the influence of the flow rate of the aqueous solution introduced into the channel, measurement of the influence of temperature, measurement of the particle size distribution, And yield evaluation [amount of liposome having a width of ± 25 nm from the peak value of particle diameter (mg) / amount of egg yolk lecithin (mg) in channel tube × 100] was performed.

図1は、マイクロ流路の内径320μmのものを使い60℃の条件下で0.25m/秒の流速で生理食塩水を流路内に導入し、リポソームを形成させたときのリポソームの粒子径分布とBangham法(非特許文献1)で生成したリポソームの粒子径を比較したものである。図中、横軸は粒子径(nm)、縦軸はintensity(%)(確率密度)を示し、点線は本願発明、実線はBangham法によるものである。本願発明の方法によると、分布は1つのピークであるが、Bangham法によると2つのピークが存在した。
図2は、マイクロ流路の内径200、320および530μmのものを使い60℃の条件下で0.05〜0.25m/秒の流速で生理食塩水を流路内に導入し、リポソームを形成させたときのリポソームの平均粒子径を測定したものである。図中、横軸はマイクロ流路内に導入される生理食塩水の流速、縦軸は得られたリポソームの粒子径を示し、一点鎖線はBangham法によるもの、□はマイクロ流路の内径が320μmによって得られたリポソーム、×はマイクロ流路の内径が200μmによって得られたリポソーム、菱形はマイクロ流路の内径が530μmによって得られたリポソームの平均粒子径を示す。本願発明の方法では、流速に応じて、粒子径が調節できることが示されている。
表1は、収率結果を示しており、マイクロ流路の内径とマイクロ流路内への水溶液の導入速度によって収率が影響されることを示す。Bangham法による回収率が0.82%であることから、320μm・60℃・0.25m/秒、530μm・60℃・0.25m/秒、530μm・60℃・0.15m/秒、530μm・60℃・0.05m/秒が好適な回収率をえることが確認できる。
FIG. 1 shows the particle diameter of a liposome when a microchannel having an inner diameter of 320 μm is used and physiological saline is introduced into the channel at a flow rate of 0.25 m / sec under the condition of 60 ° C. to form liposomes. This is a comparison between the distribution and the particle size of liposomes produced by the Bangham method (Non-patent Document 1). In the figure, the horizontal axis indicates the particle diameter (nm), the vertical axis indicates the intensity (%) (probability density), the dotted line indicates the present invention, and the solid line indicates the Bangham method. According to the method of the present invention, the distribution is one peak, but according to the Bangham method, there are two peaks.
Fig. 2 shows the formation of liposomes by introducing physiological saline into the channel at a flow rate of 0.05 to 0.25 m / sec under conditions of 60 ° C using microchannels with an inner diameter of 200, 320 and 530 µm. The average particle diameter of the liposomes when measured was measured. In the figure, the horizontal axis indicates the flow rate of physiological saline introduced into the microchannel, the vertical axis indicates the particle size of the obtained liposome, the one-dot chain line is based on the Bangham method, and □ indicates the inner diameter of the microchannel is 320 μm. Indicates the average particle diameter of liposomes obtained by the microchannel having an inner diameter of 530 μm, and the rhombus indicates the average particle diameter of the liposome obtained by the microchannel having an inner diameter of 530 μm. In the method of the present invention, it is shown that the particle size can be adjusted according to the flow rate.
Table 1 shows the yield results and shows that the yield is affected by the inner diameter of the microchannel and the introduction rate of the aqueous solution into the microchannel. Since the recovery rate by the Bangham method is 0.82%, 320 μm, 60 ° C., 0.25 m / second, 530 μm, 60 ° C., 0.25 m / second, 530 μm, 60 ° C., 0.15 m / second, 530 μm, It can be confirmed that a preferable recovery rate is obtained at 60 ° C. and 0.05 m / sec.

本発明のリポソーム製剤の粒子径分布を示す。The particle size distribution of the liposome preparation of the present invention is shown. 本発明のリポソーム製剤の製造方法の流速とマイクロ流路の内径の影響を示す。The influence of the flow rate and the inner diameter of the microchannel in the production method of the liposome preparation of the present invention is shown.

Claims (4)

内径が100〜1000μmであるマイクロ流路内に、有機溶媒に溶解させたリン脂質を導入し、有機溶媒を乾燥させてマイクロ流路の壁にリン脂質の薄膜を形成させ、0.01〜0.5m/秒の流速で、内包対象物を含む水溶液を流し、薄膜を剥がしとり、リポソームを生成させる工程を含む粒子径が均一化されたリポソーム製剤の製造方法。 A phospholipid dissolved in an organic solvent is introduced into a microchannel having an inner diameter of 100 to 1000 μm, and the organic solvent is dried to form a phospholipid thin film on the wall of the microchannel. A method for producing a liposome preparation having a uniform particle diameter, including a step of flowing an aqueous solution containing an inclusion target at a flow rate of 5 m / second, peeling off a thin film, and generating liposomes. リポソーム形成時の温度が、15〜70℃である請求項1に記載のリポソーム製剤の製造方法。 The method for producing a liposome preparation according to claim 1, wherein the temperature at the time of liposome formation is 15 to 70 ° C. 有機溶媒を減圧留去してマイクロ流路の壁にリン脂質の薄膜を形成させる請求項1又は2に記載のリポソーム製剤の製造方法。The method for producing a liposome preparation according to claim 1 or 2, wherein the organic solvent is distilled off under reduced pressure to form a thin film of phospholipid on the wall of the microchannel. マイクロ流路から排出されたリポソームを遠心分離する工程を含む請求項1〜3のいずれか一に記載のリポソーム製剤の製造方法。The manufacturing method of the liposome formulation as described in any one of Claims 1-3 including the process of centrifuging the liposome discharged | emitted from the microchannel.
JP2007134414A 2007-05-21 2007-05-21 Method for producing liposome preparation Expired - Fee Related JP5126874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134414A JP5126874B2 (en) 2007-05-21 2007-05-21 Method for producing liposome preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134414A JP5126874B2 (en) 2007-05-21 2007-05-21 Method for producing liposome preparation

Publications (2)

Publication Number Publication Date
JP2008285459A JP2008285459A (en) 2008-11-27
JP5126874B2 true JP5126874B2 (en) 2013-01-23

Family

ID=40145536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134414A Expired - Fee Related JP5126874B2 (en) 2007-05-21 2007-05-21 Method for producing liposome preparation

Country Status (1)

Country Link
JP (1) JP5126874B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201204410A (en) 2004-04-01 2012-02-01 Oncothyreon Inc Mucinous glycoprotein (MUC-1) vaccine
AU2009333177B2 (en) * 2008-12-17 2013-09-19 Oncothyreon, Inc. Method of making small liposomes
JP5669058B2 (en) * 2010-05-10 2015-02-12 独立行政法人科学技術振興機構 Method for producing liposome
JP2012025720A (en) * 2010-07-28 2012-02-09 Shalom:Kk Ceramide synthesis promoter, cosmetic, skin preparation for external use, quasi drug, drug and method for producing ceramide synthesis promoter
WO2012098937A1 (en) * 2011-01-21 2012-07-26 国立大学法人 神戸大学 Method for producing liposome
KR20140023903A (en) 2011-02-24 2014-02-27 온코타이레온, 인코포레이티드 Muc1 based glycolipopeptide vaccine with adjuvant
CN112108193B (en) * 2020-09-07 2022-04-01 上海交通大学 Microfluidic preparation method for regulating and controlling particle size of liposome

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702722A (en) * 1994-09-30 1997-12-30 Bracco Research S.A. Liposomes with enhanced entrapment capacity, method and use

Also Published As

Publication number Publication date
JP2008285459A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP5126874B2 (en) Method for producing liposome preparation
Brandl Liposomes as drug carriers: a technological approach
JP3473959B2 (en) Methods for producing liposomes that increase the percentage of encapsulated compound
JP4857392B2 (en) Method for producing liposome and method for dissolving cholesterol
JPH0428412B2 (en)
JPH0436734B2 (en)
JP2006508126A (en) Protein-stabilized liposome formulation of pharmaceutical formulation
FI95439B (en) Process for the preparation of biologically active multivesicular lipid vesicles or liposomes
JPS6150912A (en) Production of liposome preparation
JPH0714865B2 (en) Liposome preparation and method for producing the same
JPWO2006016468A1 (en) Method for producing liposome-containing preparation
JP6533297B2 (en) Hybrid-type multilayer nanostructure of epidermal growth factor and liposome and method for producing the same
JPH08502444A (en) Mating-fusion liposomes and gels
JP5904555B2 (en) Method for producing liposome
WO1995026185A1 (en) Liposome with increased retention volume
JP3249583B2 (en) Liposome preparation
JPH04356421A (en) Fat spherule composition containing prostaglandins
JPH0457375B2 (en)
TWI391149B (en) Nanopegylated liposome and method for making the same
KR102611802B1 (en) A hybrid multilamellar nanostructure of insulin-like growth factor 1 and liposome and a preparation method of the same
JPH0446129A (en) New adjuvant for forming liposome
JP2008120721A (en) Method for producing liposome containing pharmaceutical agent having high specific gravity
JPH07316041A (en) Liposome with improved entrapping capacity
Rödel Development of Proliposomal and Liposomal Formulations with Poorly Water-soluble Drugs
Usta et al. General properties and production technologies of liposomes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees