JP5114993B2 - Polyester resin - Google Patents

Polyester resin Download PDF

Info

Publication number
JP5114993B2
JP5114993B2 JP2007081007A JP2007081007A JP5114993B2 JP 5114993 B2 JP5114993 B2 JP 5114993B2 JP 2007081007 A JP2007081007 A JP 2007081007A JP 2007081007 A JP2007081007 A JP 2007081007A JP 5114993 B2 JP5114993 B2 JP 5114993B2
Authority
JP
Japan
Prior art keywords
polyester resin
acid
dicarboxylic acid
unit derived
erythritan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007081007A
Other languages
Japanese (ja)
Other versions
JP2008239744A (en
Inventor
雅之 川辺
俊之 濱野
隆行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007081007A priority Critical patent/JP5114993B2/en
Publication of JP2008239744A publication Critical patent/JP2008239744A/en
Application granted granted Critical
Publication of JP5114993B2 publication Critical patent/JP5114993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、植物由来原料であるエリスリタンを用いたポリエステル樹脂に関し、さらに詳しくは、耐熱性に優れ、かつ透明性を有するポリエステル樹脂に関する。   The present invention relates to a polyester resin using erythritan, which is a plant-derived raw material, and more particularly to a polyester resin having excellent heat resistance and transparency.

近年、ポリエチレンテレフタレート(以下PETと記す)に代表されるポリエステル樹脂は、優れた機械的特性、耐熱性、耐薬品性を有するためにボトルなどの容器、射出成形品、フィルム、シート、繊維として広く大量に使用されている。
循環型(サステイナブル)社会の構築を求める声の高まりとともに、材料分野においてもエネルギーと同様に化石燃料からの脱却が望まれている。石油を原料としない高分子材料を開発する場合、植物などを原料とするバイオマスが有力な原料候補であり、バイオマスプラスチックの実用化が急速に進んでいる。
In recent years, polyester resins represented by polyethylene terephthalate (hereinafter referred to as PET) are widely used as containers such as bottles, injection molded articles, films, sheets, and fibers because they have excellent mechanical properties, heat resistance, and chemical resistance. Used in large quantities.
Along with the growing demand for a recycling-oriented (sustainable) society, in the materials field, it is desired to move away from fossil fuels as well as energy. When developing high-molecular materials that do not use petroleum as a raw material, biomass using plants as raw materials is a promising raw material candidate, and the practical application of biomass plastics is rapidly progressing.

バイオマス原料のひとつであるイソソルビドとテレフタル酸およびエチレングリコールからなるポリエステルが提案されている(特許文献1)。しかしながら、イソソルビドのような2級アルコールはテレフタル酸との反応性が低いため、高分子量のポリエステルを製造しようとしても、ポリエステル全体に占めるイソソルビドの割合が2.6%以下のものまでしか製造することができない。   A polyester composed of isosorbide, which is one of biomass raw materials, terephthalic acid and ethylene glycol has been proposed (Patent Document 1). However, since secondary alcohols such as isosorbide have low reactivity with terephthalic acid, even if a high molecular weight polyester is to be manufactured, the ratio of isosorbide to the whole polyester is only 2.6% or less. I can't.

また、セルロースの分解によって得られるビスヒドロキシメチルフラン(以下BHFと記す)もバイオマス原料として注目されており、それを原料としたポリエステルの検討も行なわれている(非特許文献1)。
しかしながら、BHFと各種ジカルボン酸からなるポリエステル樹脂は、従来のポリエステルに比べ、透明度や耐熱性が低いものしかえることができないため、従来のPETと同等以上の耐熱性と透明性を有するバイオマス原料から得られる高分子量のポリエステルが求められてきた。
特表2002−512304号公報 高分子論文集,Vol.62,No.7,pp.321-325(Jul.,2005)
Further, bishydroxymethylfuran (hereinafter referred to as BHF) obtained by decomposing cellulose has attracted attention as a biomass raw material, and a polyester using the raw material has been studied (Non-patent Document 1).
However, since polyester resins composed of BHF and various dicarboxylic acids can only have low transparency and heat resistance compared to conventional polyesters, they can be obtained from biomass raw materials having heat resistance and transparency equivalent to or higher than conventional PET. There has been a need for high molecular weight polyesters obtained.
Special table 2002-512304 gazette Journal of Polymer Science, Vol.62, No.7, pp.321-325 (Jul., 2005)

上記課題に鑑み、本発明は、バイオマス原料を多く含み、かつ高い耐熱性と透明度を有する高分子量のポリエステル樹脂を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a high molecular weight polyester resin containing a large amount of biomass raw materials and having high heat resistance and transparency.

本発明者らは、上記課題を解決すべく鋭意検討した結果、下記一般式(1)で表されるジヒドロキシ化合物とテレフタル酸を含むポリエステル樹脂の開発に取り組み、該ポリエステル樹脂が、重合反応性が良好で高分子量のポリエステル樹脂を得られやすく、かつ耐熱性、透明性に優れていることを見出し、本発明に到達した。
即ち、本発明の要旨は、下記一般式(1)で表されるジヒドロキシ化合物に由来する構成単位とジカルボン酸に由来する構成単位を含むポリエステル樹脂に存する。
As a result of intensive studies to solve the above problems, the present inventors have worked on the development of a polyester resin containing a dihydroxy compound represented by the following general formula (1) and terephthalic acid, and the polyester resin has a polymerization reactivity. The present inventors have found that a good and high molecular weight polyester resin can be easily obtained, and are excellent in heat resistance and transparency, and have reached the present invention.
That is, the gist of the present invention resides in a polyester resin containing a structural unit derived from a dihydroxy compound represented by the following general formula (1) and a structural unit derived from a dicarboxylic acid.

Figure 0005114993
Figure 0005114993

本発明のポリエステル樹脂はイソソルビドを共重合成分として用いた従来のバイオマス原料ポリエステル樹脂に比べて容易に重合可能で、成形加工により透明性と耐熱性を有する各種成形材料として広く使用することができる。   The polyester resin of the present invention can be polymerized more easily than conventional biomass raw material polyester resins using isosorbide as a copolymerization component, and can be widely used as various molding materials having transparency and heat resistance by molding.

以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に限定されない。以下、その詳細について説明する。
本発明のポリエステル樹脂は、ジカルボン酸とジオールとからなるポリエステル樹脂であって、ジオール成分として下記一般式(1)で表されるジヒドロキシ化合物、及び他のジオール成分を含むことを特徴とするものである。
The description of the constituent requirements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not limited to these contents. The details will be described below.
The polyester resin of the present invention is a polyester resin comprising a dicarboxylic acid and a diol, and includes a dihydroxy compound represented by the following general formula (1) as a diol component, and another diol component. is there.

Figure 0005114993
Figure 0005114993

本発明において、上記一般式(1)で表されるジヒドロキシ化合物としては、エリスリタンが挙げられる。エリスリタンは、天然の多糖類であるエリスリトールの分子内脱水反応によって合成される化合物である。5員環構造のジオール成分であり、2個の水酸基はシス構造であって、トランス構造は含んでいない。この構造を有するため、エリスリタンをジオール成分とするポリエステル樹脂は結晶性が低く透明性に優れ、また耐熱性も向上すると考えられる。   In the present invention, examples of the dihydroxy compound represented by the general formula (1) include erythritan. Erythritan is a compound synthesized by an intramolecular dehydration reaction of erythritol, a natural polysaccharide. It is a diol component having a 5-membered ring structure, and the two hydroxyl groups have a cis structure and do not contain a trans structure. Because of this structure, it is considered that a polyester resin containing erythritan as a diol component has low crystallinity, excellent transparency, and improved heat resistance.

本発明のポリエステル樹脂中のエリスリタンの含有量は、全ジオール成分に対して20〜100モル%であることが好ましく、30〜100モル%であることがより好ましい。エリスリタンの含有量がこの範囲にある場合、成形性、機械的強度、透明性、耐熱性に優れた樹脂が得られる。エリスリタンの含有量が多いほどガラス転移温度が高くなり耐熱性に優れ、少ないほど耐熱性が低下する。   The content of erythritan in the polyester resin of the present invention is preferably 20 to 100 mol%, more preferably 30 to 100 mol%, based on all diol components. When the erythritan content is within this range, a resin excellent in moldability, mechanical strength, transparency, and heat resistance can be obtained. The greater the erythritan content, the higher the glass transition temperature and the better the heat resistance, and the smaller the content, the lower the heat resistance.

また、本発明において、ジオール成分としてはエリスリタンを主成分として用いるが、それ以外のジオール成分としてエチレングリコール、ジエチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノールなどを用いることができる。これらのジオール成分は単独でも2種類以上混合して用いてもよいが、耐熱性を維持できるという点から、好ましくは1,4−シクロヘキサンジメタノールを用いる。なお、ここでいう主成分とは、全ジオール成分に対して、通常50モル%以上、好ましくは60モル%以上、より好ましくは70モル%以上、特に好ましくは90モル%以上を示す。   In the present invention, erythritan is used as the main component as the diol component, but ethylene glycol, diethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and the like can be used as other diol components. These diol components may be used alone or in combination of two or more, but 1,4-cyclohexanedimethanol is preferably used from the viewpoint that heat resistance can be maintained. The main component here is usually 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more with respect to the total diol component.

一方、本発明に使用できる、ジカルボン酸としては、芳香族ジカルボン酸又はそれらの混合物、若しくは、芳香族ジカルボン酸と脂肪族ジカルボン酸との混合物が挙げられる。
芳香族ジカルボン酸としては、テレフタル酸及びイソフタル酸等が挙げられ、芳香族ジカルボン酸の誘導体としては、芳香族ジカルボン酸の低級アルキルエステル、具体的には、メチルエステル、エチルエステル、プロピルエステル及びブチルエステル等が挙げられる。この内、芳香族ジカルボン酸としては、ポリエステル樹脂のガラス転移温度(耐熱性)を維持するという点から、テレフタル酸を主成分とするものが好ましく、芳香族ジカルボン酸の誘導体としては、テレフタル酸ジメチルを主成分とするものが好ましい。ここでいう主成分とは、全ジカルボン酸成分に対して、通常50モル%以上、好ましくは60モル%以上、より好ましくは70モル%以上、特に好ましくは90モル%以上を示す。
On the other hand, examples of the dicarboxylic acid that can be used in the present invention include an aromatic dicarboxylic acid or a mixture thereof, or a mixture of an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid.
Examples of the aromatic dicarboxylic acid include terephthalic acid and isophthalic acid, and examples of the aromatic dicarboxylic acid derivative include lower alkyl esters of aromatic dicarboxylic acid, specifically methyl ester, ethyl ester, propyl ester, and butyl. Examples include esters. Among these, as the aromatic dicarboxylic acid, those having terephthalic acid as a main component are preferable from the viewpoint of maintaining the glass transition temperature (heat resistance) of the polyester resin. As the aromatic dicarboxylic acid derivative, dimethyl terephthalate is preferable. The main component is preferred. The main component here is usually 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more with respect to the total dicarboxylic acid component.

脂肪族ジカルボン酸成分としては、脂肪族ジカルボン酸又はその誘導体が使用される。脂肪族ジカルボン酸としては、具体的には、シュウ酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカン二酸、ダイマー酸ならびにシクロヘキサンジカルボン酸等の、通常、炭素数が2以上40以下の鎖状或いは脂環式ジカルボン酸が挙げられる。また、脂肪族ジカルボン酸の誘導体として、上記脂肪族ジカルボン酸のメチルエステル、エチルエステル、プロピルエステル及びブチルエステル等の低級アルキルエステルや例えば無水コハク酸等の上記脂肪族ジカルボン酸の環状酸無水物も使用できる。これらの内、脂肪族ジカルボン酸の主成分としては、得られる重合体の物性の面から、脂環式ジカルボン酸が好ましく、その中でもシクロヘキサンジカルボン酸が更に好ましく、1,4−シクロヘキサンジカルボン酸が最も好ましい。
これらのジカルボン酸は単独でも2種以上混合して使用することもできる。
As the aliphatic dicarboxylic acid component, an aliphatic dicarboxylic acid or a derivative thereof is used. Specific examples of the aliphatic dicarboxylic acid include oxalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, dimer acid, and cyclohexanedicarboxylic acid, which usually have 2 to 40 carbon atoms. Examples include chain or alicyclic dicarboxylic acids. Examples of the aliphatic dicarboxylic acid derivative include lower alkyl esters such as methyl ester, ethyl ester, propyl ester, and butyl ester of the aliphatic dicarboxylic acid, and cyclic acid anhydrides of the aliphatic dicarboxylic acid such as succinic anhydride. Can be used. Of these, the main component of the aliphatic dicarboxylic acid is preferably an alicyclic dicarboxylic acid from the viewpoint of the physical properties of the resulting polymer. Among them, cyclohexanedicarboxylic acid is more preferable, and 1,4-cyclohexanedicarboxylic acid is most preferable. preferable.
These dicarboxylic acids can be used alone or in combination of two or more.

本発明のポリエステル樹脂のフェノールと1,1,2,2−テトラクロロエタンの重量比1:1溶液での30℃における濃度1.00g/dlでの固有粘度は、0.40〜1.20dl/gの範囲であることが好ましく、0.50〜0.80dl/gの範囲にあることがより好ましい。共重合ポリエステル樹脂の固有粘度がこの範囲にあることで、成形性、耐熱性、透明性に優れた成形品を得ることができる。すなわち、ポリエステル樹脂の極限粘固有粘度が0.40dl/gに満たない場合は、耐衝撃性、透明性、耐熱性が低下し、1.20dl/gを超える場合は、成形性が低下する。   The intrinsic viscosity at a concentration of 1.00 g / dl at 30 ° C. in a 1: 1 weight ratio solution of phenol and 1,1,2,2-tetrachloroethane of the polyester resin of the present invention is 0.40 to 1.20 dl / It is preferably in the range of g, and more preferably in the range of 0.50 to 0.80 dl / g. When the intrinsic viscosity of the copolymerized polyester resin is within this range, a molded product having excellent moldability, heat resistance, and transparency can be obtained. That is, when the intrinsic viscosity of the polyester resin is less than 0.40 dl / g, impact resistance, transparency and heat resistance are lowered, and when it exceeds 1.20 dl / g, moldability is lowered.

本発明の好適なポリエステル樹脂は、基本的には、テレフタル酸を主成分とするジカルボン酸成分とエリスリタンを主成分とするジオール成分とによるポリエステル樹脂の慣用の製造方法により製造される。
即ち、テレフタル酸を主成分とするジカルボン酸成分とエリスリタンを主成分とするジオール成分とをエステル化反応槽でエステル化し、得られたエステル化反応生成物を重縮合反応槽に移送し重縮合させる直接重合法、テレフタル酸のエステル形成性誘導体を主成分とするジカルボン酸成分とエリスリタンを主成分とするジオール成分とをエステル交換反応槽でエステル交換反応し、得られたエステル交換反応生成物を重縮合反応槽に移送し重縮合させるエステル交換法、或いは、スラリー調製槽でテレフタル酸を主成分とするジカルボン酸成分を、エリスリタンを主成分とするジオール成分に分散させてスラリー化したスラリーを、エステル化反応槽中の前記で得られたエステル化反応生成物又はエステル交換反応生成物に、連続的に添加してエステル化し、得られた反応生成物を連続的に又は/及び段階的に重縮合反応槽に移送して重縮合させる連続式直接重合法等のいずれをも採り得る。またエリスリタン以外のジオール成分はエステル化反応、またはエステル交換反応終了までの任意の時点で添加することができる。
The preferred polyester resin of the present invention is basically produced by a conventional production method of a polyester resin comprising a dicarboxylic acid component containing terephthalic acid as a main component and a diol component containing erythritan as a main component.
That is, a dicarboxylic acid component containing terephthalic acid as a main component and a diol component containing erythritan as a main component are esterified in an esterification reaction tank, and the resulting esterification reaction product is transferred to a polycondensation reaction tank for polycondensation. In the direct polymerization method, a dicarboxylic acid component mainly composed of an ester-forming derivative of terephthalic acid and a diol component mainly composed of erythritan are transesterified in a transesterification reaction tank, and the resulting transesterification reaction product is overlapped. An ester exchange method in which a polycarboxylic acid is transferred to a condensation reaction tank, or a slurry prepared by dispersing a dicarboxylic acid component containing terephthalic acid as a main component in a diol component containing erythritan as a main component in a slurry preparation tank. Continuously added to the esterification reaction product or transesterification reaction product obtained above in the esterification reaction tank. And esterified, it may also take any of such continuous direct polymerization method polycondensation by transferring the reaction product obtained continuously or / and stepwise polycondensation reaction tank. A diol component other than erythritan can be added at any time until the esterification reaction or the transesterification reaction is completed.

又、通常、重縮合反応により得られた樹脂は、重縮合反応槽の底部に設けられた抜き出し口からストランド状に抜き出して、水冷しながら若しくは水冷後、カッターで切断されてペレット状とされるが、更に、この重縮合後のペレットを加熱処理して固相重合させることにより、更に高重合度化させ得ると共に、反応副生物のアセトアルデヒドや低分子オリゴマー等を低減化することもできる。   Usually, the resin obtained by the polycondensation reaction is extracted in the form of a strand from an extraction port provided at the bottom of the polycondensation reaction tank, and is cooled with water or after water cooling and cut into a pellet by cutting with a cutter. However, the polycondensation pellets are subjected to a heat treatment and subjected to solid phase polymerization, whereby the degree of polymerization can be further increased, and reaction by-products such as acetaldehyde and low molecular oligomers can be reduced.

尚、前記製造方法において、エステル化反応は、必要に応じて、例えば、三酸化二アンチモンや、アンチモン、チタン、マグネシウム、カルシウム等の有機酸塩、アルコラート等のエステル化触媒を使用して、200〜270℃程度の温度、1×10〜4×10Pa程度の圧力下でおこなわれ、エステル交換反応は、必要に応じて、例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、マンガン、チタン、亜鉛等の有機酸塩等のエステル交換触媒を使用して、200〜270℃程度の温度、1×10〜4×10Pa程度の圧力下でおこなわれる。 In the above production method, the esterification reaction is carried out using, for example, an antimony trioxide, an organic acid salt such as antimony, titanium, magnesium, calcium, or an esterification catalyst such as alcoholate. It is carried out at a temperature of about 270 ° C. and a pressure of about 1 × 10 5 to 4 × 10 5 Pa, and the transesterification reaction is performed, for example, lithium, sodium, potassium, magnesium, calcium, manganese, titanium as necessary. The reaction is performed at a temperature of about 200 to 270 ° C. and a pressure of about 1 × 10 5 to 4 × 10 5 Pa using a transesterification catalyst such as an organic acid salt such as zinc.

又、重縮合反応は、例えば、安定剤として正燐酸、亜燐酸、及びこれらのエステルなどの燐化合物を使用し、及び、例えば、三酸化二アンチモン、二酸化ゲルマニウム、四酸化ゲルマニウム等の金属酸化物、或いは、アンチモン、ゲルマニウム、亜鉛、チタン、コバルト等の有機酸塩、アルコラート等の重縮合触媒を使用して、240〜290℃程度の温度、1×10〜2×10Pa程度の減圧下でなされる。エリスリタンの熱分解を抑制するために重合反応が進む限界の温度で行なうことが好ましく、その温度は240〜270℃である。又、前記の重縮合反応に続いて固相重合を行うことが出来、120〜200℃程度の温度で1分間以上加熱する等して予備結晶化がなされた後、180〜融点マイナス5℃程度の温度、窒素ガス等の不活性ガスの雰囲気下、又は/及び、1×10〜2×10Pa程度の減圧下でおこなわれる。 The polycondensation reaction uses, for example, phosphorus compounds such as orthophosphoric acid, phosphorous acid, and esters thereof as stabilizers, and metal oxides such as diantimony trioxide, germanium dioxide, germanium tetroxide, etc. Alternatively, using a polycondensation catalyst such as an organic acid salt such as antimony, germanium, zinc, titanium, cobalt, or alcoholate, a temperature of about 240 to 290 ° C., a reduced pressure of about 1 × 10 2 to 2 × 10 3 Pa Made below. In order to suppress the thermal decomposition of erythritan, it is preferably carried out at a limit temperature at which the polymerization reaction proceeds, and the temperature is 240 to 270 ° C. In addition, following the polycondensation reaction, solid phase polymerization can be performed. After precrystallization is performed by heating at a temperature of about 120 to 200 ° C. for 1 minute or longer, 180 to about a melting point of about −5 ° C. In an atmosphere of an inert gas such as nitrogen gas or / and a reduced pressure of about 1 × 10 2 to 2 × 10 3 Pa.

本発明のポリエステル樹脂は、公知の成形方法によって種々の成形品を製造できる。例えば、ポリエステル樹脂を乾燥により水分率を200ppm以下とした後射出成形機に供給し、樹脂の溶融温度において所定形状の金型に射出成形し、金型内で冷却固化することにより得られる。また、本発明のポリエステル樹脂は耐熱性が必要とされる自動車用部品に使用されるのが好ましい。   The polyester resin of the present invention can produce various molded products by known molding methods. For example, it is obtained by drying a polyester resin to a moisture content of 200 ppm or less, supplying the polyester resin to an injection molding machine, injection molding into a mold having a predetermined shape at the melting temperature of the resin, and cooling and solidifying in the mold. In addition, the polyester resin of the present invention is preferably used for automotive parts that require heat resistance.

以下、実施例によって本発明を詳細に説明する。各物性の測定方法および評価は、下記の方法に従った。
(1)固有粘度(IV)
ポリエステル樹脂試料約0.25gを、フェノール/1,1,2,2−テトラクロロエタン(重量比1/1)の混合液約25mLに、濃度が1.00g/dLとなるように溶解させた後、30℃まで冷却、保持し、全自動溶液粘度計(中央理化社製「2CH型DT504」)にて、試料溶液及び溶媒のみの落下秒数を測定し、下式により算出した。
IV=((1+4KHηsp)0.5−1)/(2KHC)
ここで、 ηsp=η/η0−1 であり、ηは試料溶液の落下秒数、η0は溶媒のみの落下秒数、Cは試料溶液濃度(g/dL)、KHはハギンズの定数である。KHは0.33を採用した。なお試料の溶解条件は、110℃で30分間である。
Hereinafter, the present invention will be described in detail by way of examples. The measurement method and evaluation of each physical property followed the following method.
(1) Intrinsic viscosity (IV)
After dissolving about 0.25 g of a polyester resin sample in about 25 mL of a mixture of phenol / 1,1,2,2-tetrachloroethane (weight ratio 1/1) so that the concentration is 1.00 g / dL The solution was cooled to 30 ° C. and held, and the number of seconds of dropping of the sample solution and the solvent alone was measured with a fully automatic solution viscometer (“2CH DT504” manufactured by Chuo Rika Co., Ltd.), and calculated according to the following formula.
IV = ((1 + 4KHηsp) 0.5-1) / (2KHC)
Here, ηsp = η / η0−1, η is the drop time of the sample solution, η0 is the drop time of the solvent alone, C is the sample solution concentration (g / dL), and KH is the Huggins constant. KH adopted 0.33. The sample is dissolved at 110 ° C. for 30 minutes.

(2)ポリエステル構成成分の定量(NMR測定)
ポリエステル樹脂を、重クロロホルム/HFIPの混合溶液=70/30(重量比)で溶解し、BRUKER社製AV400M分光計を用いてH−NMRを測定し、得られたチャートの各共重合成分のプロトンのピーク積分強度から全ジオール成分に対する共重合組成(モル%)を計算した。
(2) Determination of polyester constituents (NMR measurement)
Polyester resin was dissolved in deuterated chloroform / HFIP mixed solution = 70/30 (weight ratio), 1 H-NMR was measured using AV400M spectrometer manufactured by BRUKER, and each copolymer component of the obtained chart was measured. The copolymer composition (mol%) for all diol components was calculated from the peak integrated intensity of protons.

(3)補外ガラス転移開始温度(Tg)
示差走査熱量測定装置(メトラー社製DSC822型)を用いて、JIS K 7121「プラスチックの転移温度測定方法」に準じて補外ガラス転移開始温度(Tg)を測定した。具体的には、ポリエステル樹脂試料約7mgを試験容器に詰め、窒素流量40ml/分、転移温度よりも50℃低い温度から転移温度よりも30℃高い温度まで加熱速度20℃/分で加熱した時のDSC曲線から補外ガラス転移開始温度(Tg)を決定した。
(3) Extrapolated glass transition start temperature (Tg)
An extrapolated glass transition start temperature (Tg) was measured in accordance with JIS K 7121 “Method for measuring transition temperature of plastic” using a differential scanning calorimeter (DSC822 model manufactured by Mettler). Specifically, about 7 mg of a polyester resin sample is packed in a test container and heated at a heating rate of 20 ° C./min from a nitrogen flow rate of 40 ml / min to a temperature 50 ° C. lower than the transition temperature to 30 ° C. higher than the transition temperature. From the DSC curve, the extrapolated glass transition onset temperature (Tg) was determined.

(4)耐熱性評価(荷重たわみ温度)
ポリエステル樹脂を熱風乾燥機中130℃で5時間(非晶性樹脂の場合は60℃で5時間以上)乾燥し、樹脂水分率を100ppm以下としたあと、射出成形機を使用して射出圧力60MPa、成形温度260℃、金型温度40℃で、長さ110mm、厚さ4.2mm、巾12.8mmの試験片を成形した。得られた試験片を用いてJIS K 7191「プラスチック荷重たわみ温度の試験方法」に準じて、荷重0.45MPa(4.6kgf/cm)における荷重たわみ温度を測定した。荷重たわみ温度が70℃以上であると成形品として実用に耐えうる。
(4) Heat resistance evaluation (deflection temperature under load)
The polyester resin is dried in a hot air dryer at 130 ° C. for 5 hours (in the case of an amorphous resin, at 60 ° C. for 5 hours or more), the resin moisture content is adjusted to 100 ppm or less, and then an injection pressure is set to 60 MPa using an injection molding machine. A test piece having a length of 110 mm, a thickness of 4.2 mm, and a width of 12.8 mm was molded at a molding temperature of 260 ° C. and a mold temperature of 40 ° C. Using the obtained test piece, the deflection temperature under load at a load of 0.45 MPa (4.6 kgf / cm 2 ) was measured according to JIS K 7191 “Test method for deflection temperature under plastic load”. When the deflection temperature under load is 70 ° C. or higher, it can be practically used as a molded product.

(5)透明性(へーズ)
ポリエステル樹脂を熱風乾燥機中130℃で5時間(非晶性樹脂の場合は60℃で5時間以上)乾燥し、樹脂水分率を100ppm以下としたあと、射出成形機を使用して射出圧力60MPa、成形温度260℃、金型温度40℃で、寸法80mm×120mm、厚み2mmの平板プレートを成形した。得られた試験片を用いて、ヘーズメーター(日本電色社製 ヘーズメーター300A)によりJIS K 7105「プラスチックの光学的特性試験方法」に準じてヘーズ(曇価)を測定した。ヘーズ1.0%以下であると 成形品として透明感が良好である。
(5) Transparency (haze)
The polyester resin is dried in a hot air dryer at 130 ° C. for 5 hours (in the case of an amorphous resin, at 60 ° C. for 5 hours or more), the resin moisture content is adjusted to 100 ppm or less, and then an injection pressure is set to 60 MPa using an injection molding machine. A flat plate having a size of 80 mm × 120 mm and a thickness of 2 mm was molded at a molding temperature of 260 ° C. and a mold temperature of 40 ° C. Using the obtained test piece, the haze (haze value) was measured with a haze meter (Nippon Denshoku Co., Ltd. haze meter 300A) according to JIS K 7105 “Testing methods for optical properties of plastics”. If the haze is 1.0% or less, the molded article has good transparency.

(実施例1)
<ポリエステル樹脂の製造>
テレフタル酸(以下TPAと記す)8.55kgと酸成分に対しグリコール成分のモル比が1.2となるように、エリスリタン0.27kgおよびエチレングリコール(以下EGと記す)3.83kgとを攪拌機および留出管を備えたステンレス製オートクレーブに仕込み、250℃、200kPaの条件下で5時間エステル化反応を行った。エステル化反応終了後、得られるポリマーに対して120ppmの二酸化ゲルマニウム触媒と8ppmのチタニウムテトラブトキシド触媒、および32ppmのリン酸トリエチルを加え、270℃、100Paの減圧下にて重縮合反応を行った。なお、二酸化ゲルマニウム触媒、チタニウムテトラブトキシド触媒およびリン酸トリエチルは全てEG溶液として添加した。得られた共重合ポリエステル樹脂に関し、共重合組成(モル%)、固有粘度IV(dL/g)、ガラス転移温度Tg(℃)、荷重たわみ温度(℃)、ヘーズ(%)を測定した結果を表1に示した。
Example 1
<Manufacture of polyester resin>
8.55 kg of terephthalic acid (hereinafter referred to as TPA) and 0.27 kg of erythritan and 3.83 kg of ethylene glycol (hereinafter referred to as EG) so that the molar ratio of the glycol component to the acid component is 1.2 The mixture was charged into a stainless steel autoclave equipped with a distillation tube and subjected to esterification under conditions of 250 ° C. and 200 kPa for 5 hours. After completion of the esterification reaction, 120 ppm of germanium dioxide catalyst, 8 ppm of titanium tetrabutoxide catalyst, and 32 ppm of triethyl phosphate were added to the obtained polymer, and a polycondensation reaction was performed at 270 ° C. and a reduced pressure of 100 Pa. The germanium dioxide catalyst, titanium tetrabutoxide catalyst and triethyl phosphate were all added as an EG solution. Regarding the obtained copolymer polyester resin, the results of measuring the copolymer composition (mol%), intrinsic viscosity IV (dL / g), glass transition temperature Tg (° C.), deflection temperature under load (° C.), and haze (%) are shown. It is shown in Table 1.

(実施例2〜実施例10)
実施例1において、TPA、EG、エリスリタンの仕込み量及び溶融重縮合時間を表1〜3および表5に示す様に変更した以外は実施例1と同様に行い評価した。なお、実施例10においては、酸成分に対するグリコール成分のモル比は1.0となるようにした。結果を表1〜表3および表5に示す。
(Example 2 to Example 10)
In Example 1, evaluation was performed in the same manner as in Example 1 except that the amounts of TPA, EG and erythritan charged and the melt polycondensation time were changed as shown in Tables 1 to 3 and Table 5. In Example 10, the molar ratio of the glycol component to the acid component was set to 1.0. The results are shown in Tables 1 to 3 and Table 5.

(実施例10)
実施例1で得られたペレット状の共重合ポリエステル樹脂を、窒素雰囲気下、100℃で8時間結晶化させた後、窒素雰囲気下195℃で表4記載の固相重縮合時間で、固相重縮合を行った。得られた樹脂の固有粘度、成形品評価結果を表4に示した。
(Example 10)
The pelletized copolyester resin obtained in Example 1 was crystallized at 100 ° C. for 8 hours in a nitrogen atmosphere, and then solid phase polycondensation time shown in Table 4 at 195 ° C. in a nitrogen atmosphere. Polycondensation was performed. Table 4 shows the intrinsic viscosity and molded product evaluation results of the obtained resin.

(実施例11)
実施例5において溶融重縮合時間を表4記載の時間に変更した以外は実施例5と同様に行い評価した結果を表4に示す。
Example 11
Table 4 shows the results of evaluation conducted in the same manner as in Example 5 except that the melt polycondensation time was changed to the time shown in Table 4 in Example 5.

(実施例12)
実施例7において、実施例1で得られた樹脂の代わりに実施例2で得られたペレット状の共重合ポリエステル樹脂を使用して表4記載の固相重縮合時間で、固相重縮合を行った。得られた樹脂の固有粘度、成形品評価結果を表4に示した。
(Example 12)
In Example 7, solid phase polycondensation was carried out at the solid phase polycondensation time described in Table 4 using the pelletized copolymer polyester resin obtained in Example 2 instead of the resin obtained in Example 1. went. Table 4 shows the intrinsic viscosity and molded product evaluation results of the obtained resin.

(比較例1)
実施例1において、TPA8.64kgとEG3.88kgを仕込み、エリスリタンは使用しないように変更した以外は実施例1と同様に試験を行い評価した。結果を表5に示す。
(Comparative Example 1)
In Example 1, tests and evaluations were conducted in the same manner as in Example 1 except that 8.64 kg of TPA and 3.88 kg of EG were charged and erythritan was changed so as not to be used. The results are shown in Table 5.

(比較例2)
実施例1において原料仕込みをTPA7.60Kg、イソフタル酸1.04kg、EG3.88kgを仕込み、エリスリタンは使用しないように変更した以外は実施例1と同様に試験を行い評価した。(イソフタル酸共重合量:12モル%)
結果を表5に示す。
(Comparative Example 2)
In Example 1, the test was conducted in the same manner as in Example 1 except that TPA 7.60 Kg, isophthalic acid 1.04 kg, EG 3.88 kg were charged, and erythritan was changed not to be used. (Isophthalic acid copolymerization amount: 12 mol%)
The results are shown in Table 5.

Figure 0005114993
Figure 0005114993

Figure 0005114993
Figure 0005114993

Figure 0005114993
Figure 0005114993

Figure 0005114993
Figure 0005114993





Figure 0005114993
Figure 0005114993

以上の実施例と比較例から本発明の共重合ポリエステル樹脂は耐熱性に優れ、透明性が良好であることがわかる。   From the above Examples and Comparative Examples, it can be seen that the copolymerized polyester resin of the present invention has excellent heat resistance and good transparency.

Claims (5)

下記一般式(1)で表されるジヒドロキシ化合物に由来する構成単位とジカルボン酸に由来する構成単位を含み、フェノールと1,1,2,2−テトラクロロエタンの重量比1:1溶液での30℃における濃度1.00g/dlでの固有粘度が、0.36〜0.85dl/gの範囲であり、下記一般式(1)で表されるジヒドロキシ化合物に由来する構成単位の含有割合が、全ジオール成分に由来する構成単位に対して、30〜100モル%であるポリエステル樹脂。30 containing a constitutional unit derived from a dihydroxy compound represented by the following general formula (1) and a constitutional unit derived from a dicarboxylic acid, and a weight ratio of phenol and 1,1,2,2-tetrachloroethane of 30 in a 1: 1 solution. The intrinsic viscosity at a concentration of 1.00 g / dl at 0 ° C. is in the range of 0.36 to 0.85 dl / g, and the content ratio of the structural unit derived from the dihydroxy compound represented by the following general formula (1) is: The polyester resin which is 30-100 mol% with respect to the structural unit derived from all the diol components.
Figure 0005114993
Figure 0005114993
更に、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、及び
1,4−シクロヘキサンジメタノールからなる群より選ばれる少なくとも1種の化合物に
由来する構成単位を含む請求項1に記載のポリエステル樹脂。
The polyester resin according to claim 1, further comprising a structural unit derived from at least one compound selected from the group consisting of ethylene glycol, diethylene glycol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
前記ジカルボン酸がテレフタル酸である請求項1又は2に記載のポリエステル樹脂。 The polyester resin according to claim 1, wherein the dicarboxylic acid is terephthalic acid. 前記ジカルボン酸が1,4-シクロヘキサンジカルボン酸である請求項1又は2に記載の
ポリエステル樹脂。
The polyester resin according to claim 1 or 2, wherein the dicarboxylic acid is 1,4-cyclohexanedicarboxylic acid.
フェノールと1,1,2,2−テトラクロロエタンの重量比1:1溶液での30℃における濃度1.00g/dlでの固有粘度が0.50〜0.80dl/gの範囲である請求項1乃至のいずれかに記載のポリエステル樹脂。 The intrinsic viscosity at a concentration of 1.00 g / dl at 30 ° C in a 1: 1 weight ratio solution of phenol and 1,1,2,2-tetrachloroethane is in the range of 0.50 to 0.80 dl / g. The polyester resin according to any one of 1 to 4 .
JP2007081007A 2007-03-27 2007-03-27 Polyester resin Active JP5114993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081007A JP5114993B2 (en) 2007-03-27 2007-03-27 Polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081007A JP5114993B2 (en) 2007-03-27 2007-03-27 Polyester resin

Publications (2)

Publication Number Publication Date
JP2008239744A JP2008239744A (en) 2008-10-09
JP5114993B2 true JP5114993B2 (en) 2013-01-09

Family

ID=39911472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081007A Active JP5114993B2 (en) 2007-03-27 2007-03-27 Polyester resin

Country Status (1)

Country Link
JP (1) JP5114993B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048721B2 (en) * 2012-06-13 2016-12-21 三菱レイヨン株式会社 Polyester resin for toner
JP6186705B2 (en) * 2012-11-19 2017-08-30 三菱ケミカル株式会社 Polyester resin and method for producing the same
CN105829394B (en) * 2013-12-24 2019-02-12 三菱化学株式会社 Polyester resin and its manufacturing method and toner
JP6237850B2 (en) * 2016-09-20 2017-11-29 三菱ケミカル株式会社 Polyester resin for toner
JP7243622B2 (en) 2018-03-14 2023-03-22 三菱ケミカル株式会社 polyester resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2589500B2 (en) * 1987-08-11 1997-03-12 三菱化学株式会社 Solvent for electrolyte
DE3816540A1 (en) * 1988-05-14 1989-11-23 Hoechst Ag BENT-RESISTANT POLYESTER FILAMENTS, THEIR PRODUCTION AND USE

Also Published As

Publication number Publication date
JP2008239744A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
KR101769560B1 (en) Polyester resin copolymerized with lactic acid and isosorbide and preparing method thereof
TWI628224B (en) Blend of polylactic acid resin and copolyester resin and articles using the same (1)
KR101235016B1 (en) Biodegradable Copolyester Resin with High Thermal Property and Process of Preparation thereof
US11306179B2 (en) Polyester copolymer
JP5114993B2 (en) Polyester resin
KR101276100B1 (en) Biodegradable Copolyester Resin made from Biomass Resources
JP2017528535A (en) Transparent biodegradable polymer
TW201326301A (en) Blend of polylactic acid resin and copolyester resin and articles using the same
KR101502051B1 (en) Eco-friendly Copolyester Resin and Process of Preparing Same
US11548980B2 (en) Polyester copolymer
TW201326300A (en) Blend of polylactic acid resin and copolyester resin and articles using the same
KR102210711B1 (en) Biodegradable copolymer polyester resin comprising anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol and method for preparing the same
JP2016520706A (en) Biodegradable polyester resin and article containing the same
KR101514786B1 (en) Polyester resin including component from biomass and preparation method of the same
KR102589197B1 (en) Biodegradable polyester copolymer comprising anhydrosugar alcohol based polycarbonate diol and preparation method thereof, and molded article comprising the same
KR102589193B1 (en) Biodegradable polyester copolymer comprising anhydrosugar alcohol and anhydrosugar alcohol based polycarbonate diol and preparation method thereof, and molded article comprising the same
JP4826763B2 (en) Washing machine lid
KR20230085387A (en) Biodegradable polyester resin with remarkably improved marine biodegradability and method for preparing the same
JP6705287B2 (en) Polyester resin
WO2023118408A1 (en) Process for the production of polyester copolymers
JP5463647B2 (en) Copolymerized polyester resin for molded containers for containing high-concentration alcohol-containing materials and molded containers
JP2020002190A (en) Catalyst for polyester polymerization, and polyester resin and method for producing the same
JP2001139671A (en) Preparation process of copolymerized polyester resin
JP2017160359A (en) Polytetramethylene glycol copolymerized polybuthylene terephthalate

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5114993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350