JP5112819B2 - Electrostatic vibrator and oscillator - Google Patents

Electrostatic vibrator and oscillator Download PDF

Info

Publication number
JP5112819B2
JP5112819B2 JP2007282842A JP2007282842A JP5112819B2 JP 5112819 B2 JP5112819 B2 JP 5112819B2 JP 2007282842 A JP2007282842 A JP 2007282842A JP 2007282842 A JP2007282842 A JP 2007282842A JP 5112819 B2 JP5112819 B2 JP 5112819B2
Authority
JP
Japan
Prior art keywords
vibrating
electrode
vibrating body
deformation control
electrostatic vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007282842A
Other languages
Japanese (ja)
Other versions
JP2009111810A (en
Inventor
亮平 神谷
学 大海
文雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007282842A priority Critical patent/JP5112819B2/en
Publication of JP2009111810A publication Critical patent/JP2009111810A/en
Application granted granted Critical
Publication of JP5112819B2 publication Critical patent/JP5112819B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、各種電子機器の基準周波数発振器に使用される静電振動子に関する。   The present invention relates to an electrostatic vibrator used for a reference frequency oscillator of various electronic devices.

携帯電話等に代表される無線携帯機器や、パーソナルコンピュータ、時計等の電子機器において、小型でしかも安定な高周波信号源として水晶振動子が用いられてきた。   A crystal resonator has been used as a small and stable high-frequency signal source in a wireless portable device typified by a cellular phone or the like, or an electronic device such as a personal computer or a watch.

水晶振動子は他の高周波電子部品と比較すると大型であることから、近年、小型化の要求が高まってきている。しかし、その要求を十分に満足させることはできていない。   In recent years, there has been an increasing demand for miniaturization of quartz resonators because they are large compared to other high-frequency electronic components. However, the request cannot be fully satisfied.

そのような要求を満足させ、水晶振動子を置き換えるものとして、近年、MEMS(Micro-Electro-Mechanical-System)技術を用いて作製した静電振動子が注目されている。静電振動子は機械的に振動する振動体とそれに対して間隙を隔てて並列した電極を含む。振動体と電極の間には直流電圧が印加されている。その状態でさらに振動体と電極の間に交流電圧を印加すると、ある一定の周波数において共振が起こる。この静電振動子は水晶振動子と同程度の共振Q値を持つだけでなく、水晶振動子に比べ、小型化、集積化、高周波数対応が容易である等の利点があり、次世代の高周波信号源として期待されている。   In recent years, electrostatic vibrators manufactured using MEMS (Micro-Electro-Mechanical-System) technology have attracted attention as a means for satisfying such requirements and replacing quartz vibrators. The electrostatic vibrator includes a vibrating body that vibrates mechanically and an electrode that is arranged in parallel with a gap therebetween. A DC voltage is applied between the vibrating body and the electrode. If an alternating voltage is further applied between the vibrating body and the electrode in this state, resonance occurs at a certain frequency. This electrostatic vibrator not only has the same resonance Q value as a quartz crystal resonator, but also has advantages such as miniaturization, integration, and high frequency response compared to a quartz crystal resonator. Expected to be a high-frequency signal source.

上述のように静電振動子は水晶振動子に比べ多くの利点がある反面、解決しなければならない課題もある。静電振動子は水晶振動子に比べ共振周波数の温度依存性が高く、温度変化に対する共振周波数の安定性が低い。そのために信頼性において水晶振動子より劣る。   As described above, the electrostatic vibrator has many advantages over the quartz vibrator, but there are also problems to be solved. The electrostatic vibrator has a higher temperature dependency of the resonance frequency than the crystal vibrator, and the stability of the resonance frequency with respect to a temperature change is low. Therefore, it is inferior to a quartz resonator in reliability.

この問題を解決する一つの方法として、温度変化に対する共振周波数変化を補償する方法が特許文献1により公開されている。その方法は、温度変化に伴い、振動部と電極の間に印加する直流電圧や間隙の距離を能動的または受動的に変化させることで、温度変化に対する共振周波数変化を補償する方法である。   As one method for solving this problem, Patent Document 1 discloses a method for compensating for a resonance frequency change with respect to a temperature change. This method is a method for compensating for a change in resonance frequency with respect to a temperature change by actively or passively changing the DC voltage applied between the vibrating part and the electrode or the distance of the gap in accordance with the temperature change.

特許文献1では、振動体と電極を隔てる間隙の距離を温度変化に対して受動的に変化させる方法として、振動体を構成する振動部とそれを支える支持体、電極にそれぞれ熱膨張係数の異なる異種材料を用いる方法が示されている。その方法によると、基準温度において各部材の寸法、相対位置等の設計パラメータを設定することで、温度変化に対する前記間隙の距離の変化量を設計することができる。以下、特許文献1における前記設計パラメータについて、図9、図10を参照して説明する。図9、図10は、それぞれ特許文献1における発明の一実施形態による静電振動子を基板上面の視点から見た平面図である。図9、図10において、1は振動部、2は電極、3は基板、4はてこレバー、5はてこレバーの支持体、6はてこレバーの支柱、7と8は振動部1の支持体である。L1、L2、L11、L12、a、b、dが前記設計パラメータであり、それぞれ、基準温度における支持体7および支持体8の長さ、電極2の幅、てこレバーの支持体5の長さ、てこレバーの支柱6の長さ、てこレバー4の力点から支点までの距離、てこレバー4の支点から電極2までの距離、振動部1と電極2の間の距離である。これらは全て、温度変化に対して線形的に変化する。さらに、上記以外の設計パラメータとして各部材の熱膨張率があり、これは、異種材料を組み合わせた混合材を用いる等して変化させることができる。
米国特許第6987432号明細書
In Patent Document 1, as a method for passively changing the distance between the vibrating body and the electrode with respect to the temperature change, the thermal expansion coefficient differs between the vibrating part constituting the vibrating body, the support body supporting the vibrating body, and the electrode. A method using dissimilar materials is shown. According to this method, by setting design parameters such as dimensions and relative positions of the respective members at the reference temperature, it is possible to design the amount of change in the gap distance with respect to the temperature change. Hereinafter, the design parameters in Patent Document 1 will be described with reference to FIGS. 9 and 10. 9 and 10 are plan views of an electrostatic vibrator according to an embodiment of the invention in Patent Document 1 as seen from the viewpoint of the upper surface of the substrate. 9 and 10, 1 is a vibrating portion, 2 is an electrode, 3 is a substrate, 4 is a lever lever, 5 is a lever lever support, 6 is a lever lever column, and 7 and 8 are vibration body 1 supports. It is. L1, L2, L11, L12, a, b, and d are the design parameters, and the lengths of the support 7 and the support 8 at the reference temperature, the width of the electrode 2, and the length of the support 5 of the lever lever, respectively. The length of the lever lever support 6, the distance from the force point of the lever lever 4 to the fulcrum, the distance from the fulcrum of the lever lever 4 to the electrode 2, and the distance between the vibrating portion 1 and the electrode 2. All of these change linearly with temperature. Further, as a design parameter other than those described above, there is a coefficient of thermal expansion of each member, which can be changed by using a mixed material in which different materials are combined.
US Pat. No. 6,987,432

特許文献1で示されている温度変化に対する前記間隙の距離の変化量の設計方法によると、前記間隙の距離の変化は温度変化に対して線形的であるため、共振周波数の補償の精度が十分ではなかった。   According to the design method of the change amount of the gap distance with respect to the temperature change shown in Patent Document 1, since the change in the gap distance is linear with respect to the temperature change, the accuracy of compensation of the resonance frequency is sufficient. It wasn't.

本発明は、共振周波数の補償の精度をより向上させることができる静電振動子を提供することが目的である。   An object of the present invention is to provide an electrostatic vibrator capable of further improving the accuracy of resonance frequency compensation.

本発明は、上記の課題を解決するためになされたもので、振動体と、前記振動体に対し間隙を隔て配置された電極と、前記振動体とは熱膨張係数の異なる異種材料によって形成された変形制御体と、を含み、前記電極と前記変形制御体とが基板に固定された静電振動子であって、前記振動体は、少なくとも一部屈曲した形状からなる屈曲部を有し、前記振動体が前記変形制御体に少なくとも一点で連接され、前記屈曲部が温度変化に起因して前記連接点に生じる応力により変形し、前記変形によって前記間隙の距離が非線形的に変化することを特徴とする静電振動子である。 The present invention has been made to solve the above-described problems. The vibrating body, the electrode disposed with a gap with respect to the vibrating body, and the vibrating body are formed of different materials having different thermal expansion coefficients. includes a deformation control member has a, a the electrode and the deformation control member and the electrostatic vibrator fixed to the substrate, the vibrating body, have a bent portion comprising a bent shape on at least a portion The vibrating body is connected to the deformation control body at at least one point, and the bent portion is deformed by a stress generated in the connecting contact due to a temperature change, and the distance of the gap changes nonlinearly due to the deformation. This is an electrostatic vibrator.

前記間隙の距離の変化を非線形的にするために、新たな設計パラメータとして関数fを導入する。前記関数fは、前記振動体の形状を曲線で近似的に表した場合に、任意に決めた座標における前記曲線の関数を表す。   In order to make the change in the gap distance non-linear, a function f is introduced as a new design parameter. The function f represents a function of the curve at arbitrarily determined coordinates when the shape of the vibrating body is approximately represented by a curve.

前記関数fは微分不可の点も含むことができる。その場合の前記関数fは、前記微分不可の点を除き区分的に定義する。   The function f can also include non-differentiable points. In this case, the function f is defined piecewise except for the non-differentiable point.

本発明によれば、振動体が温度変化に起因する応力により変形し、その変形によって振動体と電極とを隔てる間隙の距離を変化させることができる。この間隙の距離の変化は非線形的に設計することが可能である。そのような設計により、温度変化に対する共振周波数の変化を従来の方法に比べ高い精度で補償可能となる。   According to the present invention, the vibrating body is deformed by the stress caused by the temperature change, and the distance of the gap separating the vibrating body and the electrode can be changed by the deformation. This change in the gap distance can be designed nonlinearly. Such a design makes it possible to compensate for changes in the resonance frequency with respect to temperature changes with higher accuracy than in the conventional method.

以下、図面を参照し、本発明の実施形態を説明する。図1、図3〜図8は、それぞれ本発明の一実施形態による静電振動子を基板上面の視点から見た平面図である。また、図2は図1の振動体10の形状を曲線y=f(x)で近似的に表現した図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 3 to 8 are plan views of the electrostatic vibrator according to the embodiment of the present invention as seen from the viewpoint of the upper surface of the substrate. FIG. 2 is a diagram in which the shape of the vibrating body 10 in FIG. 1 is approximately expressed by a curve y = f (x).

図1は、本発明の実施形態1による静電振動子の構造を示す平面図である。図1において、振動体10はその形状が長尺状をなしているとともに基準温度において少なくとも一部で屈曲した状態にあり、本実施形態では、長尺状の振動体10は例えば長手方向の略中央部で屈曲した状態にある。この状態において、振動体10には外力はかかっていない。振動体10は変形制御体9に対して例えば両端部である二点で連接し、少なくとも一点で接合されている。以下の全ての実施形態において、少なくとも一点で接合されていると言った場合、特に明示しない限り説明上は全ての連接点で接合されている構造を想定している。しかし、基準温度の設定によって、必ずしも接合されずに単に接している構造でも同様な効果が得られる場合があり、特に明示しなくとも各実施形態はそのような構造を含んでいる。電極2は基板3に固定されている。振動体10は、例えばその屈曲部が電極2に対して間隙dを隔てるように配置されている。変形制御体9は、振動体10に比べ熱膨張係数が小さな異種材料により形成されている。また、図には明示していないが、変形制御体9も基板3に固定されている。振動体10や電極2、変形制御体9の形状、配置はこの限りでなく、また、振動体10、電極2にはそれぞれ互いに熱膨張係数の異なる異種材料を用いることができる。   FIG. 1 is a plan view showing the structure of an electrostatic vibrator according to Embodiment 1 of the present invention. In FIG. 1, the vibrating body 10 has a long shape and is bent at least partially at a reference temperature. In the present embodiment, the long vibrating body 10 is, for example, substantially in the longitudinal direction. It is in a bent state at the center. In this state, no external force is applied to the vibrating body 10. The vibrating body 10 is connected to the deformation control body 9 at, for example, two points that are both ends, and is joined at at least one point. In all of the following embodiments, when it is said that it is joined at at least one point, a structure that is joined at all the continuous contacts is assumed unless otherwise specified. However, depending on the setting of the reference temperature, there may be a case where a similar effect can be obtained even if the structure is not necessarily joined but is simply in contact, and each embodiment includes such a structure even if not explicitly stated. The electrode 2 is fixed to the substrate 3. For example, the vibrating body 10 is arranged such that a bent portion thereof is separated from the electrode 2 by a gap d. The deformation control body 9 is made of a different material having a smaller thermal expansion coefficient than that of the vibration body 10. Although not shown in the figure, the deformation control body 9 is also fixed to the substrate 3. The shape and arrangement of the vibrating body 10, the electrode 2, and the deformation control body 9 are not limited to this, and different materials having different thermal expansion coefficients can be used for the vibrating body 10 and the electrode 2, respectively.

基準温度から温度が上昇すると、振動体10や電極2、変形制御体9はそれぞれ膨張する。しかし、変形制御体9の膨張量は振動体10の膨張量よりも小さい。よって、振動体10は変形制御体9との連接点において応力14、応力15を受ける。これにより、振動体10はその屈曲部の屈曲角度が小さくなるように変形する、つまり、振動体10が変位23の向きに出っ張るように変形する。その結果、間隙dが増加する。   When the temperature rises from the reference temperature, the vibrating body 10, the electrode 2, and the deformation control body 9 expand. However, the expansion amount of the deformation control body 9 is smaller than the expansion amount of the vibrating body 10. Therefore, the vibrating body 10 receives the stress 14 and the stress 15 at the continuous contact point with the deformation control body 9. Thereby, the vibrating body 10 is deformed so that the bending angle of the bent portion becomes small, that is, the vibrating body 10 is deformed so as to protrude in the direction of the displacement 23. As a result, the gap d increases.

図示しない駆動回路により、振動体10と電極2との間に一定の直流電圧をかけ、その状態で電極2から振動体10にある周波数の交流電圧をかけると振動体10が大きく振動する。その周波数が静電振動子の共振周波数である。温度変化に依存して共振周波数は変化するが、図1の構造によれば、共振周波数の変化を補償する方向に間隙dを変化させることができる。また、振動体10が屈曲していることにより、温度変化による間隙dの変化は非線形的な変化となる。   When a constant DC voltage is applied between the vibrating body 10 and the electrode 2 by a drive circuit (not shown) and an AC voltage having a frequency in the vibrating body 10 is applied from the electrode 2 in this state, the vibrating body 10 vibrates greatly. The frequency is the resonance frequency of the electrostatic vibrator. Although the resonance frequency changes depending on the temperature change, according to the structure of FIG. 1, the gap d can be changed in a direction to compensate for the change in the resonance frequency. Further, since the vibrating body 10 is bent, a change in the gap d due to a temperature change is a non-linear change.

温度変化によって間隙dが非線形的に変化する一例として、図2のf(x)が例えば双曲線関数、高次の多項式関数、および楕円の一部を切り取った弧を表す関数である場合を挙げることができる。ここで挙げた関数はあくまで一例であり、f(x)はその限りではない。   As an example in which the gap d changes nonlinearly due to a temperature change, a case where f (x) in FIG. 2 is, for example, a hyperbolic function, a higher-order polynomial function, or a function representing an arc obtained by cutting a part of an ellipse is given. Can do. The functions listed here are merely examples, and f (x) is not limited thereto.

図3は、本発明の実施形態2による静電振動子の構造を示す平面図である。図3は図1の変形制御体9を変形制御体16で置き換えた図であり、その他の部分に違いはない。よって、図1と同一部分には同一符号を与え、説明を省略する。図3の変形制御体16は、振動体10の周囲を囲む長方形の枠として形成されており、その枠の途中に切れ目はなく、枠は閉路である。また、図には示していないが、変形制御体16は基板3に固定されている。図1の変形制御体9は、振動体10を応力14と応力15により変形させるが、応力14と応力15の反作用によりそれ自体も変形する。変形制御体9を変形制御体16に置き換えることにより、変形制御体がより強固になり、応力14と応力15の反作用によるそれ自体の変形が抑えられる。変形制御体の変形が抑えられることにより、振動体10の変形が増大する。また、変形制御体16は変形制御体9に比べ応力による材料の疲労が少なく、耐久性が高い。変形制御体16は長方形の枠状に形成されているが、変形制御体の形状はこの限りではない。   FIG. 3 is a plan view showing the structure of the electrostatic vibrator according to the second embodiment of the present invention. FIG. 3 is a diagram in which the deformation control body 9 of FIG. 1 is replaced with a deformation control body 16, and there is no difference in other parts. Therefore, the same parts as those in FIG. The deformation control body 16 of FIG. 3 is formed as a rectangular frame surrounding the periphery of the vibrating body 10, and there is no break in the middle of the frame, and the frame is a closed circuit. Although not shown in the figure, the deformation control body 16 is fixed to the substrate 3. The deformation control body 9 in FIG. 1 deforms the vibrating body 10 by the stress 14 and the stress 15, but also deforms itself by the reaction of the stress 14 and the stress 15. By replacing the deformation control body 9 with the deformation control body 16, the deformation control body becomes stronger and the deformation itself due to the reaction between the stress 14 and the stress 15 is suppressed. By suppressing the deformation of the deformation control body, the deformation of the vibrating body 10 increases. Further, the deformation control body 16 has less fatigue of the material due to stress and higher durability than the deformation control body 9. The deformation control body 16 is formed in a rectangular frame shape, but the shape of the deformation control body is not limited to this.

図4は、本発明の実施形態3による静電振動子の構造を示す平面図である。図4は図1の変形制御体9を変形制御体17で置き換えた図であり、その他の部分に違いはない。よって、図1と同一部分には同一符号を与え、説明を省略する。図4の変形制御体17は、振動体10の例えば両端部の内側に二点で連接し、少なくとも一点で接合されており、振動体10の両端部で挟み込まれた状態となっている。また、図には示していないが、変形制御体17は基板3に固定されている。この構造は、その他の実施形態に比べ静電振動子全体をよりコンパクトにまとめることができるという利点がある。   FIG. 4 is a plan view showing the structure of an electrostatic vibrator according to Embodiment 3 of the present invention. FIG. 4 is a diagram in which the deformation control body 9 of FIG. 1 is replaced with a deformation control body 17, and there is no difference in other parts. Therefore, the same parts as those in FIG. The deformation control body 17 in FIG. 4 is connected at two points, for example, inside the both ends of the vibrating body 10 and joined at at least one point, and is sandwiched between both ends of the vibrating body 10. Although not shown in the figure, the deformation control body 17 is fixed to the substrate 3. This structure has an advantage that the entire electrostatic vibrator can be gathered more compactly than other embodiments.

図5は、本発明の実施形態4による静電振動子の構造を示す平面図である。図5は図1の振動体10を振動部1、支持体18、および支持体19で置き換えた図であり、その他の部分に違いはない。よって、図1と同一部分には同一符号を与え、説明を省略する。振動部1は支持体18と支持体19とに接続している。支持体18と支持体19とは変形制御体9にそれぞれ一点で連接し、それら計二点の連接点のうち少なくとも一点で接合されている。長尺状の振動体となる振動部1、支持体18、および支持体19は、例えば長手方向の略中央部に位置する振動部1で屈曲した状態にある。また、振動部1、支持体18、および支持体19にはそれぞれ互いに熱膨張係数が異なる材料を用いることができる。振動部1はそのままに、支持体18と支持体19とを形成する材料を振動部1とは熱膨張係数の異なる異種材料に変えると、共振周波数は変えずに温度変化による間隙dの変化量を変えることができる。すなわち、共振周波数は変えずに温度変化に対する共振周波数の変化の補正効果だけを変えることができる。これにより、設計の自由度が増し、共振周波数は変えずに静電振動子全体を小型にする等の設計が可能になる。   FIG. 5 is a plan view showing the structure of an electrostatic vibrator according to Embodiment 4 of the present invention. FIG. 5 is a diagram in which the vibrating body 10 of FIG. 1 is replaced with the vibrating portion 1, the support body 18, and the support body 19, and there is no difference in other portions. Therefore, the same parts as those in FIG. The vibration unit 1 is connected to the support 18 and the support 19. The support 18 and the support 19 are respectively connected to the deformation control body 9 at one point, and are joined at at least one of these two points of connection. The vibration part 1, the support body 18, and the support body 19 serving as a long vibration body are in a state of being bent by the vibration part 1 located at a substantially central part in the longitudinal direction, for example. In addition, materials having different thermal expansion coefficients can be used for the vibration unit 1, the support 18, and the support 19, respectively. If the material for forming the support 18 and the support 19 is changed to a different material having a different thermal expansion coefficient from that of the vibration part 1 while the vibration part 1 is left as it is, the amount of change in the gap d due to temperature change without changing the resonance frequency. Can be changed. That is, only the correction effect of the change in the resonance frequency with respect to the temperature change can be changed without changing the resonance frequency. As a result, the degree of freedom in design increases, and it becomes possible to design the electrostatic vibrator as a whole without changing the resonance frequency.

図6は、本発明の実施形態5による静電振動子の構造を示す平面図である。図6は図1の振動体10を振動部11、固定部12、および固定部13で置き換えた図であり、その他の部分に違いはない。よって、図1と同一部分には同一符号を与え、説明を省略する。図1では、振動体10は変形制御体9に連接し、少なくとも一点で接合されている。しかし、図6では、図には明示していないが、振動部11に接続している固定部12および固定部13は基板3に固定されるとともに変形制御体9に連接されている。長尺状の振動体となる振動部11、固定部12、及び固定部13は、長尺状の振動部11における例えば長手方向の略中央部で屈曲した状態にある。そして、振動部11、固定部12、および固定部13のいずれも変形制御体9に接合されている必要はない。図6の構造によっても、他の実施形態と同様、間隙dが温度変化によって非線形的に変化する効果が得られる。そのため、振動体が振動部および固定部により構成される場合は、必ずしも振動体が変形制御体に接合されている必要はない。   FIG. 6 is a plan view showing the structure of an electrostatic vibrator according to Embodiment 5 of the present invention. FIG. 6 is a diagram in which the vibrating body 10 of FIG. 1 is replaced with a vibrating part 11, a fixing part 12, and a fixing part 13, and there is no difference in other parts. Therefore, the same parts as those in FIG. In FIG. 1, the vibrating body 10 is connected to the deformation control body 9 and joined at at least one point. However, in FIG. 6, although not shown in the drawing, the fixing portion 12 and the fixing portion 13 connected to the vibrating portion 11 are fixed to the substrate 3 and connected to the deformation control body 9. The vibration part 11, the fixing part 12, and the fixing part 13, which are long vibrators, are in a state of being bent at, for example, a substantially central part in the longitudinal direction of the long vibration part 11. Further, none of the vibration part 11, the fixing part 12, and the fixing part 13 need be joined to the deformation control body 9. Also in the structure of FIG. 6, as in the other embodiments, an effect that the gap d changes nonlinearly with a temperature change can be obtained. Therefore, in the case where the vibrating body is configured by the vibrating portion and the fixed portion, the vibrating body does not necessarily have to be joined to the deformation control body.

図7は、本発明の実施形態6による静電振動子の構造を示す平面図である。図7は図5の支持体18を固定部12および支持体20で置き換え、支持体19を固定部13と支持体21で置き換えた図であり、その他の部分に違いはない。よって、図5と同一部分には同一符号を与え、説明を省略する。図5では、支持体18および支持体19は変形制御体9に連接し、少なくともどちらか一方は変形制御体9に接合されている。しかし、図7では、図には明示していないが、支持体20に接続している固定部12は基板3に固定されるとともに変形制御体9に連接され、支持体21に接続している固定部13も基板3に固定されるとともに変形制御体9に連接されている。長尺状の振動体となる振動部1、支持体20、支持体21、固定部12、及び固定部13は、例えば長手方向の略中央部に位置する振動部1で屈曲した状態にある。そして、振動部1、固定部12、固定部13、支持体20、および支持体21のいずれも変形制御体9に接合されている必要はない。図7の構造によっても、他の実施形態と同様、間隙dが温度変化によって非線形的に変化する効果が得られる。そのため、振動体が振動部、固定部、および支持体により構成される場合も、必ずしも振動体が変形制御体に接合されている必要はない。   FIG. 7 is a plan view showing the structure of the electrostatic vibrator according to the sixth embodiment of the present invention. FIG. 7 is a view in which the support 18 in FIG. 5 is replaced with the fixed portion 12 and the support 20, and the support 19 is replaced with the fixed portion 13 and the support 21, and there is no difference in other portions. Therefore, the same parts as those in FIG. In FIG. 5, the support 18 and the support 19 are connected to the deformation control body 9, and at least one of them is joined to the deformation control body 9. However, in FIG. 7, although not shown in the drawing, the fixing portion 12 connected to the support body 20 is fixed to the substrate 3 and connected to the deformation control body 9 and connected to the support body 21. The fixing portion 13 is also fixed to the substrate 3 and connected to the deformation control body 9. The vibrating part 1, the support 20, the support 21, the fixing part 12, and the fixing part 13, which are long vibrating bodies, are in a state of being bent by, for example, the vibrating part 1 located at a substantially central part in the longitudinal direction. In addition, none of the vibration unit 1, the fixed unit 12, the fixed unit 13, the support body 20, and the support body 21 need be joined to the deformation control body 9. Also in the structure of FIG. 7, as in the other embodiments, an effect that the gap d changes nonlinearly with a temperature change can be obtained. Therefore, even when the vibrating body is configured by the vibrating portion, the fixed portion, and the support body, the vibrating body does not necessarily have to be joined to the deformation control body.

図8は、本発明の実施形態7による静電振動子の構造を示す平面図である。図8は図1の振動体10を振動部11および固定部12で置き換え、変形制御体9を変形制御体22で置き換え、振動部11における固定部に接続されていない方の端点が変形制御体22と連接した図である。図8では、図には明示していないが、振動部11に接続している固定部14は基板3に固定されているが、変形制御体22には連接されていない。変形制御体22は、振動体となる振動部11および固定部12の周囲を囲む長方形の枠として形成されており、その枠の途中に切れ目はなく、枠は閉路である。長尺状の振動体となる振動部11および固定部12は、長尺状の振動部11における例えば長手方向の略中央部で屈曲した状態にある。また、振動部11および固定部12で構成される振動体は、前記連接点でのみ変形制御体22と連接している。これらが図1と図8の違いであり、その他の部分に違いはない。よって、図1と同一部分には同一符号を与え、説明を省略する。振動部11および固定部12で構成される振動体は、振動部11における固定部に接続されていない方の端点でのみ変形制御体22と連接している。また、その連接点において振動部11と変形制御体22とは接合されていてもよいが、必ずしもその必要はなくただ接しているだけでもよい。図8の構造によっても、他の実施形態と同様、間隙dが温度変化によって非線形的に変化する効果が得られる。そのため、振動体が振動部および固定部により構成される場合は、必ずしも振動体が変形制御体と二点以上で連接している必要はなく、連接点が一点あれば本発明の効果が得られる。また、図によって明示はしないが、振動体が振動部、固定部、および支持体により構成される場合も同様に、必ずしも振動体が変形制御体と二点以上で連接している必要はなく、連接点が一点あれば本発明の効果が得られる。   FIG. 8 is a plan view showing the structure of the electrostatic vibrator according to the seventh embodiment of the present invention. 8 replaces the vibrating body 10 of FIG. 1 with the vibrating portion 11 and the fixed portion 12, replaces the deformation control body 9 with the deformation control body 22, and the end point of the vibrating portion 11 that is not connected to the fixed portion is the deformation control body. FIG. In FIG. 8, although not shown in the drawing, the fixing portion 14 connected to the vibrating portion 11 is fixed to the substrate 3, but is not connected to the deformation control body 22. The deformation control body 22 is formed as a rectangular frame that surrounds the vibrating section 11 and the fixed section 12 serving as a vibrating body. There is no break in the middle of the frame, and the frame is a closed circuit. The vibrating portion 11 and the fixing portion 12 that are long vibrating bodies are in a state of being bent at, for example, a substantially central portion in the longitudinal direction of the long vibrating portion 11. Further, the vibrating body constituted by the vibrating portion 11 and the fixed portion 12 is connected to the deformation control body 22 only at the above-described connecting contact. These are the differences between FIG. 1 and FIG. 8, and there is no difference in other parts. Therefore, the same parts as those in FIG. The vibrating body constituted by the vibrating portion 11 and the fixed portion 12 is connected to the deformation control body 22 only at the end point of the vibrating portion 11 that is not connected to the fixed portion. Moreover, although the vibration part 11 and the deformation | transformation control body 22 may be joined in the continuous contact, it is not necessarily required and it may just be in contact. Also in the structure of FIG. 8, as in the other embodiments, an effect that the gap d changes nonlinearly with a temperature change can be obtained. Therefore, when the vibrating body is constituted by the vibrating portion and the fixed portion, the vibrating body does not necessarily have to be connected to the deformation control body at two or more points, and the effect of the present invention can be obtained if there is one point of connection. . Further, although not explicitly shown in the figure, similarly, when the vibrating body is constituted by the vibrating portion, the fixed portion, and the support body, the vibrating body does not necessarily have to be connected to the deformation control body at two or more points. The effect of the present invention can be obtained if there is a single point of contact.

本発明の実施形態1による静電振動子の構造を示す平面図である。It is a top view which shows the structure of the electrostatic vibrator by Embodiment 1 of this invention. 図1の振動体10の形状を曲線y=f(x)で近似的に表現した図である。It is the figure which expressed the shape of the vibrating body 10 of FIG. 1 approximately by curve y = f (x). 本発明の実施形態2による静電振動子の構造を示す平面図である。It is a top view which shows the structure of the electrostatic vibrator by Embodiment 2 of this invention. 本発明の実施形態3による静電振動子の構造を示す平面図である。It is a top view which shows the structure of the electrostatic vibrator by Embodiment 3 of this invention. 本発明の実施形態4による静電振動子の構造を示す平面図である。It is a top view which shows the structure of the electrostatic vibrator by Embodiment 4 of this invention. 本発明の実施形態5による静電振動子の構造を示す平面図である。It is a top view which shows the structure of the electrostatic vibrator by Embodiment 5 of this invention. 本発明の実施形態6による静電振動子の構造を示す平面図である。It is a top view which shows the structure of the electrostatic vibrator by Embodiment 6 of this invention. 本発明の実施形態7による静電振動子の構造を示す平面図である。It is a top view which shows the structure of the electrostatic vibrator by Embodiment 7 of this invention. 特許文献1に記載の発明の一実施形態による静電振動子の構造を示す平面図である。10 is a plan view showing a structure of an electrostatic vibrator according to an embodiment of the invention described in Patent Document 1. FIG. 特許文献1に記載の発明の一実施形態による静電振動子の構造を示す平面図である。10 is a plan view showing a structure of an electrostatic vibrator according to an embodiment of the invention described in Patent Document 1. FIG.

符号の説明Explanation of symbols

1,11…振動部、2…電極、3…基板、4…てこレバー、5…てこレバー支持体、6…てこレバー支柱、7,8,18,19,20,21…支持体、9,16,17,22…変形制御体、10…振動体、12,13…固定部、14,15…応力、23…変位、d…振動体と電極の間隙、f…振動体の形状を表す関数 DESCRIPTION OF SYMBOLS 1,11 ... Vibration part, 2 ... Electrode, 3 ... Board | substrate, 4 ... Lever lever, 5 ... Lever lever support body, 6 ... Lever lever support | pillar, 7, 8, 18, 19, 20, 21 ... Support body, 9, 16, 17, 22 ... deformation control body, 10 ... vibrating body, 12, 13 ... fixed part, 14,15 ... stress, 23 ... displacement, d ... gap between vibrating body and electrode, f ... function representing shape of vibrating body

Claims (10)

振動体と、前記振動体に対し間隙を隔て配置された電極と、前記振動体とは熱膨張係数の異なる異種材料によって形成された変形制御体と、を含み、前記電極と前記変形制御体とが基板に固定された静電振動子であって、
前記振動体は、少なくとも一部屈曲した形状からなる屈曲部を有し
前記振動体が前記変形制御体に少なくとも一点で連接され、
前記屈曲部が温度変化に起因して前記連接点に生じる応力により変形し、
前記変形によって前記間隙の距離が前記温度変化に対して非線形的に変化することを特徴とする静電振動子。
A vibrating body, an electrode disposed with a gap to the vibrating body, and a deformation control body formed of a different material having a different thermal expansion coefficient from the vibrating body, the electrode and the deformation control body, Is an electrostatic vibrator fixed to the substrate,
The vibrator has a bent portion comprising a bent shape at least in part,
The vibrating body is connected to the deformation control body at at least one point;
The bent portion is deformed by stress generated in the continuous contact due to a temperature change,
The electrostatic vibrator according to claim 1, wherein the distance of the gap changes nonlinearly with respect to the temperature change by the deformation.
前記振動体と前記変形制御体とが少なくとも一つの前記連接点で接合されている請求項1に記載の静電振動子。   The electrostatic vibrator according to claim 1, wherein the vibrating body and the deformation control body are joined by at least one of the connection contacts. 前記振動体が、前記電極からの交流電圧により振動する振動部と、前記屈曲部を構成し前記振動部を支持する少なくとも一つの支持体と、からなる請求項1または2に記載の静電振動子。 The electrostatic vibration according to claim 1, wherein the vibrating body includes a vibrating portion that vibrates due to an alternating voltage from the electrode, and at least one support that forms the bent portion and supports the vibrating portion. Child. 前記振動体が、前記屈曲部を構成し前記電極からの交流電圧により振動する振動部と、前記振動部を前記基板に固定する少なくとも一つの固定部と、からなる請求項1または2に記載の静電振動子。 The said vibrating body consists of the vibration part which comprises the said bending part, and vibrates with the alternating voltage from the said electrode, and at least 1 fixing | fixed part which fixes the said vibration part to the said board | substrate. Electrostatic vibrator. 前記振動体が、前記電極からの交流電圧により振動する振動部と、前記屈曲部を構成し前記振動部を支持する少なくとも一つの支持体と、前記支持体を前記基板に固定する固定部と、からなる請求項1または2に記載の静電振動子。 The vibrating body vibrates with an alternating voltage from the electrode, at least one support that forms the bent portion and supports the vibrating portion, and a fixing portion that fixes the support to the substrate, The electrostatic vibrator according to claim 1, comprising: 前記振動体と前記電極とが互いに熱膨張係数の異なる異種材料によって形成される請求項1〜5のいずれか1項に記載の静電振動子。   The electrostatic vibrator according to claim 1, wherein the vibrator and the electrode are formed of different materials having different coefficients of thermal expansion. 前記振動部および前記支持体のうち、いずれか一方が他方とは熱膨張係数の異なる異種材料によって形成される請求項3に記載の静電振動子。   The electrostatic vibrator according to claim 3, wherein one of the vibrating portion and the support is formed of a different material having a different thermal expansion coefficient from the other. 前記振動部および前記固定部のうち、いずれか一方が他方とは熱膨張係数の異なる異種材料によって形成される請求項4に記載の静電振動子。   The electrostatic vibrator according to claim 4, wherein one of the vibrating portion and the fixed portion is formed of a different material having a different thermal expansion coefficient from the other. 前記振動部、前記支持体、および前記固定部のうち、少なくとも一つが残りとは熱膨張係数の異なる異種材料によって形成される請求項5に記載の静電振動子。   The electrostatic vibrator according to claim 5, wherein at least one of the vibrating portion, the support body, and the fixing portion is formed of a different material having a different thermal expansion coefficient from the rest. 請求項1〜9のいずれか1項に記載の静電振動子と、
前記電極に駆動電圧を印加する駆動回路と、を備えていることを特徴とする発振器。
The electrostatic vibrator according to any one of claims 1 to 9,
An oscillator comprising: a drive circuit that applies a drive voltage to the electrode;
JP2007282842A 2007-10-31 2007-10-31 Electrostatic vibrator and oscillator Expired - Fee Related JP5112819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282842A JP5112819B2 (en) 2007-10-31 2007-10-31 Electrostatic vibrator and oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282842A JP5112819B2 (en) 2007-10-31 2007-10-31 Electrostatic vibrator and oscillator

Publications (2)

Publication Number Publication Date
JP2009111810A JP2009111810A (en) 2009-05-21
JP5112819B2 true JP5112819B2 (en) 2013-01-09

Family

ID=40779802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282842A Expired - Fee Related JP5112819B2 (en) 2007-10-31 2007-10-31 Electrostatic vibrator and oscillator

Country Status (1)

Country Link
JP (1) JP5112819B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121502B2 (en) * 2002-10-03 2008-07-23 シャープ株式会社 Micro resonance device, micro filter device, micro oscillator, and wireless communication device
US6987432B2 (en) * 2003-04-16 2006-01-17 Robert Bosch Gmbh Temperature compensation for silicon MEMS resonator

Also Published As

Publication number Publication date
JP2009111810A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US7830577B2 (en) Micromechanical device with adjustable resonant frequency by geometry alteration and method for operating same
KR101694133B1 (en) A micromechanical resonator
JP5381694B2 (en) Vibrating piece, vibrator, sensor and electronic component
JP2008211420A (en) Oscillator
CN107408933B (en) Temperature compensation composite resonator
JP2010171966A (en) Bending vibration piece and electronic component
JP2008209389A (en) Acceleration sensor
CN107005224A (en) Temperature compensation plates resonator
JP2007013910A (en) Piezoelectric resonator
JP2006238265A (en) Vibrator structure and manufacturing method thereof
JP2013098678A (en) Crystal oscillator
JP2000337884A (en) Angular velocity sensor
JP5105345B2 (en) Oscillator
JP2008099020A (en) Micromechanical resonator
JP2010157933A (en) Bending vibrating piece and electronic component
JP5350715B2 (en) MEMS vibrator
JP5105279B2 (en) Oscillator and oscillator having the oscillator
EP2539999B1 (en) Improved micromechanical resonator
JP5112819B2 (en) Electrostatic vibrator and oscillator
JP5128296B2 (en) Electrostatic vibrator and oscillator
CN106797208A (en) Resonator
JP4965962B2 (en) Micromechanical resonator
JP2008103777A (en) Micromechanical resonator
JP5064155B2 (en) Oscillator
WO2016098868A1 (en) Piezoelectric vibrator and piezoelectric vibration device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees