JP5119821B2 - Synonymous disease name selection device - Google Patents
Synonymous disease name selection device Download PDFInfo
- Publication number
- JP5119821B2 JP5119821B2 JP2007241441A JP2007241441A JP5119821B2 JP 5119821 B2 JP5119821 B2 JP 5119821B2 JP 2007241441 A JP2007241441 A JP 2007241441A JP 2007241441 A JP2007241441 A JP 2007241441A JP 5119821 B2 JP5119821 B2 JP 5119821B2
- Authority
- JP
- Japan
- Prior art keywords
- disease name
- synonymous
- disease
- names
- appearance frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 201000010099 disease Diseases 0.000 title claims description 267
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims description 267
- 238000003745 diagnosis Methods 0.000 claims description 19
- 230000002123 temporal effect Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 description 19
- 239000003814 drug Substances 0.000 description 15
- 206010022000 influenza Diseases 0.000 description 11
- 238000012545 processing Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 208000005718 Stomach Neoplasms Diseases 0.000 description 4
- 206010017758 gastric cancer Diseases 0.000 description 4
- 201000011549 stomach cancer Diseases 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Landscapes
- Medical Treatment And Welfare Office Work (AREA)
- Machine Translation (AREA)
- Document Processing Apparatus (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Description
本発明は、同義の疾患を表現する異表記の疾患名を選定する同義疾患名選定装置、同義疾患名選定プログラムに関する。 The present invention relates to a synonymous disease name selection device and a synonymous disease name selection program for selecting a disease name having a different notation expressing a synonymous disease.
医療分野において、疾患名表記の統一は重要な課題である。疾患名が全国的に統一されていれば、男女別、年代層別等の疾患発生に関する人口動態調査などが可能となり、有益な統計情報を得ることができる。また、臨床の現場においても、疾患名が統一されていれば、疾患に対する検査、治療、薬剤投与等の過去の履歴を病院横断的に参照することが容易に可能となり、患者が転院する際にも病院間でのミスコミュニケーションを軽減することができる。 In the medical field, unification of disease name notation is an important issue. If disease names are standardized nationwide, it will be possible to conduct demographic surveys on disease occurrence by gender, age group, etc., and obtain useful statistical information. In addition, even in the clinical field, if the disease names are unified, it is possible to easily refer to past histories such as examinations, treatments, and drug administrations for diseases across hospitals. Can also reduce miscommunication between hospitals.
そこで、同義の疾患を表現する異表記を統一するために、種々の手法が従来より提案されている。例えば、入力された疾患名を主たる疾患名と修飾語に分割し、それらを標準コード辞書を用いて標準コード化する手法が提案されている(特許文献1参照)。また、疾患名の文字列の類似度から、同じ疾患名を表現する疾患名表記を特定する手法が提案されている(非特許文献1参照)。
医療の分野では、技術的な進展に伴って新規な概念とそれを表現する専門用語が常に作られ続けている。疾患についても、検査技術の改善やゲノム解析等の医学的研究の進歩に伴って、新たな疾患の概念が常に発見され、それに対して新規な疾患名が作られる。このような新しい疾患の概念を表現する疾患名の表記は揺れが大きく病院間で全く異なる表記が用いられることが多い。 In the medical field, new concepts and technical terms that express them are constantly being created as technology advances. With regard to diseases, with the advancement of medical research such as improvement of testing techniques and genome analysis, new disease concepts are always discovered, and new disease names are created. The notation of the disease name that expresses the concept of such a new disease is largely shaken, and quite different notation is often used between hospitals.
ここで、上記特許文献1に係る手法では、疾患名を分割し、対応するコードを用いることによって疾患名の同一性を判定するが、医療の現場で記述されるレポートやカルテでは、対応するコードの存在しない疾患名や修飾語を用いることも多く、コード化できない疾患名表記が数多く存在する。また、疾患に対するコードの付与は時間的コストの大きい作業であり、新規な疾患概念に対しては少なくとも一定期間対応するコードが存在しないことになる。また、上記非特許文献1に係る手法では、疾患名文字列の類似度を利用しているが、医療レポートやカルテ等では、「肝細胞癌」を「HCC」と表記するなど、同義の疾患を表現する疾患名表記が必ずしも類似する文字列から構成されているとは限らない。 Here, in the technique according to Patent Document 1, the disease name is divided and the identity of the disease name is determined by using the corresponding code. However, in the report or medical record described in the medical field, the corresponding code is used. Disease names and modifiers that do not exist are often used, and there are many disease name notations that cannot be encoded. In addition, the provision of a code for a disease is a work with a large time cost, and there is no code corresponding to at least a certain period for a new disease concept. Moreover, although the technique according to Non-Patent Document 1 uses the similarity of the disease name character string, medical reports, medical records, and the like indicate “hepatoma” as “HCC”. The disease name notation that expresses is not necessarily composed of similar character strings.
本発明は、上記従来の事情に鑑みなされたものであり、新規な疾患概念のようなコード化が行なわれていない疾患名表記で、かつ、表層文字列が全く異なる疾患名表記であっても、同義の疾患を表現する異表記の疾患名を選定可能な技術を提案することを目的としている。 The present invention has been made in view of the above-described conventional circumstances, and is a disease name notation that is not coded as in the novel disease concept, and even if the disease name notation is completely different from the surface character string. The purpose of this study is to propose a technique that can select disease names with different notations expressing synonymous diseases.
請求項1に記載の本願発明は、患者の疾患名とその診断に係る日時とを含む診断情報を記憶する第1の記憶手段と、前記第1の記憶手段に記憶された複数の診断情報に基づいて、各疾患名の所定期間別の出現頻度を取得する取得手段と、一の疾患名に係る出現頻度の時期的変化の傾向と他の疾患名に係る出現頻度の時期的変化の傾向との類似性を判定する判定手段と、出現頻度の時期的変化の傾向が類似すると判定された疾患名同士を同義として選定して出力する出力手段と、を備えたことを特徴とする同義疾患名選定装置である。 The present invention according to claim 1 includes: a first storage unit that stores diagnostic information including a patient's disease name and a date and time related to the diagnosis; and a plurality of pieces of diagnostic information stored in the first storage unit. Based on the acquisition means for acquiring the appearance frequency of each disease name for each predetermined period, the tendency of the temporal change of the appearance frequency related to one disease name and the tendency of the temporal change of the appearance frequency related to another disease name A synonymous disease name, comprising: a determination means for determining similarity between the two and an output means for selecting and outputting as synonyms disease names determined to have similar trends in temporal changes in appearance frequency It is a selection device.
請求項2に記載の本願発明は、請求項1に記載の同義疾患名選定装置において、前記同義疾患名選定装置は、同義の疾患名同士を予め対応付けた同義疾患名情報を記憶する第2の記憶手段を更に備え、前記判定手段は、同義疾患名情報により対応付けられた疾患名同士を判定対象外とすることを特徴とする。 According to a second aspect of the present invention, there is provided the synonymous disease name selecting device according to the first aspect, wherein the synonymous disease name selecting device stores synonymous disease name information in which synonymous disease names are associated with each other in advance. Storage means, and the determination means excludes the disease names associated by the synonymous disease name information from being determined.
請求項3に記載の本願発明は、請求項2に記載の同義疾患名選定装置において、前記出力手段は、同義の疾患名同士を前記第2の記憶手段に出力し、同義疾患名情報として記憶させることを特徴とする。 According to a third aspect of the present invention, in the synonymous disease name selection device according to the second aspect, the output means outputs synonymous disease names to the second storage means, and stores them as synonymous disease name information. It is characterized by making it.
請求項4に記載の本願発明は、請求項1乃至請求項3のいずれか1項に記載の同義疾患名選定装置において、前記診断情報は、患者の診断に係る診断主体の識別情報を含んでおり、前記判定手段は、共通の診断主体に係る疾患名同士を判定対象外とすることを特徴とする。 According to a fourth aspect of the present invention, in the synonymous disease name selection device according to any one of the first to third aspects, the diagnostic information includes identification information of a diagnostic subject relating to a diagnosis of a patient. The determination means excludes disease names related to a common diagnosis subject from being determined.
請求項5に記載の本願発明は、請求項1乃至請求項4のいずれか1項に記載の同義疾患名選定装置において、前記診断情報は、患者を診断した病院の識別情報を含んでおり、前記同義疾患名選定装置は、病院間の距離に係る距離情報を記憶する第3の記憶手段を更に備え、前記判定手段は、距離が近い病院の組合せから順番に判定を行うことを特徴とする。
The invention of
請求項6に記載の本願発明は、コンピュータを、患者の疾患名とその診断に係る日時とを含む診断情報を記憶する第1の記憶手段と、前記第1の記憶手段に記憶された複数の診断情報に基づいて、各疾患名の所定期間別の出現頻度を取得する取得手段と、一の疾患名に係る出現頻度の時期的変化の傾向と他の疾患名に係る出現頻度の時期的変化の傾向との類似性を判定する判定手段と、出現頻度の時期的変化の傾向が類似すると判定された疾患名同士を同義として選定して出力する出力手段として機能させるための同義疾患名選定プログラムである。 The present invention according to claim 6 is a first storage means for storing diagnostic information including a disease name of a patient and a date and time related to the diagnosis, and a plurality of computers stored in the first storage means. Based on the diagnosis information, acquisition means for acquiring the appearance frequency of each disease name for each predetermined period, the tendency of the temporal change of the appearance frequency related to one disease name, and the temporal change of the appearance frequency related to another disease name A synonymous disease name selection program for functioning as an output unit for selecting and outputting synonyms of disease names determined to have similar temporal trends in appearance frequency, and a determining unit that determines similarity to the tendency of It is.
請求項1に記載の同義疾患名選定装置によると、新規な疾患概念のようなコード化が行なわれていない疾患名表記で、かつ、表層文字列が全く異なる疾患名表記であっても、その疾患に係る出現頻度の時期的変化の傾向の類似性に基づいて、同義の疾患を表現する異表記の疾患名を選定することができる。特に、表記の統一が困難な新規な流行性疾患の場合、同地域の同規模病院に限れば、同じ疾患を持つ患者が病院を訪れる時間的確率分布は、病院を問わず一定になると考えられるため、このような新規流行性疾患概念に対する異表記疾患名の選定に有効的である。 According to the synonymous disease name selection device according to claim 1, even if the disease name notation is not coded as in the novel disease concept and the disease name notation is completely different from the surface character string, Based on the similarity of the tendency of the temporal change in the appearance frequency related to the disease, it is possible to select an illusory disease name expressing a synonymous disease. In particular, in the case of a new epidemic disease that is difficult to unify, the temporal probability distribution of patients with the same disease visiting the hospital will be constant regardless of the hospital, as long as it is limited to hospitals of the same size in the same region. Therefore, it is effective for the selection of names of allopathic diseases for such new epidemic disease concepts.
請求項2に記載の同義疾患名選定装置によると、既知の同義疾患名の組合せが判定対象外となり、同義疾患名の選定に係る処理負担が軽減される。 According to the synonymous disease name selection apparatus according to claim 2, the combination of known synonymous disease names is excluded from the determination target, and the processing burden related to the selection of synonymous disease names is reduced.
請求項3に記載の同義疾患名選定装置によると、同義と判定された疾患名の組合せがその後の判定対象外となり、以降の同義疾患名の選定に係る処理負担が軽減される。 According to the synonymous disease name selection apparatus according to claim 3, the combination of the disease names determined to be synonymous is excluded from the subsequent determination targets, and the processing burden relating to the subsequent selection of the synonymous disease names is reduced.
請求項4に記載の同義疾患名選定装置によると、単一の疾患名を用いると考えられる共通の診断主体(病院の部局や課、或いは医師など)に係る疾患名の組合せが判定対象外となり、同義疾患名の選定に係る処理負担が軽減される。 According to the synonymous disease name selection apparatus according to claim 4, combinations of disease names related to a common diagnostic entity (such as a hospital department or section or a doctor) considered to use a single disease name are excluded from the determination. The processing burden related to the selection of synonymous disease names is reduced.
請求項5に記載の同義疾患名選定装置によると、近い地域における或る症例の出現頻度の時期的変化の傾向は非常に類似することが考えられるため、近い病院から順番に判定することで、同義疾患名の選定精度を高めることができる。
According to the synonymous disease name selection device according to
請求項6に記載の同義疾患名選定プログラムによると、上記作用効果を奏する同義疾患名選定装置をコンピュータを利用して実現することができる。 According to the synonymous disease name selection program according to the sixth aspect, the synonymous disease name selection device having the above-described effects can be realized using a computer.
本発明を、以下に例示する一実施形態に基づいて具体的に説明する。
なお、病院内の部局を単位として考えた場合、カンファレンスミーティング等で患者の治療/検査経過を報告し合うなど、医師同士で頻繁なコミュニケーションがとられていると考えられるため、以下の説明では、単一の病院部局においては疾患名表記がほぼ統一されていることを前提としている。
The present invention will be specifically described based on an embodiment exemplified below.
In addition, when considering the departments in the hospital as a unit, it is considered that frequent communication between doctors such as reporting patient treatment / test progress at conference meetings etc., so in the following explanation, It is assumed that disease name notation is almost unified in a single hospital department.
図1は、本例に係る同義疾患名選定装置の機能ブロック図を示している。
本例の同義疾患名選定装置は、文書格納手段1、同義疾患名辞書保持手段2、疾患名抽出手段3、疾患名出現分布計算手段4、同義疾患名判定手段5、同義疾患名出力手段6、を備えている。
FIG. 1 shows a functional block diagram of the synonymous disease name selection apparatus according to this example.
The synonymous disease name selection device of this example includes a document storage means 1, a synonymous disease name dictionary holding means 2, a disease name extraction means 3, a disease name appearance distribution calculation means 4, a synonymous disease name determination means 5, and a synonymous disease name output means 6. It is equipped with.
文書格納手段1は、患者の疾患名とその診断に係る診断日時とを含む診断情報を記憶する。本例では、複数の病院の部局で作成された医療レポートや電子カルテ等の医療文書を格納しており、当該医療文書には、病院部局ID、患者ID、疾患名、文書作成日時(診断日時)等の情報が含まれている。なお、異なる病院で診療分野(内科、脳神経科等)が共通する部局の医療文書を対象としており、例えば、同じ市内の或る病院の内科Aと他の病院の内科Bの医療文書が格納されている。 The document storage unit 1 stores diagnostic information including a patient's disease name and a diagnosis date and time related to the diagnosis. In this example, medical reports such as medical reports and electronic medical records created by a plurality of hospital departments are stored, and the medical department ID, patient ID, disease name, document creation date and time (diagnosis date and time) ) Etc. are included. It is intended for medical documents of departments that share the same medical field (internal medicine, neurology, etc.) in different hospitals. For example, medical documents of internal medicine A in one hospital and internal medicine B in another hospital are stored. Has been.
同義疾患名辞書保持手段2は、同義の疾患名同士を予め対応付けた同義疾患名情報を記憶する。本例では、図2にデータ例を示すように、既知の同義疾患名を疾患概念毎に保持しており、例えば、「胃癌」「胃がん」「胃ガン」「胃Cancer」「胃Ca.」は同義の疾患概念を表すものであることがわかる。 The synonymous disease name dictionary holding means 2 stores synonymous disease name information in which synonymous disease names are associated with each other in advance. In this example, as shown in the data example in FIG. 2, known synonymous disease names are held for each disease concept. For example, “stomach cancer” “stomach cancer” “stomach cancer” “stomach cancer” “stomach Ca.” It can be seen that represents a synonymous disease concept.
疾患名抽出手段3は、文書格納手段1に格納されている複数の医療文書から疾患名を抽出する。本例では、「診断名」のフィールドが存在する構造化された医療文書から、該フィールドに記載されている文字列を疾患名として抽出しているが、例えば、構造化されていないフリーテキストのような医療文書の場合には、特開平06−019959等に開示されているような固有名詞抽出技術を用いて疾患名を抽出するようにしてもよい。 The disease name extraction unit 3 extracts disease names from a plurality of medical documents stored in the document storage unit 1. In this example, a character string described in the field is extracted as a disease name from a structured medical document in which a field of “diagnosis name” exists. For example, an unstructured free text In the case of such a medical document, a disease name may be extracted using a proper noun extraction technique as disclosed in Japanese Patent Laid-Open No. 06-019959.
疾患名出現分布計算手段4は、疾患名毎の所定期間別の出現確率を各病院の部局について取得する。
なお、本例では、或る患者に対する一連の診療行為において各診療日毎に医療文書が作成されることを想定しており、各医療文書に記載された疾患名及び診断日時から代表の疾患名(確定疾患名)及び診断日時(初診日時)の特定を行った後に、この確定疾患名及び初診日時に基づいて出現頻度の計算を行っている。
The disease name appearance distribution calculating means 4 acquires the appearance probability for each disease name for each predetermined period for each hospital department.
In this example, it is assumed that a medical document is created for each treatment day in a series of medical treatments for a certain patient, and a representative disease name (from a disease name and a diagnosis date / time described in each medical document) After the identification of the confirmed disease name) and the diagnosis date and time (first visit date and time), the appearance frequency is calculated based on the confirmed disease name and the first visit date and time.
具体的には、同一の病院の部局における同一の患者に係る医療文書を時系列(作成日時順)に並べ、この医療文書系列の中で疾患名が確定している医療文書(確定医療文書)を特定し、当該確定医療文書に記載された疾患名を確定疾患名として抽出すると共に、当該医療文書系列の先頭の文書の作成日時を初診日時として抽出する。なお、本例で扱う医療文書には「確定診断名」のフィールドが存在しており、該フィールドに疾患名が書き込まれた医療文書を確定医療文書と判断して確定疾患名を抽出しているが、フリーテキストの医療文書の場合は、例えば「XXXの所見である。」等の確定疾患名を抽出するパターン文字列を用意し、これにマッチする疾患名を確定疾患名として抽出すればよい。以上によっても確定疾患名が特定できない場合は、医療文書系列の中で最後に出現する疾患名を確定疾患名とすればよい。 Specifically, medical documents related to the same patient in the same hospital department are arranged in chronological order (in order of creation date), and the medical document in which the disease name is confirmed in this medical document series (confirmed medical document) The disease name described in the confirmed medical document is extracted as the confirmed disease name, and the creation date and time of the first document in the medical document series is extracted as the first visit date and time. The medical document handled in this example has a field of “definite diagnosis name”, and the medical document in which the disease name is written in the field is determined as the definitive medical document, and the definite disease name is extracted. However, in the case of a free text medical document, for example, a pattern character string for extracting a definite disease name such as “It is a finding of XXX” is prepared, and a disease name matching this is extracted as a definite disease name. . If the definite disease name cannot be specified as described above, the last disease name appearing in the medical document series may be set as the definite disease name.
上記のようにして、確定疾患名及び初診日時を特定すると、疾患名出現分布計算手段4は、各病院の部局毎に、各確定疾患名の所定期間別(週単位や月単位など)の出現確率(同一期間中に出現する全確定疾患名の出現頻度合計に対する各確定疾患名の出現頻度の割合)を算出する。
なお、症状の発症日時が医療文書に含まれている場合には、初診日時に代えて発症日時を特定し、これに基づいて確定疾患名の所定期間別の出現確率を算出してもよい。
When the confirmed disease name and the first visit date and time are specified as described above, the disease name appearance distribution calculating means 4 generates the appearance of each confirmed disease name for each predetermined period (such as weekly or monthly) for each department of each hospital. The probability (ratio of the appearance frequency of each confirmed disease name to the total appearance frequency of all confirmed disease names that appear in the same period) is calculated.
When the onset date and time of the symptom is included in the medical document, the onset date and time may be specified instead of the initial visit date and time, and the appearance probability of the confirmed disease name for each predetermined period may be calculated based on this.
同義疾患名判定手段5は、疾患名出現分布計算手段4で得られた結果に基づき、病院の部局をまたがる疾患名の2項組の全てを対象に疾患名距離を求め、同義の疾患名か否かを判定する。ただし、疾患名表記が完全に一致する2項組、及び、同義語疾患名保持手段2を参照することにより既知の同義疾患名であることが特定できた2項組については判定対象外とする。 Based on the result obtained by the disease name appearance distribution calculation means 4, the synonymous disease name determination means 5 obtains the disease name distances for all of the two pairs of disease names across the hospital departments, and determines whether the disease name has the same meaning. Determine whether or not. However, the two-term set whose disease name notation completely matches and the two-term set that can be identified as a known synonym disease name by referring to the synonym disease name holding means 2 are excluded from the determination. .
ここで、疾患名nのi月度における出現確率をP(n,i)とすると、疾患名Xと疾患名Yの疾患名距離D(X,Y)は下記の(式1)により算出される。
そして、下記の(式2)を満たす、部局をまたがる疾患名Lと疾患名Mを同義疾患名と判定する。ただし、式中のαは、予め定められた閾値(正の実数)である。すなわち、疾患名Lに対する疾患名Mの疾患名距離が、他の疾患名jの疾患名距離と比較して十分小さい場合(例えば、閾値α=5のときは、他の疾患名距離に比べて1/5より小さい場合)に、疾患名Lと疾患名Mを同義であると判定し、これらを同義疾患名と選定する。
同義疾患名出力手段6は、同義疾患名判定手段5で選定された同義疾患名組を出力する。例えば、同義疾患名をディスプレイ画面に表示出力したり紙等の媒体に印刷出力することで、利用者に同義疾患名を知らしめ、また例えば、同義疾患名を同義疾患名辞書保持手段2に出力して記憶させることで、その後の同義疾患名判定手段5による判定対象外とする。 The synonymous disease name output means 6 outputs the synonymous disease name set selected by the synonymous disease name determination means 5. For example, the synonymous disease name is displayed on a display screen or printed on a medium such as paper so that the user is informed of the synonymous disease name. For example, the synonymous disease name is output to the synonymous disease name dictionary holding means 2 Then, it is excluded from the determination target by the subsequent synonymous disease name determination means 5.
次に、本例に係る同義疾患名選定処理を、図3の処理フロー図を参照して説明する。
まず、疾患名抽出手段3が、文書格納手段1に格納されている各医療文書から疾患名を抽出する(ステップS1)。本例では、病院部局ID、患者ID、文書作成日時も併せて抽出し、これらを組にした診断データを医療文書毎に生成している。
次に、疾患名出現分布計算手段4が、或る病院部局に係る診断データを対象に(ステップS2)、同一患者に係る診断データを時系列(文書作成日時順)に並べ、当該患者の確定疾患名と初診日時を特定する(ステップS3〜S5)。当該病院部局に係る全患者について確定疾患名と初診日時の特定を終えると(ステップS6)、当該病院部局に係る全確定疾患名の所定期間別の出現確率を計算する(ステップS7)。上記処理を他の病院部局についても行い、全病院部局における全確定疾患名の所定期間別の出現確率の計算を終えると(ステップS8)、同義疾患名判定手段5が、異なる病院部局の確定疾患名の組合せを対象に疾患名距離を計算し(ステップS9)、この疾患名距離に基づいて、同義の疾患を表現する異表記疾患名の選定を行う(ステップS10)。
Next, the synonymous disease name selection process according to this example will be described with reference to the process flowchart of FIG.
First, the disease name extraction unit 3 extracts a disease name from each medical document stored in the document storage unit 1 (step S1). In this example, a hospital department ID, a patient ID, and a document creation date are also extracted, and diagnostic data combining these is generated for each medical document.
Next, the disease name appearance distribution calculation means 4 arranges diagnosis data related to the same patient in time series (in order of document creation date / time) for diagnosis data related to a certain hospital department (step S2), and confirms the patient. The disease name and the date and time of first visit are specified (steps S3 to S5). When the identification of the confirmed disease name and the date and time of first visit is completed for all the patients related to the hospital department (step S6), the appearance probability for every predetermined period of the all confirmed disease names related to the hospital department is calculated (step S7). When the above processing is also performed for other hospital departments and the calculation of the appearance probabilities of all confirmed disease names in all hospital departments for a predetermined period is completed (step S8), the synonymous disease name determination means 5 determines the confirmed diseases of different hospital departments. A disease name distance is calculated for a combination of names (step S9), and based on this disease name distance, a different notation disease name expressing a synonymous disease is selected (step S10).
図4は、疾患名出現分布計算手段4で算出される、各病院部局における疾患名の月別の出現確率を例示している。
同図によると、例えば、或る病院の内科Aにおいては、疾患名「A/H1亜型インフルエンザ」が2007年2月に“12.2%”の確率で出現し、また例えば、他の病院の内科Bにおいては、疾患名「A香港型インフルエンザ」が2007年3月に“11.5%”の確率で出現していることがわかる。
FIG. 4 illustrates the monthly appearance probability of the disease name calculated by the disease name appearance distribution calculating means 4 in each hospital department.
According to the figure, for example, in the internal medicine A of a certain hospital, the disease name “A / H1 subtype influenza” appears with a probability of “12.2%” in February 2007, and for example, another hospital In the internal medicine B, the disease name “A Hong Kong influenza” appears in March 2007 with a probability of “11.5%”.
図5は、図4に示した各病院部局における疾患名の月別の出現確率に基づいて、前述の(式1)により算出した疾患名距離を示している。すなわち、内科Aにおける疾患名と内科Bにおける疾患名との組合せの全てについて疾患名距離を算出しており、例えば、内科Aの「A/H1亜型インフルエンザ」と内科Bの「A香港型インフルエンザ」の疾患名距離は“0.2333”であり、内科Aの「A/H1亜型インフルエンザ」と内科Bの「Aソ連型インフルエンザ」の疾患名距離は“0.0453”であることがわかる。 FIG. 5 shows the disease name distance calculated by the above-described (Equation 1) based on the monthly appearance probability of the disease name in each hospital department shown in FIG. That is, the disease name distance is calculated for all combinations of the disease name in internal medicine A and the disease name in internal medicine B. For example, “A / H1 subtype influenza” in internal medicine A and “A Hong Kong type influenza in internal medicine B” The disease name distance of “A / H1 subtype influenza” of internal medicine A and “A Soviet influenza” of internal medicine B is “0.0453”. .
ここで、閾値α=5として前述の(式2)の計算を行うと、図6に示す同義疾患名ペアを得ることができる。すなわち、例えば、内科Aの「A/H1亜型インフルエンザ」と内科Bの「Aソ連型インフルエンザ」の疾患名距離は、内科Aの「A/H1亜型インフルエンザ」と内科Bにおける他の疾患名の疾患名距離の1/5より小さく、出現確率の時期的変化の傾向が類似すると判断できることから、「A/H1亜型インフルエンザ」と「Aソ連型インフルエンザ」とが同義疾患名ペアとして選定される。 Here, when the above-described calculation of (Equation 2) is performed with the threshold α = 5, the synonymous disease name pair shown in FIG. 6 can be obtained. That is, for example, the disease name distance between “A / H1 subtype influenza” of internal medicine A and “A Soviet influenza” of internal medicine B is the name of another disease in internal medicine “A / H1 subtype influenza” and internal medicine B Because it is smaller than 1/5 of the disease name distance and it can be judged that the tendency of the temporal change of appearance probability is similar, “A / H1 subtype influenza” and “A Soviet type influenza” are selected as synonymous disease name pairs The
なお、これまでの説明においては、疾患名の出現確率(同一期間中に出現する全疾患名の出現頻度合計に対する対象疾患名の出現頻度の割合)の時期的変化を比較して同義疾患名の選定を行っているが、例えば、疾患名の出現頻度の変化率(前期間の対象疾患名の出現頻度に対する対象期間の疾患名の出現頻度の増減割合)の時期的変化を比較して同義疾患名の選定を行ってもよい。要は、疾患名の出現頻度の時期的変化の傾向が類似する疾患名同士を同義疾患名として選定すればよい。 In the description so far, synonymous disease names are compared by comparing temporal changes in the appearance probability of disease names (the ratio of the appearance frequency of the target disease name to the total appearance frequency of all disease names appearing during the same period). For example, synonymous diseases are compared by comparing temporal changes in the rate of change in the appearance frequency of disease names (the rate of increase or decrease in the appearance frequency of disease names in the target period relative to the appearance frequency of target disease names in the previous period). A name may be selected. In short, disease names having similar trends in the temporal change in the appearance frequency of disease names may be selected as synonymous disease names.
また、病院の部局をまたがる疾患名の2項組を対象に同義疾患名か否かを判定しているが、このような異なる病院部局に係る疾患名同士について同義判定する態様のほか、異なる医師に係る疾患名同士について同義判定する態様であってもよく、単一の疾患名を用いると考えられる共通の診断主体(病院の部局や課、或いは医師など)に係る疾患名同士を判定対象外とすればよい。 Moreover, although it is determining whether it is a synonymous disease name for the two-tuples of disease names that cross hospital departments, in addition to the aspect of determining synonyms between disease names related to such different hospital departments, different doctors It may be an aspect in which the disease names related to each other are synonymously determined, and the disease names related to a common diagnostic entity (such as a hospital department or section or a doctor) considered to use a single disease name are excluded from determination And it is sufficient.
図7に示す同義疾患名選定装置の機能ブロック図は、図1に示した同義疾患名選定装置の機能を拡張したものであり、病院間距離保持手段7、処理終了判定手段8を更に備えている。 The functional block diagram of the synonymous disease name selection device shown in FIG. 7 is an extension of the function of the synonymous disease name selection device shown in FIG. 1, and further includes an inter-hospital distance holding means 7 and a process end determination means 8. Yes.
病院間距離保持手段7は、病院間の距離に係る距離情報を保持しており、同義疾患名判定手段5が当該距離情報を参照して各病院間の距離を取得し、距離が近い病院の組合せから順番に疾患名の同義判定を行う。なお、各病院の座標値(緯度、経度)を距離情報として保持し、これに基づいて病院間の距離を算出してもよく、各病院間の距離を予め算出しておき、これを距離情報として保持するようにしてもよい。
処理終了判定手段8は、未処理の病院の組合せの中で最も近い病院間の距離が所定の閾値を超える場合に、処理を終了すると判定する。
The inter-hospital distance holding means 7 holds distance information related to the distance between hospitals, and the synonymous disease name determination means 5 refers to the distance information to acquire the distance between the hospitals, Synonymous judgment of disease names is performed in order from the combination. In addition, the coordinate value (latitude, longitude) of each hospital may be stored as distance information, and the distance between hospitals may be calculated based on the distance information. The distance between hospitals may be calculated in advance, and the distance information may be calculated in advance. You may make it hold | maintain as.
The process end determination means 8 determines to end the process when the distance between the closest hospitals among the unprocessed hospital combinations exceeds a predetermined threshold.
当該同義疾患名選定装置によると、まず、地理的に最も近い2つの病院の部局同士で同義疾患名を選定し、得られた同義疾患名を同義疾患名辞書保持手段2に追加する。次に、地理的に2番目に近い2つの病院の部局同士で同義疾患名を選定し、得られた同義疾患名を同義疾患名辞書保持手段2に追加する。この処理は、処理終了判定手段8により終了判定がなされるまで繰り返される。このように、地理的に近い病院から順次処理を行うことにより、全国的な同義疾患名の選定を高い精度で実施することができる。 According to the synonymous disease name selection apparatus, first, synonymous disease names are selected between the departments of two hospitals that are geographically closest to each other, and the obtained synonymous disease names are added to the synonymous disease name dictionary holding means 2. Next, synonymous disease names are selected between the departments of the two hospitals that are geographically closest to each other, and the obtained synonymous disease names are added to the synonymous disease name dictionary holding means 2. This process is repeated until an end determination is made by the process end determination means 8. In this way, by performing processing sequentially from geographically close hospitals, it is possible to carry out selection of synonymous disease names nationwide with high accuracy.
図8は、本例の同義疾患名選定装置の主要なハードウェア構成を示している。
すなわち、本例の同義疾患名選定装置は、各種演算処理を行うCPU、CPUの作業領域となるRAM、基本的な制御プログラムを記憶するROM、本発明に係る各機能を実現するためのプログラム等を記憶するHDD、利用者に対する情報を表示出力する液晶ディスプレイや利用者からの情報の入力を受け付けるマウス・キーボード等の機器とのインターフェースである入出力I/F、他の装置との間で通信を行うインターフェースである通信I/F、等のハードウェア資源を有するコンピュータで構成されている。
FIG. 8 shows a main hardware configuration of the synonymous disease name selection device of this example.
That is, the synonymous disease name selection apparatus of this example includes a CPU that performs various arithmetic processes, a RAM that is a work area of the CPU, a ROM that stores basic control programs, a program for realizing each function according to the present invention, and the like. Communicating with other devices such as an HDD that stores information, a liquid crystal display that displays and outputs information to the user, an input / output I / F that is an interface with devices such as a mouse and a keyboard that accept input of information from the user It is comprised with the computer which has hardware resources, such as communication I / F which is an interface which performs.
そして、本発明に係るプログラムをHDDから読み出してRAMに展開し、これをCPUにより実行させることで、本発明に係る第1の記憶手段(文書格納手段1)、第2の記憶手段(同義疾患名辞書保持手段2)、取得手段(疾患名抽出手段3及び疾患名出現分布計算手段4)、判定手段(同義疾患名判定手段5)、出力手段(同義疾患名出力手段6)等を、同義疾患名選定装置のコンピュータに実現している。 Then, the program according to the present invention is read from the HDD, expanded in the RAM, and executed by the CPU, whereby the first storage means (document storage means 1) and the second storage means (synonymous disease) according to the present invention are executed. Name dictionary holding means 2), acquisition means (disease name extraction means 3 and disease name appearance distribution calculation means 4), determination means (synonymous disease name determination means 5), output means (synonymous disease name output means 6) and the like are synonymous. It is realized in the computer of the disease name selection device.
なお、本発明に係るプログラムは、例えば、当該プログラムを記憶したCD−ROM等の外部記憶媒体を配布する形式や、ネットワークを介して配信する形式により、本発明の実施者に提供される。
また、本発明に係る同義疾患名選定装置の各機能手段は、本例のようなソフトウェア構成により実現する態様に限られず、専用のハードウエアモジュールで構成してもよい。
また、本発明に係る同義疾患名選定装置の各機能手段は、本例のように1台のコンピュータに設ける態様に限られず、複数台のコンピュータに分散して設けてもよい。
The program according to the present invention is provided to the practitioner of the present invention, for example, in a format for distributing an external storage medium such as a CD-ROM storing the program or a format for distributing via a network.
Moreover, each functional means of the synonymous disease name selection apparatus according to the present invention is not limited to the mode realized by the software configuration as in this example, and may be configured by a dedicated hardware module.
Moreover, each functional means of the synonymous disease name selection apparatus according to the present invention is not limited to an embodiment provided in one computer as in this example, and may be provided distributed in a plurality of computers.
1:文書格納手段、
2:同義疾患名辞書保持手段、
3:疾患名抽出手段、
4:疾患名出現分布計算手段、
5:同義疾患名判定手段、
6:同義疾患名出力手段、
7:病院間距離保持手段、
8:処理終了判定手段
1: Document storage means,
2: Synonymous disease name dictionary holding means,
3: Disease name extraction means,
4: Disease name appearance distribution calculating means,
5: Synonymous disease name determination means,
6: Synonymous disease name output means,
7: Inter-hospital distance holding means,
8: Processing end determination means
Claims (6)
前記第1の記憶手段に記憶された複数の診断情報に基づいて、各疾患名の所定期間別の出現頻度を取得する取得手段と、
一の疾患名に係る出現頻度の時期的変化の傾向と他の疾患名に係る出現頻度の時期的変化の傾向との類似性を判定する判定手段と、
出現頻度の時期的変化の傾向が類似すると判定された疾患名同士を同義として選定して出力する出力手段と、
を備えたことを特徴とする同義疾患名選定装置。 First storage means for storing diagnostic information including a patient's disease name and date and time related to the diagnosis;
An acquisition means for acquiring an appearance frequency for each predetermined period of each disease name based on a plurality of pieces of diagnostic information stored in the first storage means;
A determination means for determining a similarity between a tendency of a temporal change in appearance frequency relating to one disease name and a tendency of a temporal change in appearance frequency relating to another disease name;
An output means for selecting and outputting the disease names determined to have similar trends in the frequency of appearance frequency as synonyms;
A synonymous disease name selection device comprising:
前記判定手段は、同義疾患名情報により対応付けられた疾患名同士を判定対象外とすることを特徴とする請求項1に記載の同義疾患名選定装置。 The synonymous disease name selection device further includes second storage means for storing synonymous disease name information in which synonymous disease names are associated with each other in advance.
The synonymous disease name selection apparatus according to claim 1, wherein the determination unit excludes disease names associated with each other by synonymous disease name information from being determined.
前記判定手段は、共通の診断主体に係る疾患名同士を判定対象外とすることを特徴とする請求項1乃至請求項3のいずれか1項に記載の同義疾患名選定装置。 The diagnostic information includes identification information of a diagnostic subject related to a patient diagnosis,
The synonymous disease name selection device according to any one of claims 1 to 3, wherein the determination unit excludes disease names related to a common diagnosis subject from being determined.
前記同義疾患名選定装置は、病院間の距離に係る距離情報を記憶する第3の記憶手段を更に備え、
前記判定手段は、距離が近い病院の組合せから順番に判定を行うことを特徴とする請求項1乃至請求項4のいずれか1項に記載の同義疾患名選定装置。 The diagnostic information includes identification information of the hospital that diagnosed the patient,
The synonymous disease name selection device further includes third storage means for storing distance information related to the distance between hospitals,
The synonymous disease name selection apparatus according to any one of claims 1 to 4, wherein the determination unit performs the determination in order from a combination of hospitals having a short distance.
患者の疾患名とその診断に係る日時とを含む診断情報を記憶する第1の記憶手段と、
前記第1の記憶手段に記憶された複数の診断情報に基づいて、各疾患名の所定期間別の出現頻度を取得する取得手段と、
一の疾患名に係る出現頻度の時期的変化の傾向と他の疾患名に係る出現頻度の時期的変化の傾向との類似性を判定する判定手段と、
出現頻度の時期的変化の傾向が類似すると判定された疾患名同士を同義として選定して出力する出力手段として機能させるための同義疾患名選定プログラム。 Computer
First storage means for storing diagnostic information including a patient's disease name and date and time related to the diagnosis;
An acquisition means for acquiring an appearance frequency for each predetermined period of each disease name based on a plurality of pieces of diagnostic information stored in the first storage means;
A determination means for determining a similarity between a tendency of a temporal change in appearance frequency relating to one disease name and a tendency of a temporal change in appearance frequency relating to another disease name;
A synonym disease name selection program for functioning as an output means for selecting and outputting disease names determined to have similar trends in temporal changes in appearance frequency as synonyms.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007241441A JP5119821B2 (en) | 2007-09-18 | 2007-09-18 | Synonymous disease name selection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007241441A JP5119821B2 (en) | 2007-09-18 | 2007-09-18 | Synonymous disease name selection device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012235300A Division JP5201290B2 (en) | 2012-10-25 | 2012-10-25 | Disease name selection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009075661A JP2009075661A (en) | 2009-04-09 |
JP5119821B2 true JP5119821B2 (en) | 2013-01-16 |
Family
ID=40610598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007241441A Expired - Fee Related JP5119821B2 (en) | 2007-09-18 | 2007-09-18 | Synonymous disease name selection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5119821B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6090925B2 (en) * | 2013-05-28 | 2017-03-08 | Kddi株式会社 | Dictionary generator |
CN111428477B (en) * | 2020-03-06 | 2023-10-17 | 讯飞医疗科技股份有限公司 | Diagnostic name standardization method, device, electronic equipment and storage medium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07234861A (en) * | 1994-02-24 | 1995-09-05 | Toshiba Corp | Data monitoring system |
JP4105571B2 (en) * | 2003-03-19 | 2008-06-25 | 富士フイルム株式会社 | Medical network server and medical network system |
JP4381361B2 (en) * | 2005-08-31 | 2009-12-09 | 株式会社東芝 | Time-series data analysis device, time-series data analysis method, and time-series data analysis program |
-
2007
- 2007-09-18 JP JP2007241441A patent/JP5119821B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009075661A (en) | 2009-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9165116B2 (en) | Patient data mining | |
Bogu et al. | Deep learning-based detection of COVID-19 using wearables data | |
US10593428B2 (en) | Diagnosis support apparatus and method, and non-transitory computer readable medium | |
JP5891305B2 (en) | Clinical process analysis system | |
JP2018014058A (en) | Medical information processing system, medical information processing device and medical information processing method | |
Goswami et al. | A panel path analysis approach to the determinants of coronavirus disease 2019 transmission: does testing matter for confirmed cases? | |
JPWO2019176407A1 (en) | Learning support device, learning support method, learning support program, area of interest discrimination device, area of interest discrimination method, area of interest discrimination program and trained model | |
JP5119821B2 (en) | Synonymous disease name selection device | |
JP5201290B2 (en) | Disease name selection device | |
CN111128330A (en) | Automatic entry method and device for electronic case report table and related equipment | |
RU2740219C2 (en) | Context-sensitive medical guidance engine | |
JP7371220B2 (en) | Information processing device, information processing method, and information processing program | |
US20130041679A1 (en) | Order display apparatus, computer readable storage medium, and order display method | |
Spiegelman et al. | Evaluating Public Health Interventions: 3. The Two-Stage Design for Confounding Bias Reduction—Having Your Cake and Eating It Two | |
Reid et al. | Pap smears in general practice: a secondary analysis of the Australian Morbidity and Treatment Survey 1990 to 1991 | |
Yang et al. | Modeling posttreatment prognosis of skin lesions in patients with psoriasis in China | |
WO2021107098A1 (en) | Document creation assistance device, document creation assistance method, and document creation assistance program | |
JP6537121B1 (en) | Device and method for estimating medical expenses by injury and diseases and program | |
JP2017199281A (en) | Estimation device, estimation method, and estimation program | |
Mgawadere et al. | Identification of Maternal Deaths, Cause of Death and Contributing Factors in Mangochi District, Malawi: A RAMOS Study | |
Lohiya et al. | Measuring outcomes of hypertension treatment in primary care in resource-limited settings | |
Battersby | Health Information | |
Chaitanya et al. | A Deep Learning technology based covid-19 prediction | |
Welch | Implementation, evaluation and application of multiple imputation for missing data in longitudinal electronic health record research | |
Suhaimi et al. | Screening of Tuberculosis (TB) and Coronavirus (COVID-19) using Machine Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100818 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101118 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110505 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120925 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121008 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5119821 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |