JP5123058B2 - Manufacturing method of temperature sensor - Google Patents

Manufacturing method of temperature sensor Download PDF

Info

Publication number
JP5123058B2
JP5123058B2 JP2008148398A JP2008148398A JP5123058B2 JP 5123058 B2 JP5123058 B2 JP 5123058B2 JP 2008148398 A JP2008148398 A JP 2008148398A JP 2008148398 A JP2008148398 A JP 2008148398A JP 5123058 B2 JP5123058 B2 JP 5123058B2
Authority
JP
Japan
Prior art keywords
wire
temperature
temperature sensor
terminal
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008148398A
Other languages
Japanese (ja)
Other versions
JP2009294107A (en
Inventor
等 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008148398A priority Critical patent/JP5123058B2/en
Publication of JP2009294107A publication Critical patent/JP2009294107A/en
Application granted granted Critical
Publication of JP5123058B2 publication Critical patent/JP5123058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、サーミスタやPt抵抗体等の感温部を有する感温素子を備えた温度センサの製造方法に関する。 The present invention relates to a method of manufacturing a temperature sensor having a temperature sensing element having a temperature sensing portion, such as a thermistor or Pt resistor.

従来より、広い温度領域に亘って使用できる温度センサとして、例えば下記特許文献1〜4に記載の技術が開示されている。
これらの特許文献に記載されている温度センサでは、温度を検知するサーミスタ素子を構成する端子線と外部回路接続用のリード線が接続されたシース芯線等の電極線とを重ね合わせてレーザ溶接や抵抗溶接等の溶接により一体化し、その一体化した部材を一端が閉塞されたハウジング内に配置し、そのハウジング内に絶縁性のセメントを充填することにより、耐熱性、耐振動性を確保している。
特開2005−55254号公報 特開2004−301679号公報 特開2000−266609号公報 特開2000−234962号公報
Conventionally, as temperature sensors that can be used over a wide temperature range, for example, techniques described in Patent Documents 1 to 4 below are disclosed.
In the temperature sensors described in these patent documents, a terminal wire constituting a thermistor element for detecting temperature and an electrode wire such as a sheath core wire to which a lead wire for connecting an external circuit is overlapped to perform laser welding or It is integrated by welding such as resistance welding, and the integrated member is placed in a housing closed at one end, and the housing is filled with insulating cement to ensure heat resistance and vibration resistance. Yes.
JP 2005-55254 A JP 2004-301679 A JP 2000-266609 A Japanese Patent Laid-Open No. 2000-234962

ところで、上記温度センサにおいては、サーミスタ素子の端子線には、耐熱性が高く電気抵抗が低いPtもしくはPR(Pt/Rh合金)線等が使用され、シース芯線には、耐熱性、強度、コスト等の面から、ステンレス材もしくはインコネル材等が用いられるが、下記のような問題があった。   By the way, in the temperature sensor, a Pt or PR (Pt / Rh alloy) wire having a high heat resistance and a low electrical resistance is used for the terminal wire of the thermistor element, and the heat resistance, strength and cost are used for the sheath core wire. In view of the above, stainless steel or inconel is used, but there are the following problems.

つまり、サーミスタ素子の端子線とシース芯線の熱膨張率(熱膨張係数)が異なるために、温度が上がれば上がるほど、溶接部分からサーミスタ素子がおじぎ様に屈曲しようとするが、サーミスタ素子の周囲はセメントで固定されているので変位することができず、溶接部分に大きな応力が発生する。そして、内燃機関のような温度の変化が激しく、且つ、高い温度にも晒される環境下で温度センサが使用に供されると、上記溶接部分に対して大きな応力が繰り返し掛かるため、溶接部分にて破断が発生したり、溶接部分が剥離する恐れがあった。   In other words, because the thermal expansion coefficient (thermal expansion coefficient) of the thermistor element terminal wire and sheath core wire are different, the higher the temperature, the more the thermistor element tends to bend from the welded part. Since it is fixed with cement, it cannot be displaced, and a large stress is generated in the welded portion. When the temperature sensor is used in an environment where the temperature changes drastically as in an internal combustion engine and is exposed to a high temperature, a large stress is repeatedly applied to the welded portion. As a result, there was a risk of breakage or peeling of the welded part.

本発明は、このような問題に鑑みなされたものであり、例えば内燃機関の様な温度の変化が激しく、且つ、高い温度にも晒される環境下などで使用される温度センサの製造方法において、サーミスタ素子等の端子線とシース芯線等の電極線との溶接部分の信頼性を高めることができるようにすることを目的とする。 The present invention has been made in view of such a problem. For example, in a method of manufacturing a temperature sensor used in an environment where the temperature changes drastically as in an internal combustion engine and is exposed to a high temperature, for example , An object of the present invention is to improve the reliability of a welded portion between a terminal wire such as a thermistor element and an electrode wire such as a sheath core wire.

)請求項の発明は、温度によって電気的特性が変化する感温部と、該感温部から伸びる端子線とを有する感温素子と、前記端子線と接続され、前記感温素子から電気信号を取り出す電極線と、先端側が閉塞され、前記感温素子及び前記電極線を収納する筒状のハウジングと、を備えた温度センサの製造方法であって、前記端子線又は前記電極線に、前記端子線の熱膨張係数と前記電極線の熱膨張係数との間の熱膨張係数を有する環状又はU字状の中間部材を嵌めた後、前記端子線と前記電極線とを軸方向を合わせて重ね合わせて配置し、前記端子線と前記電極線とを重ね合わせた部分を溶接することによって、前記端子線と前記中間部材と前記電極線とを一体に接合する第1工程を有することを特徴とする。 ( 1 ) The invention of claim 1 includes a temperature sensing element having a temperature sensing part whose electrical characteristics change with temperature, and a terminal wire extending from the temperature sensing part, and is connected to the terminal line, and the temperature sensing element A temperature sensor manufacturing method comprising: an electrode wire for taking out an electrical signal from a tube; and a cylindrical housing that is closed at a distal end side and houses the temperature sensing element and the electrode wire, wherein the terminal wire or the electrode wire After fitting an annular or U-shaped intermediate member having a thermal expansion coefficient between the thermal expansion coefficient of the terminal wire and the thermal expansion coefficient of the terminal wire into the terminal wire and the electrode wire in the axial direction A first step of integrally joining the terminal wire, the intermediate member, and the electrode wire by welding a portion where the terminal wire and the electrode wire are overlapped with each other. It is characterized by that.

本発明では、端子線と電極線とを直接に溶接するのではなく、端子線又は電極線に、環状又はU字状で端子線の熱膨張係数と電極線の熱膨張係数との間の熱膨張係数を有する中間部材を嵌めて溶接して一体化する。   In the present invention, the terminal wire and the electrode wire are not directly welded, but the terminal wire or the electrode wire is annular or U-shaped, and the heat between the thermal expansion coefficient of the terminal wire and the thermal expansion coefficient of the electrode wire. An intermediate member having an expansion coefficient is fitted and welded to be integrated.

これにより、溶接部分(溶接部)では、端子線から電極線にかけて熱膨張係数が傾斜的になるので、温度センサを温度変化が激しい環境で用いた場合でも、端子線と電極線との溶接部に発生する応力を緩和でき、よって、信頼性を大きく向上させることができる。   As a result, the thermal expansion coefficient is inclined from the terminal wire to the electrode wire at the welded portion (welded portion), so even when the temperature sensor is used in an environment where the temperature change is severe, the welded portion between the terminal wire and the electrode wire. Stress can be relaxed, and reliability can be greatly improved.

なお、前記中間部材の熱膨張係数としては、端子線と電極線の熱膨張係数によるが、例えば8.8×10-6/℃〜14.4×10-6/℃の範囲が挙げられる。
また、前記中間部材の厚みdBとしては、端子線の半径をr1、電極線の半径r2とした場合、(r1+r2)/8≧dB≧(r1+r2)/40の範囲が好適である。これは、中間部材の厚みがこの範囲であれば、溶接後に応力緩和の効果が十分に得られ、しかも、図4及び図6に示す様に、レーザ溶接等のスポット径にもよるが、レーザ溶接等の溶接の際に、端子線と中間部材と電極線とを一度に溶接でき、その作業が容易になるからである。
As the thermal expansion coefficient of the intermediate member, depending on the thermal expansion coefficient of the terminal wire and the electrode wire, and a range of, for example, 8.8 × 10 -6 /℃~14.4×10 -6 / ℃ .
Further, as the thickness d B of the intermediate member, when the radius of the terminal lines r 1, the radius r 2 of the electrode line, (r 1 + r 2) / 8 ≧ d B ≧ (r 1 + r 2) / 40 The range of is preferable. This is because if the thickness of the intermediate member is within this range, the effect of stress relaxation can be sufficiently obtained after welding, and as shown in FIGS. This is because the terminal wire, the intermediate member, and the electrode wire can be welded at a time during welding such as welding, which facilitates the work.

なお、溶接完了後の中間層の厚みdA(図5参照)は、上記中間部材の厚みdBと同等か、もしくは小さくなる(dA≦dB)。これは、端子線と中間部材と電極線とを押圧治具で固定してレーザにより溶接するので、溶解した瞬間に、押圧治具により加えられる力が中間部材を押しつぶす方向に働くためである。dAがdBより小さくなる度合いは、押圧治具により加えられる力の大きさ、レーザのパワー、中間部材の組成等に依存する。
更に、前記溶接の方法としては、レーザ溶接、抵抗溶接等各種の方法を採用できる。
Note that the thickness d A (see FIG. 5) of the intermediate layer after completion of welding is equal to or smaller than the thickness d B of the intermediate member (d A ≦ d B ). This is because the terminal wire, the intermediate member, and the electrode wire are fixed with a pressing jig and welded with a laser, and at the moment of melting, the force applied by the pressing jig acts in the direction of crushing the intermediate member. degree of d A is smaller than d B is the magnitude of the force applied by the pressing tool, it depends laser power, such as the composition of the intermediate member.
Furthermore, various methods such as laser welding and resistance welding can be employed as the welding method.

)請求項の発明では、前記第1工程の後に、前記筒状のハウジング内に未固化絶縁性セメントを充填し、前記溶接によって一体化された前記感温素子及び前記電極線を、前記ハウジングの先端側に設置する第2工程と、加熱によって前記絶縁性セメントを固化させて、前記感温素子及び前記電極線を固定する第3工程と、を有することを特徴とする。 ( 2 ) In the invention of claim 2 , after the first step, the temperature-sensitive element and the electrode wire integrated by welding by filling the cylindrical housing with unsolidified insulating cement, It has a 2nd process installed in the front end side of the housing, and a 3rd process which solidifies the insulating cement by heating and fixes the temperature sensing element and the electrode wire.

本発明は、第1工程後の好適な製造工程を例示したものである。
)請求項の発明では、前記中間部材は、PtとNiとを主成分とする合金であることを特徴とする。
The present invention exemplifies a suitable manufacturing process after the first process.
( 3 ) The invention of claim 3 is characterized in that the intermediate member is an alloy mainly composed of Pt and Ni.

本発明は、中間部材の好ましい組成を例示したものである。このPt及びNiは、合金中の含有量が、合計量で50質量%より大(好ましくは90質量%以上)である。また、PtとNiは全固溶するため、Niの含有量は特に限定されないが、Niの含有量が多くなると融点が下がるため、耐熱性の観点から、また、耐酸化性の観点から、NiはPt及びNiの合計量中10〜20質量%が好適である。   The present invention exemplifies a preferred composition of the intermediate member. The total content of Pt and Ni is greater than 50% by mass (preferably 90% by mass or more). Moreover, since Pt and Ni are completely dissolved, the content of Ni is not particularly limited. However, since the melting point decreases as the Ni content increases, from the viewpoint of heat resistance and from the viewpoint of oxidation resistance, Ni Is preferably 10 to 20% by mass in the total amount of Pt and Ni.

)請求項の発明は、前記温度センサは、温度変化の幅が、500℃以上の環境で用いられるものであることを特徴とする。
本発明は、上記に説明した製造方法によって得る温度センサの好ましい用途を例示している。
( 4 ) The invention of claim 4 is characterized in that the temperature sensor is used in an environment where the temperature change width is 500 ° C. or more.
The present invention illustrates a preferred application of the temperature sensor obtained by the manufacturing method described above.

なお、上述した各請求項の発明において、前記感温素子の感温部としては、例えばサーミスタ、白金抵抗体等を採用できる。
前記電極線としては、ステンレス又はインコネルからなる線材が挙げられ、この熱膨張係数の範囲としては、例えば、10.0×10-6〜17.3×10-6/℃が挙げられる。また、電極線として、筒状部材に貫挿されたシース芯線を用いることができ、筒状部材は、電極線に相当するシース芯線の先端が筒状部材より突出した状態で絶縁保持することができる。
In the invention of each claim described above, for example, a thermistor, a platinum resistor, or the like can be adopted as the temperature sensing part of the temperature sensing element.
Examples of the electrode wire include a wire made of stainless steel or Inconel, and examples of the range of the thermal expansion coefficient include 10.0 × 10 −6 to 17.3 × 10 −6 / ° C. Moreover, the sheath core wire penetrated by the cylindrical member can be used as the electrode wire, and the cylindrical member can be insulated and held in a state where the distal end of the sheath core wire corresponding to the electrode wire protrudes from the cylindrical member. it can.

前記端子線としては、Pt又はPR(Pt/Rh合金)からなる線材が挙げられ、この熱膨張係数の範囲としては、例えば、8.2×10-6〜8.8×10-6/℃が挙げられる。なお、Pt/Rh合金中のRhの割合は、特に限定されないが、コストや強度、硬度等の材料特性を考慮して、3〜13質量%が好適である。 Examples of the terminal wire include a wire made of Pt or PR (Pt / Rh alloy). The range of the thermal expansion coefficient is, for example, 8.2 × 10 −6 to 8.8 × 10 −6 / ° C. Is mentioned. In addition, although the ratio of Rh in a Pt / Rh alloy is not specifically limited, 3-13 mass% is suitable considering material characteristics, such as cost, intensity | strength, and hardness.

次に、本発明の好適な実施形態について説明する。
[温度センサの概要]
まず、本実施形態の温度センサの概要について説明する。図1は、温度センサ1の構造を示す部分破断断面図である。
Next, a preferred embodiment of the present invention will be described.
[Outline of temperature sensor]
First, the outline | summary of the temperature sensor of this embodiment is demonstrated. FIG. 1 is a partially broken cross-sectional view showing the structure of the temperature sensor 1.

温度センサ1は、一対の金属製のシース芯線(電極線)3を筒状部材5の内側にて絶縁保持したシース部材7と、先端側が閉塞した軸線方向に延びる筒状の金属チューブ(ハウジング)9と、金属チューブ9を支持する取付部材11と、六角ナット部13及びネジ部15を有するナット部材17と、取付部材11の後端側に内嵌する外筒19とを備えている。   The temperature sensor 1 includes a sheath member 7 in which a pair of metal sheath core wires (electrode wires) 3 are insulated and held inside the tubular member 5, and a tubular metal tube (housing) extending in the axial direction with the distal end closed. 9, a mounting member 11 that supports the metal tube 9, a nut member 17 having a hexagonal nut portion 13 and a screw portion 15, and an outer cylinder 19 that fits inside the rear end side of the mounting member 11.

なお、軸線方向とは、温度センサ1の長手方向であり、図1においては上下方向に相当する。また、温度センサ1における先端側は図における下側であり、温度センサ1における後端側は図における上側である。   The axial direction is the longitudinal direction of the temperature sensor 1 and corresponds to the vertical direction in FIG. Moreover, the front end side in the temperature sensor 1 is a lower side in the figure, and the rear end side in the temperature sensor 1 is an upper side in the figure.

この温度センサ1は、金属チューブ9の先端側の内部に、感温素子としてサーミスタ素子21を収納したセンサであり、例えば内燃機関の排気管などの流通管に装着され、サーミスタ素子21が、測定対象ガス(排気ガス)が流れる流通管内に配置されることにより、測定対象ガスの温度を検出する。   This temperature sensor 1 is a sensor in which a thermistor element 21 is housed as a temperature-sensitive element inside the tip side of the metal tube 9 and is mounted on a flow pipe such as an exhaust pipe of an internal combustion engine, for example. The temperature of the measurement target gas is detected by being arranged in the flow pipe through which the target gas (exhaust gas) flows.

なお、サーミスタ素子21は、温度によって電気的特性(電気抵抗値)が変化するサーミスタ焼結体(感温部)23と、このサーミスタ焼結体23の電気的特性の変化を取り出すための一対の端子線25とから構成される。   The thermistor element 21 includes a thermistor sintered body (temperature-sensitive portion) 23 whose electrical characteristics (electrical resistance value) change according to temperature, and a pair of thermistor elements 21 for extracting changes in electrical characteristics of the thermistor sintered body 23. And a terminal line 25.

以下、各構成について詳細に説明する。
前記シース芯線3は、先端部が例えばレーザ溶接によりサーミスタ素子21の端子線25と接続されており、後端部が例えば抵抗溶接により加締め端子27と接続されている。これにより、シース芯線3は、自身の後端側が加締め端子27を介して外部回路(例えば、車両の電子制御装置(ECU)等)接続用のリード線29と接続されている。
Hereinafter, each configuration will be described in detail.
The sheath core wire 3 has a distal end connected to the terminal wire 25 of the thermistor element 21 by, for example, laser welding, and a rear end connected to the crimping terminal 27, for example, by resistance welding. Thus, the sheath core wire 3 is connected at its rear end side to a lead wire 29 for connecting an external circuit (for example, an electronic control unit (ECU) of a vehicle) via the crimping terminal 27.

なお、一対のシース芯線3および一対の加締め端子27は、絶縁チューブ31により互いに絶縁され、リード線29は、導線を絶縁性の被覆材にて被覆され耐熱ゴム製の補助リング33の内部を貫通する状態で配置される。   The pair of sheath core wires 3 and the pair of crimping terminals 27 are insulated from each other by an insulating tube 31, and the lead wire 29 has a conductive wire covered with an insulating covering material and the inside of an auxiliary ring 33 made of heat-resistant rubber. Arranged in a penetrating state.

前記シース部材7は、金属製の筒状部材5と、導電性金属からなる一対のシース芯線3と、筒状部材5と2本のシース芯線3との間を電気的に絶縁してシース芯線3を保持するシリカ等の絶縁粉末34(図2参照)とから構成される。   The sheath member 7 is configured to electrically insulate between the cylindrical member 5 made of metal, a pair of sheath core wires 3 made of a conductive metal, and the cylindrical member 5 and the two sheath core wires 3. 3 and insulating powder 34 such as silica (see FIG. 2).

前記取付部材11は、径方向外側に突出する突出部35と、突出部35の後端側に位置すると共に軸線方向に延びる後端側鞘部37とを有している。この取付部材11は、金属チューブ9の後端側の外周面を取り囲んで金属チューブ9を支持する。   The mounting member 11 includes a projecting portion 35 projecting radially outward, and a rear end side sheath portion 37 that is located on the rear end side of the projecting portion 35 and extends in the axial direction. The attachment member 11 surrounds the outer peripheral surface on the rear end side of the metal tube 9 and supports the metal tube 9.

前記金属チューブ9は、耐腐食性金属(例えば、耐熱性金属でもあるSUS310Sなどのステンレス合金)からなり、鋼板の深絞り加工によりチューブ先端側が閉塞した軸線方向に延びる筒状をなし、筒状のチューブ後端側が開放した形態で構成されている。   The metal tube 9 is made of a corrosion-resistant metal (for example, a stainless alloy such as SUS310S which is also a heat-resistant metal), and has a cylindrical shape extending in the axial direction in which the tube tip side is closed by deep drawing of a steel plate. The rear end side of the tube is open.

この金属チューブ9は、図2及び図3に拡大して示す様に、径が小さく設定された先端側の小径部41と、径が小径部41よりも大きく設定された後端側の大径部43と、小径部41と大径部43との間の段差部45とを備えている。   2 and 3, the metal tube 9 has a small-diameter portion 41 on the distal end side whose diameter is set small, and a large-diameter on the rear end side whose diameter is set larger than the small-diameter portion 41. And a step 45 between the small-diameter portion 41 and the large-diameter portion 43.

また、金属チューブ9の内部に、サーミスタ素子21およびセメント39が収納されており、セメント39は、サーミスタ素子21の周囲に充填されることで、サーミスタ素子21の揺動を防止している。なお、セメント39は、非晶質のシリカにアルミナ骨材を含有した絶縁材よりなる。   Further, the thermistor element 21 and the cement 39 are accommodated in the metal tube 9, and the cement 39 is filled around the thermistor element 21, thereby preventing the thermistor element 21 from swinging. The cement 39 is made of an insulating material containing alumina aggregate in amorphous silica.

特に本実施形態では、サーミスタ素子21の端子線25の後端側(図2右側)とシース芯線3の先端側(図2左側)とは、レーザ溶接によって、2箇所の溶接部47(図3参照)により一体に接合されている。   In particular, in this embodiment, the rear end side (right side in FIG. 2) of the terminal wire 25 of the thermistor element 21 and the front end side (left side in FIG. 2) of the sheath core wire 3 are welded 47 (FIG. 3) by laser welding. )).

つまり、図4に更に拡大して示す様に、平行に重ね合わされて配置された端子線25とシース芯線3との間には、円筒を軸に沿って半分破断した形状(半環状)の中間部材49が配置されており、この中間部材49を中心にして、左右二箇所にレーザにより溶接されて、端子線25と中間部材49とシース芯線25とが溶融一体化した溶接部47(同図斜線部分)が形成されている。   That is, as further enlarged in FIG. 4, between the terminal wire 25 and the sheath core wire 3 arranged in parallel with each other, the half of the shape (semi-annular) in which the cylinder is half broken along the axis is provided. A member 49 is disposed, and the welded portion 47 (the same figure) is welded and integrated with the terminal wire 25, the intermediate member 49, and the sheath core wire 25 by laser welding at two locations on the left and right sides with the intermediate member 49 as the center. (Hatched portion) is formed.

詳しくは、図5に図4のA−A断面を示す様に、溶接部47においては、端子線25及びシース芯線3の軸方向に垂直に破断した破断面に対して、端子線25をその軸方向に投影した第1投影領域Xと、同様に破断面にシース芯線3をその軸方向に投影した第2投影領域Yとの間には、端子線25の熱膨張係数とシース芯線3の熱膨張係数との間の熱膨張係数を有する中間層51が形成されている。
なお、第1投影領域Xは、上記破断面において端子線25を軸方向に投影した領域(端子線25の外形線と点線L1にて形成される領域に相当)にあたり、第2投影領域Yは、上記破断面において電極線3を軸方向に投影した領域(電極線3の外形線と点線L2にて形成される領域に相当)にあたる。
Specifically, as shown in the AA cross section of FIG. 4 in FIG. 5, in the welded portion 47, the terminal wire 25 is connected to the fractured surface fractured perpendicular to the axial direction of the terminal wire 25 and the sheath core wire 3. Between the first projection region X projected in the axial direction and the second projection region Y similarly projected in the axial direction of the sheath core wire 3 on the fracture surface, the thermal expansion coefficient of the terminal wire 25 and the sheath core wire 3 An intermediate layer 51 having a thermal expansion coefficient between the thermal expansion coefficients is formed.
Note that the first projection region X corresponds to a region (corresponding to a region formed by the outline of the terminal line 25 and the dotted line L1) in which the terminal line 25 is projected in the axial direction on the fracture surface, and the second projection region Y is This corresponds to a region (corresponding to a region formed by the outline of the electrode line 3 and the dotted line L2) in which the electrode line 3 is projected in the axial direction on the fracture surface.

図5では、中間層51は、第1投影領域Xの中心Oxと第2投影領域Yの中心Oyとを直線で結んだ場合に、第1投影領域Xと第2投影領域Yとに属さない幅dAを有する中間の領域として示されている。 In FIG. 5, the intermediate layer 51 does not belong to the first projection region X and the second projection region Y when the center Ox of the first projection region X and the center Oy of the second projection region Y are connected by a straight line. Shown as an intermediate region having a width d A.

この中間層51には、レーザ溶接による溶融により、中間部材49の成分以外に、端子部25の成分とシース芯線3の成分が混入しているが、ベースとなる中間部材49の成分が最も含まれているので、その熱膨張係数は、端子線25の熱膨張係数とシース芯線3の熱膨張係数との中間の熱膨張係数を有している。   In this intermediate layer 51, the components of the terminal portion 25 and the sheath core wire 3 are mixed in addition to the components of the intermediate member 49 due to melting by laser welding, but the components of the intermediate member 49 serving as the base are the most contained. Therefore, the thermal expansion coefficient thereof has an intermediate thermal expansion coefficient between the thermal expansion coefficient of the terminal wire 25 and the thermal expansion coefficient of the sheath core wire 3.

なお、溶接後の中間部材49の熱膨張係数の求め方については、上述通りであるため、ここでは省略する。
[温度センサの製造方法]
次に、温度センサ1の製造方法について説明する。
The method for obtaining the thermal expansion coefficient of the intermediate member 49 after welding is the same as described above, and is omitted here.
[Method of manufacturing temperature sensor]
Next, a method for manufacturing the temperature sensor 1 will be described.

本実施形態の温度センサ1を製造するには、予め形成された金属チューブ9、シース部材7、取付部材11、サーミスタ素子21等の部品を公知の手法により準備する。
そして、前記図4に示す様に、サーミスタ素子21の一対の端子線25を、各々シース部材7の一対のシース芯線3の先端部に軸方向を合わせて重ね合わせて溶接する。
In order to manufacture the temperature sensor 1 of the present embodiment, parts such as the metal tube 9, the sheath member 7, the attachment member 11, and the thermistor element 21 that are formed in advance are prepared by a known method.
Then, as shown in FIG. 4, the pair of terminal wires 25 of the thermistor element 21 are overlapped and welded to the distal ends of the pair of sheath core wires 3 of the sheath member 7 in the axial direction.

詳しくは、端子線25としては、例えば直径が0.3mm、熱膨張係数が8.7×10-6/℃のPR線(Pt90質量%−Rh10質量%の合金線:以下質量%を省略する)を用いる。中間部材49としては、例えば厚みが0.03mm、縦(内径に沿って湾曲した方向の長さ)が0.45mm、横(端子線25の軸方向に沿った長さ)が1.5mm、熱膨張係数が10.8×10-6/℃のPt−Ni合金(Pt90−Ni10)の長方形の合金板を用い、直径(内径)が0.3mmとなるように半環状に湾曲させる。シース芯線25としては、例えば直径が0.5mm、熱膨張係数が14.4×10-6/℃のステンレス線(SUS310S)を用いる。即ち、中間部材49として、端子線25の熱膨張係数とシース芯線3の熱膨張係数との中間の熱膨張係数の材料を用いる。 Specifically, as the terminal wire 25, for example, a PR wire having a diameter of 0.3 mm and a thermal expansion coefficient of 8.7 × 10 −6 / ° C. (Pt 90 mass% —Rh 10 mass% alloy wire: hereinafter, mass% is omitted. ) Is used. As the intermediate member 49, for example, the thickness is 0.03 mm, the length (the length in the direction curved along the inner diameter) is 0.45 mm, the width (the length along the axial direction of the terminal wire 25) is 1.5 mm, A rectangular alloy plate of Pt—Ni alloy (Pt90—Ni10) having a thermal expansion coefficient of 10.8 × 10 −6 / ° C. is used and is bent in a semi-annular shape so that the diameter (inner diameter) is 0.3 mm. As the sheath core wire 25, for example, a stainless steel wire (SUS310S) having a diameter of 0.5 mm and a thermal expansion coefficient of 14.4 × 10 −6 / ° C. is used. That is, as the intermediate member 49, a material having a thermal expansion coefficient intermediate between the thermal expansion coefficient of the terminal wire 25 and the thermal expansion coefficient of the sheath core wire 3 is used.

そして、図6に示す様に、端子線25に半環状の中間部材49を嵌め、中間部材49を挟んで端子線25とシース芯線3とを平行にして重ね合わせて配置するとともに、図示しない押圧治具により、端子線25と中間部材29とシース芯線3とを同図上下方向から押圧して固定する。   Then, as shown in FIG. 6, a semi-annular intermediate member 49 is fitted to the terminal wire 25, the terminal wire 25 and the sheath core wire 3 are arranged in parallel with each other with the intermediate member 49 interposed therebetween, and a pressing force (not shown) The terminal wire 25, the intermediate member 29, and the sheath core wire 3 are pressed and fixed from above and below by the jig.

次に、例えば図6の右側から、端子線25の下側と中間部材49とシース芯線3の上側とにわたり、直径約0.4mmの範囲にレーザ光が当たるようにレーザ光を照射して、レーザ溶接を行い、端子線25と中間部材49とシース芯線3とを一体に溶接する。   Next, for example, from the right side of FIG. 6, the laser beam is irradiated so that the laser beam hits a range of about 0.4 mm in diameter over the lower side of the terminal wire 25, the intermediate member 49, and the upper side of the sheath core wire 3. Laser welding is performed, and the terminal wire 25, the intermediate member 49, and the sheath core wire 3 are welded together.

レーザ溶接の条件としては、例えば、Nd:YAGレーザを用いることができ、レーザのパワーとしては1.0J、照射時間としては2.0msを採用できる。
なお、本実施形態では、上記中間部材49を用いて端子線25とシース芯線3と溶接して形成された中間層51についても、端子線25とシース芯線3との熱膨張係数の間に位置するものである。
As the laser welding conditions, for example, an Nd: YAG laser can be used, and the laser power can be 1.0 J and the irradiation time can be 2.0 ms.
In the present embodiment, the intermediate layer 51 formed by welding the terminal wire 25 and the sheath core wire 3 using the intermediate member 49 is also positioned between the thermal expansion coefficients of the terminal wire 25 and the sheath core wire 3. To do.

その後、図1に示す様に、取付部材11の内部に金属チューブ9を挿通し、段部53に対して、径方向内向きの加締め作業および溶接作業を行うことで、金属チューブ9と取付部材11とを一体化する。   Thereafter, as shown in FIG. 1, the metal tube 9 is inserted into the attachment member 11, and the metal tube 9 is attached to the stepped portion 53 by performing caulking work and welding work inward in the radial direction. The member 11 is integrated.

続いて、サーミスタ素子3が溶接されたシース部材7と取付部材11が溶接された金属チューブ9とからなる先端部品53(図7参照)を組み立てる。
この作業については、図7を用いて説明する。図7は先端部品53の製法を示す流れ図である。
Subsequently, a tip part 53 (see FIG. 7) composed of the sheath member 7 to which the thermistor element 3 is welded and the metal tube 9 to which the attachment member 11 is welded is assembled.
This operation will be described with reference to FIG. FIG. 7 is a flowchart showing a method for manufacturing the tip part 53.

先端部品53を製造するにあたっては、まず、サーミスタ素子21が挿入されていない状態における、取付部材11が溶接された金属チューブ9の先端部分の中にノズル55を挿入し、ペースト状、即ち未硬化状態のセメント39を注入する。   In manufacturing the tip component 53, first, the nozzle 55 is inserted into the tip portion of the metal tube 9 to which the mounting member 11 is welded in a state in which the thermistor element 21 is not inserted, and is pasty, that is, uncured. The cement 39 in the state is injected.

そして、サーミスタ素子21が溶接されたシース部材7を、セメント39が注入された金属チューブ9の内部に挿入する。このとき、シース部材7の筒状部材5の先端部は金属チューブ9の段差部45内周に当接させて、サーミスタ素子21をセメント39内に配置させる。   Then, the sheath member 7 to which the thermistor element 21 is welded is inserted into the metal tube 9 into which the cement 39 is injected. At this time, the distal end portion of the tubular member 5 of the sheath member 7 is brought into contact with the inner periphery of the stepped portion 45 of the metal tube 9 to place the thermistor element 21 in the cement 39.

そして、シース部材7を金属チューブ9の内部に挿入した状態で、金属チューブ9に径方向外側から板状の金型57を対向させた状態で押し当てる長孔加締を行う。この長孔加締により、金属チューブ9とシース部材7とは完全に位置決め固定される。   Then, with the sheath member 7 inserted into the inside of the metal tube 9, long hole crimping is performed in which the metal plate 9 is pressed against the metal tube 9 from the outside in the radial direction while facing the plate-shaped mold 57. By this long hole caulking, the metal tube 9 and the sheath member 7 are completely positioned and fixed.

このようにして、先端部品53が出来上がる。そして、この先端部品53に対して、周知の遠心脱泡処理(例えば特開2007−170952号公報参照)を実施する。
そして、この遠心脱泡処理が終了すると、この先端部品53を800℃で熱処理し、セメント39を乾燥(硬化)させる。
In this way, the tip part 53 is completed. Then, a known centrifugal defoaming process (for example, see Japanese Patent Application Laid-Open No. 2007-170952) is performed on the tip part 53.
When the centrifugal defoaming process is completed, the tip part 53 is heat-treated at 800 ° C., and the cement 39 is dried (cured).

このようにして、熱処理後の先端部品53が得られる。
次に、先端部品53とその他の部品との組み付けを行う。即ち、図1に示す様に、外筒19は、加締め端子27、絶縁チューブ31、補助リング33を内部に収容した状態で、補助リング33に対応する部分が加締めされることで、補助リング33との間の気密性を保ちつつ補助リング33と加締め接合される。なお、外筒19の先端側は、取付部材11の後端側鞘部37に外嵌した状態で溶接される。
In this way, the tip part 53 after the heat treatment is obtained.
Next, the tip part 53 and other parts are assembled. That is, as shown in FIG. 1, the outer cylinder 19 has the crimping terminal 27, the insulating tube 31, and the auxiliary ring 33 accommodated therein, and the portion corresponding to the auxiliary ring 33 is crimped, thereby assisting The auxiliary ring 33 is crimped and joined while maintaining airtightness with the ring 33. In addition, the front end side of the outer cylinder 19 is welded in a state of being externally fitted to the rear end side sheath portion 37 of the attachment member 11.

また、取付部材11は、外筒19の周囲にナット部材17が回動自在に嵌挿された状態で、取付座59がセンサ取り付け位置のテーパ面に当接するように配置された後、ナット部材17のネジ部15がセンサ取り付け位置の周囲に形成されたネジ溝に螺合されることで、センサ取り付け位置に固定される。つまり、取付部材11は、ナット部材17とセンサ取り付け位置のテーパ面に狭持される状態で固定される。   The mounting member 11 is arranged so that the mounting seat 59 is in contact with the tapered surface of the sensor mounting position in a state where the nut member 17 is rotatably fitted around the outer cylinder 19, and then the nut member The 17 screw portions 15 are screwed into thread grooves formed around the sensor mounting position, so that the sensor mounting position is fixed. That is, the attachment member 11 is fixed in a state of being sandwiched between the nut member 17 and the tapered surface of the sensor attachment position.

そして、リード線29を介して温度センサ1に接続された外部回路は、測定対象物の温度に応じて変化するサーミスタ素子21(サーミスタ焼結体23)の電気的特性を取り出し、取り出した電気的特性に基づいて排気ガスの温度を検出することが可能になる。   The external circuit connected to the temperature sensor 1 via the lead wire 29 takes out the electrical characteristics of the thermistor element 21 (thermistor sintered body 23) that changes according to the temperature of the object to be measured, and takes out the electrical The temperature of the exhaust gas can be detected based on the characteristics.

〔本実施形態の効果〕
この様に、本実施形態では、端子線25とシース芯線3との間に、端子線25の熱膨張係数とシース芯線3の熱膨張係数との間の熱膨張係数を有する中間部材49を配置し、中間部材49を中心にしてレーザ溶接を行うので、その溶接部分である溶接部47においては、端子線25とシース芯線3との間に、端子線25の熱膨張係数とシース芯線3の熱膨張係数との間の熱膨張係数を有する中間層51が形成される。
[Effect of this embodiment]
As described above, in the present embodiment, the intermediate member 49 having a thermal expansion coefficient between the terminal wire 25 and the sheath core wire 3 is arranged between the terminal wire 25 and the sheath core wire 3. Since the laser welding is performed with the intermediate member 49 as the center, the thermal expansion coefficient of the terminal wire 25 and the sheath core wire 3 are between the terminal wire 25 and the sheath core wire 3 in the welded portion 47 which is the welded portion. An intermediate layer 51 having a thermal expansion coefficient between the thermal expansion coefficients is formed.

つまり、本実施形態の温度センサ1においては、端子線25とシース芯線3とは、端子線25とシース芯線3との中間の熱膨張係数を有し、耐熱性(融点が高く)があり、熱伝導性に優れ、電気伝導性が高い中間部材49から形成された中間層51にて接合されているので、500℃以上の大きな幅で急激に温度変化が起こる様な過酷な環境に使用された場合でも、高温時等に溶接部47にかかる応力を緩和できる。よって、溶接部47にて破断や断線が発生することを防止できるので、溶接部47、ひいては温度センサ1の信頼性に優れている。   That is, in the temperature sensor 1 of the present embodiment, the terminal wire 25 and the sheath core wire 3 have an intermediate thermal expansion coefficient between the terminal wire 25 and the sheath core wire 3, and have heat resistance (high melting point). Since it is joined by the intermediate layer 51 formed from the intermediate member 49 having excellent thermal conductivity and high electrical conductivity, it is used in harsh environments where the temperature changes suddenly with a large width of 500 ° C. or more. Even in such a case, the stress applied to the welded portion 47 at a high temperature or the like can be relaxed. Therefore, it is possible to prevent the welded portion 47 from being broken or broken, so that the welded portion 47 and thus the temperature sensor 1 is excellent in reliability.

[本発明の効果を確認するための実験]
次に、本発明の効果を確認するために行った実験例について説明する。
前記実施形態に示す製造方法により、実施例1の温度センサを製造した。
[Experiment for confirming the effect of the present invention]
Next, experimental examples conducted for confirming the effects of the present invention will be described.
The temperature sensor of Example 1 was manufactured by the manufacturing method shown in the embodiment.

具体的には、前記図6に示す様に、厚み0.03mmのPt90−Ni10合金板を半環状に加工して中間部材(例えば筒を軸方向に半分に切断した形状のU字状部材)49を製造し、この中間部材49をサーミスタ素子の直径0.3mmのPR合金(Pt90−Rh10の合金)からなる端子線25に嵌め、直径0.5mmのSUS310Sからなるシース芯線3と、レーザ溶接して、実施例1の温度センサを製造した。   Specifically, as shown in FIG. 6, a Pt90-Ni10 alloy plate having a thickness of 0.03 mm is processed into a semi-annular shape and an intermediate member (for example, a U-shaped member formed by cutting a cylinder in half in the axial direction). 49, and this intermediate member 49 is fitted to a terminal wire 25 made of a PR alloy (Pt90-Rh10 alloy) having a thermistor element diameter of 0.3 mm, a sheath core wire 3 made of SUS310S having a diameter of 0.5 mm, and laser welding. Thus, the temperature sensor of Example 1 was manufactured.

そして、シース芯線3と接合したサーミスタ素子を、アルミナ、シリカからなるセメントを充填した金属チューブ内に設置し、900℃の炉の中に5時間保持してセメントを硬化させ、実施例1の温度センサを製造した。   Then, the thermistor element joined to the sheath core wire 3 is placed in a metal tube filled with cement made of alumina and silica, and kept in a furnace at 900 ° C. for 5 hours to cure the cement. A sensor was manufactured.

また、図8に示す様にして、実施例2の温度センサを製造した。
具体的には、直径0.5mmのSUS310Sからなるシース芯線61に、厚み0.04mmのPt85−Ni15合金板を1/4の環状に加工した中間部材(筒を軸方向に沿って1/4に分割した形状のU字状部材)63を製造し、この中間部材63をシース芯線61にかぶせ、サーミスタ素子の直径0.3mmのPR合金からなる端子線65とレーザ溶接した。その後、実施例1と同様にして、実施例2の温度センサを製造した。
Further, the temperature sensor of Example 2 was manufactured as shown in FIG.
Specifically, an intermediate member obtained by processing a Pt85-Ni15 alloy plate having a thickness of 0.04 mm into a 1/4 ring shape on a sheath core wire 61 made of SUS310S having a diameter of 0.5 mm (a cylinder is ¼ along the axial direction). A U-shaped member 63 having a shape divided into two is manufactured, and the intermediate member 63 is placed on the sheath core wire 61 and laser welded to a terminal wire 65 made of a PR alloy having a thermistor element diameter of 0.3 mm. Thereafter, the temperature sensor of Example 2 was manufactured in the same manner as Example 1.

そして、前記実施例1、2の温度センサを用いて、下記の実験を行った。
a)温度サイクル耐熱試験
図9に示す様に、前記実施例1、2の温度センサ71、73を、移動装置75に固定し、同図の左右方向に移動させて、熱電対77を配置した炉79から出し入れする温度サイクル耐熱試験を行った。
Then, using the temperature sensors of Examples 1 and 2, the following experiment was performed.
a) Temperature cycle heat resistance test As shown in FIG. 9, the temperature sensors 71 and 73 of Examples 1 and 2 were fixed to the moving device 75 and moved in the left-right direction in FIG. A temperature cycle heat test for taking in and out of the furnace 79 was performed.

詳しくは、炉79の外にて室温で5分間保持、炉79の中にて950℃で5分間保持の動作を300サイクル繰り返した。
この耐久試験後、温度センサ71、73を用いて温度を測定したところ、正常に温度を検出でき、温度センサ71、73の耐久性に問題はなかった。
In detail, the operation of holding at room temperature for 5 minutes outside the furnace 79 and holding at 950 ° C. for 5 minutes in the furnace 79 was repeated 300 cycles.
After the durability test, the temperature was measured using the temperature sensors 71 and 73. As a result, the temperature could be detected normally, and there was no problem with the durability of the temperature sensors 71 and 73.

b)バーナ加熱振動試験
図10に示す様に、前記実施例1、2の温度センサ71、73を、振動試験器81に固定し、バーナで加熱しながら、100Hzの周波数で、45G(441m/sec2)の加速度の振動を、各方向に20時間加えた(X方向で20時間、Y方向で20時間)。
b) Burner Heating Vibration Test As shown in FIG. 10, the temperature sensors 71 and 73 of Examples 1 and 2 were fixed to the vibration tester 81 and heated at a frequency of 100 Hz at a frequency of 100 Hz while being heated by a burner. sec 2 ) of acceleration vibration was applied for 20 hours in each direction (20 hours in the X direction and 20 hours in the Y direction).

この耐久試験後、温度センサ71、73を用いて温度を測定したところ、正常に温度を検出でき、温度センサ71、73の耐久性に問題はなかった。
〔その他の実施形態〕
なお、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
After the durability test, the temperature was measured using the temperature sensors 71 and 73. As a result, the temperature could be detected normally, and there was no problem with the durability of the temperature sensors 71 and 73.
[Other Embodiments]
In addition, this invention is not limited to the following embodiment at all, and it cannot be overemphasized that various forms may be taken as long as it belongs to the technical scope of this invention.

(1)例えば図11に示す様に、端子線91に環状の中間部材93を外嵌し、この中間部材93を介して、端子線91とシース芯線95とをレーザ溶接してもよい。
また、下記表1に、端子線、中間部材、電極線として選択可能な材料を示すが、温度センサの使用箇所等に応じて、本発明の範囲内で、適宜材料を選択することができる。
(1) For example, as shown in FIG. 11, an annular intermediate member 93 may be externally fitted to the terminal wire 91, and the terminal wire 91 and the sheath core wire 95 may be laser-welded via the intermediate member 93.
Moreover, although the material which can be selected as a terminal wire, an intermediate member, and an electrode wire is shown in following Table 1, according to the usage location etc. of a temperature sensor, a material can be suitably selected within the scope of the present invention.

なお、Pt、Rh、Ni等に付加された数字は、質量%を示している。 In addition, the number added to Pt, Rh, Ni, etc. has shown the mass%.

(2)また、本発明は、図12に示す形態の温度センサ101にも採用することができる。
即ち、図12に示す温度センサ101は、上記実施形態の金属チューブ9に換えて、金属キャップ103を備えている。この金属キャップ103は、先端側(同図下方)が閉塞した軸線方向に延びる筒状をなし、筒状の後端側が開放した形態で構成されている。
(2) The present invention can also be applied to the temperature sensor 101 having the configuration shown in FIG.
That is, the temperature sensor 101 shown in FIG. 12 includes a metal cap 103 instead of the metal tube 9 of the above embodiment. The metal cap 103 has a cylindrical shape extending in the axial direction with the front end side (downward in the figure) closed, and has a configuration in which the cylindrical rear end side is opened.

また、金属キャップ103は、先端側の内部にサーミスタ素子105およびセメント107(充填材)を収納しつつ、後端側の内周面がシース部材109の筒状部材111の外周面に重なり合った状態で、全周溶接されることで、シース部材109に固定される。   Further, the metal cap 103 accommodates the thermistor element 105 and the cement 107 (filler) inside the front end side, and the inner peripheral surface on the rear end side overlaps the outer peripheral surface of the tubular member 111 of the sheath member 109. Thus, it is fixed to the sheath member 109 by being welded all around.

また、この温度センサ101における取付部材115は、詳細は省略するが、シース部材109と直接組み付けられるような形状を有している。このような取付部材115は、自身の内部にシース部材109が挿通されたあと、接合部117および第1段部119よりも小径に形成された第2段部121のそれぞれに対して、径方向内向きの加締め作業および溶接作業が行われることで、シース部材109の筒状部材111の外周面を取り囲んでシース部材109を支持する。つまり、シース部材109は、接合部117および第2段部121に接合されることにより、取付部材115に固定される。   Further, the attachment member 115 in the temperature sensor 101 has a shape that can be directly assembled with the sheath member 109, although details are omitted. Such a mounting member 115 has a radial direction with respect to each of the second step portion 121 formed with a smaller diameter than the joint portion 117 and the first step portion 119 after the sheath member 109 is inserted into the attachment member 115. By performing inward caulking work and welding work, the sheath member 109 is supported by surrounding the outer peripheral surface of the tubular member 111 of the sheath member 109. That is, the sheath member 109 is fixed to the attachment member 115 by being bonded to the bonding portion 117 and the second step portion 121.

このような温度センサ101においても、サーミスタ素子105のサーミスタ焼結体126から伸びる端子線127とシース部材109を構成するシース芯線(電極線)129とは、前記実施形態と同様に中間部材(図示せず)を用いてレーザ溶接されるので、前記実施形態の温度センサ1と同様の効果が得られる。   Also in such a temperature sensor 101, the terminal wire 127 extending from the thermistor sintered body 126 of the thermistor element 105 and the sheath core wire (electrode wire) 129 constituting the sheath member 109 are an intermediate member (see FIG. Therefore, the same effect as that of the temperature sensor 1 of the above embodiment can be obtained.

実施形態の温度センサの構造を示す部分破断断面図である。It is a fragmentary sectional view which shows the structure of the temperature sensor of embodiment. 温度センサの先端側を破断し拡大して示す正面図である。It is a front view which fractures | ruptures and expands and shows the front end side of a temperature sensor. 温度センサの先端側を破断し拡大して示す側面図である。It is a side view which fractures | ruptures and expands and shows the front end side of a temperature sensor. 端子線とシース芯線との溶接部を拡大して示す説明図である。It is explanatory drawing which expands and shows the welding part of a terminal wire and a sheath core wire. 図4のA−A断面図である。It is AA sectional drawing of FIG. レーザ溶接の方法を示す説明図である。It is explanatory drawing which shows the method of laser welding. 温度センサの製造工程を説明する説明図である。It is explanatory drawing explaining the manufacturing process of a temperature sensor. 実施例2におけるレーザ溶接の方法を示す説明図である。6 is an explanatory view showing a laser welding method in Embodiment 2. FIG. 温度サイクル耐熱試験の方法を示す説明図である。It is explanatory drawing which shows the method of a temperature cycle heat test. バーナ加熱振動試験を示し、(a)はその試験装置の側面を破断して示す説明図、(b)は試験装置を正面から示す説明図である。A burner heating vibration test is shown, (a) is an explanatory view showing a side surface of the test apparatus in a broken state, and (b) is an explanatory view showing the test apparatus from the front. 他のレーザ溶接の方法を示す説明図である。It is explanatory drawing which shows the other method of laser welding. 変形例の温度センサの構造を示す部分破断断面図である。It is a fragmentary sectional view which shows the structure of the temperature sensor of a modification.

符号の説明Explanation of symbols

1、71、73、101…温度センサ
3、61、95、127…シース芯線(電極線)
9…金属チューブ(ハウジング)
7、109…シース部材
21、105…サーミスタ素子
23、126…セラミック焼結体(感温部)
25、65、93、127…端子線
39、107…セメント
47…溶接部
49、63、91…中間部材
51…中間層
1, 71, 73, 101 ... Temperature sensor 3, 61, 95, 127 ... Sheath core wire (electrode wire)
9 ... Metal tube (housing)
7, 109: Sheath member 21, 105: Thermistor element 23, 126: Ceramic sintered body (temperature sensing part)
25, 65, 93, 127 ... terminal wire 39, 107 ... cement 47 ... welded portion 49, 63, 91 ... intermediate member 51 ... intermediate layer

Claims (4)

温度によって電気的特性が変化する感温部と、該感温部から伸びる端子線とを有する感温素子と、
前記端子線と接続され、前記感温素子から電気信号を取り出す電極線と、
先端側が閉塞され、前記感温素子及び前記電極線を収納する筒状のハウジングと、
を備えた温度センサの製造方法であって、
前記端子線又は前記電極線に、前記端子線の熱膨張係数と前記電極線の熱膨張係数との間の熱膨張係数を有する環状又はU字状の中間部材を嵌めた後、前記端子線と前記電極線とを軸方向を合わせて重ね合わせて配置し、前記端子線と前記電極線とを重ね合わせた部分を溶接することによって、前記端子線と前記中間部材と前記電極線とを一体に接合する第1工程を有することを特徴とする温度センサの製造方法。
A temperature sensing element having a temperature sensing portion whose electrical characteristics change with temperature, and a terminal wire extending from the temperature sensing portion;
An electrode wire connected to the terminal wire and taking out an electrical signal from the temperature sensitive element;
A cylindrical housing in which the tip side is closed and houses the temperature sensing element and the electrode wire;
A method of manufacturing a temperature sensor comprising:
After fitting an annular or U-shaped intermediate member having a thermal expansion coefficient between the thermal expansion coefficient of the terminal wire and the thermal expansion coefficient to the terminal wire or the electrode wire, the terminal wire and The terminal wires, the intermediate member, and the electrode wires are integrated with each other by welding the portions where the electrode wires and the electrode wires are overlapped with each other by welding the electrode wires. A temperature sensor manufacturing method comprising a first step of bonding.
前記第1工程の後に、
前記筒状のハウジング内に未固化絶縁性セメントを充填し、前記溶接によって一体化された前記感温素子及び前記電極線を、前記ハウジングの先端側に設置する第2工程と、
加熱によって前記絶縁性セメントを固化させて、前記感温素子及び前記電極線を固定する第3工程と、
を有することを特徴とする請求項に記載の温度センサの製造方法。
After the first step,
A second step of filling the cylindrical housing with unsolidified insulating cement and installing the temperature-sensitive element and the electrode wire integrated by the welding on the front end side of the housing;
A third step of solidifying the insulating cement by heating and fixing the temperature sensitive element and the electrode wire;
The method of manufacturing a temperature sensor according to claim 1 , wherein:
前記中間部材は、PtとNiとを主成分とする合金であることを特徴とする請求項1又は2に記載の温度センサの製造方法。 The intermediate member, manufacturing method of the temperature sensor according to claim 1 or 2, characterized in that an alloy mainly composed of Pt and Ni. 前記温度センサは、温度変化の幅が、500℃以上の環境で用いられるものであることを特徴とする請求項1〜3のいずれか1項に記載の温度センサの製造方法。 The temperature sensor, the width of the temperature change, method for producing a temperature sensor according to any one of claims 1 to 3, characterized in that used in the 500 ° C. or higher environment.
JP2008148398A 2008-06-05 2008-06-05 Manufacturing method of temperature sensor Active JP5123058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148398A JP5123058B2 (en) 2008-06-05 2008-06-05 Manufacturing method of temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148398A JP5123058B2 (en) 2008-06-05 2008-06-05 Manufacturing method of temperature sensor

Publications (2)

Publication Number Publication Date
JP2009294107A JP2009294107A (en) 2009-12-17
JP5123058B2 true JP5123058B2 (en) 2013-01-16

Family

ID=41542409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148398A Active JP5123058B2 (en) 2008-06-05 2008-06-05 Manufacturing method of temperature sensor

Country Status (1)

Country Link
JP (1) JP5123058B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561292B2 (en) * 2012-03-06 2014-07-30 株式会社デンソー Temperature sensor
JP5814991B2 (en) 2012-10-01 2015-11-17 日本特殊陶業株式会社 Temperature sensor
JP6265001B2 (en) * 2014-03-28 2018-01-24 株式会社デンソー Temperature sensor
JP6296081B2 (en) 2015-04-03 2018-03-20 株式会社デンソー Temperature sensor
WO2016159337A1 (en) * 2015-04-03 2016-10-06 株式会社デンソー Temperature sensor
JP6561931B2 (en) * 2016-07-26 2019-08-21 山里産業株式会社 Connection method of temperature sensor element wire and extension lead wire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3485027B2 (en) * 1998-07-24 2004-01-13 株式会社デンソー Temperature sensor and method of manufacturing the same
JP2001273965A (en) * 2000-01-19 2001-10-05 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine
JP4304843B2 (en) * 2000-08-02 2009-07-29 株式会社デンソー Spark plug
JP4768432B2 (en) * 2005-12-21 2011-09-07 日本特殊陶業株式会社 Temperature sensor manufacturing method and temperature sensor

Also Published As

Publication number Publication date
JP2009294107A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP5123058B2 (en) Manufacturing method of temperature sensor
JP5155246B2 (en) Temperature sensor
JP5085398B2 (en) Temperature sensor
JP4768432B2 (en) Temperature sensor manufacturing method and temperature sensor
JP2004317499A (en) Temperature sensor
JP6265001B2 (en) Temperature sensor
JP5198934B2 (en) Temperature sensor
JP2007212195A (en) Temperature sensor and method for manufacturing same
US10302507B2 (en) Temperature sensor and method for manufacturing the same
JP2009300237A (en) Temperature sensor and method of manufacturing the same
JP6321470B2 (en) Thermistor element and temperature sensor
JP4986692B2 (en) Temperature sensor
JP2005241481A (en) Temperature sensor
JP2006126067A (en) Method for manufacturing temperature sensor
JP4059222B2 (en) Temperature sensor and method of manufacturing temperature sensor
JP2010256144A (en) Temperature sensor, and method for manufacturing the same
JP6483361B2 (en) Thermistor element and temperature sensor
JP2013015397A (en) Manufacturing method of temperature sensor and temperature sensor
JP5651550B2 (en) Temperature sensor and method of manufacturing temperature sensor
JP6825919B2 (en) Temperature sensor
JP2017223556A (en) Temperature sensor
JP5123344B2 (en) Temperature sensor
JP2012032235A (en) Temperature sensor
JP2018112513A (en) Temperature sensor
JP5576350B2 (en) Temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5123058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250