JP5119443B2 - Solubilization of carbon nanotubes using aromatic polyimide - Google Patents

Solubilization of carbon nanotubes using aromatic polyimide Download PDF

Info

Publication number
JP5119443B2
JP5119443B2 JP2007542800A JP2007542800A JP5119443B2 JP 5119443 B2 JP5119443 B2 JP 5119443B2 JP 2007542800 A JP2007542800 A JP 2007542800A JP 2007542800 A JP2007542800 A JP 2007542800A JP 5119443 B2 JP5119443 B2 JP 5119443B2
Authority
JP
Japan
Prior art keywords
aromatic polyimide
polyimide
carbon nanotubes
solution
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007542800A
Other languages
Japanese (ja)
Other versions
JPWO2007052739A1 (en
Inventor
直敏 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2007542800A priority Critical patent/JP5119443B2/en
Publication of JPWO2007052739A1 publication Critical patent/JPWO2007052739A1/en
Application granted granted Critical
Publication of JP5119443B2 publication Critical patent/JP5119443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、ナノテクノロジーの技術分野に属し、特に、カーボンナノチューブを可溶化する新規な技術に関する。   The present invention belongs to the technical field of nanotechnology, and particularly relates to a novel technique for solubilizing carbon nanotubes.

近年、飯島澄男らによりフラーレン製造時の堆積物中に発見されたカーボンナノチューブ(非特許文献1)は、その特異な構造に基づく高い導電性、引張り強度、耐熱性などを有することから各種分野への用途が期待されている。   In recent years, carbon nanotubes (Non-patent Document 1) discovered in the deposits during fullerene production by Sumio Iijima et al. Have high electrical conductivity, tensile strength, heat resistance, etc. based on their unique structure, and thus are in various fields. The use of is expected.

カーボンナノチューブ(以下、CNTと略称することがある)の研究開発における大きな問題は、CNTは多数のチューブが束になったバンドル構造を呈し溶媒にまったく不溶であるということである。このため、CNTに関するこれまでの検討は、主として物理学や電子工学等の観点から行われ、化学や薬医学などからのアプローチは遅れている。CNTのバンドルをほどき溶媒に溶かすことができればCNTの応用は飛躍的に発展するものと考えられる。   A major problem in the research and development of carbon nanotubes (hereinafter sometimes abbreviated as CNT) is that CNT has a bundle structure in which many tubes are bundled and is completely insoluble in a solvent. For this reason, the investigations so far relating to CNT are mainly performed from the viewpoints of physics, electronics, and the like, and approaches from chemistry and pharmaceutical medicine have been delayed. If the bundle of CNTs can be unwound and dissolved in a solvent, the application of CNTs is considered to develop dramatically.

カーボンナノチューブを可溶化する手法としては、当初、CNTを短く切断して両端に化学修飾する手法が提案されたが(例えば、非特許文献2)、この手法はCNT本来の性質を変性してしまう。最近、本発明者らは、特定の芳香族化合物やDNAなどがCNTを可溶化し得ることを見出している(例えば、非特許文献3、非特許文献4、特許文献1)。この他に、多糖(β−1,3−グルカン)を用いてカーボンナノチューブを可溶化する方法(特許文献2)や、界面活性剤を用いて水性ミセルを形成させて可溶化する方法(非特許文献5)なども提案されている。   As a method for solubilizing carbon nanotubes, a method of initially cutting CNTs shortly and chemically modifying them at both ends was proposed (for example, Non-Patent Document 2), but this method modifies the original properties of CNTs. . Recently, the present inventors have found that specific aromatic compounds, DNA, and the like can solubilize CNTs (for example, Non-Patent Document 3, Non-Patent Document 4, and Patent Document 1). In addition to this, a method of solubilizing carbon nanotubes using a polysaccharide (β-1,3-glucan) (Patent Document 2) and a method of solubilizing by forming aqueous micelles using a surfactant (non-patent) Document 5) has also been proposed.

カーボンナノチューブをポリマーとともに可溶化することができれば、例えば、CNTの特性に加えてそのポリマーに由来する特性も兼持する優れた機能の複合材料が得られるものと期待される。   If the carbon nanotubes can be solubilized together with the polymer, for example, it is expected that a composite material having an excellent function having characteristics derived from the polymer in addition to the characteristics of CNT can be obtained.

ポリイミドを利用してカーボンナノチューブを可溶化して複合材料を得ようとする試みについては幾つかの先例も見出される。しかし、CNTのバンドル構造をほどき個々のチューブが独立して溶解した状態を作り出すことは困難であり、実際はCNTのバンドル(集合体)が透明なコロイド分散状態を呈しているにすぎない場合が多い。例えば、Wiseらは、ニトリル基を有する全芳香族ポリイミドとCNT(単層CNT)とから成る複合体について検討しているが(非特許文献6)、この文献はCNTが当該ポリイミド中で安定に分散されると報告しているのにとどまっている。
S. Iijima, Nature, 354, 56(1991) J. Chen他、Science, 282, 95(1998) N. Nakashima他、Trans. Mater. Research Soc. Jpn, 29 525-528(2004) N. Nakashima他、Chem. Lett. 32,456(2003) R. E. Smalley他、Science 298, 2361(2002) K. E. Wse他、Chem. Phys. Lett. 391, 207(2004) 特開2005−28560号公報 特開2005−104762号公報
Some precedents have also been found for attempts to solubilize carbon nanotubes using polyimide to obtain composite materials. However, it is difficult to unwind the CNT bundle structure and create a state where individual tubes are dissolved independently. In fact, the CNT bundle (aggregate) may only be in a transparent colloidal dispersion state. Many. For example, Wise et al. Have studied a composite composed of a nitrile group-containing wholly aromatic polyimide and CNT (single-walled CNT) (Non-Patent Document 6). This document shows that CNT is stable in the polyimide. Only reported to be decentralized.
S. Iijima, Nature, 354, 56 (1991) J. Chen et al., Science, 282, 95 (1998) N. Nakashima et al., Trans. Mater. Research Soc. Jpn, 29 525-528 (2004) N. Nakashima et al., Chem. Lett. 32,456 (2003) RE Smalley et al., Science 298, 2361 (2002) KE Wse et al., Chem. Phys. Lett. 391, 207 (2004) JP 2005-28560 A JP 2005-104762 A

本発明の目的は、カーボンナノチューブのバンドル構造をほどきカーボンナノチューブを確実に可溶化して、カーボンナノチューブの有効利用に資することができるような新しい技術を提供することにある。   An object of the present invention is to provide a new technique capable of contributing to effective utilization of carbon nanotubes by unwinding the bundle structure of carbon nanotubes and reliably solubilizing the carbon nanotubes.

本発明者は、研究を重ねた結果、特定の構造を有するポリイミドが各種の溶媒に溶解することに注目し、このポリイミドを利用することによって如上の目的が達成され得ることを見出し本発明を導き出した。   As a result of repeated research, the inventor has noticed that a polyimide having a specific structure is dissolved in various solvents, and found that the above objects can be achieved by using this polyimide. It was.

かくして、本発明は、下記の一般式[I]で表わされる繰り返し単位を有する芳香族ポリイミドから成るカーボンナノチューブ可溶化剤を提供するものである。   Thus, the present invention provides a carbon nanotube solubilizer comprising an aromatic polyimide having a repeating unit represented by the following general formula [I].

式[I]中、ARはフェニル基または縮合多環芳香族基を表し、Xは存在しない場合もあり存在する場合は酸素原子または硫黄原子を表し、Zは溶媒可溶性を高めるための極性置換基または非極性置換基を表す。 In the formula [I], AR represents a phenyl group or a condensed polycyclic aromatic group, X may or may not exist, represents an oxygen atom or a sulfur atom, and Z represents a polar substituent for increasing solvent solubility. Or represents a nonpolar substituent.

本発明で用いられる芳香族ポリイミドの例を合成するための反応スキームを示す。The reaction scheme for synthesize | combining the example of the aromatic polyimide used by this invention is shown. 本発明に従うカーボンナノチューブの可溶化試験において測定したSWNT/芳香族ポリイミドのDMSO溶液の可視−近赤外吸収スペクトルを例示する。The visible-near infrared absorption spectrum of the DMSO solution of SWNT / aromatic polyimide measured in the solubilization test of the carbon nanotube according to the present invention is illustrated. 本発明によって得られるSWNT/ポリイミドのAFM像を例示する。The AFM image of SWNT / polyimide obtained by this invention is illustrated. 本発明に従うSWNT/芳香族ポリイミドのDMSO溶液について測定した近赤外フォトルミネッセンス2次元マッピングの結果を例示する。2 illustrates near infrared photoluminescence two-dimensional mapping results measured for a DMSO solution of SWNT / aromatic polyimide according to the present invention. 本発明に従うSWNT/芳香族ポリイミドのDMSO溶液に他の溶媒を混合して測定した吸収スペクトルを例示する。The absorption spectrum measured by mixing another solvent with the DMSO solution of SWNT / aromatic polyimide according to the present invention is illustrated. 本発明で用いられるポリイミドの1例のFT−IRの測定結果を示す。The measurement result of FT-IR of one example of the polyimide used by this invention is shown. 本発明で用いられるポリイミドの1例のH−NMRの測定結果を示す。The measurement result of 1 H-NMR of one example of the polyimide used in the present invention is shown. 本発明で用いられるポリイミドの別の例のFT−IRの測定結果を示すThe measurement result of FT-IR of another example of the polyimide used in the present invention is shown. 本発明で用いられるポリイミドの別の例のH−NMRの測定結果を示す。The measurement result of 1 H-NMR of another example of the polyimide used in the present invention is shown. 本発明で用いられるポリイミドの更に別の例のFT−IRの測定結果を示す。The measurement result of FT-IR of another example of the polyimide used by this invention is shown. 本発明で用いられるポリイミドの他の例のFT−IRの測定結果を示す。The measurement result of FT-IR of the other example of the polyimide used by this invention is shown. 本発明で用いられるポリイミドの他の例のH−NMRの測定結果を示す。The measurement result of < 1 > H-NMR of the other example of the polyimide used by this invention is shown. 本発明に従うカーボンナノチューブ可溶化試験において測定したSWNT/芳香族ポリイミドのDMSO溶液の可視−近赤外吸収スペクトルを例示する。The visible-near infrared absorption spectrum of DMSO solution of SWNT / aromatic polyimide measured in the carbon nanotube solubilization test according to the present invention is illustrated. 本発明に従うカーボンナノチューブ可溶化試験において測定したSWNT/芳香族ポリイミドの水溶液の可視−近赤外吸収スペクトルを例示する。The visible-near infrared absorption spectrum of the aqueous solution of SWNT / aromatic polyimide measured in the carbon nanotube solubilization test according to this invention is illustrated. 本発明に従うSWNT/芳香族ポリイミドのDMSO溶液について求めた近赤外フォトルミネッセンス2次元マッピングの結果を例示する。2 illustrates near infrared photoluminescence two-dimensional mapping results determined for a DMSO solution of SWNT / aromatic polyimide according to the present invention.

既述のように、本発明のカーボンナノチューブ可溶化剤を構成するポリイミドの繰り返し単位を表わす式[I]中、ARはフェニル基または縮合多環芳香族基を表し、Xは存在しない場合もあり存在する場合は酸素原子または硫黄原子を表し、Zは溶媒可溶性を高めるための極性置換基または非極性置換基を表す。このうち、ARで表される芳香族基の好ましい例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、ペリレン環、ナフタセン環などから成る4価の官能基(置換されていてもよい)が挙げられる。   As described above, in the formula [I] representing the repeating unit of the polyimide constituting the carbon nanotube solubilizer of the present invention, AR represents a phenyl group or a condensed polycyclic aromatic group, and X may not exist. When present, it represents an oxygen atom or a sulfur atom, and Z represents a polar substituent or a nonpolar substituent for enhancing solvent solubility. Among these, preferred examples of the aromatic group represented by AR include tetravalent functional groups (substituted) such as a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a perylene ring, and a naphthacene ring. May be included).

また、式[I]中、Zで表される極性置換基とは、極性溶媒に対する可溶性を当該ポリイミドに付与する官能基であり、好ましい例として、スルホン酸基、リン酸基もしくは硫酸基、またはそれらのトリアルキルアミン塩が挙げられるが、これらに限定されるものではない。ここで、トリアルキルアミン塩のアルキルは炭素数1から18のものであり、特に炭素数1から12のものが好ましい。このような極性置換基を有する式[I]のポリイミドは、極性溶媒に可溶性である。極性溶媒としては、非プロトン性溶媒に限らず、プロトン性極性溶媒(例えば、水、メタノール、エタノール、プロパノール、ブタノールなど)でもよいが、一般的には、非プロトン性極性溶媒(例えば、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、m−クレゾール、アセトニトリル)が好ましい。   Further, in the formula [I], the polar substituent represented by Z is a functional group that imparts solubility to a polar solvent to the polyimide, and preferable examples include a sulfonic acid group, a phosphoric acid group or a sulfuric acid group, or Examples thereof include, but are not limited to, trialkylamine salts. Here, the alkyl of the trialkylamine salt has 1 to 18 carbon atoms, and particularly preferably has 1 to 12 carbon atoms. The polyimide of the formula [I] having such a polar substituent is soluble in a polar solvent. The polar solvent is not limited to an aprotic solvent but may be a protic polar solvent (for example, water, methanol, ethanol, propanol, butanol, etc.), but in general, an aprotic polar solvent (for example, dimethyl sulfoxide). (DMSO), dimethylformamide (DMF), m-cresol, acetonitrile) are preferred.

本発明の対象とする式[I]で表わされる芳香族ポリイミドは、Zとして非極性置換基を有するものであってもよい。非極性置換基として好ましい例は、炭素数8から18の長鎖アルキル基(分岐してもよい)が挙げられるが、これらに限定されるものではない。このような極性置換基を式[I]のポリイミドは、極性溶媒(例えば、ヘキサン、ベンゼン、トルエン、ジエチルエーテル、クロロホルムなど)に溶解性である。
かくして、本発明のカーボンナノチューブ可溶化剤を構成する好ましいポリイミドとして、下記の式[P1]、[P2]、[P3]、または[P4]で表わされる繰り返し単位を有するものがあるが、これらに限定されるものではない。
The aromatic polyimide represented by the formula [I] which is the subject of the present invention may have a nonpolar substituent as Z. Preferable examples of the nonpolar substituent include a long chain alkyl group having 8 to 18 carbon atoms (which may be branched), but are not limited thereto. The polyimide of the formula [I] having such a polar substituent is soluble in a polar solvent (for example, hexane, benzene, toluene, diethyl ether, chloroform, etc.).
Thus, preferred polyimides constituting the carbon nanotube solubilizer of the present invention include those having a repeating unit represented by the following formula [P1], [P2], [P3], or [P4]. It is not limited.

なお、式[P1]、[P2]、[P3]、および[P4]において、Etはエチル基を表す。 In the formulas [P1], [P2], [P3], and [P4], Et represents an ethyl group.

式[I]で表わされる繰り返し単位から成る芳香族ポリイミドは、各種の反応を工夫することによって合成することができる。図1には、上記式[P1]、[P2]、[P3]、および[P4]で表される繰り返し単位から成る芳香族ポリイミドの合成スキームを示している。同図に示されるように、一般に、m−クレゾールを溶媒とし、原料である、酸二無水物とジアミンを、トリエチルアミンおよび安息香酸存在下において、80℃で4時間、180℃で20時間加熱し、アセトン中で再沈殿を行って回収することにより、所望の芳香族ポリイミドが得られる(非特許文献7参照)。なお、このようにして得られ本発明において用いられる芳香族ポリイミドの分子量は、一般に、約15000〜50000である。
J. Fang他、Macromolecules, 35, 9022(2002)
The aromatic polyimide composed of the repeating unit represented by the formula [I] can be synthesized by devising various reactions. FIG. 1 shows a synthesis scheme of an aromatic polyimide composed of repeating units represented by the above formulas [P1], [P2], [P3], and [P4]. As shown in the figure, in general, m-cresol was used as a solvent, and the raw materials, acid dianhydride and diamine, were heated in the presence of triethylamine and benzoic acid at 80 ° C. for 4 hours and at 180 ° C. for 20 hours. The desired aromatic polyimide is obtained by performing reprecipitation in acetone and collecting it (see Non-Patent Document 7). The molecular weight of the aromatic polyimide thus obtained and used in the present invention is generally about 15000 to 50000.
J. Fang et al., Macromolecules, 35, 9022 (2002)

式[I]の芳香族ポリイミドは、各種の溶媒に室温において溶解性を有し、この特性を利用して、次のようにしてカーボンナノチューブを可溶化することができる:先ず、芳香族ポリイミドを上述したような極性または非極性溶媒に溶解させる。次に、このようにして得られた芳香族ポリイミドの溶媒溶液にカーボンナノチューブを添加する。更に、得られた芳香族ポリイミドとカーボンナノチューブの溶媒溶液に超音波照射を行う。必要に応じて、超音波照射後の溶液を遠心分離に供し、これによってバンドル化しているカーボンナノチューブが確実に除去される。なお、式[I]で表わされるような繰り返し単位を有する芳香族ポリイミドであっても、Zに相当する部位が水素原子であるようなポリイミドは、いずれの有機溶媒においても溶解しない。   The aromatic polyimide of the formula [I] is soluble in various solvents at room temperature, and by utilizing this property, the carbon nanotube can be solubilized as follows: Dissolve in a polar or non-polar solvent as described above. Next, carbon nanotubes are added to the solvent solution of the aromatic polyimide thus obtained. Furthermore, ultrasonic irradiation is performed on the solvent solution of the obtained aromatic polyimide and carbon nanotube. If necessary, the solution after ultrasonic irradiation is subjected to centrifugal separation, whereby bundled carbon nanotubes are reliably removed. In addition, even if it is an aromatic polyimide which has a repeating unit as represented by Formula [I], the polyimide in which the site | part corresponding to Z is a hydrogen atom does not melt | dissolve in any organic solvent.

本発明に従い芳香族ポリイミドを用いて如上のCNT可溶化を行うと、CNTの広い濃度範囲にわたって、個々のカーボンナノチューブが独立して(孤立して)溶解していることが可視−近赤外吸収スペクトルの測定などによって確認されている。すなわち、CNTの濃度が増大するにしたがい溶液は次第に粘度を増し最終的にはゲルを形成するが、低濃度溶液から粘稠溶液、更にはゲルを形成するいずれの領域においても、バンドル構造がほどけた状態を維持していることが認められる(後述の実施例2,3参照)。   When the above CNT solubilization is performed using an aromatic polyimide according to the present invention, it is visible to near-infrared absorption that individual carbon nanotubes are dissolved independently (isolated) over a wide concentration range of CNTs. It has been confirmed by measuring the spectrum. That is, as the CNT concentration increases, the solution gradually increases in viscosity and eventually forms a gel, but the bundle structure unwinds in any region where a low concentration solution forms a viscous solution or even a gel. It is recognized that the state is maintained (see Examples 2 and 3 described later).

芳香族部位を有する芳香族ポリイミドを用いる本発明の可溶化方法の別の特徴は、特定のカイラルベクトルを持つ幾つかの構造のナノチューブを選択的に可溶化し得ることである。例えば、既述の式[P2]で表わされる繰り返し単位を有する芳香族ポリイミドを用いた場合、通常の界面活性剤を用いた場合と異なり、(8,6)のカイラル指標をもつ単層カーボンナノチューブを特に可溶化することができる(後述の実施例4参照)。これは、界面活性剤を用いミセル水溶液を形成させる可溶化方式(非特許文献5)における場合とは可溶化のメカニズムが異なるためと推測される。   Another feature of the solubilization method of the present invention using an aromatic polyimide having an aromatic moiety is that it can selectively solubilize nanotubes of several structures with specific chiral vectors. For example, when an aromatic polyimide having a repeating unit represented by the above-described formula [P2] is used, unlike a case where a normal surfactant is used, a single-walled carbon nanotube having a chiral index of (8, 6) Can be solubilized in particular (see Example 4 below). This is presumably because the solubilization mechanism is different from that in the solubilization method (Non-Patent Document 5) in which a micelle aqueous solution is formed using a surfactant.

本発明に従えば、以上のような可溶化方法を実施することにより、芳香族ポリイミドとカーボンナノチューブとから構成される溶液(溶媒溶液)またはゲルが得られる。このような溶液やゲルは、そのまま、製膜工程や押出し成形工程などに供することができる。   According to the present invention, a solution (solvent solution) or gel composed of aromatic polyimide and carbon nanotubes is obtained by performing the solubilization method as described above. Such a solution or gel can be directly used for a film forming process, an extrusion molding process, or the like.

更に、如上の可溶化操作により一旦、CNTが可溶化されて得られた芳香族ポリイミド/CNT溶液は、他の溶媒、特に、水、エタノール、アセトニトリルのような極性溶媒と混合されることができ、それらの溶媒で稀釈されても個々のCNTは独立して溶解された状態を保持したままである(後述の実施例5参照)。したがって、この特性を利用して、例えば、それらの溶媒に溶解性の成分を加えた複合系を調製することも可能である。   Furthermore, the aromatic polyimide / CNT solution obtained by solubilizing CNTs once by the above solubilization operation can be mixed with other solvents, particularly polar solvents such as water, ethanol, and acetonitrile. Even when diluted with these solvents, the individual CNTs remain independently dissolved (see Example 5 below). Therefore, it is also possible to prepare a composite system in which a soluble component is added to these solvents, for example, using this property.

なお、よく知られているように、カーボンナノチューブには単層カーボンナノチューブ(SWCNTまたはSWNTと略記される)と多層ナノチューブ(MWCNTまたはMWNTと略記される)とがある。本発明の原理は、多層ナノチューブにも適用され得るが、特に単層カーボンナノチューブに好適に用いられる。本発明に関連して用いている「カーボンナノチューブ」または「CNT」とは、主として単層カーボンナノチューブについて言及しているものとする。   As is well known, carbon nanotubes include single-walled carbon nanotubes (abbreviated as SWCNT or SWNT) and multi-walled nanotubes (abbreviated as MWCNT or MWNT). The principle of the present invention can be applied to multi-walled nanotubes, but is particularly suitable for single-walled carbon nanotubes. The “carbon nanotube” or “CNT” used in connection with the present invention mainly refers to a single-walled carbon nanotube.

以下に本発明の特徴を更に具体的に示すために実施例を記すが、本発明はこれらの実施例によって制限されるものではない。
なお、実施例において用いた材料、測定装置は下記のとおりである。
カーボンナノチューブ:精製SWNT(HiPco)Carbon Nanotechnologies Co.から購入。
紫外−可視−近赤外吸収スペクトルの測定:分光光度計JASCO, V-570。
近赤外蛍光スペクトルの測定:蛍光分光計Horiba
Spex Fluorolog:NIR。
分子間力顕微鏡:Nanoscope IIIa
(Veeco Instruments社製)。
Examples are given below to illustrate the features of the present invention more specifically, but the present invention is not limited to these examples.
The materials and measuring devices used in the examples are as follows.
Carbon nanotubes: Purified SWNT (HiPco) Purchased from Carbon Nanotechnologies Co.
Ultraviolet-visible-near infrared absorption spectrum measurement: Spectrophotometer JASCO, V-570.
Near-infrared fluorescence spectrum measurement: Horiba fluorescence spectrometer
Spex Fluorolog: NIR.
Intermolecular force microscope: Nanoscope IIIa
(Veeco Instruments).

全芳香族ポリイミドの合成
図1に示す(A)、(B)、(C)および(D)の反応スキームに従って、既述の式[P1]、[P2]、[P3]、および[P4]の繰り返し単位を有する芳香族ポリイミド〔以下、P1、P2、P3、P4の(芳香族)ポリイミド、または、単にP1、P2、P3、P4のように表記する〕を合成した。生成物の同定は1H−NMRおよびFT−IR測定により行った。
同定データとして、図6aにP1のFT−IR、図6bにP1のH−NMR、図7aにP2のFT−IR、図7bにP2のH−NMR、図8にP3のFT−IR、図9aにP4のFT−IR、図9bにP4のH−NMRの測定結果をそれぞれ示す。
Synthesis of Fully Aromatic Polyimide According to the reaction scheme of (A), (B), (C) and (D) shown in FIG. 1, the formulas [P1], [P2], [P3], and [P4] An aromatic polyimide having the following repeating unit (hereinafter referred to as P1, P2, P3, P4 (aromatic) polyimide, or simply expressed as P1, P2, P3, P4) was synthesized. The product was identified by 1 H-NMR and FT-IR measurements.
As identification data, FIG. 6a shows P1 FT-IR, FIG. 6b shows P1 1 H-NMR, FIG. 7a shows P2 FT-IR, FIG. 7b shows P2 1 H-NMR, and FIG. 8 shows P3 FT-IR. FIG. 9a shows the FT-IR measurement results of P4, and FIG. 9b shows the 1 H-NMR measurement results of P4.

可溶化試験
実施例1で合成した芳香族ポリイミドを用いてカーボンナノチューブの可溶化試験を行った。各芳香族ポリイミドをDMSOに溶解させて、それぞれの芳香族ポリイミドの濃度が1mg/mLのDMSO溶液を調製した。このDMSO溶液に精製SWNTを加えて15分間超音波処理して、目視観察するとともに吸収スペクトルの測定を行った後、SWNTの濃度を増加させて同様の操作を行うことを繰り返した。SWNTの濃度は0.1〜約3mg/mL(対ポリイミド重量比0.1〜3)の範囲とした。
Solubilization test Carbon nanotubes were solubilized using the aromatic polyimide synthesized in Example 1. Each aromatic polyimide was dissolved in DMSO to prepare a DMSO solution having a concentration of 1 mg / mL of each aromatic polyimide. Purified SWNTs were added to this DMSO solution and subjected to ultrasonic treatment for 15 minutes. After visual observation and measurement of an absorption spectrum, the same operation was repeated by increasing the concentration of SWNTs. The concentration of SWNTs was in the range of 0.1 to about 3 mg / mL (0.1 to 3 weight ratio of polyimide).

いずれの場合においても、SWNTの濃度が増大するのにしたがって溶液は次第に粘度を増し、ある濃度を超えるとゲルを形成することが認められた。すなわち、P1のポリイミドではSWCN濃度が対ポリイミド重量比が0.98近傍から溶液が粘稠になり始め、同比が約1.7を超えるとゲル形成が認められた。また、P2のポリイミドを用いた場合では、対ポリイミド重量比が約1.4から溶液に粘度が出始め、約1.8を超えるとゲルが形成した。同様に、P3のポリイミドを使用した場合は、対ポリイミド重量比が1.7付近から粘度が出始め、約2.5を超えるとゲルの形成が認められ、また、P4のポリイミドを使用した場合には、対ポリイミド重量比が約1から溶液に粘度が出始め、約2を超えるとゲルが形成した。   In either case, it was observed that the solution gradually increased in viscosity as the concentration of SWNT increased, and a gel was formed above a certain concentration. That is, in the polyimide of P1, the solution began to become viscous when the SWCN concentration was about 0.98 to the polyimide weight ratio, and gel formation was observed when the ratio exceeded about 1.7. When P2 polyimide was used, viscosity started to appear in the solution at a weight ratio of about 1.4 to the polyimide, and a gel was formed when it exceeded about 1.8. Similarly, when P3 polyimide is used, the viscosity starts to increase from about 1.7 to about 1.5, and gel formation is observed when the weight ratio exceeds 2.5, and when P4 polyimide is used, When the polyimide weight ratio was about 1, viscosity began to appear in the solution, and when it exceeded about 2, a gel was formed.

如上の可溶化試験中に行った可視−近赤外吸収スペクトルの測定から、いずれの場合においても、バンドル構造がほどけた状態が保持されていることが確認された。代表例として、P2のポリイミドを用いて行った可溶化試験中に測定した可視−近赤外吸収スペクトルを図2に示す。   From the measurement of the visible-near infrared absorption spectrum performed during the solubilization test as described above, it was confirmed that in any case, the unbundled state of the bundle structure was maintained. As a representative example, FIG. 2 shows a visible-near infrared absorption spectrum measured during a solubilization test conducted using P2 polyimide.

近赤外吸収スペクトルの測定は、溶液または分散系においてバンドル構造がほどけて個々に溶解しているカーボンナノチューブが存在することを示す手段の一つである(非特許文献8)。図2に示されるように、本発明に従う全芳香族ポリイミドを用いてカーボンナノチューブの可溶化を行うと、SWNTの広い濃度範囲にわたって、SWNTが個々に溶解していることに因る特徴的なスペクトルが近赤外領域において認められる。すなわち、粘稠な溶液(図2のスペクトルb)およびゲル(図2のスペクトルc)について測定されたスペクトルの波形およびピーク位置は、SWNTの濃度が低い溶液(図2のスペクトルa)、および当該DMSO溶液を遠心分離(10000g)に供して得られたサンプル(図2のスペクトルd)について測定されたものと実質的に同じである。このことは、SWNTの粘稠溶液およびゲルは、個々に溶解されたSWNTから形成されたものであり、粘稠溶液やゲルにおいてもバンドル構造がほどけた状態が保持されていることを裏付けている。同様のことは、例えば、P4のポリイミドのDMSO溶液にSWNTを加えて得られた溶液の可視−近赤外吸収スペクトル(図10参照)についてもあてはまる。
さらに、本発明の芳香族ポリイミドを用いれば、水中においてもバンドル構造のほどけたSWNTの溶液がゲルを得ることができ、このことは、例えば、P4のポリイミド/SWNT水溶液の可視−近赤外吸収スペクトル(図11)から明らかである。
R. E. Smalley他、Science 297, 593(2002)
Near-infrared absorption spectrum measurement is one of the means for indicating the presence of carbon nanotubes in which a bundle structure is unwound and dissolved individually in a solution or dispersion (Non-Patent Document 8). As shown in FIG. 2, when carbon nanotubes are solubilized using a wholly aromatic polyimide according to the present invention, a characteristic spectrum due to the individual dissolution of SWNTs over a wide concentration range of SWNTs. Is observed in the near infrared region. That is, the waveform and peak position of the spectrum measured for the viscous solution (spectrum b in FIG. 2) and the gel (spectrum c in FIG. 2) are as follows: This is substantially the same as that measured for a sample (spectrum d in FIG. 2) obtained by subjecting the DMSO solution to centrifugation (10000 g). This confirms that the viscous solution and the gel of SWNT are formed from individually dissolved SWNTs, and the bundle structure is maintained in the viscous solution and the gel. . The same applies to, for example, the visible-near infrared absorption spectrum (see FIG. 10) of a solution obtained by adding SWNT to a DMSO solution of P4 polyimide.
Furthermore, if the aromatic polyimide of the present invention is used, the SWNT solution with the bundle structure unraveled in water can obtain a gel. It is clear from the spectrum (FIG. 11).
RE Smalley et al., Science 297, 593 (2002)

AFM観察
実施例2で得られたSWNT/芳香族ポリイミド複合体のDMSO溶液のAFM(原子間力顕微鏡)観察を行った。サンプルの調製は、当該溶液中にマイカ基質を浸漬した後、洗浄、次いで真空乾燥することにより行った。
図3に代表例として、P2の芳香族ポリイミドを用いた場合のAFM像を示す。SWNTの95%以上の直径が0.7〜2.0nmの範囲にあり、大部分のSWNTが個々に溶解した状態で存在していることが示されており、実施例2の近赤外吸収スペクトルによる結果と一致している。
AFM Observation AFM (atomic force microscope) observation of the DMSO solution of SWNT / aromatic polyimide composite obtained in Example 2 was performed. The sample was prepared by immersing the mica substrate in the solution, washing, and then vacuum drying.
As a typical example, FIG. 3 shows an AFM image when an aromatic polyimide of P2 is used. The SWNT has a diameter of 95% or more in the range of 0.7 to 2.0 nm, and it is shown that most SWNTs exist in a dissolved state. Is consistent with

近赤外フォトルミネッセンス2次元マッピング
溶液中でバンドル構造がほどけて個々のSWNTが溶解していることは近赤外領域で蛍光を発することによっても確認でき、そして、発光スペクトルの波長に対して励起スペクトルの波長をマッピングすることによりSWNTのカイラルベクトルを決定できることが知られている(非特許文献8)。
It can be confirmed that the SWNTs are dissolved in the near-infrared photoluminescence two-dimensional mapping solution and the individual SWNTs are dissolved by emitting fluorescence in the near-infrared region, and excited with respect to the wavelength of the emission spectrum. It is known that the chiral vector of SWNT can be determined by mapping the spectrum wavelength (Non-patent Document 8).

そこで、実施例2で得られたSWNT/芳香族ポリイミドのDMSO溶液について近赤外フォトルミネッセンス2次元マッピングを求めた。例として、図4にP2の芳香族ポリイミドを用いた場合、また、図12にP4の芳香族ポリイミドを用いた場合の結果を示す。サンプルは当該溶液を3時間、10000gの遠心分離に供することにより調製した。   Thus, near-infrared photoluminescence two-dimensional mapping was determined for the DMSO solution of SWNT / aromatic polyimide obtained in Example 2. As an example, FIG. 4 shows the results when P2 aromatic polyimide is used, and FIG. 12 shows the results when P4 aromatic polyimide is used. Samples were prepared by subjecting the solution to centrifugation at 10000 g for 3 hours.

図4に示されるように、(8,6)、(9,5)、(12,1)(14,0)および(14,9)SWNTの存在が認められ、(8,6)SWNTの強度が特に大きい。また、図11からは、P4のポリイミドが、(7,6)、(9,4)、(8,6)、(8,7)、(9,5)および(10,5)のカイラリティをもつSWNTを孤立溶解させていることが理解される。これらは、界面活性剤SDS(ドデシル硫酸ナトリウム)を用いた場合にミセル水溶液中に存在するSWNT(非特許文献5)とは異なっており、本発明によるカーボンナノチューブは特異なメカニズムで進むものと推測される。   As shown in FIG. 4, the presence of (8,6), (9,5), (12,1) (14,0) and (14,9) SWNTs is recognized, and (8,6) SWNT The strength is particularly great. Further, from FIG. 11, the polyimide of P4 has the chirality of (7,6), (9,4), (8,6), (8,7), (9,5) and (10,5). It is understood that the SWNTs that are possessed are isolated and dissolved. These are different from SWNT (Non-patent Document 5) present in the micellar aqueous solution when the surfactant SDS (sodium dodecyl sulfate) is used, and it is assumed that the carbon nanotubes according to the present invention proceed by a unique mechanism. Is done.

他の溶媒との混合試験
実施例2の操作で得られたSWNT/芳香族ポリイミドのDMSO溶液に水、アセトニトリルまたはエタノールを混合した。代表例として、図5に、P1の芳香族ポリイミドを用いたSWNT/ポリイミドのDMSO溶液に水を混合した場合の吸収スペクトル測定の結果を示す。図中、(a)は、混ぜる前の原液、(b)は水:DMSO溶液=1:1、また、(c)は水:DMSO溶液=9:1の場合である。いずれの場合においても、吸収スペクトルの実質的な変化は認められず、水で可溶化溶液を稀釈してもSWNTが個々に溶解された状態にあることが確認された。目視観察によっても均一にSWNTが可溶化したままであった。アセトニトリルまたはエタノールで稀釈した場合においても同様の結果が得られた。
Mixing test with other solvent Water, acetonitrile or ethanol was mixed with the DMSO solution of SWNT / aromatic polyimide obtained by the operation of Example 2. As a representative example, FIG. 5 shows the results of absorption spectrum measurement when water is mixed in a DMSO solution of SWNT / polyimide using the P1 aromatic polyimide. In the figure, (a) is a stock solution before mixing, (b) is a case of water: DMSO solution = 1: 1, and (c) is a case of water: DMSO solution = 9: 1. In any case, no substantial change in the absorption spectrum was observed, and it was confirmed that SWNTs were individually dissolved even when the solubilized solution was diluted with water. The SWNTs were still uniformly solubilized by visual observation. Similar results were obtained when diluted with acetonitrile or ethanol.

ポリイミドのプロトン化
実施例1で合成した芳香族ポリイミドをプロトン化してトリエチルアミン塩部分をスルホン酸基に転換した。プロトン化は、熱したメタノール中で洗浄したP1およびP2の膜を、1規定の塩酸中に8〜12時間浸漬し、超純水で洗浄し、乾燥することにより行った。
このようにP1およびP2をプロトン化して得られたポリイミドは、依然としてDMSOに対する溶解性を保っていた。そこで、プロトン化したP1及びP2のDMSO溶液で、実施例2と同様の手法に従いSWNTの可溶化試験を行い、可視−近赤外吸収スペクトルを測定した。プロトン化したポリイミドを用いた場合でも、P1およびP2を用いた場合と同様にSWNTを可溶化することができ、実質的に同じ吸収スペクトルが得られ、P1およびP2のトリエチルアミン塩構造は可溶化に影響しないことが理解された。
Protonation of polyimide The aromatic polyimide synthesized in Example 1 was protonated to convert the triethylamine salt portion into a sulfonic acid group. Protonation was performed by immersing the P1 and P2 membranes washed in hot methanol in 1N hydrochloric acid for 8 to 12 hours, washing with ultrapure water, and drying.
Thus, the polyimide obtained by protonating P1 and P2 still maintained solubility in DMSO. Therefore, a solubilization test of SWNT was performed in a DMSO solution of protonated P1 and P2 in the same manner as in Example 2, and a visible-near infrared absorption spectrum was measured. Even when protonated polyimide is used, SWNT can be solubilized in the same manner as when P1 and P2 are used, and substantially the same absorption spectrum is obtained, and the triethylamine salt structure of P1 and P2 is solubilized. It was understood that there was no effect.

Claims (7)

下記の一般式[I]で表わされる繰り返し単位を有する芳香族ポリイミドから成ることを特徴とするカーボンナノチューブ可溶化剤。
(式[I]中、ARはフェニル基または縮合多環芳香族基を表し、Xは存在しない場合もあり存在する場合は酸素原子または硫黄原子を表し、Zは溶媒可溶性を高めるための極性置換基または非極性置換基を表す。)
A carbon nanotube solubilizing agent comprising an aromatic polyimide having a repeating unit represented by the following general formula [I].
(In the formula [I], AR represents a phenyl group or a condensed polycyclic aromatic group, X may or may not exist, represents an oxygen atom or a sulfur atom, and Z represents a polar substitution for enhancing solvent solubility. Represents a group or a non-polar substituent.)
前記極性置換基が、スルホン酸基、リン酸基、もしくは硫酸基、またはそれらのトリアルキルアミン塩(該アルキルの炭素数は1から18)である、請求項1に記載のカーボンナノチューブ可溶化剤。  The carbon nanotube solubilizer according to claim 1, wherein the polar substituent is a sulfonic acid group, a phosphoric acid group, or a sulfuric acid group, or a trialkylamine salt thereof (the alkyl has 1 to 18 carbon atoms). . 前記非極性置換基が長鎖アルキル基(該アルキル基の炭素数は8から18)である、請求項1に記載のカーボンナノチューブ可溶化剤。  The carbon nanotube solubilizer according to claim 1, wherein the non-polar substituent is a long-chain alkyl group (the alkyl group has 8 to 18 carbon atoms). 下記の式[P1]、[P2]、[P3]、または[P4]で表される繰り返し単位を有する芳香族ポリイミドから成る、請求項1に記載のカーボンナノチューブ可溶化剤。
(式[P1]、[P2]、[P3]、および[P4]において、Etはエチル基を表す。)
The carbon nanotube solubilizer according to claim 1, comprising an aromatic polyimide having a repeating unit represented by the following formula [P1], [P2], [P3], or [P4].
(In the formulas [P1], [P2], [P3], and [P4], Et represents an ethyl group.)
請求項1の芳香族ポリイミドから成る可溶化剤を用いてカーボンナノチューブを可溶化する方法であって、前記芳香族ポリイミドを極性または非極性溶媒に溶解させる工程、得られた芳香族ポリイミドの前記溶媒溶液にカーボンナノチューブを添加する工程、ならびに、得られた芳香族ポリイミドとカーボンナノチューブの前記溶媒溶液に超音波照射を行う工程を含むことを特徴とする方法。  A method for solubilizing carbon nanotubes using a solubilizing agent comprising an aromatic polyimide according to claim 1, wherein the aromatic polyimide is dissolved in a polar or nonpolar solvent, and the resulting aromatic polyimide solvent is obtained. A method comprising the steps of adding carbon nanotubes to a solution, and irradiating the solvent solution of the obtained aromatic polyimide and carbon nanotubes with ultrasonic waves. 超音波照射後の溶液を遠心分離に供する工程を更に含む、請求項5に記載のカーボンナノチューブ可溶化方法。  The method for solubilizing carbon nanotubes according to claim 5, further comprising a step of subjecting the solution after ultrasonic irradiation to centrifugation. 請求項5の方法によって得られ、芳香族ポリイミドとカーボンナノチューブとから構成されることを特徴とする溶液またはゲル。  A solution or gel obtained by the method of claim 5 and comprising an aromatic polyimide and carbon nanotubes.
JP2007542800A 2005-11-04 2006-11-02 Solubilization of carbon nanotubes using aromatic polyimide Active JP5119443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542800A JP5119443B2 (en) 2005-11-04 2006-11-02 Solubilization of carbon nanotubes using aromatic polyimide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005320578 2005-11-04
JP2005320578 2005-11-04
PCT/JP2006/321962 WO2007052739A1 (en) 2005-11-04 2006-11-02 Solubilization of carbon nanotube using aromatic polyimide
JP2007542800A JP5119443B2 (en) 2005-11-04 2006-11-02 Solubilization of carbon nanotubes using aromatic polyimide

Publications (2)

Publication Number Publication Date
JPWO2007052739A1 JPWO2007052739A1 (en) 2009-04-30
JP5119443B2 true JP5119443B2 (en) 2013-01-16

Family

ID=38005892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007542800A Active JP5119443B2 (en) 2005-11-04 2006-11-02 Solubilization of carbon nanotubes using aromatic polyimide

Country Status (2)

Country Link
JP (1) JP5119443B2 (en)
WO (1) WO2007052739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029656A1 (en) * 2013-08-29 2015-03-05 住友理工株式会社 Flexible conductive material and transducer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131421A1 (en) * 2009-05-11 2010-11-18 東洋紡績株式会社 Process for producing polybenzoxazole film
US9419235B2 (en) 2009-11-06 2016-08-16 Shibaura Institute Of Technology Method for producing gel containing nano-carbon material
JP5888636B2 (en) * 2010-09-07 2016-03-22 国立大学法人 千葉大学 Functional solubilizer
JP6132389B2 (en) * 2012-01-31 2017-05-24 学校法人 芝浦工業大学 Method for producing nanocarbon material-containing gel
JP5775960B1 (en) * 2014-11-17 2015-09-09 ニッタ株式会社 Carbon nanotube dispersion, functional membrane and composite material
CN114026178B (en) * 2019-08-19 2024-01-30 Jsr株式会社 Dispersing composition, dispersing agent, anisotropic film, method for producing the same, and anisotropic film forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060798A1 (en) * 2002-12-06 2004-07-22 Hokkaido Technology Licensing Office Co., Ltd. Nanocarbon solubilizer, method for purifying same, and method for producing high-purity nanocarbon
JP2005028560A (en) * 2003-07-07 2005-02-03 Naotoshi Nakajima Method for manufacturing water-soluble carbon nanotube using dna and oligonucleotide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060798A1 (en) * 2002-12-06 2004-07-22 Hokkaido Technology Licensing Office Co., Ltd. Nanocarbon solubilizer, method for purifying same, and method for producing high-purity nanocarbon
JP2005028560A (en) * 2003-07-07 2005-02-03 Naotoshi Nakajima Method for manufacturing water-soluble carbon nanotube using dna and oligonucleotide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029656A1 (en) * 2013-08-29 2015-03-05 住友理工株式会社 Flexible conductive material and transducer

Also Published As

Publication number Publication date
JPWO2007052739A1 (en) 2009-04-30
WO2007052739A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP5119443B2 (en) Solubilization of carbon nanotubes using aromatic polyimide
Qu et al. Polyimide-functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films
Muñoz et al. Highly conducting carbon nanotube/polyethyleneimine composite fibers
JP5254608B2 (en) Method for synthesizing modular poly (phenylene ethylenin) and method for fine-tuning its electronic properties to functionalize nanomaterials
Paiva et al. Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes
Zeng et al. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior
Hasan et al. Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP)
Parra-Vasquez et al. Spontaneous dissolution of ultralong single-and multiwalled carbon nanotubes
JP5213025B2 (en) Nanocarbon material dispersion and method for producing the same, nanocarbon material composition
JP4688157B2 (en) Method for producing catalyst for fuel cell electrode
JP2004002850A (en) Polymer for solubilizing nanotube and method for solubilizing nanotube using the polymer
Gubitosi et al. Characterization of carbon nanotube dispersions in solutions of bile salts and derivatives containing aromatic substituents
Yamamoto et al. A simple and fast method to disperse long single-walled carbon nanotubes introducing few defects
JP5800678B2 (en) Nanocarbon aqueous dispersion, method for producing the same, and nanocarbon-containing structure
Sun et al. Tailorable aqueous dispersion of single-walled carbon nanotubes using tetrachloroperylene-based bolaamphiphiles via noncovalent modification
Fong et al. Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes
González-Domínguez et al. Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties
Gao et al. The preparation of cation-functionalized multi-wall carbon nanotube/sulfonated polyurethane composites
Barrejón et al. Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides
Xian et al. Hydrogen bonds leading nanodiamonds performing different thermal conductance enhancement in different MWCNTs epoxy-based nanocomposites
JP4647384B2 (en) Composite fiber composed of wholly aromatic polyamide and thin-walled carbon nanotubes
JP2015170659A (en) Thermoelectric conversion material, thermoelectric conversion device, and thermoelectric converter
JP2007217669A (en) Copolymerization of aromatic polymer and carbon nano tube and copolymer, and article produced therefrom
JP5475645B2 (en) Carbon nanotube solubilizer composed of aroylbiphenyl-based hyperbranched polymer
Chen et al. Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350