JP5120966B2 - Extremely small amount of moisture measuring element and moisture-proof sealing performance evaluation method using the measuring element - Google Patents

Extremely small amount of moisture measuring element and moisture-proof sealing performance evaluation method using the measuring element Download PDF

Info

Publication number
JP5120966B2
JP5120966B2 JP2009288691A JP2009288691A JP5120966B2 JP 5120966 B2 JP5120966 B2 JP 5120966B2 JP 2009288691 A JP2009288691 A JP 2009288691A JP 2009288691 A JP2009288691 A JP 2009288691A JP 5120966 B2 JP5120966 B2 JP 5120966B2
Authority
JP
Japan
Prior art keywords
moisture
trace
water
layer
proof sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009288691A
Other languages
Japanese (ja)
Other versions
JP2011128091A (en
Inventor
聰 星野
浩司 末森
徳幸 高田
伸樹 茨木
俊英 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009288691A priority Critical patent/JP5120966B2/en
Publication of JP2011128091A publication Critical patent/JP2011128091A/en
Application granted granted Critical
Publication of JP5120966B2 publication Critical patent/JP5120966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、空間に含まれる極微量水分量を短時間で高感度に計測する計測技術、ならびに高分子材料や無機酸化物などの膜の透過水分を短時間に高精度・高感度に計測し、該膜の防湿封止性能を評価する防湿封止評価技術に関する。   The present invention is a measurement technology that measures the trace amount of water contained in a space with high sensitivity in a short time, and also measures the permeated moisture of a membrane such as a polymer material or inorganic oxide with high accuracy and high sensitivity in a short time. The present invention relates to a moisture-proof sealing evaluation technique for evaluating the moisture-proof sealing performance of the film.

活性層に有機材料の薄膜を用いた電界発光素子(有機EL素子)は、発光の視認性の高さや素子を極薄設計できることなどの理由から、液晶やプラズマ方式に替わるフラットパネルディスプレイへの画素応用が期待されている。わずかな水分に対しても不安定な有機EL素子を用いたディスプレイの実現には、極微量の水分がディスプレイ内部に浸入することを防止する封止材料や封止方法の開発が重要な課題の一つとなっている。防湿性の高い封止法として、金属缶で吸湿材ごと封入する方法や、高分子とシリカ類を多層に積層した水分バリア性多層膜フィルムを適当な接着剤を用いて基板に貼り合わせて封止層を形成する方法などが試みられているが、ディスプレイパネル作製プロセスの一貫性や、光の取り出し効率、パネルの更なる軽量薄型化の観点から、スパッタリングやCVD法などの蒸着堆積法により、水分に対する封止層を薄膜として直接有機EL素子上に形成する封止方法の開発も検討されている。   Electroluminescent devices (organic EL devices) that use organic material thin films for active layers are pixels for flat panel displays that replace liquid crystal and plasma systems because of their high light emission visibility and the ability to design extremely thin devices. Application is expected. In order to realize displays using organic EL elements that are unstable even with a slight amount of moisture, the development of sealing materials and methods that prevent the entry of extremely small amounts of moisture into the display is an important issue. It has become one. As a highly moisture-proof sealing method, a moisture absorbing material is enclosed in a metal can, or a moisture barrier multilayer film in which a polymer and silica are laminated in multiple layers is bonded to a substrate with an appropriate adhesive and sealed. A method of forming a stop layer has been tried, but from the viewpoint of consistency of the display panel manufacturing process, light extraction efficiency, and further lighter and thinner panel, by vapor deposition methods such as sputtering and CVD methods, Development of a sealing method in which a sealing layer against moisture is directly formed on an organic EL element as a thin film has also been studied.

一方、封止された素子内部に侵入する極微量水分の定量的な計測法の開発が立ち遅れている。JIS K7129法、ないしはASTM F1249−90に示された測定方法や、それらに準じたモコン社の水蒸気透過度測定装置等により、前述した水分バリア性のフィルム材料などの厚み方向の水分透過率が計測されており、10−5グラム/平方メートル・日程度の計測感度が達成されているが、これらの方法ではフィルムや膜として自立して存在できる部材でのみしか精度のよい計測ができないため、前記の蒸着等により有機EL素子上に直接形成される封止層の薄膜など、自立した膜として取り扱うことが難しい材料に対しては有効な水分透過率計測方法が存在しないのが現状である。また貼り合わせによる場合でも、直接製膜の封止でも、水分の浸入は封止層の厚さ方向のみならず、封止層と有機EL素子基板との界面からも起こりうることが指摘されている。従って封止材の膜厚方向の水分透過率計測のみでは、素子に対して講じた封止策の実効的な防湿封止性能を十分に評価できていないのが現状である。 On the other hand, the development of a quantitative measurement method for trace moisture entering the sealed element has been delayed. Measure the moisture permeability in the thickness direction of the moisture barrier film material described above by the measuring method shown in JIS K7129 or ASTM F1249-90 or the Mocon water vapor permeability measuring device according to them. The measurement sensitivity of about 10 −5 grams / square meter · day is achieved, but these methods can only perform accurate measurements only with members that can exist independently as films or membranes. At present, there is no effective moisture permeability measurement method for materials that are difficult to handle as a self-supporting film such as a thin film of a sealing layer directly formed on an organic EL element by vapor deposition or the like. In addition, it has been pointed out that moisture penetration can occur not only in the thickness direction of the sealing layer, but also from the interface between the sealing layer and the organic EL element substrate, both in the case of bonding and in direct film formation sealing. Yes. Therefore, at present, the effective moisture-proof sealing performance of the sealing measures taken for the element cannot be sufficiently evaluated only by measuring the moisture permeability in the film thickness direction of the sealing material.

従来の水分検出素子としては、例えば、半導体プロセスに用いるガス流中の水分濃度検出用の電解湿度計であって、中空のガラス管の内面にスパイラル状に形成された第1および第2の薄膜電極と、ガラス管の内面全体に堆積された吸水性膜等からなるもの(特許文献1参照)や、大気中の水分をppmレベルから高湿度のレベルまで検出可能な水分検出器であって、多孔性の陽極、多孔性の陰極、両極間に設けられた電解質層等からなるもの(特許文献2参照)などが知られている。   As a conventional moisture detecting element, for example, an electrolytic hygrometer for detecting a moisture concentration in a gas flow used in a semiconductor process, the first and second thin films formed spirally on the inner surface of a hollow glass tube A moisture detector capable of detecting moisture in the atmosphere from a ppm level to a high humidity level, comprising an electrode and a water-absorbing film deposited on the entire inner surface of the glass tube (see Patent Document 1), A porous anode, a porous cathode, an electrolyte layer provided between both electrodes, and the like (see Patent Document 2) are known.

特表平11−510605号公報Japanese National Patent Publication No. 11-510605 特開2004−77301号公報JP 2004-77301 A

上述したように、単独で自立存在可能な封止層の厚み方向の水分透過率計測では、有機ELのディスプレイの実用化に有効な封止材料や封止方法の評価には不十分である。また、従来の水分検出素子としての特許文献1に記載の電解湿度計は、EL素子の封止層の評価に用い得るようなコンパクトなものではないし、吸水性膜は、ガラス管内面に塗布等により形成された数ミクロン以上の厚い膜であって、短時間での精度の高い水分計測は困難である。特許文献2に記載の水分検出器は、計測限界が数ppmであって、本願発明が対象とするような1ppbレベル台の高感度の水分検出には用いることができない。
従来技術にはこのような問題点が存在することから、封止策を講じた後の有機EL素子等の湿分を嫌う各種嫌湿物体、ないしは類似の封止構造を形成した後に、想定される様々な経路から浸入する極微量水分を捕らえて、短時間に高精度・高感度に定量計測する新たな計測手法の開発が望まれている。
As described above, the moisture permeability measurement in the thickness direction of the sealing layer that can exist independently is insufficient for evaluation of a sealing material and a sealing method effective for practical use of an organic EL display. In addition, the electrolytic hygrometer described in Patent Document 1 as a conventional moisture detection element is not a compact one that can be used for evaluation of a sealing layer of an EL element, and a water-absorbing film is applied to the inner surface of a glass tube. Therefore, it is difficult to measure moisture with high accuracy in a short time. The moisture detector described in Patent Document 2 has a measurement limit of several ppm, and cannot be used for highly sensitive moisture detection on the order of 1 ppb as the subject of the present invention.
Since such problems exist in the prior art, it is assumed after forming various types of moisture-destroying objects that dislike moisture such as organic EL elements after taking a sealing measure or similar sealing structures. The development of a new measurement method that captures trace amounts of moisture entering through various routes and performs quantitative measurement with high accuracy and high sensitivity in a short time is desired.

以上のような従来技術を背景とし、本発明の目的は、有機EL素子をはじめ、極微量な水分の浸入に対する封止が必要な電子素子等の嫌湿物体に対して、その水分封止性能の評価に十分な感度を有し、短時間で精度よく水分を検出することのできる新たな水分の検出原理、及び封止策の防湿性能を定量的に評価可能にする新たな計測方法を提供することにある。   Against the background of the prior art as described above, the object of the present invention is to provide moisture sealing performance to dehumidifying objects such as organic EL devices and electronic devices that need to be sealed against the entry of a very small amount of moisture. Provides a new moisture detection principle that has sufficient sensitivity for the evaluation of water and can detect moisture accurately in a short time, and a new measurement method that enables quantitative evaluation of the moisture-proof performance of sealing measures There is to do.

本発明において、極微量水分の検出は、基板上に形成した一対、ないしは複数対の対向電極上に水分を高効率、かつ不可逆に吸収する適切な吸水性材料を薄膜状に形成した吸水層を設けた構造の素子を用いて行なわれる。本発明者は、吸水層を10〜100ナノメートルの範囲に薄膜化することにより、吸水層が極微量の水分子を効率よく吸収すること、さらにこの状態で、対電極に電圧を印加することにより吸水層内の極微量の水が高効率に電気分解され、その際に流れる電流量から算出される電荷量によって、極微量の水分子の物質量を精度よく定量できること、吸水層を酸化リン(V)の蒸着薄膜とすることにより計測精度がさらに向上すること等を見出した。
すなわち、本発明は、上記のような知見に基づくものであり、以下の事項を特徴としている。
(1)基板上に形成した一対又は複数対の対電極と、前記対電極に接触して形成された吸水性物質の吸水層とを含む極微量水分検出素子であって、前記吸水層は、厚さが10〜100ナノメートルの酸化リン(V)の蒸着薄膜であり、前記対電極間には、前記吸水層に吸収された極微量水分を電気分解する電圧が印加されるように構成されたことを特徴とする極微量水分検出素子。
(2)基板上に形成した一対又は複数対の対電極と、前記対電極に接触して形成された吸水性物質の吸水層とを含む極微量水分検出装置であって、前記吸水層は、厚さが10〜100ナノメートルの酸化リン(V)の蒸着薄膜であり、吸水層の周囲に存在する極微量水分を吸水層で吸収し、それを対電極間に電圧を印加して電気分解することにより、極微量水分を検出、定量するよう構成されたことを特徴とする極微量水分検出装置。
(3)上記(1)に記載の極微量水分検出素子上に、吸水層を覆う防湿性材料からなる封止層を形成し、前記極微量水分検出素子により極微量水分を検出、定量することによって、前記封止層の防湿封止性能を評価する防湿封止性能評価方法。
(4)上記(1)に記載の極微量水分検出素子と、防湿封止が必要な電子素子とを共に封止する防湿封止層を形成し、前記極微量水分検出素子により極微量水分を検出、定量することによって、前記防湿封止層の防湿封止性能を評価する防湿封止性能評価方法。
(5)上記(1)に記載の極微量水分検出素子の基板に前記吸水層を囲むシール剤を塗布し、シール剤で囲まれた空間を水分バリア性材料のシートでキャップして前記吸水層を封止し、前記極微量水分検出素子により極微量水分を検出、定量することによって、前記シール剤の防湿封止性能を評価する防湿封止性能評価方法。
(6)極微量水分検出素子の対電極を複数対とし、対電極の分布に応じた防湿封止性能分布を評価する上記(3)〜(5)のいずれかに記載の防湿封止性能評価方法。
In the present invention, trace moisture is detected by using a water absorption layer in which a suitable water absorbing material that absorbs moisture with high efficiency and irreversibly is formed in a thin film on a pair or a plurality of pairs of counter electrodes formed on a substrate. This is performed using an element having the provided structure. The inventor makes the water absorption layer thin in the range of 10 to 100 nanometers so that the water absorption layer efficiently absorbs a very small amount of water molecules, and in this state, applies a voltage to the counter electrode. The amount of water in the water absorption layer can be electrolyzed with high efficiency and the amount of substance calculated from the amount of current flowing at that time can be accurately quantified. It has been found that the measurement accuracy is further improved by using the deposited thin film (V).
That is, the present invention is based on the above knowledge and is characterized by the following matters.
(1) A trace amount moisture detecting element including a pair or a plurality of pairs of counter electrodes formed on a substrate and a water absorbing layer of a water absorbing material formed in contact with the counter electrode, wherein the water absorbing layer includes: It is a deposited thin film of phosphorus oxide (V) having a thickness of 10 to 100 nanometers, and is configured such that a voltage for electrolyzing a very small amount of water absorbed in the water absorption layer is applied between the counter electrodes. A trace amount moisture detecting element characterized by that.
(2) A trace moisture detector including a pair or a plurality of pairs of counter electrodes formed on a substrate and a water absorbing layer of a water absorbing material formed in contact with the counter electrode, wherein the water absorbing layer includes: It is a deposited thin film of phosphorous oxide (V) with a thickness of 10 to 100 nanometers. It absorbs the trace amount of water present around the water absorption layer with the water absorption layer and applies a voltage between the counter electrodes to perform electrolysis. By doing so, an extremely small amount of moisture detecting device is configured to detect and quantify extremely small amounts of moisture.
(3) Forming a sealing layer made of a moisture-proof material that covers the water-absorbing layer on the trace moisture detector described in (1) above, and detecting and quantifying trace moisture with the trace moisture detector. The moisture-proof sealing performance evaluation method for evaluating the moisture-proof sealing performance of the sealing layer.
(4) A moisture-proof sealing layer that seals both the trace moisture detector described in (1) above and an electronic device that requires moisture-proof sealing is formed, and trace moisture is removed by the trace moisture detector. A moisture-proof sealing performance evaluation method for evaluating the moisture-proof sealing performance of the moisture-proof sealing layer by detecting and quantifying.
(5) Applying a sealing agent surrounding the water-absorbing layer to the substrate of the trace moisture detecting element according to (1) above, and capping the space surrounded by the sealing agent with a sheet of moisture-barrier material. A moisture-proof sealing performance evaluation method for evaluating the moisture-proof sealing performance of the sealant by detecting and quantifying trace amounts of moisture with the trace amount moisture detecting element.
(6) The moisture-proof sealing performance evaluation according to any one of (3) to (5) above, wherein a plurality of pairs of counter electrodes of the trace moisture detection element are used and the moisture-proof sealing performance distribution according to the distribution of the counter electrodes is evaluated. Method.

本発明の極微量水分計測素子は、吸水層の厚さを10〜600ナノメートルの範囲内の薄膜としたため、周囲の極微量水分を短時間で高感度に計測することができる。また、吸水層を酸化リン(V)の蒸着薄膜とすることにより、膜厚が均一で表面が平滑なものとなり、さらに高感度でばらつきの少ない高精度に計測することができる。
この対電極と薄膜吸水層からなる素子を、防湿封止策が必要な電子素子に用いた基板と同種の基板上、あるいは実際の電子素子上に形成し、それに対して電子素子と同様の封止策を行なうことによって、封止層が自立した膜として存在できるか如何にかかわらず、また封止層の厚さ方向のみならず封止層−基板界面から浸入する水分に関しても計測することができ、講じた封止策の実効的な封止性能が評価可能となる。
また、水分を嫌う各種の嫌湿性物体をその周囲のシール剤と水分バリア性シートのキャップで封止する場合についても、その封止法の実効的な封止性能が評価可能となる。
Since the thickness of the water absorption layer is a thin film in the range of 10 to 600 nanometers, the trace moisture measuring element of the present invention can measure the surrounding trace moisture with high sensitivity in a short time. Further, by forming the water-absorbing layer as a deposition thin film of phosphorus oxide (V), the film thickness is uniform and the surface is smooth, and it is possible to measure with high sensitivity and high accuracy with little variation.
An element composed of the counter electrode and the thin film water-absorbing layer is formed on the same type of substrate used for an electronic element requiring a moisture-proof sealing measure or on an actual electronic element, and on the other hand, the same sealing as the electronic element is formed. Regardless of whether or not the sealing layer can exist as a self-supporting film by performing the countermeasure, it is possible to measure not only the thickness direction of the sealing layer but also the moisture entering from the sealing layer-substrate interface. It is possible to evaluate the effective sealing performance of the sealing measures taken.
In addition, in the case where various types of moisture-destroying objects that dislike moisture are sealed with a surrounding sealing agent and a cap of a moisture barrier sheet, the effective sealing performance of the sealing method can be evaluated.

極微量の水分を吸水層に吸収させ、電気分解の電気量により計測定量する本発明の極微量水分計測素子の概略を示す図である。It is a figure which shows the outline of the trace amount water | moisture content measuring element of this invention which makes a water absorption layer absorb a trace amount water | moisture content, and carries out measurement and quantification with the electric quantity of electrolysis. 図1で概略を示した極微量水分計測素子を用いて有機EL素子などの電子素子の封止層の防湿封止性能評価を行なう方法の概略を示す図である。It is a figure which shows the outline of the method of performing the moisture-proof sealing performance evaluation of the sealing layer of electronic devices, such as an organic EL element, using the trace amount moisture measuring element outlined in FIG. 図1で概略を示した極微量水分計測素子を有機EL素子上に積層し封止層の防湿封止性能評価を行なう方法の概略を示す図である。It is a figure which shows the outline of the method of laminating | stacking the trace amount moisture measuring element schematically shown in FIG. 1 on an organic EL element, and performing the moisture-proof sealing performance evaluation of a sealing layer. 図1で概略を示した極微量水分計測素子を用いて、シール剤とガラス板のキャップとによる封止法の防湿封止性能評価を行なう方法の概略を示す図である。It is a figure which shows the outline of the method of performing the moisture-proof sealing performance evaluation of the sealing method by the sealing agent and the cap of a glass plate using the trace amount moisture measuring element outlined in FIG. 実施例1で作製した極微量水分計測素子1を密閉容器中に設置し、電極に5ボルト電圧を印加した状態で容器内部の圧力を1×10−4パスカル未満から、段階的に上昇させたときの極微量水分計測素子1の出力電流値の変化を示す図である。The trace amount moisture measuring element 1 produced in Example 1 was installed in a sealed container, and the pressure inside the container was increased stepwise from less than 1 × 10 −4 Pascals with a 5 volt voltage applied to the electrodes. It is a figure which shows the change of the output electric current value of the trace amount moisture measuring element 1 at the time. 図4で示した出力電流値の変化の経過時間5分から35分までの部分を拡大表示した図である。FIG. 5 is an enlarged view of a portion of an elapsed time of change of the output current value shown in FIG. 4 from 5 minutes to 35 minutes. 実施例1で作製した極微量水分計測素子1を密閉容器中に設置し、1×10−4パスカル以下の圧力下で電極に10ボルトの電圧を印加し、吸水層があらかじめ吸収した水分を十分に電解し脱水を行った後、電圧印加を停止し、直後に容器内圧力を2×10−3パスカルまで急増させ、一定時間素子を暴露し、再び容器内圧力を1×10−4パスカル以下まで急減したのち、電極に10ボルトの電圧を印加し計測した出力電流量の時間減衰の暴露時間依存性を示した図である。The trace amount moisture measuring element 1 produced in Example 1 is placed in a sealed container, and a voltage of 10 volts is applied to the electrode under a pressure of 1 × 10 −4 Pascal or less, so that the moisture absorbed in advance by the water absorption layer is sufficiently obtained. After dehydrating by electrolysis, the voltage application was stopped, and immediately after that, the internal pressure of the container was rapidly increased to 2 × 10 −3 Pascal, the device was exposed for a certain time, and the internal pressure of the container was again reduced to 1 × 10 −4 Pascal or less. It is the figure which showed the exposure time dependence of the time attenuation | damping of the output electric current amount which applied the voltage of 10 volts to the electrode after having decreased rapidly and was measured. 図7で示した極微量水分計測素子1の出力電流を時間で積分し、水の電解に要した電荷量とした場合の暴露時間依存性を示した図である。It is the figure which showed the exposure time dependence at the time of integrating the output current of the trace amount moisture measuring element 1 shown in FIG. 参照例1で作製した水分計測素子1を密閉容器中に設置し、電極に5ボルト電圧を印加した状態で容器内部の圧力を段階的に上昇させたときの水分計測素子1の出力電流値の変化を示す図である。The output current value of the moisture measuring element 1 when the moisture measuring element 1 produced in Reference Example 1 is installed in a sealed container and the pressure inside the container is increased stepwise with a voltage of 5 volts applied to the electrodes. It is a figure which shows a change.

以下本発明の実施形態を、図面を参照しつつ詳細に説明する。図1は、本発明の極微量水分検出素子の基本形態例であり、基板(110)、基板に支持された対電極(120)、および、対電極に接触するように形成された吸水層(130)を含む。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a basic form of a trace amount moisture detecting element of the present invention. A substrate (110), a counter electrode (120) supported by the substrate, and a water absorption layer (in contact with the counter electrode) 130).

基板(110)は、対電極(120)や吸水層(130)を支持する面が電気的絶縁性であれば、どのような材料から形成してもよく、そのような例としては、ガラス板、プラスチックフィルム、セラミックスシート、半導体ウエハ等が挙げられる。また、極微量水分検出素子専用の基板を用いずに、実際に封止策を施すEL素子等の素子用基板を極微量水分検出素子用の基板として用いることもできる。その場合には、封止性能評価の精度を向上させることができる。   The substrate (110) may be formed of any material as long as the surface supporting the counter electrode (120) and the water absorption layer (130) is electrically insulative. , Plastic film, ceramic sheet, semiconductor wafer and the like. In addition, an element substrate such as an EL element that is actually subjected to a sealing measure can be used as a substrate for an extremely small amount of moisture detecting element without using a substrate dedicated to the extremely small amount of moisture detecting element. In that case, the accuracy of the sealing performance evaluation can be improved.

対電極(120)は、基板上に形成された互いに対向する電極であり、電極リード等を介して、対電極間に電圧が印加し得るように構成されている。対電極を構成する材料としては、低抵抗で、水の電気分解に対して溶出などの化学的な変化が起こりにくい安定性を有するものであれば何でもよく、例えば、金、白金、パラジウム等の貴金属、ガラス状炭素薄膜などが挙げられる。対電極は、正極、負極の一対でもよいが、正極、負極を複数対とすることにより、水の電気分解の効率を上昇させることができる。正極、負極を複数対とする場合、例えば、電極を櫛形として対向させ、それぞれの櫛形の櫛歯が交互となるように配置し、それら櫛歯からなる複数対の電極について、電圧の印加と電気量の計測をまとめて行うこともできる。また、各対電極を互いに独立して配置し、各対電極について、電圧の印加と電気量の計測との一方又は両方を独立して行うようにしてもよく、その場合には、大面積の計測領域において、対電極の分布に応じた水分分布や防湿封止性能分布を計測することが可能となる。各電極の平面形状は、直線状だけでなく、渦巻状、(同心)円弧状等の曲線状など、どのようなものでもよい。対電極(120)の厚さと幅は十分な導電性が担保できる程度であればよく、厚さについては、通常10ナノメートル〜1ミクロン程度で、直上に積層する吸水性材料薄膜の平坦性に影響を及ぼさないように配慮する場合は、10〜100ナノメートル程度、より好ましくは、30〜70ナノメートル程度とするのがよく、幅については、コンパクトとする観点から、5〜200ミクロン程度、好ましくは20〜100ミクロン程度とするのがよい。対電極の長さは、EL素子等の対象物に応じて適宜に設定できるが、コンパクトとする観点から、50ミクロン〜10ミリメートル程度、好ましくは200ミクロン〜5ミリメートル程度とするのがよい。正極、負極間の間隔は印加する電圧によって任意に設定できるが、計測の利便性から、低印加電圧でも電極間に大きな電界がかかるようにするため10〜1000ミクロン程度、より好ましくは、20〜500ミクロン程度の範囲で設定されるのがよい。対電極は、真空蒸着等の公知の方法で形成することができる。   The counter electrode (120) is an electrode formed on the substrate and facing each other, and is configured such that a voltage can be applied between the counter electrodes via an electrode lead or the like. The material constituting the counter electrode is not particularly limited as long as it has low resistance and has stability that hardly causes chemical changes such as elution with respect to electrolysis of water. For example, gold, platinum, palladium, etc. Examples include noble metals and glassy carbon thin films. The counter electrode may be a pair of a positive electrode and a negative electrode, but the efficiency of water electrolysis can be increased by forming a plurality of pairs of the positive electrode and the negative electrode. When a plurality of pairs of positive and negative electrodes are used, for example, the electrodes are opposed to each other in a comb shape, and the comb-shaped comb teeth are arranged alternately. It is also possible to measure the quantity collectively. Further, each counter electrode may be arranged independently of each other, and for each counter electrode, one or both of voltage application and electric quantity measurement may be performed independently. In the measurement region, it is possible to measure the moisture distribution and the moisture-proof sealing performance distribution according to the counter electrode distribution. The planar shape of each electrode is not limited to a linear shape, but may be any shape such as a spiral shape or a curved shape such as a (concentric) arc shape. The thickness and width of the counter electrode (120) need only be sufficient to ensure sufficient conductivity. The thickness is usually about 10 nanometers to 1 micron, and the flatness of the water-absorbing material thin film to be laminated immediately above is sufficient. When considering not to have an influence, about 10 to 100 nanometers, more preferably about 30 to 70 nanometers, and the width is about 5 to 200 microns from the viewpoint of compactness. Preferably, the thickness is about 20 to 100 microns. The length of the counter electrode can be appropriately set according to the object such as an EL element, but from the viewpoint of compactness, the length is preferably about 50 to 10 millimeters, preferably about 200 to 5 millimeters. The interval between the positive electrode and the negative electrode can be arbitrarily set depending on the voltage to be applied, but for convenience of measurement, in order to apply a large electric field between the electrodes even at a low applied voltage, about 10 to 1000 microns, more preferably 20 to 20 microns. It is good to set in the range of about 500 microns. The counter electrode can be formed by a known method such as vacuum deposition.

吸水層(130)は、周囲に存在する水分を吸収する吸水性物質の薄膜からなり、対電極の正・負極の両方に接触するように形成される。対電極を複数対とする場合は、全ての対電極に接触するように1つの大面積の吸水層を形成してもよいが、防湿封止性能分布を計測する場合は、各対電極に別々の吸水層を形成することが好ましい。吸水性物質としては、水分子と効率よく反応し、かつ圧力や温度の変化によって、吸収した水分子をほとんど再放出しない不可逆吸収する材料を用いるのが好ましい。また水分子が吸収されていない場合には高抵抗の絶縁体として振舞うものが、計測時の水の電解電流に対する暗電流を低減させ、定量精度を高めるうえで都合がよい。こうした性質を満たす吸水性物質の一例として酸化リン(V)が挙げられる。なお、吸水性物質に不可逆的に吸収された水分は、吸水性物質に接触する対電極間に所定の電圧を印加することにより電気分解し、その際の電気量に応じて放出される。吸水層(130)の厚さは、上記対電極との間で間隙が生じない厚さであればいくらでもかまわないが、吸収した水分子が電極に到達するまでの時間をできるだけ短くすることで計測の時間応答性を高めることができるという点、および封止性能評価をする際に、本発明の極微量水分を検出する素子構造が封止層の平滑形成に影響を及ぼさないという点を鑑みると、可能な限り薄くしたほうが好都合であるが、10ナノメートル未満では、均一で表面の平滑な吸水層を形成するのが困難なこともあり、上記電極の厚さに応じて10〜600ナノメートル、好ましくは20〜100ナノメートルの範囲で調整されるのがよい。吸水層の薄膜は、加熱真空蒸着や適当な溶剤に吸水性材料を溶解した溶液を塗布するなどの公知の方法で形成することができるが、均一で表面が平滑な薄膜とする観点からは、真空蒸着が好ましい。
本発明の極微量水分検出素子は、EL素子の封止層の評価等に用いる場合には、コンパクトなものとすることもでき、その場合、個々の検出素子を例えば、10mm2以下や3mm2以下とすることも可能であるし、又は、複数の対電極を含む検出素子の各対電極の領域を例えば、10mm2以下や3mm2以下とすることも可能である。
The water-absorbing layer (130) is formed of a thin film of a water-absorbing material that absorbs moisture present in the surroundings, and is formed so as to be in contact with both the positive and negative electrodes of the counter electrode. When multiple pairs of counter electrodes are used, a single large-area water-absorbing layer may be formed so as to be in contact with all the counter electrodes. However, when measuring the moisture-proof sealing performance distribution, each counter electrode is separately provided. It is preferable to form a water absorbing layer. As the water-absorbing substance, it is preferable to use a material that reacts efficiently with water molecules and that irreversibly absorbs water molecules that hardly re-release due to changes in pressure or temperature. Moreover, when water molecules are not absorbed, it behaves as a high-resistance insulator, which is convenient for reducing the dark current with respect to the electrolysis current of water at the time of measurement and improving the quantitative accuracy. An example of a water-absorbing substance that satisfies these properties is phosphorus oxide (V). The moisture irreversibly absorbed by the water-absorbing substance is electrolyzed by applying a predetermined voltage between the counter electrodes that are in contact with the water-absorbing substance, and is released according to the amount of electricity at that time. The thickness of the water-absorbing layer (130) may be any thickness as long as no gap is generated between the counter electrode and the water-absorbing layer (130), but it is measured by shortening the time until the absorbed water molecules reach the electrode as much as possible. In view of the point that the time responsiveness of the device can be improved and the element structure for detecting the trace amount of moisture of the present invention does not affect the smooth formation of the sealing layer when evaluating the sealing performance. Although it is advantageous to make it as thin as possible, if it is less than 10 nanometers, it may be difficult to form a water-absorbing layer having a uniform and smooth surface. Depending on the thickness of the electrode, it is 10 to 600 nanometers. In this case, it is preferably adjusted in the range of 20 to 100 nanometers. The thin film of the water absorbing layer can be formed by a known method such as heating vacuum deposition or applying a solution in which a water absorbing material is dissolved in an appropriate solvent, but from the viewpoint of forming a thin film with a uniform and smooth surface, Vacuum deposition is preferred.
The trace moisture detecting element of the present invention can be made compact when used for evaluation of a sealing layer of an EL element. In that case, each detecting element is, for example, 10 mm 2 or less or 3 mm 2. The area of each counter electrode of the detection element including a plurality of counter electrodes can be, for example, 10 mm 2 or less or 3 mm 2 or less.

本発明者は、酸化リン(V)が昇華性を有することに着目し、蒸着によって酸化リン(V)を吸水層として基板上に製膜することを試みた。その結果、減圧下にて酸化リン(V)を加熱昇華させ、基板上に蒸着堆積することにより、均一で平滑性に優れ、前記好適膜厚の範囲に制御された酸化リン(V)の薄膜が製膜されることを見出した。この薄膜を吸水層とする前記と類似の素子に対して、対電極間に数ボルトから10ボルト程度の一定電圧を印加した状態で、ppbレベル以下の極低水分環境下に置き、そこからppbレベル、ppmレベルへと水分濃度を上昇させた場合に、水分の濃度上昇に応じた電極間電流の上昇を確認し、これが、吸水層に吸収された水分子の電気分解によることを突き止めた。同様にppbレベル以下の極低水分環境下から、ppbレベル以上の一定濃度の水分環境に一定時間暴露することによって極微量水分を吸水層に吸収させた後、再びppb以下の環境に戻して一定電圧で水の電気分解を行なった結果、電流量は時間とともに減少し、その電気量は暴露時の水分濃度、および暴露時間に応じた値となることを確認した。   The present inventors paid attention to the fact that phosphorus oxide (V) has sublimability and tried to form a film on the substrate by vapor deposition of phosphorus oxide (V) as a water absorption layer. As a result, phosphorus (V) oxide is heated and sublimated under reduced pressure, and deposited on the substrate by vapor deposition, so that the phosphorous (V) thin film is uniform, excellent in smoothness, and controlled within the preferred film thickness range. Was found to be formed into a film. An element similar to the above having this thin film as a water-absorbing layer is placed in an extremely low moisture environment of a ppb level or lower with a constant voltage of about several volts to 10 volts applied between the counter electrodes, and then ppb When the water concentration was increased to the level and ppm level, an increase in the interelectrode current corresponding to the increase in the water concentration was confirmed, and it was found that this was due to electrolysis of water molecules absorbed in the water absorption layer. Similarly, from a very low moisture environment below the ppb level, a trace amount of water is absorbed by the water absorption layer by exposing it to a moisture environment of a certain concentration above the ppb level for a certain period of time, and then returned to the environment below the ppb again to be constant. As a result of electrolysis of water with voltage, it was confirmed that the amount of current decreased with time, and that the amount of electricity became a value according to the moisture concentration at the time of exposure and the exposure time.

上記のような特性を示す本発明の極微水分の検出方法を用いることにより、有機EL素子をはじめとし、水分に対する封止が必要な電子素子等の封止策の封止性能評価が可能となる。
図2には、本発明の極微量水分計測素子(200)上に、水分の透過を妨げる水分バリア性膜ないし防湿性膜として封止層(210)を形成した場合の素子構成を示す。水分バリア性膜ないし防湿性膜の形成方法としては、(a)水分バリア性膜ないし防湿性膜の接着層を介した貼着、(b)水分バリア性樹脂ないし防湿性樹脂の皮膜形成、(c)無機酸化物等の水分バリア性材料ないし防湿性材料の物理蒸着等が挙げられる。また、貼着される水分バリア性膜ないし防湿性膜としては、例えば、高分子とシリカ類の多層体等が挙げられる。そのような封止層による封止策を施した極微量水分計測素子は、一定時間恒温恒湿環境に置いた後、対電極間に電圧を印加して吸水層が吸収した水を電気分解し、その電気量から一定時間にどれだけの量の水分子が封止層を介して浸入したかが判定される。
By using the micro moisture detection method of the present invention that exhibits the above characteristics, it becomes possible to evaluate the sealing performance of sealing measures such as organic EL devices and electronic devices that need to be sealed against moisture. .
FIG. 2 shows an element configuration in the case where a sealing layer (210) is formed as a moisture barrier film or moisture-proof film that prevents moisture permeation on the trace moisture measuring element (200) of the present invention. As a method for forming a moisture barrier film or moisture proof film, (a) adhesion through an adhesive layer of the moisture barrier film or moisture proof film, (b) film formation of a moisture barrier resin or moisture proof resin, ( c) Physical vapor deposition of moisture barrier materials or moisture proof materials such as inorganic oxides. Examples of the moisture barrier film or moisture proof film to be adhered include a multilayer body of a polymer and silica. The trace moisture measuring element that has been sealed with such a sealing layer is placed in a constant temperature and humidity environment for a certain period of time, and then electrolyzes the water absorbed by the water absorption layer by applying a voltage between the counter electrodes. From the amount of electricity, it is determined how much water molecules have entered through the sealing layer in a certain time.

図3は有機EL素子(300)上に本発明の極微量水分計測素子を積層して封止性能評価を行う場合の素子構成例である。下部電極(310)、有機EL活性層(320)、上部電極(330)からなる有機EL素子(300)の上部電極(330)上に、電気的絶縁性に優れた薄膜絶縁層(340)を積層し、それを基板とした極微量水分計測素子(200)を形成する。封止性能評価は、図2で例示した場合と同様の方法で封止層(210)を形成した後、封止された極微量水分計測素子を用いることで、前述した方法と同様に行うことができる。   FIG. 3 is an element configuration example in the case where the trace moisture measuring element of the present invention is laminated on the organic EL element (300) and the sealing performance is evaluated. On the upper electrode (330) of the organic EL element (300) composed of the lower electrode (310), the organic EL active layer (320), and the upper electrode (330), a thin film insulating layer (340) excellent in electrical insulation is provided. A very small amount of moisture measuring element (200) is formed by stacking the substrates. The sealing performance evaluation is performed in the same manner as described above by using the sealed trace amount moisture measuring element after forming the sealing layer (210) by the same method as illustrated in FIG. Can do.

また本発明の極微量水分計測素子を用いることによって、液晶ディスプレイなどで一般に行われるような、基板外周部にエポキシ樹脂等のシール剤を塗布し、シール剤で囲まれた空間を水分バリア性材料のシートでキャップする封止法の封止性能評価も可能である。水分バリア性材料のシートとしては、ガラス板、金属板、セラミックシート、高分子とシリカ類の多層体等が挙げられる。
図4は、本発明の極微量水分計測素子(200)の基板上に、吸水層を囲むシール剤を塗布し、シール剤で囲まれた空間をガラス板(420)でキャップをして封止した場合の素子構成例で、これにより、封止剤自身や封止剤と基板、ないしはキャップガラス界面を通して浸入する水分の評価が可能となる。
Further, by using the trace moisture measuring element of the present invention, a sealing agent such as an epoxy resin is applied to the outer peripheral portion of the substrate, which is generally performed in a liquid crystal display, and the space surrounded by the sealing agent is a moisture barrier material. It is also possible to evaluate the sealing performance of the sealing method of capping with the sheet. Examples of the moisture barrier material sheet include a glass plate, a metal plate, a ceramic sheet, and a multilayer body of polymer and silica.
FIG. 4 shows a case where a sealing agent surrounding a water absorption layer is applied on the substrate of the trace moisture measuring element (200) of the present invention, and the space surrounded by the sealing agent is sealed with a glass plate (420). In this case, the sealant itself, the sealant and the substrate, or the moisture entering the cap glass interface can be evaluated.

上述の極微量水分の計測、および水分に対する封止性能の評価方法に関して、下記の実施例によりさらに具体的に説明するが、本発明はこれら実施例に何ら限定されない。   The above-described measurement of trace moisture and the evaluation method of sealing performance against moisture will be described more specifically by the following examples, but the present invention is not limited to these examples.

(実施例1)
石英基板上にシャドウマスクを介して厚さ50ナノメートルの金を真空蒸着し、40ミクロン間隔で、線幅100ミクロン、長さ2ミリメートル5対の櫛形対向電極を形成した。この電極付基板を極低水分濃度窒素雰囲気のグローブボックス中に設置した真空蒸着装置に入れ、約1パスカルの圧力下で、厚さ約100ナノメートルの酸化リン(V)の薄膜を電極上に加熱蒸着により形成し、極微量水分計測素子1を作製した。形成された酸化リン(V)の薄膜は、厚みがほぼ均一で表面も平滑なものであった。
(Example 1)
Gold having a thickness of 50 nanometers was vacuum-deposited on a quartz substrate through a shadow mask to form 5 pairs of comb-shaped counter electrodes having a line width of 100 microns and a length of 2 millimeters at intervals of 40 microns. This electrode-attached substrate is put in a vacuum deposition apparatus installed in a glove box with a very low moisture concentration nitrogen atmosphere, and a thin film of phosphorous oxide (V) having a thickness of about 100 nanometers is placed on the electrode under a pressure of about 1 Pascal. An extremely small amount of moisture measuring element 1 was formed by heating vapor deposition. The formed thin film of phosphorus oxide (V) had a substantially uniform thickness and a smooth surface.

(実施例2)
実施例1で作製した極微量水分計測素子1を極低水分濃度窒素雰囲気のグローブボックス内で排気装置および、電圧印加−電流計測器を外部から接続可能な密閉容器内に封入したのち、グローブボックス外に搬出した。この状態から密閉容器内の圧力を1×10−4パスカル未満の一定値になるまで排気装置により減圧したのち、櫛形対向電極に5ボルトの一定電圧を印加した。真空ポンプの排気能力を調整し、容器内部の圧力を段階的に上昇させたときの極微量水分計測素子1の電流値の変化を図5に示す。密閉容器内の微小圧力がすべて残留する水分による蒸気圧によると仮定したときの密閉容器空間内の水分濃度を図5の圧力軸と並列して記載した。また図6は経過時間が5分から35分までの部分を拡大して示したものである。図5、および図6から明らかなように、電圧を対電極間に印加すると、極微量水分計測素子1は10−4パスカルから10パスカルの容器内圧の上昇に対応して、電極間に流れる電流値が上昇した。この容器内部に発生する微小圧力の要因は一般に容器とポンプとの接続部やサンプルの出し入れ口などから漏洩したり、あるいは容器内壁に吸着した水の蒸気圧と考えられることから、容器内圧力から内部の水分濃度を見積もることが出来る。図5および図6の圧力軸と並列して記載した水分濃度との相関から、極微量水分計測素子1の吸水層の吸水量が1ppbレベル台の水分濃度上昇に対しても変化し、電圧が印加された電極で電気分解される水分子の量として、電界電流に反映されることを確認した。
(Example 2)
After enclosing the trace moisture measuring element 1 produced in Example 1 in a glove box with a very low moisture concentration nitrogen atmosphere in a sealed container that can be connected from the outside with a voltage application-current measuring instrument, the glove box Carried out. From this state, the pressure in the sealed container was reduced by the exhaust device until the pressure in the sealed container became a constant value of less than 1 × 10 −4 Pascal, and then a constant voltage of 5 volts was applied to the comb-shaped counter electrode. FIG. 5 shows a change in the current value of the trace moisture measuring element 1 when the exhaust capacity of the vacuum pump is adjusted and the pressure inside the container is increased stepwise. The moisture concentration in the sealed container space when it is assumed that all the minute pressures in the sealed container are due to the vapor pressure due to residual moisture is shown in parallel with the pressure axis of FIG. FIG. 6 is an enlarged view of the portion of elapsed time from 5 minutes to 35 minutes. As is apparent from FIGS. 5 and 6, when a voltage is applied between the counter electrodes, the trace moisture measuring element 1 causes a current flowing between the electrodes in response to an increase in the internal pressure of the container from 10 −4 Pascals to 10 Pascals. The value rose. The cause of the micro pressure generated inside the container is generally considered to be the vapor pressure of water leaking from the connection between the container and the pump and the sample inlet / outlet, or adsorbed on the inner wall of the container. The internal moisture concentration can be estimated. From the correlation with the moisture concentration described in parallel with the pressure axis in FIG. 5 and FIG. 6, the water absorption amount of the water absorption layer of the trace amount moisture measuring element 1 also changes as the moisture concentration rises in the 1 ppb level, and the voltage is It was confirmed that the amount of water molecules electrolyzed by the applied electrode was reflected in the electric field current.

(実施例3)
実施例1で作製した極微量水分計測素子1を実施例2の場合と同様に密閉容器内に封入し、容器内部を1×10−4パスカル以下になるまで排気したのち、その状態で電流値がほぼ一定値に集束するまで、電極に10ボルトの電圧を長時間印加し続け、吸水層があらかじめ吸収した水分を十分に電解し脱水を行った。電圧印加を停止し、直後に容器内圧力を2×10−3パスカルまで急増させ、1分間同圧力下に素子を暴露した。再び容器内圧力を1×10−4パスカル以下まで急減したのち、電極に10ボルトの電圧を印加し電流量の時間減衰を測定した。同様な操作と計測を2×10−3パスカルの圧力下に暴露する時間を2分、5分、10分、20分に変えてそれぞれ行った。図7に電流値の時間減衰の暴露時間依存性を、2×10−3パスカル下で暴露をしなかった場合とともに示す。電流量は暴露時間の増加とともに上昇しており、吸水層に吸収された水分が暴露時間に応じて増えていることを確認した。全く暴露を行なわなかった場合にも電界電流の減衰が観測されるが、これは1×10−4パスカル以下の極低水分環境下においても吸水層への吸水が起こるためである。図8には電界電流を時間積分して得られる電荷量と各計測電解時間との関係を示す。同時間で比較した電荷量が暴露時間の長さに応じて大きくなっていることから、極微小水分計測素子1の素子構成により吸水量の変化を電解に要する電荷量として計測できることを確認した。
(Example 3)
The trace moisture measuring element 1 produced in Example 1 was sealed in a sealed container in the same manner as in Example 2, the inside of the container was evacuated to 1 × 10 −4 Pascal or less, and the current value in that state Until the voltage converged to a substantially constant value, a voltage of 10 volts was continuously applied to the electrode for a long time, and the water absorbed by the water absorption layer was sufficiently electrolyzed for dehydration. Immediately after the voltage application was stopped, the internal pressure of the container was rapidly increased to 2 × 10 −3 Pascal, and the device was exposed under the same pressure for 1 minute. After reducing the internal pressure of the vessel rapidly to 1 × 10 −4 Pascal or less again, a voltage of 10 V was applied to the electrode and the time decay of the amount of current was measured. The same operation and measurement were performed by changing the exposure time under 2 × 10 −3 Pascal pressure to 2 minutes, 5 minutes, 10 minutes, and 20 minutes, respectively. FIG. 7 shows the exposure time dependence of the time decay of the current value together with the case of no exposure under 2 × 10 −3 Pascal. The amount of current increased with increasing exposure time, and it was confirmed that the moisture absorbed in the water-absorbing layer increased with the exposure time. Even when no exposure is performed, attenuation of the electric field current is observed because water absorption into the water absorption layer occurs even in an extremely low moisture environment of 1 × 10 −4 Pascal or less. FIG. 8 shows the relationship between the charge amount obtained by integrating the electric field current over time and each measurement electrolysis time. Since the amount of charge compared at the same time increased according to the length of the exposure time, it was confirmed that the change in the amount of water absorption can be measured as the amount of charge required for electrolysis by the element configuration of the extremely minute moisture measuring element 1.

(参照例1)
実施例1と同様に石英基板上にシャドウマスクを介して厚さ50ナノメートルの金を真空蒸着し、40ミクロン間隔で、線幅100ミクロン、長さ2ミリメートル5対の櫛形対向電極を形成した。この電極付基板を極低水分濃度窒素雰囲気のグローブボックス中に設置した容器に入れ、酸化リン(V)を加熱昇華し、電極上に酸化リン(V)の薄膜を形成し水分検出素子1を作製した。形成された酸化リン(V)の薄膜は、針状結晶が集積した性状を呈し、その表面も針状突起が林立する不均一なもので、正確な厚みは測定不能であった。
(Reference Example 1)
In the same manner as in Example 1, gold having a thickness of 50 nanometers was vacuum-deposited on a quartz substrate through a shadow mask to form 5 pairs of comb-shaped counter electrodes having a line width of 100 microns and a length of 2 millimeters at intervals of 40 microns. . The substrate with the electrode is put in a container installed in a glove box having a very low moisture concentration nitrogen atmosphere, phosphorus oxide (V) is heated and sublimated, a thin film of phosphorus oxide (V) is formed on the electrode, and the moisture detecting element 1 is formed. Produced. The formed thin film of phosphorous oxide (V) exhibited a property in which acicular crystals were accumulated, and the surface was also uneven with acicular protrusions standing up, and an accurate thickness could not be measured.

(参照例2)
参照例1で作製した水分計測素子1を実施例2の場合と同様に極低水分濃度窒素雰囲気のグローブボックス内で排気装置および、電圧印加−電流計測器を外部から接続可能な密閉容器内に封入したのち、グローブボックス外に搬出した。この状態から密閉容器内の圧力を1×10−4パスカル未満の一定値になるまで排気装置により減圧したのち、櫛形対向電極に5ボルトの一定電圧を印加した。真空ポンプの排気能力を調整し、容器内部の圧力を段階的に上昇させたときの水分計測素子1の電流値の変化を図9に示す。図5と同様に密閉容器内の微小圧力がすべて残留する水分による蒸気圧によると仮定したときの密閉容器空間内の水分濃度を図9の圧力軸と並列して記載した。実施例1で作製した、均一で平滑性の高い酸化リン(V)の薄膜を吸水層とする極微量水分検出素子1と比較すると、水分濃度換算でppbレベルに相当する容器内圧の変化では出力電流値の変化は観測されず、ppmレベル以上の水分濃度の変化に対して、10×−13アンペア台の電流値の増加を示すに留まった。この結果から、実施例1のように、酸化リン(V)を減圧下で蒸着し、均一かつ平滑性の高い薄膜として吸水層を形成した場合に、極微量水分に対する感度が向上することを確認した。
(Reference Example 2)
In the same manner as in Example 2, the moisture measuring element 1 produced in Reference Example 1 is placed in a glove box having an extremely low moisture concentration nitrogen atmosphere in a sealed container to which a voltage application-current measuring instrument can be connected from the outside. After sealing, it was taken out of the glove box. From this state, the pressure in the sealed container was reduced by the exhaust device until the pressure in the sealed container became a constant value of less than 1 × 10 −4 Pascal, and then a constant voltage of 5 volts was applied to the comb-shaped counter electrode. FIG. 9 shows changes in the current value of the moisture measuring element 1 when the exhaust capacity of the vacuum pump is adjusted and the pressure inside the container is increased stepwise. Similarly to FIG. 5, the moisture concentration in the sealed container space when the minute pressure in the sealed container is assumed to be due to the vapor pressure due to the remaining water is shown in parallel with the pressure axis of FIG. Compared with the extremely small amount of moisture detection element 1 produced in Example 1 using a uniform and highly smooth thin film of phosphorus oxide (V) as the water absorption layer, the change in the container internal pressure corresponding to the ppb level in terms of moisture concentration is an output. No change in the current value was observed, and only an increase in the current value on the order of 10 × −13 amperes was shown with respect to a change in moisture concentration above the ppm level. From this result, it was confirmed that the sensitivity to trace moisture was improved when phosphorus oxide (V) was vapor-deposited under reduced pressure and a water-absorbing layer was formed as a uniform and smooth film as in Example 1. did.

なお、本発明は、以上の実施例に限定されることなく、本発明の技術範囲にしたがって種々の設計変更をすることができる。   The present invention is not limited to the above embodiments, and various design changes can be made according to the technical scope of the present invention.

本発明の極微量水分検出素子は、EL素子等の湿度を嫌う嫌湿性物体の置かれた環境等における極微量水分の計測に利用することができる。また、本発明の極微量水分検出素子は、EL素子等の嫌湿性物体を周囲の湿分から守る封止層、シール層等の防湿封止性能の計測、評価に用いることができる。   The trace amount moisture detection element of the present invention can be used for measurement of trace amount moisture in an environment or the like where an anaerobic object that dislikes humidity such as an EL element is placed. In addition, the trace moisture detecting element of the present invention can be used for measurement and evaluation of moisture-proof sealing performance of a sealing layer, a sealing layer, and the like that protects an anaerobic object such as an EL element from surrounding moisture.

110 基板
120 対電極
130 吸水層
200 極微量水分計測素子
210 封止層
300 有機EL素子
310 下部電極
320 有機EL活性層
330 上部電極
340 薄膜絶縁層
410 シール剤
420 ガラス板
DESCRIPTION OF SYMBOLS 110 Substrate 120 Counter electrode 130 Water absorption layer 200 Trace amount moisture measuring element 210 Sealing layer 300 Organic EL element 310 Lower electrode 320 Organic EL active layer 330 Upper electrode 340 Thin film insulating layer 410 Sealant 420 Glass plate

Claims (6)

基板上に形成した一対又は複数対の対電極と、前記対電極に接触して形成された吸水性物質の吸水層とを含む極微量水分検出素子であって、前記吸水層は、厚さが10〜100ナノメートルの酸化リン(V)の蒸着薄膜であり、前記対電極間には、前記吸水層に吸収された極微量水分を電気分解する電圧が印加されるように構成されたことを特徴とする極微量水分検出素子。   A trace moisture detecting element comprising a pair or a plurality of pairs of counter electrodes formed on a substrate and a water absorbing layer of a water absorbing material formed in contact with the counter electrode, wherein the water absorbing layer has a thickness of It is a deposited thin film of phosphorus oxide (V) of 10 to 100 nanometers, and is configured such that a voltage for electrolyzing a trace amount of water absorbed in the water absorption layer is applied between the counter electrodes. Features a trace moisture detector. 基板上に形成した一対又は複数対の対電極と、前記対電極に接触して形成された吸水性物質の吸水層とを含む極微量水分検出装置であって、前記吸水層は、厚さが10〜100ナノメートルの酸化リン(V)の蒸着薄膜であり、吸水層の周囲に存在する極微量水分を吸水層で吸収し、それを対電極間に電圧を印加して電気分解することにより、極微量水分を検出、定量するよう構成されたことを特徴とする極微量水分検出装置。   A trace moisture detector including a pair or a plurality of pairs of counter electrodes formed on a substrate and a water absorption layer of a water absorbing material formed in contact with the counter electrode, wherein the water absorption layer has a thickness of It is a deposited thin film of phosphorus oxide (V) of 10 to 100 nanometers. By absorbing trace amounts of water existing around the water absorption layer with the water absorption layer, it is electrolyzed by applying a voltage between the counter electrodes. An ultra-trace moisture detection device configured to detect and quantify trace-volume moisture. 請求項1に記載の極微量水分検出素子上に、吸水層を覆う防湿性材料からなる封止層を形成し、前記極微量水分検出素子により極微量水分を検出、定量することによって、前記封止層の防湿封止性能を評価する防湿封止性能評価方法。   A sealing layer made of a moisture-proof material covering the water absorption layer is formed on the trace moisture detector according to claim 1, and the trace moisture is detected and quantified by the trace moisture detector. A moisture-proof sealing performance evaluation method for evaluating the moisture-proof sealing performance of a stop layer. 請求項1に記載の極微量水分検出素子の吸水層と、防湿封止が必要な電子素子とを共に封止する防湿封止層を形成し、前記極微量水分検出素子により極微量水分を検出、定量することによって、前記防湿封止層の防湿封止性能を評価する防湿封止性能評価方法。   A moisture-proof sealing layer that seals both the water-absorbing layer of the trace moisture detector according to claim 1 and an electronic device that requires moisture-proof sealing is formed, and trace moisture is detected by the trace moisture detector. The moisture-proof sealing performance evaluation method for evaluating the moisture-proof sealing performance of the moisture-proof sealing layer by quantifying. 請求項1に記載の極微量水分検出素子の基板に前記吸水層を囲むシール剤を塗布し、シール剤で囲まれた空間を水分バリア性材料のシートでキャップして前記吸水層を封止し、前記極微量水分検出素子により極微量水分を検出、定量することによって、前記シール剤の防湿封止性能を評価する防湿封止性能評価方法。   A sealing agent surrounding the water absorbing layer is applied to the substrate of the trace moisture detecting element according to claim 1, and a space surrounded by the sealing agent is capped with a sheet of moisture barrier material to seal the water absorbing layer. A moisture-proof sealing performance evaluation method for evaluating the moisture-proof sealing performance of the sealant by detecting and quantifying trace amounts of moisture with the trace moisture detection element. 極微量水分検出素子の対電極を複数対とし、対電極の分布に応じた防湿封止性能分布を評価する請求項3〜5のいずれかに記載の防湿封止性能評価方法。 The moisture-proof sealing performance evaluation method according to any one of claims 3 to 5, wherein a plurality of pairs of counter electrodes of the extremely small amount of moisture detecting element are used and a moisture-proof sealing performance distribution corresponding to the distribution of the counter electrodes is evaluated.
JP2009288691A 2009-12-21 2009-12-21 Extremely small amount of moisture measuring element and moisture-proof sealing performance evaluation method using the measuring element Expired - Fee Related JP5120966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288691A JP5120966B2 (en) 2009-12-21 2009-12-21 Extremely small amount of moisture measuring element and moisture-proof sealing performance evaluation method using the measuring element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288691A JP5120966B2 (en) 2009-12-21 2009-12-21 Extremely small amount of moisture measuring element and moisture-proof sealing performance evaluation method using the measuring element

Publications (2)

Publication Number Publication Date
JP2011128091A JP2011128091A (en) 2011-06-30
JP5120966B2 true JP5120966B2 (en) 2013-01-16

Family

ID=44290826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288691A Expired - Fee Related JP5120966B2 (en) 2009-12-21 2009-12-21 Extremely small amount of moisture measuring element and moisture-proof sealing performance evaluation method using the measuring element

Country Status (1)

Country Link
JP (1) JP5120966B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724758A (en) * 2018-12-11 2019-05-07 努比亚技术有限公司 A kind of water inlet detecting device, method, mobile terminal and storage medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519685A (en) * 2011-12-14 2012-06-27 福建龙净环保股份有限公司 Device and method for testing dust collection polar liquid film of wet type electrostatic dust collector
WO2016013544A1 (en) * 2014-07-23 2016-01-28 国立研究開発法人物質・材料研究機構 Dryness/wetness response sensor having high-speed response and high sensitivity
KR101830005B1 (en) 2016-10-27 2018-02-19 플로우닉스 주식회사 Leak detection sensor
JP6786122B2 (en) * 2017-02-14 2020-11-18 国立研究開発法人物質・材料研究機構 Condensation and light scattering prevention methods and systems associated with condensation
CN107946478A (en) * 2017-12-15 2018-04-20 京东方科技集团股份有限公司 Encapsulating structure and preparation method thereof, encapsulation defect inspection method, OLED device and display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640092B2 (en) * 1983-08-09 1994-05-25 工業技術院長 Humidity measurement method
JPH03502488A (en) * 1988-02-08 1991-06-06 ローズマウント インコ. Thin film moisture detection element and its manufacturing method
JP3030514B2 (en) * 1990-11-11 2000-04-10 株式会社松井製作所 Moisture measurement device
US5322602A (en) * 1993-01-28 1994-06-21 Teledyne Industries, Inc. Gas sensors
US5589085A (en) * 1995-08-04 1996-12-31 Meeco, Incorporated Process of manufacturing a detecting unit for an electrolytic cell with thin film electrodes
JPH1038843A (en) * 1996-04-12 1998-02-13 Teledyne Ind Inc Gas/moisture sensor for inert gas
JP2003157970A (en) * 2001-11-22 2003-05-30 Hitachi Ltd Display device
JP3945343B2 (en) * 2002-08-19 2007-07-18 三菱電機株式会社 Moisture detector
US7569128B2 (en) * 2004-12-14 2009-08-04 Mocon, Inc. Coulometric water vapor sensor
JP4828471B2 (en) * 2007-05-18 2011-11-30 日本電信電話株式会社 Moisture permeability evaluation apparatus and moisture permeability evaluation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724758A (en) * 2018-12-11 2019-05-07 努比亚技术有限公司 A kind of water inlet detecting device, method, mobile terminal and storage medium

Also Published As

Publication number Publication date
JP2011128091A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5120966B2 (en) Extremely small amount of moisture measuring element and moisture-proof sealing performance evaluation method using the measuring element
EP1730490B1 (en) A sensor for measuring gas permeability of a test material
WO2014104156A1 (en) Gas sensor and gas sensor structural body
Ahmad et al. Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell
US11385196B2 (en) Energetic pulse clearing of environmentally sensitive thin-film devices
WO2014190581A1 (en) Oled panel and manufacturing method therefor, and detection method for packaging effect
CN106233481A (en) Field effect transistor and the method being associated
Moiz et al. Effects of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution
McGhee et al. Humidity sensing properties of transparent sputter-coated indium–tin oxide and printed polymer structures
Torrisi et al. Graphene oxide/Cu junction as relative humidity sensor
KR101130084B1 (en) hydrogen sensor and manufacturing method thereof
JP2013242230A (en) Water vapor permeability measuring method
Carlsson et al. Moisture sensor at glass/polymer interface for monitoring of photovoltaic module encapsulants
JP2598172B2 (en) Carbon dioxide detection sensor
KR101252232B1 (en) Structure of gas sensor using electric field, method for fabricating the same and gas sensing method using the same
Sathya Design and development of thin film humidity sensor based on alumina and zirconium dioxide
US6796166B1 (en) All polymer humidity sensor based on laser carbonized polyimide substrate
JP2003222605A (en) Gas sensor
CN110231120A (en) A kind of apparatus and method of measurement of vacuum
Manjakkal et al. A comparative study of potentiometric and conductimetric thick film pH sensors made of RuO2 pastes
WO2018166580A1 (en) Co2 sensor based on ionic polymer membrane composite
CN110514698B (en) Gas sensing device and gas detection equipment
US8024959B2 (en) Gas sensor and gas detection method
RU2814091C1 (en) Sensor based on two-dimensional quantum structure
JPH06265516A (en) Oxygen/humidity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5120966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees