JP5119140B2 - Exhaust gas radiation monitor - Google Patents

Exhaust gas radiation monitor Download PDF

Info

Publication number
JP5119140B2
JP5119140B2 JP2008324893A JP2008324893A JP5119140B2 JP 5119140 B2 JP5119140 B2 JP 5119140B2 JP 2008324893 A JP2008324893 A JP 2008324893A JP 2008324893 A JP2008324893 A JP 2008324893A JP 5119140 B2 JP5119140 B2 JP 5119140B2
Authority
JP
Japan
Prior art keywords
pressure
gas
exhaust gas
sampling
concentration monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008324893A
Other languages
Japanese (ja)
Other versions
JP2010145303A (en
Inventor
康敬 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2008324893A priority Critical patent/JP5119140B2/en
Publication of JP2010145303A publication Critical patent/JP2010145303A/en
Application granted granted Critical
Publication of JP5119140B2 publication Critical patent/JP5119140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、発電プラントに設置される放射線監視設備のなかで、排ガス中の放射性ガス濃度を計測する装置に関するものである。   The present invention relates to an apparatus for measuring the concentration of radioactive gas in exhaust gas in a radiation monitoring facility installed in a power plant.

排ガス放射線モニタは、排ガス中の放射性ガス濃度を計測する装置である。その計測結果は、例えば、制御室の中央制御装置に送られ、指示計・記録計等によりその計測結果が表示される。また、異常が検知されたときは警報装置によりその旨を知らせる。   The exhaust gas radiation monitor is a device that measures the concentration of radioactive gas in the exhaust gas. The measurement result is sent to, for example, a central control device in the control room, and the measurement result is displayed by an indicator / recorder. In addition, when an abnormality is detected, an alarm device notifies the fact.

放射性ガス濃度を計測する方法に特表2008−522137号公報があげられる。前記文献には、原子炉内格納容器内の雰囲気を精度よく計測するために、試料の試料採取管への流入時における絞りによるその負圧の維持によって、採取箇所から原子炉格納容器の外側に配置された分析装置までの移送中も、採取された試料の過熱状態を維持し、放射性ガス濃度を計測する方法について記載されている。   Japanese Patent Publication No. 2008-522137 discloses a method for measuring the concentration of radioactive gas. In the above document, in order to accurately measure the atmosphere in the reactor containment vessel, the negative pressure is maintained by the restriction when the sample flows into the sampling tube, so that the sampling point is moved outside the reactor containment vessel. It describes a method for measuring the concentration of radioactive gas while maintaining the overheated state of the collected sample during the transfer to the arranged analyzer.

特表2008−522137号公報Special table 2008-522137

本発明の目的は、サンプリング配管に設置される機器の不具合による排ガスのリークを確実に防止し、不具合発生時に外部へのガスの流出を防止する排ガス放射線モニタを提供することにある。   An object of the present invention is to provide an exhaust gas radiation monitor that reliably prevents leakage of exhaust gas due to a malfunction of equipment installed in a sampling pipe and prevents outflow of gas to the outside when the malfunction occurs.

上記の目的を達成するために、本発明は、排ガス放射能測定容器,排ガス試料流量調節弁の手前に圧力調節弁及び圧力検出器を設置し、圧力検出器により採取配管内の圧力を測定し、その測定した圧力信号を演算装置に伝送し、演算装置にて任意に設定された気圧とサンプリング配管内の圧力とが一致するように、前記演算装置より圧力調節弁へと適切な開度信号を送り、前記圧力調節弁の開度を制御することにより、サンプリング配管及び機器の内部を設定した負圧に維持することを特徴とする。
In order to achieve the above object, the present invention provides a pressure control valve and a pressure detector in front of the exhaust gas radioactivity measurement container and the exhaust gas sample flow rate control valve, and measures the pressure in the sampling pipe with the pressure detector. Then, the measured pressure signal is transmitted to the arithmetic unit, and an appropriate opening signal is sent from the arithmetic unit to the pressure control valve so that the air pressure arbitrarily set by the arithmetic unit coincides with the pressure in the sampling pipe. the feed, by controlling the opening degree of the pressure regulating valve, and maintains the negative pressure set inside the sampling piping and equipment.

本発明の排ガス放射線モニタは、圧力調節弁を用いて、サンプリング配管内を負圧とすることにより、機密構造のサンプリングラックを用いることなく排ガスのリークを防ぐことが可能となる。
Exhaust gas radiation monitor of the present invention, using a pressure regulating valve, by the sampling in the pipe negative pressure, it is possible to prevent leakage of exhaust gas without using a sampling rack sensitive structure.

また、本発明により当該システムを収容するサンプリングラックを機密構造とする必要がなく、ラック内に排ガスが留まらない。そのため、サンプリングラック内へのアクセスが容易となり、メンテナンス性が飛躍的に向上する。   Further, according to the present invention, the sampling rack that accommodates the system does not need to have a confidential structure, and exhaust gas does not remain in the rack. As a result, access to the sampling rack is facilitated, and maintenance is greatly improved.

以下に、本発明の実施例を示す。なお、実施例はこれに限られるものではない。   Examples of the present invention are shown below. In addition, an Example is not restricted to this.

図1に実施例1を示す。本装置は、主復水器から抽出した気体廃棄物を処理する排ガス系主配管11(本実施例では気体廃棄物処理装置内の排ガス除湿冷却器出口主配管)から排ガスを採取する試料採取管9と、管内の圧力を調節する圧力調節弁13と、管内の圧力を測定する圧力検出器14と、放射性ガスを保持する排ガス放射能測定容器8と、放射性ガスを測定する排ガス放射線検出器1と、検出器からの信号を増幅するプリアンプ3と、管内の流量を調節する排ガス試料流量調節弁6と、採取した試料を空気抽出器12の手前の低圧力部に戻す試料回収配管10と、圧力検出器14からの信号を処理し圧力調節弁13・排ガス試料流量調節弁6を制御し、プリアンプ3からの信号を演算処理する演算装置4と、これらの信号を接続するケーブル2から構成されている。また、採取管入口15を排ガス系主配管の正圧となる箇所に、採取管出口16を排ガス系主配管の負圧となる箇所にそれぞれ設けている。なお、本実施例の設置場所はこれに限られるものではない。   Example 1 is shown in FIG. This apparatus is a sampling pipe for collecting exhaust gas from an exhaust gas system main pipe 11 (in this embodiment, an exhaust gas dehumidifying cooler outlet main pipe in the gas waste treatment apparatus) for processing gaseous waste extracted from the main condenser. 9, a pressure control valve 13 for adjusting the pressure in the pipe, a pressure detector 14 for measuring the pressure in the pipe, an exhaust gas radioactivity measuring container 8 for holding radioactive gas, and an exhaust gas radiation detector 1 for measuring radioactive gas A preamplifier 3 for amplifying the signal from the detector, an exhaust gas sample flow rate control valve 6 for adjusting the flow rate in the pipe, a sample recovery pipe 10 for returning the collected sample to the low pressure part in front of the air extractor 12, It comprises an arithmetic unit 4 that processes a signal from the pressure detector 14 and controls the pressure control valve 13 and the exhaust gas sample flow rate control valve 6 to process the signal from the preamplifier 3, and a cable 2 that connects these signals. There. The sampling pipe inlet 15 is provided at a location where the positive pressure of the exhaust gas main pipe is provided, and the sampling pipe outlet 16 is provided at a location where the negative pressure of the exhaust gas main pipe is provided. In addition, the installation place of a present Example is not restricted to this.

図2に従来から用いられてきたサンプリングラックによる、リーク防止方法について示す。排ガス試料流量調節弁以降の配管内の圧力は負圧となるが、それ以前の圧力は正圧となる。また、排ガス試料流量調節弁及び排ガス放射能測定容器は、試料採取管にネジ止めされており、これらの継手及び機器の不具合により万が一ガスがリークした場合については、気密構造となっているサンプリングラック内より排気ダクトへと排気し、適宜処理する設計としている。   FIG. 2 shows a leak prevention method using a sampling rack conventionally used. The pressure in the pipe after the exhaust gas sample flow rate control valve is negative, but the pressure before that is positive. In addition, the exhaust gas sample flow control valve and the exhaust gas radioactivity measurement container are screwed to the sampling tube, and in the unlikely event that gas leaks due to a failure of these joints and equipment, the sampling rack has an airtight structure. It is designed to exhaust from the inside to the exhaust duct and process appropriately.

実施例1では圧力調節弁13を排ガス放射能測定容器8の手前に設置し、圧力検出器14の信号を演算装置4に入力し、サンプル配管内が常に負圧となるよう圧力調節弁13に開度指示する信号を送り、圧力調節弁13の開度を調節することにより、圧力調節弁13以降の圧力を負圧に保つ。これにより、サンプル配管内を負圧とすることにより、機密構造のサンプリングラックを用いることなく排ガスのリークを防ぐことが可能である。   In the first embodiment, the pressure control valve 13 is installed in front of the exhaust gas radioactivity measurement container 8, and the signal of the pressure detector 14 is input to the arithmetic device 4, so that the pressure control valve 13 is always in a negative pressure in the sample pipe. By sending a signal for instructing the opening, and adjusting the opening of the pressure control valve 13, the pressure after the pressure control valve 13 is kept at a negative pressure. Thereby, it is possible to prevent the exhaust gas from leaking without using a sampling rack having a confidential structure by setting the inside of the sample pipe to a negative pressure.

また、本実施例では、演算装置により測定値に対して圧力補正係数を乗じ、放射能濃度を求めることができるため、排ガス系主配管が高圧となる計測点においては、圧力補正により計測範囲の上限を大きくすることが可能となる。これにより、設置場所による圧力条件が異なる場合でも、圧力条件による制限が無くなるため、より適用範囲が広がる。   Further, in this embodiment, since the radioactivity concentration can be obtained by multiplying the measured value by the pressure correction coefficient by the arithmetic unit, the measurement range of the measurement range is obtained by pressure correction at the measurement point where the exhaust gas main pipe is at a high pressure. The upper limit can be increased. Thereby, even when the pressure conditions differ depending on the installation location, the application range is further expanded because there is no restriction due to the pressure conditions.

図3に実施例2を示す。なお、実施例はこれに限られるものではない。   Example 2 is shown in FIG. In addition, an Example is not restricted to this.

図2は圧力と水の沸点の関係を示した図である。原子炉等で発生した排ガス中には水蒸気が含まれている。そのため、排ガス中の放射性濃度を測定するときには、排ガスの温度が下がったときに結露が発生し、排ガス中の放射性濃度を正確に測定するこが困難である。また結露により、機器等の損傷にもつながる。前記課題を解決するため実施例2では、図2に示すように資料採取管,排ガス放射能測定容器等を負圧にすることで、水の沸点を下げ、乾燥した排ガスが得られる。   FIG. 2 is a graph showing the relationship between the pressure and the boiling point of water. The exhaust gas generated in a nuclear reactor or the like contains water vapor. For this reason, when measuring the radioactive concentration in the exhaust gas, dew condensation occurs when the temperature of the exhaust gas decreases, and it is difficult to accurately measure the radioactive concentration in the exhaust gas. Condensation also causes damage to equipment. In order to solve the above-mentioned problem, in Example 2, as shown in FIG. 2, by making the data collection tube, the exhaust gas radioactivity measuring container, etc. negative pressure, the boiling point of water is lowered and dry exhaust gas is obtained.

本構成により、水蒸気の影響を減少させた排ガスが得られるため、より正確な放射性濃度の測定が可能になる。また、サプリング配管内の圧力を低下させることで、図3に示す通り配管内の水の沸点を下げることが可能であり、配管内のサンプルガスが湿り気を帯びたガスである場合にも、結露を防止することが可能となる。   With this configuration, exhaust gas in which the influence of water vapor is reduced can be obtained, so that the radioactive concentration can be measured more accurately. In addition, by reducing the pressure in the sampling pipe, it is possible to lower the boiling point of water in the pipe as shown in FIG. 3, and even when the sample gas in the pipe is wet gas, dew condensation occurs. Can be prevented.

本発明は発電プラントに設置される放射線監視設備のなかで、排ガスの放射性ガス濃度を計測する装置に適用可能である。   The present invention is applicable to an apparatus for measuring the concentration of radioactive gas in exhaust gas in a radiation monitoring facility installed in a power plant.

排ガス中の放射性ガス濃度を計測する装置(本発明)。An apparatus for measuring the concentration of radioactive gas in exhaust gas (the present invention). 排ガス中の放射性ガス濃度を計測する装置(従来例)。A device that measures the concentration of radioactive gas in exhaust gas (conventional example). 圧力に対する水の沸点の推移を示す説明図。Explanatory drawing which shows transition of the boiling point of water with respect to pressure.

符号の説明Explanation of symbols

1 放射線検出器
2 ケーブル
3 プリアンプ
4 演算装置
5 排ガス試料採取元弁
6 排ガス試料流量調節弁
7 排ガス試料回収弁
8 排ガス放射能測定容器
9 試料採取管
10 試料回収配管
11 排ガス系主配管
12 空気抽出器
13 圧力調節弁
14 圧力検出器
15 採取管入口
16 採取管出口
DESCRIPTION OF SYMBOLS 1 Radiation detector 2 Cable 3 Preamplifier 4 Arithmetic device 5 Exhaust gas sampling origin valve 6 Exhaust gas sample flow control valve 7 Exhaust gas sample recovery valve 8 Exhaust gas radioactivity measurement container 9 Sampling pipe 10 Sample recovery pipe 11 Exhaust gas system main pipe 12 Air extraction 13 Pressure control valve 14 Pressure detector 15 Sampling pipe inlet 16 Sampling pipe outlet

Claims (4)

原子力発電所の排ガスに含まれるガス放射能濃度を測定するガス放射能濃度監視装置において、
排ガス系主配管の正圧となる箇所に設けられた採取管入口と、
前記排ガス系主配管の負圧となる箇所に設けられた採取管出口と、
一方が前記採取管入口に設けられ、他方がサンプリング配管に設けられた試料採取管と、
一方が前記採取管出口に設けられ、他方が前記サンプリング配管に設けられ前記試料回収管と、
前記サンプリング配管に設けられた、圧力計測機構及び圧力調節機構と、
前記圧力計測機構により前記サンプリング配管の圧力を計測し、前記圧力に応じて前記圧力調節機構により前記サンプリング配管を負圧制御することを特徴とするガス放射能濃度監視装置。
In the gas radioactivity concentration monitoring device that measures the gas radioactivity concentration contained in the exhaust gas of nuclear power plants,
A sampling pipe inlet provided at a positive pressure in the exhaust gas main pipe,
A sampling pipe outlet provided at a location that becomes a negative pressure of the exhaust gas system main pipe;
One of the sampling pipes provided at the sampling pipe inlet and the other provided at the sampling pipe;
One is provided in the collection tube outlet, and the sample collection tube and the other is provided in the sampling pipe,
A pressure measuring mechanism and a pressure adjusting mechanism provided in the sampling pipe ;
The pressure the pressure of the sampling piping is measured by the measuring mechanism, gas activity concentration monitoring device, wherein said that the sampling piping Gosuru negative pressure by the pressure adjusting mechanism in accordance with the pressure.
請求項1に記載のガス放射能濃度監視装置において、
前記圧力計測機構前記圧力調節機構より下流側に設けたことを特徴とするガス放射能濃度監視装置。
In the gas radioactive concentration monitoring apparatus according to claim 1,
A gas radioactivity concentration monitoring apparatus, wherein the pressure measuring mechanism is provided downstream of the pressure adjusting mechanism.
請求項1又は2のいずれかに記載のガス放射能濃度監視装置において、
前記圧力計測機構は圧力検出器であり、
前記圧力調節機構は圧力調節弁であることを特徴とするガス放射能濃度監視装置。
In the gas radioactivity concentration monitoring device according to claim 1 or 2 ,
The pressure measuring mechanism is a pressure detector;
The gas radioactivity concentration monitoring apparatus, wherein the pressure adjusting mechanism is a pressure adjusting valve.
請求項1乃至3のいずれかに記載のガス放射能濃度監視装置において、
前記負圧は、水の沸点が大気温度より低くなる圧力まで減少させることを特徴としたガス放射能濃度監視装置。
In the gas radioactive concentration monitoring apparatus in any one of Claims 1 thru | or 3,
The negative pressure, gas activity concentration monitoring apparatus having a boiling point of water is characterized by reduced to a pressure which is lower than the atmospheric temperature.
JP2008324893A 2008-12-22 2008-12-22 Exhaust gas radiation monitor Expired - Fee Related JP5119140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324893A JP5119140B2 (en) 2008-12-22 2008-12-22 Exhaust gas radiation monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324893A JP5119140B2 (en) 2008-12-22 2008-12-22 Exhaust gas radiation monitor

Publications (2)

Publication Number Publication Date
JP2010145303A JP2010145303A (en) 2010-07-01
JP5119140B2 true JP5119140B2 (en) 2013-01-16

Family

ID=42565889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324893A Expired - Fee Related JP5119140B2 (en) 2008-12-22 2008-12-22 Exhaust gas radiation monitor

Country Status (1)

Country Link
JP (1) JP5119140B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101054812B1 (en) 2011-06-13 2011-08-05 홍윤희 Repair apparatus of radioactivity detector
JP5810902B2 (en) * 2011-12-27 2015-11-11 三菱電機株式会社 Condenser exhaust monitor
DE102013207595B3 (en) 2013-04-25 2014-09-25 Areva Gmbh Emission monitoring system for a venting system of a nuclear power plant
CN103424291B (en) * 2013-08-12 2015-07-08 中国船舶重工集团公司第七一九研究所 Multi-channel gas sampling radiation monitoring device and working method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155798A (en) * 1983-02-25 1984-09-04 株式会社東芝 Hermetic inspection method in radioactive gaseous waste processing facility
JP2003075307A (en) * 2001-08-31 2003-03-12 Nikkiso Co Ltd Sampling system for sampling gas of exhaust gas having radioactive material
DE102004050308A1 (en) * 2004-10-14 2006-06-14 Framatome Anp Gmbh Method and sampling system for recovering a sample from the atmosphere in a reactor containment of a nuclear facility

Also Published As

Publication number Publication date
JP2010145303A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
CN109855925B (en) High-temperature high-pressure high-steam concentration aerosol on-line measuring device with calibration function
JP5119140B2 (en) Exhaust gas radiation monitor
JP4755061B2 (en) Nuclear facility leakage monitoring system and leakage monitoring method thereof
JP2671963B2 (en) Method and apparatus for in-service detection of leaks in penetrations of reactor vessel heads
KR20160055020A (en) Accident recovery method by data standardization processor and real-time control analyzer, and accident recovery apparatus
CN105788681A (en) Main steam pipeline leakage monitoring system of nuclear power station
JP5069642B2 (en) Tritium sampler
RU2589726C2 (en) System for monitoring leaks of cooling pond of nuclear power plant
Hashemian et al. Using the noise analysis technique to detect response time problems in the sensing lines of nuclear plant pressure transmitters
CN107402170B (en) Device and method for continuously monitoring radioactive aerosol for preventing acidic substance corrosion
JP6664276B2 (en) Combustible gas concentration measuring device and combustible gas concentration measuring method
JP5750061B2 (en) Device for measuring hydrogen concentration in sampling gas
EA006322B1 (en) System for detecting leakages of heat carrier in the 1-st contour of a nuclear power plant
JPS5833195A (en) Radioactive gaseous waste processing device
JP2006275852A (en) Device and method for treating gas in emergency
RU37571U1 (en) SYSTEM OF REGISTRATION OF LEAKS OF THE HEAT CARRIER OF THE 1st CIRCUIT OF REACTOR INSTALLATIONS OF NUCLEAR POWER PLANTS (СРТ)
JPH06294500A (en) Gas leak position automatic cutoff device
CN212432703U (en) Nuclear island exhaust gas system temporary storage case oxyhydrogen sample analysis device
JP4508769B2 (en) Leak detection device
CN217505072U (en) Pressure measuring system
RU82915U1 (en) HEAT CARRIER LEVEL DETECTION SYSTEM BY MONITORING AEROSOL ACTIVITY IN NPP ROOMS (OPTIONS)
JP2010048752A (en) Radiation monitor
JP2022070554A (en) Flue damage condition monitoring method
JPS63302386A (en) Radiation measuring apparatus
JPS63269096A (en) Leakage monitor for reactor container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5119140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees