JP5121476B2 - Vacuum processing equipment - Google Patents

Vacuum processing equipment Download PDF

Info

Publication number
JP5121476B2
JP5121476B2 JP2008017664A JP2008017664A JP5121476B2 JP 5121476 B2 JP5121476 B2 JP 5121476B2 JP 2008017664 A JP2008017664 A JP 2008017664A JP 2008017664 A JP2008017664 A JP 2008017664A JP 5121476 B2 JP5121476 B2 JP 5121476B2
Authority
JP
Japan
Prior art keywords
vacuum chamber
antenna
elastic member
flange portion
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008017664A
Other languages
Japanese (ja)
Other versions
JP2009182023A (en
Inventor
日出夫 竹井
進 崎尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008017664A priority Critical patent/JP5121476B2/en
Publication of JP2009182023A publication Critical patent/JP2009182023A/en
Application granted granted Critical
Publication of JP5121476B2 publication Critical patent/JP5121476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空槽内にラジカルを発生させる真空処理装置に関する。   The present invention relates to a vacuum processing apparatus that generates radicals in a vacuum chamber.

従来より、ドライエッチングや成膜には、真空槽内部でガスをプラズマ化させる真空処理装置が用いられている。   Conventionally, a vacuum processing apparatus that converts gas into plasma inside a vacuum chamber has been used for dry etching and film formation.

図7は従来の真空処理装置100を示す断面図であり、真空槽112の天井には貫通孔109が形成され、各貫通孔109にはアンテナ容器125が挿通されている。各アンテナ容器125は石英等の電波を通す誘電体材料で構成され、その内部にはアンテナ122が配置されている。   FIG. 7 is a cross-sectional view showing a conventional vacuum processing apparatus 100, and through holes 109 are formed in the ceiling of the vacuum chamber 112, and an antenna container 125 is inserted into each through hole 109. Each antenna container 125 is made of a dielectric material that transmits radio waves such as quartz, and an antenna 122 is disposed therein.

真空排気系119により、真空槽112内部に真空雰囲気を形成し、ガス供給系118から処理ガスを真空槽112内部に導入しながら、電源139からアンテナ122に高周波電圧を印加してマイクロ波を放出させると、マイクロ波はアンテナ容器125を通過して真空槽112内部に放出され、処理ガスがラジカル化し、ラジカル化したガスで基板107が表面処理される。   A vacuum atmosphere is formed in the vacuum chamber 112 by the evacuation system 119, and microwaves are emitted by applying a high frequency voltage from the power source 139 to the antenna 122 while introducing a processing gas from the gas supply system 118 into the vacuum chamber 112. Then, the microwave passes through the antenna container 125 and is released into the vacuum chamber 112, the processing gas is radicalized, and the substrate 107 is surface-treated with the radicalized gas.

マイクロ波の漏出を防止するために、アンテナ容器125の貫通孔109内に挿通された部分の周囲は筒状の導電性シールド133で囲まれている。
導電性シールド133が浮遊状態であったり、真空槽112との間の電気抵抗が高いと、マイクロ波が貫通孔109内壁面に到達し、貫通孔109の内壁面と導電性シールド133との間の隙間でプラズマが発生する。そのため、導電性シールド133を確実に接地電位に接続する必要がある。
In order to prevent leakage of the microwave, the periphery of the portion inserted into the through hole 109 of the antenna container 125 is surrounded by a cylindrical conductive shield 133.
When the conductive shield 133 is in a floating state or has a high electric resistance with the vacuum chamber 112, the microwave reaches the inner wall surface of the through hole 109, and between the inner wall surface of the through hole 109 and the conductive shield 133. Plasma is generated in the gap. Therefore, it is necessary to reliably connect the conductive shield 133 to the ground potential.

従来では、導電性シールド133の真空槽112外側開口縁部分がリング状に膨出した導電性フランジ部134を設け、導電性フランジ部134を、Oリング150を挟んで、アンテナ容器125のフランジ部130で真空槽112に押し付けていた。   Conventionally, a conductive flange portion 134 in which the outer opening edge portion of the vacuum shield 112 of the conductive shield 133 swells in a ring shape is provided, and the conductive flange portion 134 is sandwiched between the O-ring 150 and the flange portion of the antenna container 125. 130 was pressed against the vacuum chamber 112.

Oリング150は弾性変形するから、導電性フランジ部134と真空槽112の距離が短くなって接触し、導電性フランジ部134が真空槽112に電気的に接続される。Oリング150は、復元力により導電性フランジ部134と真空槽112に気密に密着するから、Oリング150で貫通孔109周囲を取り囲めば、真空槽112の内部空間を外部から遮断することができる。   Since the O-ring 150 is elastically deformed, the distance between the conductive flange portion 134 and the vacuum chamber 112 is shortened, and the conductive flange portion 134 is electrically connected to the vacuum chamber 112. Since the O-ring 150 is hermetically adhered to the conductive flange portion 134 and the vacuum chamber 112 by a restoring force, the inner space of the vacuum chamber 112 can be blocked from the outside by surrounding the through hole 109 with the O-ring 150. it can.

しかし、アンテナ容器125とそのフランジ部130は石英等の誘電体材料で構成されるため、導電性フランジ部134が真空槽112と密着するよう強く押圧すると破損する恐れがある。   However, since the antenna container 125 and the flange portion 130 thereof are made of a dielectric material such as quartz, there is a risk of damage if the conductive flange portion 134 is pressed firmly to come into close contact with the vacuum chamber 112.

破損を防ぐために押圧する力を弱くすると、導電性フランジ部134が真空槽112から離間して浮遊状態となるか、接地電位に接続されたとしても真空槽112との間の電気抵抗が高くなって、プラズマが発生し、Oリング150がプラズマで燃えてしまう。
特開2000−31121号公報
If the pressing force is weakened to prevent breakage, the conductive flange portion 134 is separated from the vacuum chamber 112 and floats, or even when connected to the ground potential, the electrical resistance between the vacuum chamber 112 increases. As a result, plasma is generated and the O-ring 150 is burned by the plasma.
JP 2000-31121 A

本発明は上記課題を解決するためのものであり、その目的は、異常放電を防止し、寿命の長い真空処理装置を提供することである。   The present invention is for solving the above-described problems, and an object thereof is to provide a vacuum processing apparatus that prevents abnormal discharge and has a long life.

上記課題を解決するために本発明は、真空槽と、アンテナ容器と、アンテナとを有し、前記アンテナ容器は、容器本体の開口の縁部分にフランジ部が設けられ、前記アンテナ容器は、前記フランジ部が前記真空槽の外側に位置し、前記容器本体が前記真空槽の貫通孔内に位置するように配置され、前記容器本体の側面の少なくとも前記貫通孔内に位置する部分には導電性シールド膜が配置され、前記アンテナは、前記容器本体内に配置され、前記アンテナに高周波電圧を印加すると、前記アンテナから前記真空槽の内部空間に向けてマイクロ波が放出される真空処理装置であって、前記フランジ部は、前記真空槽に向けられた表面に前記導電性シールド膜と電気的に接続された接地電極膜を有し、前記接地電極膜と、前記真空槽との間には、少なくとも表面に導電性物質が露出する導電性弾性部材が配置され、前記導電性弾性部材によって、前記接地電極膜と、前記真空槽とが電気的に接続された真空処理装置である。
本発明は真空処理装置であって、前記導電性弾性部材は、前記貫通孔を取り囲むリング状にされた真空処理装置である。
本発明は真空処理装置であって、前記フランジ部と前記真空槽との間には、弾性材料がリング状に成形されたオーリングが、前記貫通孔を取り囲むように配置され、前記導電性弾性部材は、前記オーリングのリング内側に位置する真空処理装置である。
In order to solve the above problems, the present invention includes a vacuum chamber, an antenna container, and an antenna, and the antenna container is provided with a flange portion at an edge portion of the opening of the container body, A flange portion is positioned outside the vacuum chamber, the container body is disposed so as to be positioned in the through hole of the vacuum chamber, and at least a portion of the side surface of the container body positioned in the through hole is electrically conductive. A shield film is disposed, and the antenna is disposed in the container body, and when a high frequency voltage is applied to the antenna, a microwave is emitted from the antenna toward the internal space of the vacuum chamber. The flange portion has a ground electrode film electrically connected to the conductive shield film on a surface directed to the vacuum chamber, and between the ground electrode film and the vacuum chamber, Without even being disposed conductive elastic member electrically conductive material are exposed on the surface, by the conductive elastic member, and the ground electrode layer, wherein the vacuum chamber is a vacuum processing apparatus which is electrically connected.
This invention is a vacuum processing apparatus, Comprising: The said electroconductive elastic member is a vacuum processing apparatus made into the ring shape surrounding the said through-hole.
The present invention is a vacuum processing apparatus, wherein an O-ring formed of an elastic material in a ring shape is disposed between the flange portion and the vacuum chamber so as to surround the through hole, and the conductive elastic The member is a vacuum processing apparatus located inside the ring of the O-ring.

接地電極膜は導電性弾性部材を介して真空槽に電気的に接続されるから、接地電極膜を強く真空槽に押し付けなくても、導電性シールドを接地電位に接続することが可能である。接地電極膜を真空槽に強く押し付ける必要が無いからフランジ部が破損しない。導電性弾性部材の外側にはオーリングが配置され、オーリングが真空槽とフランジ部に密着するから、真空槽の内部が気密に保たれる。   Since the ground electrode film is electrically connected to the vacuum chamber via the conductive elastic member, the conductive shield can be connected to the ground potential without strongly pressing the ground electrode film against the vacuum chamber. Since it is not necessary to press the ground electrode film strongly against the vacuum chamber, the flange is not damaged. Since an O-ring is disposed outside the conductive elastic member and the O-ring is in close contact with the vacuum chamber and the flange portion, the inside of the vacuum chamber is kept airtight.

図1の符号1は本発明の真空処理装置の一例を示している。
真空処理装置1は、真空槽12と、真空槽12に取り付けられたラジカル発生装置20とを有している。
ラジカル発生装置20は一又は複数のアンテナ容器25と、各アンテナ容器25内部に配置されたアンテナ22とを有している。各アンテナ容器25は同じ構造を有しており、同じ部材には同じ符号を付して説明する。
Reference numeral 1 in FIG. 1 shows an example of the vacuum processing apparatus of the present invention.
The vacuum processing apparatus 1 includes a vacuum chamber 12 and a radical generator 20 attached to the vacuum chamber 12.
The radical generator 20 includes one or a plurality of antenna containers 25 and antennas 22 arranged inside each antenna container 25. Each antenna container 25 has the same structure, and the same members will be described with the same reference numerals.

図2を参照し、アンテナ容器25は、アンテナ22を覆う容器本体24を有している。容器本体24は有底であればその形状は特に限定されないが、ここでは容器本体24の底面部分は、外側に半球状に膨出されたドーム状である。   Referring to FIG. 2, the antenna container 25 has a container body 24 that covers the antenna 22. The shape of the container body 24 is not particularly limited as long as it has a bottom, but here, the bottom surface portion of the container body 24 has a dome shape bulging outwardly in a hemispherical shape.

容器本体24の開口縁部分は、容器本体24の側面から外周方向に膨出している。図2の符号31は、その膨出部分であるベース部31を示しており、ベース部31は容器本体24と同じ材料で構成され、容器本体24の開口を取り囲むリング状になっている。   The opening edge portion of the container body 24 bulges from the side surface of the container body 24 in the outer peripheral direction. Reference numeral 31 in FIG. 2 indicates a base portion 31 that is a bulging portion. The base portion 31 is made of the same material as the container body 24 and has a ring shape surrounding the opening of the container body 24.

容器本体24の開口側根元部分の外側側面と、ベース部31の容器本体24底面側の表面には、スパッタ法や蒸着法等により金属膜(例えば銀膜)等の導電膜が密着形成されている。   A conductive film such as a metal film (for example, a silver film) is formed in close contact with the outer side surface of the opening-side base portion of the container body 24 and the surface of the base portion 31 on the bottom surface side of the container body 24 by sputtering or vapor deposition. Yes.

図2の符号33は導電膜の容器本体24根元部分の外側側面に形成された部分である導電性シールドを示し、同図の符号34は導電膜のベース部31表面上に形成された部分である接地電極膜を示しており、ベース部31と接地電極膜34とでフランジ部30が構成される。   2 indicates a conductive shield which is a portion formed on the outer side surface of the base portion of the container body 24 of the conductive film, and reference numeral 34 in FIG. 2 indicates a portion formed on the surface of the base portion 31 of the conductive film. A certain ground electrode film is shown, and the base portion 31 and the ground electrode film 34 constitute a flange portion 30.

フランジ部30の平面形状はベース部31の平面形状と略等しいから、フランジ部30は、容器本体24の開口縁部分が、容器本体24の側面から外周方向に膨出したリング状になっている。
また、導電膜は容器本体24の根元部分を取り囲むように形成されているから、導電性シールド33は筒状になっている。
Since the planar shape of the flange portion 30 is substantially equal to the planar shape of the base portion 31, the flange portion 30 has a ring shape in which the opening edge portion of the container body 24 bulges from the side surface of the container body 24 in the outer peripheral direction. .
In addition, since the conductive film is formed so as to surround the base portion of the container body 24, the conductive shield 33 has a cylindrical shape.

図2の符号40はAl等の金属製の筒(スリーブ)であり、スリーブ40を筒の中心軸線と垂直な方向に切断した切断面の内周は、導電性シールド33を筒の中心軸線と垂直な方向に切断した切断面の外周と同じか、それよりもやや大きくなっている。   Reference numeral 40 in FIG. 2 denotes a metal tube (sleeve) made of Al or the like, and the inner periphery of the cut surface obtained by cutting the sleeve 40 in a direction perpendicular to the center axis of the tube has the conductive shield 33 as the center axis of the tube. It is the same as or slightly larger than the outer circumference of the cut surface cut in the vertical direction.

スリーブ40の一端開口は外側に全周が膨出してリング状のスリーブフランジ部42が形成されており、アンテナ容器25は底面をスリーブ40内に向けて、スリーブフランジ部42が形成された側の開口から、スリーブ40の内部に挿通されている。   One end opening of the sleeve 40 bulges all around the outer side to form a ring-shaped sleeve flange portion 42, and the antenna container 25 has a bottom surface facing the inside of the sleeve 40, and the sleeve flange portion 42 on the side where the sleeve flange portion 42 is formed. The sleeve 40 is inserted through the opening.

フランジ部30のリング外周は、スリーブ40の上記切断面内周よりも大きく、フランジ部30はスリーブ40内に挿通されずに、スリーブフランジ部42に接触する。
真空槽12の一壁面(ここでは天井)には貫通孔9が形成されており、貫通孔9の外周は、スリーブ40の上記切断面の外周と同じか、やや大きくなっている。
The outer periphery of the ring of the flange portion 30 is larger than the inner periphery of the cut surface of the sleeve 40, and the flange portion 30 contacts the sleeve flange portion 42 without being inserted into the sleeve 40.
A through hole 9 is formed in one wall surface (here, the ceiling) of the vacuum chamber 12, and the outer periphery of the through hole 9 is the same as or slightly larger than the outer periphery of the cut surface of the sleeve 40.

アンテナ容器25はスリーブ40に挿通され、内部にアンテナ22が配置された状態で、容器本体24の底面を真空槽12内部に向け、真空槽12の外側から貫通孔9に押し込まれ、導電性シールド33と、容器本体24は、スリーブ40と一緒に貫通孔9内に挿通される。このとき、導電性シールド33はスリーブ40に覆われているから、導電性シールド33が貫通孔9内壁面で擦れず、破損しない。   The antenna container 25 is inserted into the sleeve 40, and with the antenna 22 disposed therein, the bottom surface of the container body 24 is directed toward the inside of the vacuum chamber 12, and is pushed into the through-hole 9 from the outside of the vacuum chamber 12, thereby conducting the conductive shield. 33 and the container body 24 are inserted into the through hole 9 together with the sleeve 40. At this time, since the conductive shield 33 is covered with the sleeve 40, the conductive shield 33 is not rubbed against the inner wall surface of the through hole 9 and is not damaged.

スリーブフランジ部42のリング外周は貫通孔9の外周よりも大きくされており、スリーブフランジ部42とフランジ部30は貫通孔9に挿通されず、真空槽12外に留まる。
真空槽12の外側壁面の貫通孔9周囲には第一の溝51が貫通孔9を取り囲むリング状に形成され、真空槽12の外側壁面の第一の溝51の周囲には第二の溝52が第一の溝51を取り囲むリング状に形成されている。
The outer periphery of the ring of the sleeve flange portion 42 is made larger than the outer periphery of the through hole 9, and the sleeve flange portion 42 and the flange portion 30 are not inserted into the through hole 9 and remain outside the vacuum chamber 12.
A first groove 51 is formed in a ring shape surrounding the through hole 9 around the through hole 9 on the outer wall surface of the vacuum chamber 12, and a second groove is formed around the first groove 51 on the outer wall surface of the vacuum chamber 12. 52 is formed in a ring shape surrounding the first groove 51.

第一、第二の溝51、52内には、ゴムのように変形可能なリング状の第一、第二の弾性部材55、58が予め嵌め込まれ、第一、第二の弾性部材55、58の平面形状が第一、第二の溝51、52と略等しいリング状になっている。
押圧力を加えない状態では、第一、第二の弾性部材55、58のリング厚みは第一、第二の溝51、52の深さよりも厚く、第一、第二の弾性部材55、58の一部が第一、第二の溝51、52からそれぞれ上方に突き出ている。
In the first and second grooves 51, 52, ring-shaped first and second elastic members 55, 58 that can be deformed like rubber are fitted in advance, and the first and second elastic members 55, The planar shape of 58 is a ring shape substantially equal to the first and second grooves 51 and 52.
In the state where no pressing force is applied, the ring thickness of the first and second elastic members 55 and 58 is thicker than the depth of the first and second grooves 51 and 52, and the first and second elastic members 55 and 58. Are protruding upward from the first and second grooves 51 and 52, respectively.

フランジ部30のリング外周は、スリーブフランジ部42のリング外周よりも大きく、全周がスリーブフランジ部42のリング外周から外側にはみ出している。
ここでは、フランジ部30のリング外周は第二の溝52のリング外周よりも大きく、スリーブフランジ部42のリング外周は第二の溝52のリング内周より小さく、かつ、第一の溝51のリング外周よりは大きくされている。
The outer periphery of the ring of the flange portion 30 is larger than the outer periphery of the ring of the sleeve flange portion 42, and the entire periphery protrudes outward from the outer periphery of the ring of the sleeve flange portion 42.
Here, the outer periphery of the ring of the flange portion 30 is larger than the outer periphery of the ring of the second groove 52, the outer periphery of the ring of the sleeve flange portion 42 is smaller than the inner periphery of the ring of the second groove 52, and It is made larger than the outer periphery of the ring.

従って、フランジ部30が第二の弾性部材58と、スリーブフランジ部42が第一の弾性部材55とそれぞれ対面し、アンテナ容器25を真空槽12内に更に押し込むと、フランジ部30が第二の弾性部材58に、スリーブフランジ部42が第一の弾性部材55にそれぞれ押し当てられる。   Therefore, when the flange portion 30 faces the second elastic member 58 and the sleeve flange portion 42 faces the first elastic member 55, and the antenna container 25 is further pushed into the vacuum chamber 12, the flange portion 30 becomes the second elastic member 58. The sleeve flange portion 42 is pressed against the first elastic member 55 against the elastic member 58.

アンテナ容器25は、第一、第二の弾性部材55、58が押圧されて変形するまで、真空槽12内に押し込まれた状態で、不図示の固定部材で真空槽12に取り付けられており、復元力により、第一の弾性部材55は真空槽12(第一の溝51底面)とスリーブフランジ部42にそれぞれ密着し、第二の弾性部材58は真空槽12(第二の溝52底面)とフランジ部30にそれぞれ密着する。   The antenna container 25 is attached to the vacuum chamber 12 with a fixing member (not shown) while being pushed into the vacuum chamber 12 until the first and second elastic members 55 and 58 are pressed and deformed. Due to the restoring force, the first elastic member 55 is in close contact with the vacuum chamber 12 (the bottom surface of the first groove 51) and the sleeve flange portion 42, and the second elastic member 58 is the vacuum chamber 12 (the bottom surface of the second groove 52). And the flange portion 30 respectively.

ここでは、ベース部31の真空槽12側表面全部に接地電極膜34が形成され、第二の弾性部材58は接地電極膜34表面に密着するが、図3に示したように、ベース部31の外周部分に接地電極膜34を形成せず、第二の弾性部材58をベース部31表面に密着させてもよい。   Here, the ground electrode film 34 is formed on the entire surface of the base portion 31 on the vacuum chamber 12 side, and the second elastic member 58 is in close contact with the surface of the ground electrode film 34. However, as shown in FIG. The second elastic member 58 may be adhered to the surface of the base portion 31 without forming the ground electrode film 34 on the outer peripheral portion of the base portion 31.

第一、第二の弾性部材55、58のうち、少なくとも第一の弾性部材55は表面に導電材料が露出する導電性弾性部材で構成されている。例えば、第一の弾性部材55は、ゴム等の弾性材料からなるリング状の芯体56と、芯体56の表面に形成された導電層57(例えばAl層)で構成されており、真空槽12とスリーブフランジ部42は導電層57に密着し、電気的に接続される。   Of the first and second elastic members 55 and 58, at least the first elastic member 55 is composed of a conductive elastic member having a conductive material exposed on the surface thereof. For example, the first elastic member 55 includes a ring-shaped core body 56 made of an elastic material such as rubber, and a conductive layer 57 (for example, an Al layer) formed on the surface of the core body 56. 12 and the sleeve flange portion 42 are in close contact with the conductive layer 57 and are electrically connected.

上述したようにスリーブ40は金属製であって、スリーブフランジ部42も金属のような導電性材料で構成されている。フランジ部30の真空槽12側の面には接地電極膜34が露出しており、アンテナ容器25が真空槽12に押し込まれる時には、接地電極膜34がスリーブフランジ部42に押し付けられ、密着する。   As described above, the sleeve 40 is made of metal, and the sleeve flange portion 42 is also made of a conductive material such as metal. The ground electrode film 34 is exposed on the surface of the flange portion 30 on the vacuum chamber 12 side, and when the antenna container 25 is pushed into the vacuum chamber 12, the ground electrode film 34 is pressed against the sleeve flange portion 42 and closely contacts.

従って、接地電極膜34はスリーブフランジ部42に電気的に接続され、スリーブフランジ部42と、第一の弾性部材55を介して真空槽12に電気的に接続され、真空槽12と同じ接地電位に置かれる。   Therefore, the ground electrode film 34 is electrically connected to the sleeve flange portion 42, and is electrically connected to the vacuum chamber 12 via the sleeve flange portion 42 and the first elastic member 55, and has the same ground potential as the vacuum chamber 12. Placed in.

尚、図4に示すように、スリーブフランジ部42のリング外周を第一の溝51のリング内周よりも小さくし、第一の弾性部材55を接地電極膜34表面に直接密着させてもよい。   As shown in FIG. 4, the outer periphery of the ring of the sleeve flange portion 42 may be made smaller than the inner periphery of the ring of the first groove 51, and the first elastic member 55 may be directly adhered to the surface of the ground electrode film 34. .

第一の弾性部材55は弾性変形して真空槽12とスリーブフランジ部42(又は接地電極膜34)に密着するから、弾性変形しない場合に比べて接触面積が大きく、接地電極膜34と真空槽12の間の電気抵抗が小さい。   Since the first elastic member 55 is elastically deformed and is in close contact with the vacuum chamber 12 and the sleeve flange portion 42 (or the ground electrode film 34), the contact area is large compared to the case where the first elastic member 55 is not elastically deformed. The electrical resistance between 12 is small.

ここでは、導電性シールド33は接地電極膜34と同じ導電膜で一体成形されている。接地電極膜34と導電性シールド33は密着し、互いに電気的に接続されているから、導電性シールド33は、接地電極膜34と、第一の弾性部材55とを介して真空槽12に電気的に接続される。   Here, the conductive shield 33 is integrally formed of the same conductive film as the ground electrode film 34. Since the ground electrode film 34 and the conductive shield 33 are in close contact with each other and are electrically connected to each other, the conductive shield 33 is electrically connected to the vacuum chamber 12 through the ground electrode film 34 and the first elastic member 55. Connected.

アンテナ22は棒状であって、取付板29の表面に立設されている。取付板29はアンテナ22が立設された面を容器本体24の内部空間に向けた状態で、ベース部31に取り付けられ、アンテナ22は先端を容器本体24底面に向けて容器本体24内に配置されている。   The antenna 22 is rod-shaped and is erected on the surface of the mounting plate 29. The mounting plate 29 is attached to the base portion 31 with the surface on which the antenna 22 is erected facing the internal space of the container main body 24, and the antenna 22 is disposed in the container main body 24 with the tip facing the bottom surface of the container main body 24. Has been.

容器本体24とベース部31は石英等の誘電体を主成分とする。アンテナ22は容器本体24の内部に位置するから、導電性シールド33や接地電極膜34に接触せず、真空槽12から電気的に絶縁されている。従って、真空槽12を接地電位に置いたまま、アンテナ22に高周波電圧を印加することができる。   The container body 24 and the base part 31 are mainly composed of a dielectric such as quartz. Since the antenna 22 is located inside the container main body 24, the antenna 22 is electrically insulated from the vacuum chamber 12 without contacting the conductive shield 33 or the ground electrode film 34. Therefore, a high frequency voltage can be applied to the antenna 22 while the vacuum chamber 12 is kept at the ground potential.

上述したように貫通孔9は第一の弾性部材55のリング内側にあり、第一の弾性部材55と真空槽12は気密に密着し、第一の弾性部材55とスリーブフランジ部42は気密に密着するから、貫通孔9には外部から大気が進入し難い。   As described above, the through hole 9 is inside the ring of the first elastic member 55, the first elastic member 55 and the vacuum chamber 12 are in airtight contact, and the first elastic member 55 and the sleeve flange portion 42 are airtight. Because of the close contact, it is difficult for air to enter the through hole 9 from the outside.

しかも、第一の弾性部材55は第二の弾性部材58で取り囲まれている。第二の弾性部材58はゴム等の弾性材料がリング状に成形されたオーリングであり、第二の弾性部材58はフランジ部30と真空槽12に気密に密着するから、フランジ部30とスリーブフランジ部42の間に例え隙間があったとしても、貫通孔9に外部から大気が進入しない。   Moreover, the first elastic member 55 is surrounded by the second elastic member 58. The second elastic member 58 is an O-ring in which an elastic material such as rubber is formed in a ring shape, and the second elastic member 58 is in airtight contact with the flange portion 30 and the vacuum chamber 12. Even if there is a gap between the flange portions 42, the atmosphere does not enter the through hole 9 from the outside.

接地電極膜34はスパッタ法や蒸着法等によりベース部31表面に密着形成され、接地電極膜34とベース部31との間に隙間が無いから、接地電極膜34とベース部31の間から大気が進入しない。   The ground electrode film 34 is formed in close contact with the surface of the base portion 31 by sputtering or vapor deposition, and there is no gap between the ground electrode film 34 and the base portion 31. Does not enter.

尚、接地電極膜34と導電性シールド33をベース部31と容器本体24に密着形成せずに、容器本体24に金属製のスリーブ40を挿通し、スリーブ40を導電性シールドとし、スリーブフランジ部42を接地電極膜としてもよい。この場合スリーブフランジ部42とベース部31の間が気密にならない虞があるから、図3に示したように、第二の弾性部材58をベース部31に密着させるとよい。   The ground electrode film 34 and the conductive shield 33 are not formed in close contact with the base portion 31 and the container main body 24, but a metal sleeve 40 is inserted into the container main body 24 so that the sleeve 40 serves as a conductive shield. 42 may be a ground electrode film. In this case, since there is a possibility that the space between the sleeve flange portion 42 and the base portion 31 is not airtight, the second elastic member 58 may be brought into close contact with the base portion 31 as shown in FIG.

このように、アンテナ容器25を真空槽12に取り付けた状態では、導電性シールド33が真空槽12と同じ接地電位に置かれ、かつ、貫通孔9に大気が進入せず、真空槽12の内部空間が外部空間から遮断される。   Thus, in a state where the antenna container 25 is attached to the vacuum chamber 12, the conductive shield 33 is placed at the same ground potential as the vacuum chamber 12, and the atmosphere does not enter the through hole 9, so The space is blocked from the external space.

真空槽12の内部圧力を外部雰囲気と略等しくしてから、固定部材を取り外せば、アンテナ容器25を真空槽12から取り外し、清掃や部品交換等のメンテナンスを行うことができる。
アンテナ容器25を溶接等で真空槽12に取り付ける場合と異なり、本発明の真空処理装置1はラジカル発生装置20を真空槽12から繰り返し着脱することができる。
If the fixing member is removed after making the internal pressure of the vacuum chamber 12 substantially equal to the external atmosphere, the antenna container 25 can be removed from the vacuum chamber 12 and maintenance such as cleaning and replacement of parts can be performed.
Unlike the case where the antenna container 25 is attached to the vacuum chamber 12 by welding or the like, the vacuum processing apparatus 1 of the present invention can repeatedly attach and detach the radical generator 20 from the vacuum chamber 12.

図2、図3に示すように、スリーブフランジ部42を第一の弾性部材55に、フランジ部30を第二の弾性部材58にそれぞれ密着させ、スリーブフランジ部42とフランジ部30が直接真空槽12と接触しないようにすれば、繰り返し着脱しても、フランジ部30やスリーブフランジ部42が破損し難い。   As shown in FIGS. 2 and 3, the sleeve flange portion 42 is in close contact with the first elastic member 55 and the flange portion 30 is in close contact with the second elastic member 58, so that the sleeve flange portion 42 and the flange portion 30 are directly in the vacuum chamber. If it is made not to contact 12, even if it attaches and detaches repeatedly, the flange part 30 and the sleeve flange part 42 are hard to be damaged.

次に、本発明の真空処理装置1で基板を処理する工程について説明する。
真空槽12にはガス供給系18と、真空排気系19とが接続され、真空槽12内部の底面側には基板電極17が配置されている。
真空排気系19により、真空槽12内部を真空排気して真空雰囲気を形成し、該真空雰囲気を維持したまま、基板7を真空槽12内部に搬入し、基板電極17上に載置する。
Next, the process of processing a substrate with the vacuum processing apparatus 1 of the present invention will be described.
A gas supply system 18 and a vacuum exhaust system 19 are connected to the vacuum chamber 12, and a substrate electrode 17 is disposed on the bottom surface inside the vacuum chamber 12.
The inside of the vacuum chamber 12 is evacuated by the evacuation system 19 to form a vacuum atmosphere, and the substrate 7 is carried into the vacuum chamber 12 and placed on the substrate electrode 17 while maintaining the vacuum atmosphere.

真空槽12の内部圧力が所定圧力まで低下後、真空排気を続けながら、ガス供給系18から処理ガスを導入し、真空槽12の内部に所定圧力の処理雰囲気を形成する。
容器本体24の底面から開口までの長さは、貫通孔9の一端から他端までの長さよりも長く、底面部分が真空槽12の内部に突き出されている。
After the internal pressure of the vacuum chamber 12 drops to a predetermined pressure, a processing gas is introduced from the gas supply system 18 while continuing the vacuum exhaust, and a processing atmosphere of a predetermined pressure is formed inside the vacuum chamber 12.
The length from the bottom surface of the container body 24 to the opening is longer than the length from one end to the other end of the through hole 9, and the bottom surface portion protrudes into the vacuum chamber 12.

上述したように導電性シールド33とスリーブ40は筒状であり、筒の一端から他端までの長さは、容器本体24の長さよりもそれぞれ短く、容器本体24の底面部分は導電性シールド33やスリーブ40に覆われずに、真空槽12内の処理雰囲気に露出している。   As described above, the conductive shield 33 and the sleeve 40 are cylindrical, and the length from one end of the cylinder to the other end is shorter than the length of the container main body 24, and the bottom surface portion of the container main body 24 is the conductive shield 33. Further, it is exposed to the processing atmosphere in the vacuum chamber 12 without being covered with the sleeve 40.

容器本体24は石英等電波が透過する誘電体で構成されており、高周波電源14からアンテナ22に2.45GHz程度の高周波電圧を印加してマイクロ波を放出させると、マイクロ波は容器本体24の底面部分を通過して真空槽12内部に放出され、マイクロ波によって処理ガスがラジカル化し、基板7表面がラジカル化した処理ガスにより処理される。
例えば、基板7表面にシリコン層が露出し、処理ガスが酸素ガスの場合は、シリコン層が酸素ガスのラジカルによって酸化され、酸化シリコン層が形成される。
The container body 24 is made of a dielectric material such as quartz that allows radio waves to pass through. When a high-frequency voltage of about 2.45 GHz is applied from the high-frequency power source 14 to the antenna 22 to emit microwaves, the microwaves are stored in the container body 24. It passes through the bottom portion and is released into the vacuum chamber 12, and the processing gas is radicalized by the microwave, and the surface of the substrate 7 is processed with the radicalized processing gas.
For example, when the silicon layer is exposed on the surface of the substrate 7 and the processing gas is oxygen gas, the silicon layer is oxidized by radicals of oxygen gas to form a silicon oxide layer.

導電性シールド33の長さは貫通孔9と同じか、それよりもやや長く、容器本体24の貫通孔9内に位置する部分は、導電性シールド33で覆われ、アンテナ22から貫通孔9内壁面に向かうマイクロ波は、導電性シールド33に反射又は吸収される。   The length of the conductive shield 33 is the same as or slightly longer than that of the through hole 9, and the portion located in the through hole 9 of the container body 24 is covered with the conductive shield 33, and the antenna 22 extends from the inside of the through hole 9. The microwave toward the wall surface is reflected or absorbed by the conductive shield 33.

ここでは、導電性シールド33の長さは貫通孔9よりも長く、導電性シールド33の一部が真空槽12の内部に突き出され、アンテナ22の真空槽12内に突き出された部分から貫通孔9内壁面に斜めに向かうマイクロ波も遮断される。   Here, the length of the conductive shield 33 is longer than that of the through hole 9, and a part of the conductive shield 33 protrudes into the vacuum chamber 12, and the through hole extends from the portion of the antenna 22 protruding into the vacuum chamber 12. 9 The microwave which goes diagonally to the inner wall surface is also blocked.

導電性シールド33が真空槽12に電気的に接続されていないか(例えば浮遊状態)、接続されていたとしても真空槽12との間の電気抵抗が大きい場合、マイクロ波は貫通孔9内壁面に到達し、スリーブ40と貫通孔9内壁面の間に隙間があると、その隙間でプラズマが発生し、第一、第二の弾性部材55、58がプラズマで焼失する恐れがある。   If the conductive shield 33 is not electrically connected to the vacuum chamber 12 (for example, in a floating state) or has a large electrical resistance with the vacuum chamber 12 even if it is connected, the microwave is transmitted through the inner wall surface of the through-hole 9. If there is a gap between the sleeve 40 and the inner wall surface of the through hole 9, plasma is generated in the gap and the first and second elastic members 55 and 58 may be burned off by the plasma.

本発明では、第二の弾性部材58が弾性変形し、真空槽12と接地電極膜34との接触面積が大きくなっているから、導電性シールド33と真空槽12との間の電気抵抗が小さくなっており、スリーブ40と貫通孔9内壁面の間に隙間があってもプラズマが発生せず、第一、第二の弾性部材55、58が焼失しない。   In the present invention, since the second elastic member 58 is elastically deformed and the contact area between the vacuum chamber 12 and the ground electrode film 34 is increased, the electrical resistance between the conductive shield 33 and the vacuum chamber 12 is reduced. Thus, even if there is a gap between the sleeve 40 and the inner wall surface of the through-hole 9, no plasma is generated, and the first and second elastic members 55 and 58 are not burned out.

また、スリーブ40の上記切断面内周を、導電性シールド33の上記切断面外周と略等しくし、スリーブ40を導電性シールド33に密着させて一つのシールドとすれば、シールドの厚みが大きくなる分、導電性シールド33と真空槽12との間の電気抵抗をより小さくすることができる。
基板7の表面処理が終了後、真空槽12内部へのガス導入とマイクロ波の放出を停止し、基板7を真空槽12の外部に搬出する。
Further, if the inner circumference of the cut surface of the sleeve 40 is substantially equal to the outer circumference of the cut surface of the conductive shield 33 and the sleeve 40 is brought into close contact with the conductive shield 33 to form one shield, the thickness of the shield increases. Therefore, the electrical resistance between the conductive shield 33 and the vacuum chamber 12 can be further reduced.
After the surface treatment of the substrate 7 is completed, the gas introduction into the vacuum chamber 12 and the emission of the microwave are stopped, and the substrate 7 is carried out of the vacuum chamber 12.

上述したように、マイクロ波は貫通孔9の内壁面に到達せず、異常放電が起こらないから基板7はダメージを受けず、真空処理装置1の寿命も長い。
尚、処理ガスをラジカル化する際、電源8から基板電極17に高周波電圧を印加すれば、基板7表面に入射するラジカル等の入射エネルギーを制御できる。例えば、これにより入射エネルギーを小さくしてダメージを低減させたり、逆に入射エネルギーを大きくして処理速度を大きくすることができる。
As described above, the microwave does not reach the inner wall surface of the through hole 9 and abnormal discharge does not occur, so the substrate 7 is not damaged and the life of the vacuum processing apparatus 1 is long.
When radicalizing the processing gas, if a high frequency voltage is applied from the power source 8 to the substrate electrode 17, the incident energy such as radicals incident on the surface of the substrate 7 can be controlled. For example, the incident energy can be reduced to reduce damage, and conversely, the incident energy can be increased to increase the processing speed.

以上は、アンテナ容器25をスリーブ40に挿通した状態で真空槽12に取り付ける場合について説明したが、本発明はこれに限定されるものではない。
例えば、図5に示すように、アンテナ容器25をスリーブ40に挿通させずに、貫通孔9に挿通して、真空槽12に取り付けても良い。この場合、第二の弾性部材58はベース部31と接地電極膜34のいずれに密着させてもよいが、第一の弾性部材55は接地電極膜34に密着させる。
Although the case where the antenna container 25 is attached to the vacuum chamber 12 in a state where the antenna container 25 is inserted through the sleeve 40 has been described above, the present invention is not limited to this.
For example, as shown in FIG. 5, the antenna container 25 may be inserted into the through hole 9 without being inserted into the sleeve 40 and attached to the vacuum chamber 12. In this case, the second elastic member 58 may be in close contact with either the base portion 31 or the ground electrode film 34, but the first elastic member 55 is in close contact with the ground electrode film 34.

更に、上記図2〜5のラジカル発生装置20では、第一の弾性部材55はリング状に限定されない。第一の弾性部材55がリング状でない場合は、1又は複数の第一の弾性部材55を、真空槽12の外壁面の貫通孔9の周囲に並べて配置し、真空槽12と接地電極膜34(又はスリーブフランジ部42)に密着させる。
第一の弾性部材55がリング状でなくても、貫通孔9は第二の弾性部材58で取り囲まれるから、真空槽12内部が気密に維持される。
Further, in the radical generator 20 shown in FIGS. 2 to 5, the first elastic member 55 is not limited to a ring shape. When the first elastic member 55 is not ring-shaped, one or a plurality of first elastic members 55 are arranged around the through hole 9 on the outer wall surface of the vacuum chamber 12, and the vacuum chamber 12 and the ground electrode film 34 are arranged. (Or close to the sleeve flange portion 42).
Even if the first elastic member 55 is not ring-shaped, since the through hole 9 is surrounded by the second elastic member 58, the inside of the vacuum chamber 12 is maintained airtight.

また、第一の弾性部材55がリング状である場合は、図6に示すように、第二の弾性部材58を配置しなくてもよい。この場合、真空槽12の内部空間を外部空間からより確実に遮断するために、第一の弾性部材55をフランジ部30(接地電極膜34又はベース部31)に直接密着させることが望ましい。   Moreover, when the 1st elastic member 55 is ring shape, as shown in FIG. 6, the 2nd elastic member 58 does not need to be arrange | positioned. In this case, in order to more reliably block the internal space of the vacuum chamber 12 from the external space, it is desirable that the first elastic member 55 is in direct contact with the flange portion 30 (the ground electrode film 34 or the base portion 31).

フランジ部30の構造は特に限定されない。例えば、容器本体24の開口周囲にベース部31を設けず、容器本体24の開口周囲にリング状の金属板を、容器本体24の外周方向に突き出るように配置し、フランジ部30を該金属板(接地電極膜)で構成してもよい。   The structure of the flange part 30 is not specifically limited. For example, the base portion 31 is not provided around the opening of the container body 24, and a ring-shaped metal plate is disposed around the opening of the container body 24 so as to protrude in the outer peripheral direction of the container body 24, and the flange portion 30 is disposed on the metal plate. (Ground electrode film) may be used.

スリーブ40は導電性であれば材質は特に限定されないが、銀等の柔らかい金属を用いると、貫通孔9内壁面と擦れて損傷するから、Al等の硬い金属を主成分とするものを用い、その厚み(筒の外周と内周の差)も、導電性シールド33の膜厚よりも厚くする方が望ましい(例えば1mm)。   The material of the sleeve 40 is not particularly limited as long as it is conductive. However, if a soft metal such as silver is used, the sleeve 40 is rubbed and damaged by the inner wall surface of the through hole 9. It is desirable that the thickness (difference between the outer periphery and the inner periphery of the cylinder) is larger than the film thickness of the conductive shield 33 (for example, 1 mm).

第一の弾性部材55の導電層57は全体の弾性変形を妨げない程度に膜厚を薄くすることが望ましい。導電層57と芯体56は特に限定されないが、一例を述べると、導電層57はAl等の金属を主成分とし、芯体56はバイトン(登録商標)のようなフッ素ゴムを主成分とする。   It is desirable that the conductive layer 57 of the first elastic member 55 be thin enough to prevent the entire elastic deformation. The conductive layer 57 and the core body 56 are not particularly limited. For example, the conductive layer 57 is mainly composed of a metal such as Al, and the core body 56 is mainly composed of a fluoro rubber such as Viton (registered trademark). .

第一の弾性部材55(導電性弾性部材)の構造も限定されず、例えば、カーボンブラック等の導電材料がゴムに添加された導電性ゴムで第一の弾性部材55を構成してもよい。
第一の弾性部材55として、銅等の金属製ガスケットも用いることができるが、アンテナ容器25を繰り返し着脱する場合には用いることができない。
The structure of the first elastic member 55 (conductive elastic member) is not limited. For example, the first elastic member 55 may be composed of conductive rubber in which a conductive material such as carbon black is added to rubber.
A metal gasket such as copper can be used as the first elastic member 55, but cannot be used when the antenna container 25 is repeatedly attached and detached.

第二の弾性部材58も特に限定されないが、バイトン(登録商標)よりも誘電正接(tanδ)が小さい樹脂が好ましく、そのような樹脂としてはパーフロ(登録商標)のようなパーフルオロ樹脂がある。   Although the second elastic member 58 is not particularly limited, a resin having a smaller dielectric loss tangent (tan δ) than Viton (registered trademark) is preferable, and as such a resin, there is a perfluoro resin such as Perflo (registered trademark).

アンテナ22は特に限定されないが、アンテナ22としてマグネトロンを用いると、アンテナ22から強力なマイクロ波が放出されるから、処理ガスが高効率にラジカル化される。   Although the antenna 22 is not particularly limited, when a magnetron is used as the antenna 22, a powerful microwave is emitted from the antenna 22, so that the processing gas is radicalized with high efficiency.

処理ガスは酸素ガスに限定されず、ラジカル化して処理対象物の真空処理を行なえるガスであればよく、窒素ガスを用いて処理対象物の窒化処理を行なってもよいし、また酸化性ガス、還元性ガスを用いて処理対象物の表面処理を行なってもよい。また、フッ化ガスのようなエッチングガスを用いてエッチング処理を行ってもよい。更に、処理ガスに加えて原料ガス導入系から薄膜の原料ガスを導入し、真空槽12内で発生させた処理ガスのラジカルと、真空槽12内に導入された原料ガスとを反応させ、得られた反応生成物を処理対象物の表面に堆積させ、薄膜を成長させることができる。   The processing gas is not limited to oxygen gas, and may be any gas that can be radicalized to perform vacuum processing of the processing target. Nitrogen gas may be used for nitriding the processing target, or an oxidizing gas may be used. The surface treatment of the object to be treated may be performed using a reducing gas. Further, the etching process may be performed using an etching gas such as a fluorinated gas. Further, a thin film source gas is introduced from the source gas introduction system in addition to the process gas, and the radical of the process gas generated in the vacuum chamber 12 reacts with the source gas introduced into the vacuum chamber 12 to obtain The obtained reaction product can be deposited on the surface of the object to be processed, and a thin film can be grown.

要するに、本発明は成膜装置やエッチング装置や表面改質装置等の真空処理を行なう真空処理装置を広く含む。
貫通孔9の数は一つでもよいが、貫通孔9を複数設け、複数のアンテナ22を分散配置させれば、大面積の基板7表面に処理ガスのラジカルを均一に到達させて、大面積基板でも均一な真空処理が可能である。
In short, the present invention broadly includes vacuum processing apparatuses that perform vacuum processing such as film forming apparatuses, etching apparatuses, and surface modification apparatuses.
The number of through holes 9 may be one, but if a plurality of through holes 9 are provided and a plurality of antennas 22 are arranged in a distributed manner, radicals of the processing gas can uniformly reach the surface of the large area substrate 7 to increase the area. Uniform vacuum processing is possible even on a substrate.

本発明の真空処理装置の第一例を説明するための断面図Sectional drawing for demonstrating the 1st example of the vacuum processing apparatus of this invention アンテナ容器の取り付け部分の拡大断面図Enlarged sectional view of the antenna container mounting part 第二例の真空処理装置を説明する拡大断面図The expanded sectional view explaining the vacuum processing apparatus of the 2nd example 第三例の真空処理装置を説明する拡大断面図Expanded sectional view explaining the vacuum processing apparatus of the third example 第四例の真空処理装置を説明する拡大断面図Expanded sectional view for explaining the vacuum processing apparatus of the fourth example 第五例の真空処理装置を説明する拡大断面図Expanded sectional view for explaining the vacuum processing apparatus of the fifth example 従来技術の真空処理装置を説明するための断面図Sectional drawing for demonstrating the vacuum processing apparatus of a prior art

符号の説明Explanation of symbols

1……真空処理装置 7……基板 9……貫通孔 12……真空槽 22……アンテナ 24……容器本体 25……アンテナ容器 30……フランジ部 33……導電性シールド 34……接地電極膜 55……導電性弾性部材(第一の弾性部材) 58……オーリング(第二の弾性部材)   DESCRIPTION OF SYMBOLS 1 ... Vacuum processing apparatus 7 ... Substrate 9 ... Through-hole 12 ... Vacuum chamber 22 ... Antenna 24 ... Container body 25 ... Antenna container 30 ... Flange 33 ... Conductive shield 34 ... Ground electrode Membrane 55... Conductive elastic member (first elastic member) 58... O-ring (second elastic member)

Claims (3)

真空槽と、アンテナ容器と、アンテナとを有し、
前記アンテナ容器は、容器本体の開口の縁部分にフランジ部が設けられ、
前記アンテナ容器は、前記フランジ部が前記真空槽の外側に位置し、前記容器本体が前記真空槽の貫通孔内に位置するように配置され、
前記容器本体の側面の少なくとも前記貫通孔内に位置する部分には導電性シールド膜が配置され、
前記アンテナは、前記容器本体内に配置され、前記アンテナに高周波電圧を印加すると、前記アンテナから前記真空槽の内部空間に向けてマイクロ波が放出される真空処理装置であって、
前記フランジ部は、前記真空槽に向けられた表面に前記導電性シールド膜と電気的に接続された接地電極膜を有し、
前記接地電極膜と、前記真空槽との間には、少なくとも表面に導電性物質が露出する導電性弾性部材が配置され、
前記導電性弾性部材によって、前記接地電極膜と、前記真空槽とが電気的に接続された真空処理装置。
A vacuum chamber, an antenna container, and an antenna;
The antenna container is provided with a flange at the edge of the opening of the container body,
The antenna container is disposed such that the flange portion is located outside the vacuum chamber, and the container body is located in the through hole of the vacuum chamber,
A conductive shield film is disposed on at least a portion of the side surface of the container body located in the through hole,
The antenna is a vacuum processing apparatus that is arranged in the container body, and when a high frequency voltage is applied to the antenna, microwaves are emitted from the antenna toward the internal space of the vacuum chamber,
The flange portion has a ground electrode film electrically connected to the conductive shield film on a surface directed to the vacuum chamber,
Between the ground electrode film and the vacuum chamber, a conductive elastic member that exposes a conductive substance on at least a surface is disposed,
A vacuum processing apparatus in which the ground electrode film and the vacuum chamber are electrically connected by the conductive elastic member.
前記導電性弾性部材は、前記貫通孔を取り囲むリング状にされた請求項1記載の真空処理装置。   The vacuum processing apparatus according to claim 1, wherein the conductive elastic member has a ring shape surrounding the through hole. 前記フランジ部と前記真空槽との間には、弾性材料がリング状に成形されたオーリングが、前記貫通孔を取り囲むように配置され、
前記導電性弾性部材は、前記オーリングのリング内側に位置する請求項1又は請求項2のいずれか1項記載の真空処理装置。
Between the flange portion and the vacuum chamber, an O-ring formed of an elastic material in a ring shape is disposed so as to surround the through hole,
The vacuum processing apparatus according to claim 1, wherein the conductive elastic member is located inside a ring of the O-ring.
JP2008017664A 2008-01-29 2008-01-29 Vacuum processing equipment Active JP5121476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017664A JP5121476B2 (en) 2008-01-29 2008-01-29 Vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017664A JP5121476B2 (en) 2008-01-29 2008-01-29 Vacuum processing equipment

Publications (2)

Publication Number Publication Date
JP2009182023A JP2009182023A (en) 2009-08-13
JP5121476B2 true JP5121476B2 (en) 2013-01-16

Family

ID=41035785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017664A Active JP5121476B2 (en) 2008-01-29 2008-01-29 Vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP5121476B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400434B2 (en) * 2009-03-11 2014-01-29 株式会社イー・エム・ディー Plasma processing equipment
JP4621287B2 (en) * 2009-03-11 2011-01-26 株式会社イー・エム・ディー Plasma processing equipment
KR101594229B1 (en) * 2010-09-06 2016-02-15 가부시키가이샤 이엠디 Plasma processing apparatus
EP2615889A4 (en) * 2010-09-10 2015-11-18 Emd Corp Plasma processing apparatus
JP7278175B2 (en) * 2019-08-23 2023-05-19 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS, MANUFACTURING METHOD AND MAINTENANCE METHOD FOR SUBSTRATE PROCESSING APPARATUS
JP2022185486A (en) 2021-06-02 2022-12-14 株式会社ニューフレアテクノロジー Blanking aperture array unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897168B2 (en) * 1990-06-14 1999-05-31 アネルバ株式会社 Microwave introduction window for vacuum vessel
JP3583294B2 (en) * 1998-07-10 2004-11-04 株式会社アルバック Plasma emission device and plasma processing device
JP2006253312A (en) * 2005-03-09 2006-09-21 Tokyo Electron Ltd Plasma processing apparatus
JP2007157518A (en) * 2005-12-06 2007-06-21 Micro Denshi Kk Microwave device

Also Published As

Publication number Publication date
JP2009182023A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5121476B2 (en) Vacuum processing equipment
US6716762B1 (en) Plasma confinement by use of preferred RF return path
US11152192B2 (en) Plasma processing apparatus and method
US10763082B2 (en) Chamber of plasma system, liner for plasma system and method for installing liner to plasma system
KR100566356B1 (en) Plasma apparatus and production method thereof
JP4705967B2 (en) Plasma processing equipment
JP4507113B2 (en) Plasma generator and plasma processing apparatus
CN112687510B (en) Plasma processor and method for preventing arc damage of confinement rings
JP2007109670A (en) Plasma processing device
CN110828272B (en) Chamber liner, lower electrode device and semiconductor processing equipment
JPH08319588A (en) Plasma etching device
JP5307383B2 (en) Vacuum processing equipment
JP2009228032A (en) Plasma processing method and plasma processing apparatus
JP5356390B2 (en) Microwave plasma generator and microwave plasma processing apparatus
US20180019099A1 (en) Plasma processing apparatus
US8007632B2 (en) Semiconductor manufacturing apparatus and manufacturing method of semiconductor device
JP7378317B2 (en) plasma processing equipment
CN113035683B (en) Lower electrode assembly and plasma processor
CN117153653A (en) Plasma processing equipment and lifting ring structure thereof
WO2014184824A1 (en) Plasma treatment device and sealing method therefor
JP2003068724A (en) Apparatus and method for plasma processing
JP2024030855A (en) plasma processing equipment
CN117116731A (en) Plasma processing apparatus, plasma confinement system and method
JPH07207471A (en) Plasma etching device
CN117096006A (en) Plasma confinement system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5121476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250