JP5120910B2 - Launch control device - Google Patents

Launch control device Download PDF

Info

Publication number
JP5120910B2
JP5120910B2 JP2006070089A JP2006070089A JP5120910B2 JP 5120910 B2 JP5120910 B2 JP 5120910B2 JP 2006070089 A JP2006070089 A JP 2006070089A JP 2006070089 A JP2006070089 A JP 2006070089A JP 5120910 B2 JP5120910 B2 JP 5120910B2
Authority
JP
Japan
Prior art keywords
ignition
gas
power supply
cylinder
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006070089A
Other languages
Japanese (ja)
Other versions
JP2007247935A (en
Inventor
俊明 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanai Educational Institution
Original Assignee
Kanai Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanai Educational Institution filed Critical Kanai Educational Institution
Priority to JP2006070089A priority Critical patent/JP5120910B2/en
Publication of JP2007247935A publication Critical patent/JP2007247935A/en
Application granted granted Critical
Publication of JP5120910B2 publication Critical patent/JP5120910B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、ロケットやミサイル等の発射装置や発破等の爆破装置に内蔵される点火回路に直流電流を供給する点火用電源装置に関する。   The present invention relates to an ignition power supply device that supplies a direct current to an ignition circuit built in a launching device such as a rocket or a missile or a blasting device such as blasting.

ロケットやミサイル等の発射装置では、推進薬に着火するために点火回路を備えており、点火回路に直流電流を供給して作動させるようにしている。供給する直流電流は、発電機を用いたり、蓄電池を用いることが従来より行われている。例えば、特許文献1では、飛しょう体を同時に発射するための飛しょう体に供給する推進薬点火用電流は、高電流が必要であり、この供給源となる点火回路用直流電源及び発動発電機もこの電流に合わせて大型のものとなり、車両への搭載重量や形状が増大し発射装置の機動性能は悪いものであったことから、推進薬を点火させる電流を蓄電池に一旦蓄え、これによって供給するか、あるいは点火回路用直流電源と上記蓄電池を併用することによって、点火回路用直流電源及び発動発電機の電力供給容量を節約し、小型化及び軽量化する点が記載されている。
特開平9−229593号公報
Launching devices such as rockets and missiles are provided with an ignition circuit for igniting the propellant, and are operated by supplying a direct current to the ignition circuit. For the direct current to be supplied, a generator or a storage battery is conventionally used. For example, in Patent Document 1, the propellant ignition current supplied to the flying object for launching the flying object at the same time requires a high current. However, since the mounting weight and shape of the vehicle increased and the maneuverability of the launcher was poor, the current that ignites the propellant was temporarily stored in the storage battery and supplied by this. Alternatively, it is described that the use of the DC power source for the ignition circuit and the storage battery together saves the power supply capacity of the DC power source for the ignition circuit and the engine generator, thereby reducing the size and weight.
JP-A-9-229593

上述した先行文献では、複数の飛しょう体を同時に発射させる場合に点火回路用に大容量の直流電源が必要となるため、各飛しょう体毎に蓄電池を用意して点火前に発電機により各蓄電池を充電しておき、点火時に蓄電池からも電流を供給して点火に必要な高電流を得るようにしているが、ロケットやミサイルといった兵器に関する技術分野では機動性がさらに重視されるようになり、発電機を装備することは機動性を考慮した場合不利な条件となる。また、緊急事態に対応して発射準備を行う場合に蓄電池に充電しなければならず、臨機応変な対応ができないといった問題点がある。そのため、常時蓄電池に充電しておくことが考えられるが、長期間待機状態が継続した場合に充電した蓄電池が放電して作動しなくなる危険性があり、一定期間毎に蓄電池を点検又は交換しなければならない、といった課題がある。   In the above-mentioned prior literature, when a plurality of flying objects are fired simultaneously, a large-capacity DC power source is required for the ignition circuit, so a storage battery is prepared for each flying object and The storage battery is charged and current is supplied from the storage battery at the time of ignition to obtain a high current necessary for ignition. However, in the technical fields related to weapons such as rockets and missiles, mobility becomes more important. The installation of a generator is a disadvantageous condition when considering mobility. Moreover, when preparing for launch in response to an emergency situation, the storage battery must be charged, and there is a problem that it is not possible to respond flexibly. Therefore, it is conceivable to always charge the storage battery, but if the standby state continues for a long time, there is a risk that the charged storage battery will be discharged and will not operate, and the storage battery must be inspected or replaced at regular intervals. There is a problem that must be done.

そこで、本発明は、発射装置の機動性に寄与するとともに緊急事態に対しても発射準備が迅速的確に行うことができる点火用電源装置を提供することを目的とするものである。   Therefore, an object of the present invention is to provide an ignition power supply device that contributes to the mobility of the launching device and can quickly and accurately prepare for launching in an emergency situation.

本発明に係る発射制御装置は、直流電流を供給するための固体高分子型燃料電池を有する点火用電源装置と、前記点火用電源装置において発生した起電力が点火に必要な高直流電流を得られる電圧まで大きくなったことを検知した場合に前記点火用電源装置を点火回路に接続して直流電流を供給制御する発射制御回路とを備えていることを特徴とする。さらに、前記点火用電源装置は、前記固体高分子型燃料電池に水素ガスを供給する水素ボンベと、前記固体高分子型燃料電池に酸素ガスを供給する酸素ボンベとを備えていることを特徴とする。さらに、前記水素ボンベ及び前記酸素ボンベは、着脱可能に取り付けられていることを特徴とする。 A firing control device according to the present invention includes an ignition power supply device having a polymer electrolyte fuel cell for supplying a direct current, and an electromotive force generated in the ignition power supply device obtains a high direct current required for ignition. And a firing control circuit for controlling the supply of direct current by connecting the ignition power supply device to the ignition circuit when it is detected that the voltage has been increased to a predetermined voltage . The ignition power supply device further includes a hydrogen cylinder that supplies hydrogen gas to the polymer electrolyte fuel cell, and an oxygen cylinder that supplies oxygen gas to the polymer electrolyte fuel cell. To do. Further, the hydrogen cylinder and the oxygen cylinder are detachably attached.

本発明は、上記の構成を備えることで、固体高分子型燃料電池を用いて点火回路に直流電流を供給するので、発電機や蓄電池等を用いることなく点火に必要な高電流を迅速的確に供給することができる。すなわち、固体高分子型燃料電池は、水素等の燃料ガスと酸素等の酸化剤を触媒により反応させて水を生成する際に起電力を発生させるため、点火する際に燃料ガス及び酸化剤を供給すれば点火回路に直流電流が確実に供給され、蓄電池のように放電の点検を行う必要がなく、待機時では燃料ガスが供給されなければ作動することがなく安全性も極めて高い。   Since the present invention has the above-described configuration and supplies a direct current to the ignition circuit using the polymer electrolyte fuel cell, the high current necessary for ignition can be quickly and accurately used without using a generator or a storage battery. Can be supplied. That is, the polymer electrolyte fuel cell generates an electromotive force when water is generated by reacting a fuel gas such as hydrogen and an oxidant such as oxygen with a catalyst. If supplied, a direct current is reliably supplied to the ignition circuit, and there is no need to check the discharge as in the case of a storage battery, and if the fuel gas is not supplied during standby, the ignition circuit does not operate and the safety is extremely high.

また、燃料電池自体小型化が可能で、燃料ガス及び酸化剤は別途ガスボンベで供給すれば、点火用電源装置を携帯して運搬することもでき、発射装置の機動性を向上させることが可能となる。   In addition, the fuel cell itself can be miniaturized, and if the fuel gas and oxidant are separately supplied in a gas cylinder, the ignition power supply can be carried and transported, and the mobility of the launcher can be improved. Become.

以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described in detail. The embodiments described below are preferable specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is particularly limited in the following description. Unless otherwise specified, the present invention is not limited to these forms.

図1は、本発明に係る実施形態を備えた発射装置に関する概略構成図である。ロケット1は、内部に推進装置10を備えており、推進装置10は推進薬を内蔵している。推進装置10の一方の端部には、点火回路11が配設されており、他方の端部には、ロケット1の後端部に取り付けたノズル12が接続されている。   FIG. 1 is a schematic configuration diagram relating to a launching device including an embodiment according to the present invention. The rocket 1 includes a propulsion device 10 inside, and the propulsion device 10 contains a propellant. An ignition circuit 11 is disposed at one end of the propulsion device 10, and a nozzle 12 attached to the rear end of the rocket 1 is connected to the other end.

発射制御装置2は、発射制御回路20及び点火用電源装置21を備えている。発射制御回路20は、点火回路11と電気的に接続しており、点火用電源装置21において発生した起電力に基づいて点火回路11に直流電流を供給制御する。   The launch control device 2 includes a launch control circuit 20 and an ignition power supply device 21. The firing control circuit 20 is electrically connected to the ignition circuit 11, and controls supply of a direct current to the ignition circuit 11 based on the electromotive force generated in the ignition power supply device 21.

点火用電源装置21は、固体高分子電解質形燃料電池本体22(以下「PEFC」と略称する。)、水素ボンベ23及び酸素ボンベ24を備えている。PEFC22と水素ボンベ23とを接続する供給管路には開閉弁25が設けられており、供給された水素ガスがPEFC22内を通り外部に排気される排気管路には開閉弁26が設けられている。また、PEFC22と酸素ボンベ24とを接続する供給管路には開閉弁27が設けられており、供給された酸素ガスがPEFC22内を通り外部に排気される排気管路には開閉弁28が設けられている。   The ignition power supply device 21 includes a solid polymer electrolyte fuel cell main body 22 (hereinafter abbreviated as “PEFC”), a hydrogen cylinder 23 and an oxygen cylinder 24. An opening / closing valve 25 is provided in the supply line connecting the PEFC 22 and the hydrogen cylinder 23, and an opening / closing valve 26 is provided in the exhaust line from which the supplied hydrogen gas is exhausted to the outside through the PEFC 22. Yes. In addition, an on-off valve 27 is provided in the supply line connecting the PEFC 22 and the oxygen cylinder 24, and an on-off valve 28 is provided in the exhaust line from which the supplied oxygen gas is exhausted outside through the PEFC 22. It has been.

水素ボンベ23及び酸素ボンベ24は、着脱可能に点火用電源装置21に取り付けられるようになっており、点火用電源装置21に設けられた差し込み口に圧入することで、供給管路内にガスを供給する。そして、各ボンベ内には高圧のガス(2気圧〜4気圧)が封入されており、一挙に大量のガスが供給できる。   The hydrogen cylinder 23 and the oxygen cylinder 24 are detachably attached to the ignition power supply device 21. By press-fitting into an insertion port provided in the ignition power supply device 21, gas is supplied into the supply line. Supply. Each cylinder is filled with high-pressure gas (2 atm to 4 atm), and a large amount of gas can be supplied at once.

開閉弁25〜28は、手動で開閉する弁であり、PEFC22へのガスの供給及び排気を適宜設定することができる。手動以外でも可能で、発射制御回路20からの開閉信号に基づいて開閉する電磁弁を用いてもよい。   The on-off valves 25 to 28 are valves that are manually opened and closed, and can appropriately set supply and exhaust of gas to the PEFC 22. Other than manual operation, an electromagnetic valve that opens and closes based on an open / close signal from the firing control circuit 20 may be used.

PEFC22は、図2に示すような単セルを多数積層したスタックで構成される。単セルは、固体高分子電解質膜30の両側に、白金等の触媒層及び拡散層を備えた水素極31及び酸素極32がそれぞれ積層されており、水素極31及び酸素極32の外表面にはセパレータ33及び34が配設されている。そして、水素料極31とセパレータ33との間には水素ボンベ23から供給される水素ガスが流通する流路35が形成されており、酸素極32とセパレータ34との間には酸素ボンベ24から供給される酸素ガスが流通する流路36が形成されている。水素極31に供給された水素ガスに含まれる水素は触媒によりプロトン(H+)となり、生成されたプロトン(H+)は電解質膜を通り酸素極32に到達して酸素ガスと反応して水が生成されるようになる。水が生成する際に電気エネルギーと熱エネルギーが発生するが、発生した電気エネルギーが起電力として取り出される。電気エネルギーは、配列された各単セルのセパレータ33及び34を導電体で電気的に接続して導電体を介して外部に取り出される。導電体は、発射制御回路20を介して点火回路11に電気的に接続され、PEFC22で発生した起電力により点火回路11に直流電流が供給されるようになる。以上説明したようなPEFC22は、公知のものを使用することができる。 The PEFC 22 is composed of a stack in which a large number of single cells as shown in FIG. 2 are stacked. In the single cell, a hydrogen electrode 31 and an oxygen electrode 32 each provided with a catalyst layer such as platinum and a diffusion layer are laminated on both sides of the solid polymer electrolyte membrane 30, respectively. Are provided with separators 33 and 34. A flow path 35 through which hydrogen gas supplied from the hydrogen cylinder 23 flows is formed between the hydrogen electrode 31 and the separator 33, and from the oxygen cylinder 24 between the oxygen electrode 32 and the separator 34. A flow path 36 through which the supplied oxygen gas flows is formed. Hydrogen contained in the hydrogen gas supplied to the hydrogen electrode 31 is converted into protons (H + ) by the catalyst, and the generated protons (H + ) pass through the electrolyte membrane and reach the oxygen electrode 32 and react with the oxygen gas to form water. Will be generated. When water is generated, electric energy and heat energy are generated, and the generated electric energy is taken out as an electromotive force. Electric energy is taken out to the outside through the conductor by electrically connecting the separators 33 and 34 of the arranged single cells with the conductor. The conductor is electrically connected to the ignition circuit 11 via the launch control circuit 20, and a direct current is supplied to the ignition circuit 11 by the electromotive force generated by the PEFC 22. A well-known PEFC 22 as described above can be used.

ロケット1を発射させる場合には、まず、点火用電源装置21の開閉弁25〜28がすべて閉状態となっているか確認し、開状態の開閉弁は完全に閉じた状態になるよう操作する。そして、開閉弁25〜28が閉状態となっているのを確認後点火用電源装置21に水素ボンベ23及び酸素ボンベ24を装着する。ガズボンベの装着によりボンベ内から高圧ガスが供給管路に流入するが、開閉弁25及び27によりPEFC22内への流入は一旦阻止される。   When launching the rocket 1, first, it is confirmed whether all the on-off valves 25 to 28 of the ignition power supply device 21 are closed, and the open on-off valves are operated to be completely closed. After confirming that the on-off valves 25 to 28 are closed, the hydrogen cylinder 23 and the oxygen cylinder 24 are attached to the ignition power supply device 21. Although the high pressure gas flows into the supply pipe line from the inside of the cylinder due to the attachment of the gas trowel, the on-off valves 25 and 27 once prevent the inflow into the PEFC 22.

PEFC22は、低温状態では十分な作動状態を得られないため、予めヒータ等を用いて加熱して作動温度(約70℃)にしておくとよい。また、固体高分子電解質膜30は、水により湿潤な状態にしておくことが望ましい。反応が開始されると酸素極側に水素と酸素が反応して水が発生するが、開始当初においては電解質膜が乾燥しないように水分を補給することが望ましい。PEFC22とは別に予め水素ガス及び酸素ガスを反応させて熱を発生させてPEFC22を加熱し、発生した水蒸気により固体高分子電解質膜30を湿潤状態にするようにしてもよい。   Since the PEFC 22 cannot obtain a sufficient operating state in a low temperature state, the PEFC 22 is preferably heated in advance using a heater or the like to an operating temperature (about 70 ° C.). Further, it is desirable that the solid polymer electrolyte membrane 30 be kept wet with water. When the reaction starts, hydrogen and oxygen react with each other on the oxygen electrode side to generate water. At the beginning of the reaction, it is desirable to supply water so that the electrolyte membrane is not dried. Separately from PEFC 22, hydrogen gas and oxygen gas may be reacted in advance to generate heat to heat PEFC 22, and the solid polymer electrolyte membrane 30 may be wetted by the generated water vapor.

ガスボンベより高圧ガスが流入した状態で、開閉弁25及び27を開くことで水素ガス及び酸素ガスが供給管路から一挙にPEFC22内に流入して反応が開始される。反応が行われる固体高分子電解質膜30は、大きな差圧にも十分耐えることが可能で、水素ガスが50気圧以上となっても問題ない。反応面積が100cm2の固体高分子電解質膜30を備えた単セルが50個で、水素ガス及び酸素ガスを供給して電流密度1A/cm2程度の電流を発生させると、理論的に100A、25Vの直流出力を得ることができる。そして、点火には、高直流電流(10A〜50A)が0.5秒間流れればよいことから、ガスボンベに貯蔵される水素ガス及び酸素ガスの量は、それぞれ3リットル及び1.5リットル程度でよく、携帯用のガスボンベを用いれば十分収まる量である。 With the high-pressure gas flowing in from the gas cylinder, the on-off valves 25 and 27 are opened to cause hydrogen gas and oxygen gas to flow into the PEFC 22 all at once from the supply pipe, and the reaction is started. The solid polymer electrolyte membrane 30 in which the reaction is performed can sufficiently withstand a large differential pressure, and there is no problem even if the hydrogen gas reaches 50 atm or higher. When 50 single cells having a solid polymer electrolyte membrane 30 with a reaction area of 100 cm 2 are supplied and hydrogen gas and oxygen gas are supplied to generate a current having a current density of about 1 A / cm 2 , theoretically 100 A, A DC output of 25V can be obtained. For ignition, a high direct current (10A to 50A) is required to flow for 0.5 seconds. Therefore, the amounts of hydrogen gas and oxygen gas stored in the gas cylinder are about 3 liters and 1.5 liters, respectively. If you use a portable gas cylinder, it will be enough.

また、点火用電源装置21の大きさは、単セルの大きさでほぼ決まってくることから、人手で運搬できる程度にコンパクト化及び軽量化することが可能で、従来の発射装置のように発電機や蓄電池が不要となり、きわめて機動性に優れたものとすることができる。   In addition, since the size of the ignition power supply device 21 is almost determined by the size of the single cell, it can be reduced in size and weight to the extent that it can be transported by hand. A machine and a storage battery become unnecessary, and it can be made extremely excellent in mobility.

開閉弁25及び27を開いてガスをPEFC22内に流入した後開閉弁26及び28を開いて排気を行い、PEFC22内のスタック全体に水素ガス及び酸素ガスが供給されてPEFC22から発生する起電力を高めていく。この場合、水素ガス及び酸素ガスを高圧で一挙に供給することで、瞬時に高い起電力を得ることが可能となる。   The on-off valves 25 and 27 are opened and the gas flows into the PEFC 22, and then the on-off valves 26 and 28 are opened to exhaust the gas. Increase it. In this case, a high electromotive force can be obtained instantaneously by supplying hydrogen gas and oxygen gas at a high pressure all at once.

発生した起電力は発射制御回路20により検知されて、点火に必要な高直流電流が得られる電圧まで起電力が大きくなったことが検知されると、PEFC22と点火回路11とを電気的に接続して高直流電流が点火回路11に流れるようになる。電気的な接続には、例えばリレースイッチ等のスイッチを用いてスイッチを閉じることで行われる。   The generated electromotive force is detected by the firing control circuit 20, and when it is detected that the electromotive force has increased to a voltage at which a high DC current required for ignition is obtained, the PEFC 22 and the ignition circuit 11 are electrically connected. As a result, a high direct current flows through the ignition circuit 11. For the electrical connection, for example, a switch such as a relay switch is used to close the switch.

点火回路11に高直流電流が流れると、点火回路11内の火薬が燃焼し、その結果発生する高温ガスにより推進装置10内の推進薬が着火して燃焼が開始される。推進薬の燃焼により発生したガスは、ノズル12を通して後方に押し出されるようになり、その反作用によってロケット1は推進力を得て加速するようになる。   When a high direct current flows through the ignition circuit 11, the explosive in the ignition circuit 11 burns, the propellant in the propulsion device 10 is ignited by the high-temperature gas generated as a result, and combustion starts. The gas generated by the combustion of the propellant is pushed backward through the nozzle 12 and the reaction causes the rocket 1 to gain propulsion and accelerate.

以上説明したように、PEFCを用いた点火用電源装置は、点火に必要な高直流電流を発生させることができるとともに装置がコンパクトで軽量化することが可能である。また、点火の際にガズボンベを取り付けて作動させるので、ガスボンベを取り付けない限り誤作動することはなく、安全性の高い装置とすることができる。さらに、作動に必要なガスを高圧で一挙に供給して瞬時に高い起電力を発生させることができるので、緊急事態にも十分対応することが可能となる。   As described above, the ignition power supply device using PEFC can generate a high direct current necessary for ignition, and the device can be made compact and lightweight. In addition, since the gas cylinder is attached and operated at the time of ignition, it does not malfunction unless a gas cylinder is attached, and a highly safe device can be obtained. Furthermore, since a high electromotive force can be generated instantaneously by supplying gas necessary for operation at a high pressure at a stroke, it is possible to sufficiently cope with an emergency situation.

本発明に係る点火用電源装置は、ロケットやミサイル等の発射装置や発破等の爆破装置に内蔵される点火回路に好適であり、人手により運搬することも可能で蓄電池等が不要なことから、山岳地帯や砂漠地帯等の不便な場所においても使用することができる。   The power supply device for ignition according to the present invention is suitable for an ignition circuit built in a launching device such as a rocket or a missile or a blasting device such as blasting, and can also be transported by hand and does not require a storage battery or the like. It can also be used in inconvenient places such as mountainous areas and desert areas.

本発明に係る実施形態を備えた発射装置に関する概略構成図である。It is a schematic block diagram regarding the launching device provided with the embodiment concerning the present invention. 燃料電池の単セルの模式説明図である。It is a model explanatory drawing of the single cell of a fuel cell.

符号の説明Explanation of symbols

1 ロケット
2 発射制御装置
20 発射制御回路
21 点火用電源装置
22 PEFC
23 水素ボンベ
24 酸素ボンベ
25 開閉弁
26 開閉弁
27 開閉弁
28 開閉弁
1 Rocket 2 Launch control device
20 Launch control circuit
21 Ignition power supply
22 PEFC
23 Hydrogen cylinder
24 oxygen cylinder
25 On-off valve
26 On-off valve
27 On-off valve
28 On-off valve

Claims (3)

直流電流を供給するための固体高分子型燃料電池を有する点火用電源装置と、前記点火用電源装置において発生した起電力が点火に必要な高直流電流を得られる電圧まで大きくなったことを検知した場合に前記点火用電源装置を点火回路に接続して直流電流を供給制御する発射制御回路とを備えていることを特徴とする発射制御装置。 An ignition power supply device having a polymer electrolyte fuel cell for supplying a direct current, and detecting that the electromotive force generated in the ignition power supply device has increased to a voltage at which a high direct current required for ignition can be obtained. And a firing control circuit for controlling the supply of a direct current by connecting the ignition power supply device to the ignition circuit. 前記点火用電源装置は、前記固体高分子型燃料電池に水素ガスを供給する水素ボンベと、前記固体高分子型燃料電池に酸素ガスを供給する酸素ボンベとを備えていることを特徴とする請求項1に記載の発射制御装置。   The ignition power supply device includes: a hydrogen cylinder that supplies hydrogen gas to the polymer electrolyte fuel cell; and an oxygen cylinder that supplies oxygen gas to the polymer electrolyte fuel cell. Item 2. The firing control device according to Item 1. 前記水素ボンベ及び前記酸素ボンベは、着脱可能に取り付けられていることを特徴とする請求項2に記載の発射制御装置。   The launch control device according to claim 2, wherein the hydrogen cylinder and the oxygen cylinder are detachably attached.
JP2006070089A 2006-03-15 2006-03-15 Launch control device Expired - Fee Related JP5120910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070089A JP5120910B2 (en) 2006-03-15 2006-03-15 Launch control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070089A JP5120910B2 (en) 2006-03-15 2006-03-15 Launch control device

Publications (2)

Publication Number Publication Date
JP2007247935A JP2007247935A (en) 2007-09-27
JP5120910B2 true JP5120910B2 (en) 2013-01-16

Family

ID=38592442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070089A Expired - Fee Related JP5120910B2 (en) 2006-03-15 2006-03-15 Launch control device

Country Status (1)

Country Link
JP (1) JP5120910B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3110511A1 (en) * 1980-03-21 1982-03-11 Escher/Foster Technology Ass., Inc., 48879 St. Johns, Mich. "METHOD AND DEVICE FOR THE THERMO-CHEMICAL HYDROGEN-OXYGEN COMBUSTION INTRODUCTION"
JPH09229593A (en) * 1996-02-20 1997-09-05 Mitsubishi Electric Corp Missile launching device
JP2001023666A (en) * 1999-07-08 2001-01-26 Toyota Motor Corp Waste heat recovering device and its control method
JP4271347B2 (en) * 2000-06-12 2009-06-03 本田技研工業株式会社 Fuel shut-off device for fuel cell vehicle
JP2002095167A (en) * 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd Surplus power storing supplying apparatus
JP3941381B2 (en) * 2000-11-14 2007-07-04 三菱電機株式会社 Flying power generator
JP2004170297A (en) * 2002-11-21 2004-06-17 Rikogaku Shinkokai Method for measuring moisture distribution between conductive member and cell and apparatus for measuring moisture distribution of polymer membrane
JP2005302495A (en) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Fuel cell system
US7246483B2 (en) * 2004-07-21 2007-07-24 United Technologies Corporation Energetic detonation propulsion

Also Published As

Publication number Publication date
JP2007247935A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
US6931832B2 (en) Monopropellant combustion system
US20110159386A1 (en) Operating process for a fuel cell system operating process for a fuel cell
CN102369624B (en) Fuel cell system
US11718520B2 (en) Solid hydrogen storage system
WO2019156631A1 (en) A portable fuel cell apparatus and system
US20130149620A1 (en) System and method for purging a fuel cell system
JP5634986B2 (en) Hydrogen generator and fuel cell system provided with the same
US8563184B2 (en) Fuel cell system and operating process
CN107218857A (en) Micro missile
JP5011775B2 (en) Fuel cell power generator
JP5771631B2 (en) Equipment for providing hot exhaust gases
JP5120910B2 (en) Launch control device
US20080248342A1 (en) Solid oxide fuel cell power generation apparatus and power generation method thereof
KR20170014295A (en) Power supply system for unmanned aerial vehicle and control method of the same
KR102372534B1 (en) Electrolysis system with easily controlling pressure and method for operating the same
CN109923717A (en) Amendment fuel cell for monoblock type reforming fuel cell recycles
CN110088957A (en) Fuel-cell device and method for starting fuel cell apparatus
JPWO2018051468A1 (en) Fuel cell system
JPH02170369A (en) Fuel battery with hydrogen supplying function
JP3295884B2 (en) Hydrogen gas supply device for fuel cells
JP2003234116A (en) Control method and control device of fuel cell
JP2017147124A (en) Control device for fuel battery power generation system, power generation system and control method for fuel battery power generation system
JP2008130441A (en) Fuel cell system
JP3941381B2 (en) Flying power generator
RU2290724C2 (en) Electrochemical generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees