JP5119202B2 - Hemoglobin A1c measuring device - Google Patents

Hemoglobin A1c measuring device Download PDF

Info

Publication number
JP5119202B2
JP5119202B2 JP2009123680A JP2009123680A JP5119202B2 JP 5119202 B2 JP5119202 B2 JP 5119202B2 JP 2009123680 A JP2009123680 A JP 2009123680A JP 2009123680 A JP2009123680 A JP 2009123680A JP 5119202 B2 JP5119202 B2 JP 5119202B2
Authority
JP
Japan
Prior art keywords
measurement
hemoglobin
container
hba1c
glycated peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009123680A
Other languages
Japanese (ja)
Other versions
JP2010197369A (en
Inventor
雅文 三宅
浩太郎 山下
康久 柴田
智憲 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009123680A priority Critical patent/JP5119202B2/en
Publication of JP2010197369A publication Critical patent/JP2010197369A/en
Application granted granted Critical
Publication of JP5119202B2 publication Critical patent/JP5119202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ヘモグロビンA1cを高感度で測定する装置に関する。   The present invention relates to an apparatus for measuring hemoglobin A1c with high sensitivity.

糖尿病診断の検査項目として血液中のヘモグロビンA1c(以下HbA1c)の測定が重要視されている。HbA1cはヘモグロビン(Hb)に糖鎖が結合したものであり、臨床的には、血中に存在する総Hb濃度に対するHbA1c濃度の割合が検査値として診断に利用される。HbA1cの測定は、従来クロマトグラフィーを用いて行われてきたが、より簡便な測定法として、免疫比濁法や酵素法を用いた分光的な測定法がある。また、いわゆるセンサーによる検出方法として、電気化学的な信号を検出する方法が特許文献1に開示されている。一方、Hbは幅広い波長の光を吸収し、なおかつ鉄の錯体構造を有するために高い酸化還元電位を示すことが知られている。HbA1cはHbに糖化ペプチドが結合したものであることから、上記の様な測定法においてはHb自身が、目的とするHbA1cに由来する吸光度または電気化学的な信号のS/N比を低下させるノイズを発生する。そのため、分光法を利用した測定法においては、Hbを含有した全血試料の希釈や、光路長を短くすることでHbにより吸収される光量が抑制されHbA1cの測定が可能となる。   Measurement of hemoglobin A1c (hereinafter referred to as HbA1c) in blood is regarded as important as a test item for diabetes diagnosis. HbA1c is obtained by binding a sugar chain to hemoglobin (Hb), and clinically, the ratio of the HbA1c concentration to the total Hb concentration present in blood is used for diagnosis as a test value. Although the measurement of HbA1c has been conventionally performed using chromatography, there are spectroscopic measurement methods using an immunoturbidimetric method and an enzymatic method as simpler measurement methods. Further, Patent Document 1 discloses a method of detecting an electrochemical signal as a detection method using a so-called sensor. On the other hand, Hb is known to exhibit a high redox potential because it absorbs light of a wide wavelength and has an iron complex structure. Since HbA1c is a glycated peptide bound to Hb, in the measurement method as described above, Hb itself is a noise that decreases the absorbance or electrochemical signal S / N ratio derived from the target HbA1c. Is generated. Therefore, in the measurement method using the spectroscopic method, the amount of light absorbed by Hb is suppressed by diluting the whole blood sample containing Hb or shortening the optical path length, thereby enabling measurement of HbA1c.

特開2007−155684号公報JP 2007-155684 A

一方で、HbA1cに由来する電気化学的な信号を検出する測定方法においては、Hbに由来する電気的な信号を軽減する有効な手段がなかった。また、分光的な測定方法においては、高倍率に希釈することで測定感度が低下するという問題点があった。   On the other hand, in the measuring method for detecting an electrochemical signal derived from HbA1c, there is no effective means for reducing the electrical signal derived from Hb. Further, the spectroscopic measurement method has a problem in that the measurement sensitivity is lowered by diluting at a high magnification.

本発明では、高分子沈殿剤を用いてHbを沈殿し、ろ過または上澄みを抽出することでHbA1cより糖化ペプチドを遊離したHbを除去して、HbA1c測定における測定精度向上を図る。   In the present invention, Hb is precipitated by using a polymer precipitating agent, and Hb liberated the glycated peptide from HbA1c is removed by filtration or extraction of the supernatant, thereby improving measurement accuracy in HbA1c measurement.

本発明の開示する測定装置によれば、高分子沈殿剤を用いることで温度やpH変化を生じることなく、温和な条件でHbを沈殿/除去して、HbA1c測定における測定精度向上を図ることが可能となる。   According to the measuring device disclosed in the present invention, by using a polymer precipitant, Hb is precipitated / removed under mild conditions without causing a change in temperature and pH, thereby improving measurement accuracy in HbA1c measurement. It becomes possible.

本発明を適用した測定装置の一実施形態を示した図である。It is the figure which showed one Embodiment of the measuring apparatus to which this invention is applied. 本発明における測定機構の一実施形態を示した図である。It is the figure which showed one Embodiment of the measurement mechanism in this invention. 本発明における容器の一実施形態を示した図である。It is the figure which showed one Embodiment of the container in this invention. 本発明における送液方法の一実施形態を示した図である。It is the figure which showed one Embodiment of the liquid feeding method in this invention. 本発明における送液方法の一実施形態を示した図である。It is the figure which showed one Embodiment of the liquid feeding method in this invention. 本発明における沈殿物分離機構の一実施形態を示した図である。It is the figure which showed one Embodiment of the deposit separation mechanism in this invention. 本発明における測定機構の一実施形態を示した図である。It is the figure which showed one Embodiment of the measurement mechanism in this invention. 本発明における測定機構の一実施形態を示した図である。It is the figure which showed one Embodiment of the measurement mechanism in this invention. 実施例1の結果を示す図である。It is a figure which shows the result of Example 1. 実施例1の結果を示す図である。It is a figure which shows the result of Example 1. 実施例2の結果を示す図である。It is a figure which shows the result of Example 2. 実施例3の結果を示す図である。It is a figure which shows the result of Example 3.

以下に本発明を実施するための望ましい形態を例示する。   The desirable form for implementing this invention is illustrated below.

望ましい実施の形態では、測定試料として全血を利用した、HbA1c濃度を高感度で測定するための方法および装置が提供される。   In a desirable embodiment, a method and an apparatus for measuring HbA1c concentration with high sensitivity using whole blood as a measurement sample are provided.

本発明の測定装置は、試料が導入され、化学反応または物理的な手段によりHbA1cから糖化ペプチドを遊離させる前処理容器と、前処理容器で糖化ペプチドから切断されたHbまたはもとより糖化ペプチドを持たないHbを沈殿する沈殿容器と、沈殿物を測定試料中から除去する沈殿物分離機構と、糖化ペプチドを定量するための測定容器と、測定容器内の試料中の糖化ペプチドを定量する測定機構からなる。一つの容器で複数の容器の機能を兼ねることもできる。容器は溶液を保持できる構造体であれば良く、カップ,フィルタ,膜,チューブなどが望ましい。   The measurement apparatus of the present invention has a pretreatment container in which a sample is introduced and glycated peptide is released from HbA1c by chemical reaction or physical means, and Hb cleaved from the glycated peptide in the pretreatment container or originally has no glycated peptide. It consists of a precipitation container for precipitating Hb, a precipitate separation mechanism for removing the precipitate from the measurement sample, a measurement container for quantifying the glycated peptide, and a measurement mechanism for quantifying the glycated peptide in the sample in the measurement container. . One container can also function as a plurality of containers. The container may be any structure that can hold the solution, and is preferably a cup, filter, membrane, tube, or the like.

測定試料には全血試料を用いる。試料は測定開始前に抗凝固剤や溶血試料により処理されたものであっても良い。反応容器に導入される試料液量は、0.1μL以上が望ましく、最も望ましい実施形態では、10μL以上である。   A whole blood sample is used as a measurement sample. The sample may be processed with an anticoagulant or a hemolyzed sample before the start of measurement. The amount of the sample solution introduced into the reaction vessel is desirably 0.1 μL or more, and in the most desirable embodiment, is 10 μL or more.

前処理容器に測定試料が添加された後、溶血剤およびHbA1cから糖化ペプチドを切り出すための分解酵素が添加され、溶血剤により溶血した試料中のHbA1cから糖化ペプチドが遊離される。この際、溶血剤や分解酵素は予め容器中に保持されていても良い。容器中には、溶血剤や分解酵素の反応を阻害するものでなければ抗凝固剤等の他の試薬が含まれていても良い。溶血剤は、イオン性または非イオン性の界面活性剤,有機溶媒,塩,酵素を用いることができる。界面活性剤としてはポリオキシエチレンオクチルフェニルエーテル(商品名:トリトンX100),ドデシル硫酸ナトリウム(以下SDS),サポニンなどが望ましい。有機溶媒としては、ホルムアルデヒド,ヘキサン,アセトンなどが望ましい。塩としては、塩化アンモニウム,塩化アルミニウムなどが望ましい。より望ましい例は、SDSである。この場合、望ましい濃度は1〜20v/v%である。また、蒸留水で希釈するなど塩濃度の変化により溶血を促しても良い。分解酵素は、HbA1cからHbA1cに固有の糖化ペプチドを遊離することができる酵素を用いることができる。例えば、プロテアーゼ,プロテイナーゼ,エンドヌクレアーゼを挙げることができる。望ましい例は、プロテアーゼXIV(Sigma社),ブロメラインF(天野エンザイム社),プロテアーゼN(天野エンザイム社),プロタメックス(ノボザイム社)などであり、最も望ましくは、プロテアーゼN(天野エンザイム社)である。   After the measurement sample is added to the pretreatment container, a hemolytic agent and a degrading enzyme for cutting out the glycated peptide from HbA1c are added, and the glycated peptide is released from HbA1c in the sample hemolyzed by the hemolytic agent. At this time, the hemolytic agent and the degrading enzyme may be held in the container in advance. The container may contain other reagents such as an anticoagulant as long as it does not inhibit the reaction of a hemolytic agent or a degrading enzyme. As the hemolytic agent, an ionic or nonionic surfactant, an organic solvent, a salt, and an enzyme can be used. As the surfactant, polyoxyethylene octyl phenyl ether (trade name: Triton X100), sodium dodecyl sulfate (hereinafter referred to as SDS), saponin and the like are desirable. As the organic solvent, formaldehyde, hexane, acetone and the like are desirable. As the salt, ammonium chloride, aluminum chloride and the like are desirable. A more desirable example is SDS. In this case, a desirable concentration is 1 to 20 v / v%. In addition, hemolysis may be promoted by a change in salt concentration such as dilution with distilled water. As the degrading enzyme, an enzyme capable of releasing a glycated peptide unique to HbA1c from HbA1c can be used. For example, protease, proteinase, and endonuclease can be mentioned. Desirable examples include protease XIV (Sigma), bromelain F (Amano Enzyme), protease N (Amano Enzyme), Protamex (Novozyme), and most preferably Protease N (Amano Enzyme). is there.

前処理容器における処理が終了した後、前処理溶液中の遊離の糖化ペプチドとHbを含む試料溶液は沈殿容器に移動される。沈殿容器では、試料溶液に沈殿剤が添加され、沈殿剤との反応によりHbが沈殿する。沈殿が生じた反応液は、沈殿物分離機構を通して沈殿が除去され、遊離の糖化ペプチドを含む測定試料が分離される。   After the treatment in the pretreatment container is completed, the sample solution containing free glycated peptide and Hb in the pretreatment solution is moved to the precipitation container. In the precipitation container, a precipitant is added to the sample solution, and Hb is precipitated by reaction with the precipitant. The reaction solution in which the precipitation has occurred is removed through the precipitate separation mechanism, and the measurement sample containing the free glycated peptide is separated.

沈殿剤は、界面活性剤無機塩,有機塩,高分子電解質,タンパク質変性剤およびそれらの混合物を用いることができ、特にアニオン性の界面活性剤と金属塩の組み合わせが望ましい。界面活性剤は、アニオン性の官能基を持ち、Hbと結合して複合体を形成することのできる水溶性の界面活性剤が望ましい。SDSやデキストラン硫酸ナトリウム,ヘパリンナトリウムが望ましく、もっとも望ましくはSDSである。SDSの濃度は100mmol/L以上が望ましく、最も望ましくは、640mmol/L程度である。金属塩は水溶性で、水に溶けて多価金属カチオンを生じるものが望ましい。具体的には、マグネシウム,マンガン,カルシウム,亜鉛,アルミニウム,セシウムなどの塩が用いることができ、最も望ましくは塩化マグネシウムである。濃度は10mmol/L以上が望ましく、最も望ましくは600mmol/L以上である。さらに沈殿性能を向上する目的で、上記SDSと金属塩の混合物に、ポリエチレングリコール(以下PEG)を加えることも効果的である。この場合、PEGの平均分子量は1,000〜10,000程度が望ましく最も望ましくは6,000程度である。濃度は100〜1,000g/Lが望ましい。   As the precipitant, a surfactant inorganic salt, an organic salt, a polyelectrolyte, a protein denaturant and a mixture thereof can be used, and a combination of an anionic surfactant and a metal salt is particularly desirable. The surfactant is preferably a water-soluble surfactant having an anionic functional group and capable of binding to Hb to form a complex. SDS, sodium dextran sulfate and sodium heparin are desirable, and SDS is most desirable. The concentration of SDS is preferably 100 mmol / L or more, and most preferably about 640 mmol / L. The metal salt is preferably water-soluble and soluble in water to produce a polyvalent metal cation. Specifically, a salt of magnesium, manganese, calcium, zinc, aluminum, cesium or the like can be used, and most preferably magnesium chloride. The concentration is desirably 10 mmol / L or more, and most desirably 600 mmol / L or more. Furthermore, for the purpose of improving the precipitation performance, it is also effective to add polyethylene glycol (hereinafter referred to as PEG) to the mixture of SDS and metal salt. In this case, the average molecular weight of PEG is desirably about 1,000 to 10,000, and most desirably about 6,000. The concentration is preferably 100 to 1,000 g / L.

沈殿物分離機構は、糖化ペプチドを含む反応液成分とHbを含む沈殿物を分離できる構造であれば良く、ろ過機構や遠心分離機構,上澄みの抽出機構などが含まれる。ろ過機構は分離したHbによる詰まりを除く目的で複数の孔径のフィルタが積層された構造が望ましい。フィルタはシリンジやチューブのような筒状構造体に備え付けられ、引圧または加圧により分離を促進しても良い。遠心分離機構は小型で定常回転数3,000rpm以上のものが用いることができ、最も望ましくは定常回転数6,000rpm程度のものである。上澄みの抽出機構は、沈殿物を含まない上澄み部分を部分的に吸引することができる機構であれば良く、ピペッタやチューブなどが望ましい。分離を容易にするために吸引部分にさらにフィルタを備えても良い。   The precipitate separation mechanism may be any structure that can separate the reaction solution component containing the glycated peptide and the precipitate containing Hb, and includes a filtration mechanism, a centrifugal separation mechanism, a supernatant extraction mechanism, and the like. The filtration mechanism is preferably a structure in which filters having a plurality of pore sizes are laminated for the purpose of removing clogging due to separated Hb. The filter may be provided in a cylindrical structure such as a syringe or a tube, and separation may be promoted by drawing pressure or pressurization. The centrifugal separation mechanism can be small and has a steady rotation speed of 3,000 rpm or more, and most preferably has a steady rotation speed of about 6,000 rpm. The supernatant extraction mechanism may be any mechanism that can partially suck the supernatant portion that does not contain the precipitate, and is preferably a pipetter or a tube. In order to facilitate the separation, a filter may be further provided in the suction part.

測定機構は、安定して再現性良くHbA1c濃度を定量できる機構であれば良く、測定原理は、分光法,電流法,電圧法,交流インピーダンス法,伝導度法のいずれの方式であっても良い。望ましくは、従来から多くの装置に用いられ測定方法が確立されている分光法や、Hb分離後、少量の試料でも測定が可能な電圧計測方式のセンサーである。   The measurement mechanism may be any mechanism that can stably determine the HbA1c concentration with good reproducibility, and the measurement principle may be any of the spectroscopic method, current method, voltage method, AC impedance method, and conductivity method. . Desirably, it is a spectroscopic method that has been used in many devices and has established a measurement method, or a voltage measurement type sensor that can measure even a small amount of sample after Hb separation.

本発明の開示する装置の最も望ましい実施形態を図1に示す。   The most preferred embodiment of the disclosed device is shown in FIG.

最も望ましい実施形態では、前処理容器1,沈殿容器2,沈殿物分離機構3,測定容器4がフィルタからなり、それらが積層されることで、毛細管現象により容器間の液の移動が行われる。沈殿容器には、沈殿剤が含有されており、試料溶液が沈殿容器へ浸透すると共に沈殿剤と反応して凝固する。凝固したHbは沈殿物分離機構であるフィルタ中の移動速度が著しく低下するため、糖化ペプチドを含む溶液成分が第一に測定容器へ到達する。溶液成分中の糖化ペプチドは測定容器に含まれる反応試薬と反応し反応生成物を生じる。測定容器に接する測定機構5で反応生成物を検出することでHbA1cの定量が可能になる。この場合、測定機構は電気的な信号や吸光度を検出することによりHbA1cを定量するセンサーである。   In the most desirable embodiment, the pretreatment container 1, the sedimentation container 2, the sediment separation mechanism 3, and the measurement container 4 are formed of filters, and the liquid is transferred between the containers by capillary action by stacking them. The precipitation vessel contains a precipitation agent, and the sample solution permeates into the precipitation vessel and reacts with the precipitation agent to solidify. Since the solidified Hb significantly decreases the moving speed in the filter, which is a precipitate separation mechanism, the solution component containing the glycated peptide first reaches the measurement container. The glycated peptide in the solution component reacts with the reaction reagent contained in the measurement container to produce a reaction product. HbA1c can be quantified by detecting the reaction product with the measurement mechanism 5 in contact with the measurement container. In this case, the measurement mechanism is a sensor that quantifies HbA1c by detecting an electrical signal or absorbance.

沈殿剤組成:試料添加により以下の濃度になるよう、各試薬濃度を調製する。   Precipitant composition: The concentration of each reagent is adjusted to the following concentration by adding the sample.

SDS:640mmol/L
塩化マグネシウム:600mmol/L
PEG:600g/L
SDS: 640 mmol / L
Magnesium chloride: 600 mmol / L
PEG: 600 g / L

以上、測定機構にセンサーを用いたが、測定容器として分光セルを用い、測定機構として分光光度計を用いて分光法により測定を行っても良い(図2)。また、前処理容器および沈殿容器にフィルタを用いたが、カップ状の容器を用いて分注機構により次の容器へ移動(図3)しても良い。さらに、測定試料が沈殿物分離機構を通過するための推進力として、ポンプを用いて引圧(図4)または加圧(図5)することで送液を促しても良い。沈殿物分離機構として、小型の遠心分離を備えることも可能である(図6)。また、Hb測定部とHbA1c測定部を一続きに連結することで、Hbを測定した検体を、そのままHbA1c測定に用いることも可能である(図7)、導入された検体を二つ以上に分割する機構を設けることで、導入された検体を、Hb測定部とHbA1c測定部に分配し、平行して測定することも可能である(図8)。   As described above, the sensor is used as the measurement mechanism. However, the spectroscopic cell may be used as the measurement container, and the spectrophotometer may be used as the measurement mechanism to perform the measurement by spectroscopy (FIG. 2). Moreover, although the filter was used for the pretreatment container and the precipitation container, it may be moved to the next container by a dispensing mechanism using a cup-shaped container (FIG. 3). Further, as a driving force for the measurement sample to pass through the precipitate separation mechanism, liquid feeding may be promoted by pulling (FIG. 4) or pressurizing (FIG. 5) using a pump. As a precipitate separation mechanism, it is possible to provide a small centrifugal separator (FIG. 6). In addition, by connecting the Hb measurement unit and the HbA1c measurement unit in succession, it is possible to use the Hb measured sample as it is for the HbA1c measurement (FIG. 7). The introduced sample is divided into two or more. It is also possible to distribute the introduced sample to the Hb measurement unit and the HbA1c measurement unit and measure them in parallel (FIG. 8).

実施例1:最も望ましい形態による測定値と除去機構を含まない装置の比較
最も望ましい実施形態により、電位差計測方式のセンサーを用いて濃度の異なる全血試料を測定し、検量線を作成した。検量線の傾きを測定感度と定義し、最も望ましい実施形態(実施例1)と、Hb除去機構を含まない形態での感度の比較を行った結果、Hb除去機構を含まない形態では、ネルンストの式から算出される感度の理論値(−59.2mV/dec)と比較して大きく低下し、感度は−4.3mV/decであった(図9)。一方、最も望ましい実施形態では理論値に近い感度−56.3mV/decが得られ(図10)、除去機構を含まない形態での感度と比較して、13倍程度の感度向上が確認された。
Example 1: Comparison of Measurement Value According to Most Desired Form and Apparatus Not Containing Removal Mechanism According to the most desirable embodiment, whole blood samples having different concentrations were measured using a potentiometric sensor, and a calibration curve was prepared. The slope of the calibration curve was defined as the measurement sensitivity, and the sensitivity of the most desirable embodiment (Example 1) and the sensitivity not including the Hb removal mechanism were compared. Compared with the theoretical value (−59.2 mV / dec) of the sensitivity calculated from the equation, the sensitivity was −4.3 mV / dec (FIG. 9). On the other hand, in the most desirable embodiment, a sensitivity close to the theoretical value of -56.3 mV / dec was obtained (FIG. 10), and a sensitivity improvement of about 13 times was confirmed as compared with the sensitivity in the form not including the removal mechanism. .

実施例2:沈殿剤の組成最適化
沈殿剤としてSDSと塩化マグネシウムを用い、それぞれの濃度を振って混合することで、種々の組成の沈殿剤を作製した。各種組成の沈殿剤とHbを含む試料とを反応させ沈殿を生じた後遠心分離を行い、上澄み液に含まれるHb濃度を測定することで、沈殿能力の評価を行った。Hb濃度の測定は吸光度法を用いて行った。結果を図11に示す。SDS濃度が320〜640mmol/L、塩化マグネシウム濃度が300〜600mmol/Lの範囲で、各々の濃度が高いほど残存するHb濃度を減少できる(沈殿させやすい)傾向がみられ、SDS濃度640mmol/L,塩化マグネシウム濃度600mmol/Lで、最も効果的にHbを沈殿することができた。
Example 2: Optimization of precipitant composition SDS and magnesium chloride were used as precipitants, and the precipitants of various compositions were prepared by mixing at different concentrations. Precipitation agent of various compositions was reacted with Hb-containing samples to cause precipitation, followed by centrifugation, and the concentration of Hb contained in the supernatant was measured to evaluate the precipitation ability. The Hb concentration was measured using an absorbance method. The results are shown in FIG. When the SDS concentration is in the range of 320 to 640 mmol / L and the magnesium chloride concentration is in the range of 300 to 600 mmol / L, there is a tendency that the remaining Hb concentration can be decreased (easily precipitated) as the concentration increases, and the SDS concentration is 640 mmol / L. , Hb could be precipitated most effectively at a magnesium chloride concentration of 600 mmol / L.

実施例3:沈殿剤の沈殿能力向上
実施例2で最適化した組成の沈殿剤に対して、タンパク質の沈殿剤として一般的に用いられるPEG(平均分子量6,000)をさらに添加し、実施例2と同様の方法で沈殿能力の評価を行った。結果を図12に示す。PEG濃度が高くなるほど沈殿できるHb濃度は向上し、PEG濃度600g/Lで残存するHbは分光法の検出限界値以下まで減少した。
Example 3: Improving the precipitating ability of the precipitating agent To the precipitating agent having the composition optimized in Example 2, PEG (average molecular weight 6,000) generally used as a protein precipitating agent was further added. The precipitation ability was evaluated in the same manner as in No. 2. The results are shown in FIG. The higher the PEG concentration, the higher the Hb concentration that can be precipitated, and the Hb remaining at a PEG concentration of 600 g / L decreased below the detection limit value of the spectroscopic method.

1 HbA1c用前処理容器
2 Hb沈殿容器
3 沈殿物分離機構
4 HbA1c測定容器
5 HbA1c測定機構
6 Hb測定機構
7 Hb測定容器
8 検体分配機構
1 HbA1c pretreatment container 2 Hb precipitation container 3 Precipitate separation mechanism 4 HbA1c measurement container 5 HbA1c measurement mechanism 6 Hb measurement mechanism 7 Hb measurement container 8 Sample distribution mechanism

Claims (3)

ヘモグロビンを沈殿させる沈殿剤が含有されたフィルタと、該沈殿剤により沈殿した沈殿物と糖化ペプチドを含む液体を分離するフィルタと、該糖化ペプチドを含む液体が到達するフィルタとが、積層され、
前記沈殿剤は、ドデシル硫酸塩,デキストラン硫酸塩,ヘパリン塩からなる群から選択された物質と、マグネシウム塩,カルシウム塩,亜鉛塩からなる群から選択された物質の組合せからなり、
前記フィルタ間は毛細管現象により液の移動が行われることを特徴とするヘモグロビンA1c測定装置。
A filter containing a precipitant that precipitates hemoglobin, a filter that separates the precipitate precipitated by the precipitant and the liquid containing the glycated peptide, and a filter that reaches the liquid containing the glycated peptide are stacked,
The precipitating agent comprises a combination of a substance selected from the group consisting of dodecyl sulfate, dextran sulfate, heparin salt and a substance selected from the group consisting of magnesium salt, calcium salt, zinc salt,
The hemoglobin A1c measuring apparatus is characterized in that liquid is moved between the filters by capillary action.
請求項1記載のヘモグロビンA1c測定装置において、
さらに、該糖化ペプチドを含む液体が到達するフィルタに接し、ヘモグロビンA1cを測定する測定機構を備えることを特徴とするヘモグロビンA1c測定装置。
In the hemoglobin A1c measuring apparatus of Claim 1,
Furthermore, the hemoglobin A1c measuring apparatus is provided with a measuring mechanism for measuring hemoglobin A1c in contact with a filter that the liquid containing the glycated peptide reaches .
請求項2記載のヘモグロビンA1c測定装置において、
前記測定機構は、電気的な信号や吸光度を検出することによりヘモグロビンA1cを定量するセンサーであることを特徴とするヘモグロビンA1c測定装置。
The hemoglobin A1c measuring device according to claim 2,
The hemoglobin A1c measuring apparatus , wherein the measuring mechanism is a sensor that quantifies hemoglobin A1c by detecting an electrical signal or absorbance .
JP2009123680A 2009-01-29 2009-05-22 Hemoglobin A1c measuring device Active JP5119202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123680A JP5119202B2 (en) 2009-01-29 2009-05-22 Hemoglobin A1c measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009017456 2009-01-29
JP2009017456 2009-01-29
JP2009123680A JP5119202B2 (en) 2009-01-29 2009-05-22 Hemoglobin A1c measuring device

Publications (2)

Publication Number Publication Date
JP2010197369A JP2010197369A (en) 2010-09-09
JP5119202B2 true JP5119202B2 (en) 2013-01-16

Family

ID=42822209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123680A Active JP5119202B2 (en) 2009-01-29 2009-05-22 Hemoglobin A1c measuring device

Country Status (1)

Country Link
JP (1) JP5119202B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000300294A (en) * 1999-04-16 2000-10-31 Dai Ichi Pure Chem Co Ltd DETERMINATION OF HEMOGLOBIN Alc
EP1362925B1 (en) * 2001-01-31 2014-08-20 Asahi Kasei Pharma Corporation Compositions for assaying glycoprotein
JP4925384B2 (en) * 2001-04-20 2012-04-25 旭化成ファーマ株式会社 Method for quantifying N-terminal glycated protein
EP2096173B1 (en) * 2003-05-21 2019-01-30 Asahi Kasei Pharma Corporation Method of measuring glycolated hemoglobin A1C, enzyme to be used therefor and process for producing the same
BRPI0410820B1 (en) * 2003-06-19 2016-04-26 Novozymes As use of at least one isolated polypeptide, method for producing a polypeptide, animal feed additive, and animal feed composition.
JP4622836B2 (en) * 2005-12-08 2011-02-02 王子製紙株式会社 Analysis equipment

Also Published As

Publication number Publication date
JP2010197369A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP3494646B2 (en) Preparation of nucleic acids from mononuclear cells
Tang et al. Distribution and partitioning of trace metals (Cd, Cu, Ni, Pb, Zn) in Galveston bay waters
Worsfold et al. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: a review
Ling et al. Cloud point extraction coupled with HPLC-UV for the determination of phthalate esters in environmental water samples
Gustafsson et al. On the integrity of cross-flow filtration for collecting marine organic colloids
Alizadeh Preparation of molecularly imprinted polymer containing selective cavities for urea molecule and its application for urea extraction
Waeles et al. Behaviour of colloidal trace metals (Cu, Pb and Cd) in estuarine waters: an approach using frontal ultrafiltration (UF) and stripping chronopotentiometric methods (SCP)
Liu et al. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters
Shirkhanloo et al. Dispersive liquid-liquid microextraction based on task-specific ionic liquids for determination and speciation of chromium in human blood
JP2009013164A (en) Apparatus for measuring high density lipoprotein, and method for separating the same
CN103789298A (en) Erythrocyte lysis buffer and application thereof
Egeberg et al. The molecular size of natural organic matter (NOM) determined by diffusivimetry and seven other methods
Suah Preparation and characterization of a novel Co (II) optode based on polymer inclusion membrane
JP5899085B2 (en) Heavy metal recovery method and heavy metal recovery reagent used therefor
Lu et al. Colloidal toxic trace metals in urban riverine and estuarine waters of Yantai City, southern coast of North Yellow Sea
EP2508863B1 (en) Method for recovering metal
JP5119202B2 (en) Hemoglobin A1c measuring device
JP4622836B2 (en) Analysis equipment
Kolorimetri Molecular weight cut-off determination of pressure filtration membranes via colorimetric detection method
Lee et al. Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas
García-Otero et al. Assessment of metals bound to marine plankton proteins and to dissolved proteins in seawater
Ghaedi et al. Preconcentration and determination of zinc and lead ions by a combination of cloud point extraction and flame atomic absorption spectrometry
JP4547327B2 (en) Analysis method
JP6526441B2 (en) Metal recovery method and metal recovery reagent
JP2006343220A (en) Pretreatment method of biocomponent-containing solution and analysis solution purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Ref document number: 5119202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350