JP5112758B2 - Piezoelectric and pyroelectric elements made of polymer materials - Google Patents

Piezoelectric and pyroelectric elements made of polymer materials Download PDF

Info

Publication number
JP5112758B2
JP5112758B2 JP2007164434A JP2007164434A JP5112758B2 JP 5112758 B2 JP5112758 B2 JP 5112758B2 JP 2007164434 A JP2007164434 A JP 2007164434A JP 2007164434 A JP2007164434 A JP 2007164434A JP 5112758 B2 JP5112758 B2 JP 5112758B2
Authority
JP
Japan
Prior art keywords
piezoelectric
pyroelectric element
fep
pyroelectric
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007164434A
Other languages
Japanese (ja)
Other versions
JP2009001689A (en
Inventor
邦裕 永田
典之 難波
志彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP2007164434A priority Critical patent/JP5112758B2/en
Publication of JP2009001689A publication Critical patent/JP2009001689A/en
Application granted granted Critical
Publication of JP5112758B2 publication Critical patent/JP5112758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、高分子物質の圧電・焦電素子のうち、特に圧電性が高く、耐熱性、耐環境性に優れた高分子物質の圧電・焦電素子に関する。   The present invention relates to a piezoelectric / pyroelectric element made of a high molecular weight material and excellent in heat resistance and environmental resistance among high molecular weight piezoelectric / pyroelectric elements.

従来、高分子物質を材料とした圧電・焦電素子としては、ポリ弗化ビニリデン(PVdF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、多孔質ポリプロピレン(E−PP)等を用いたものがある。これらの圧電・焦電素子は、無機材料の圧電・焦電素子には無い可撓性、柔軟性、耐摩耗性を有しており広く使用されている。   Conventionally, as a piezoelectric / pyroelectric element made of a polymer material, polyvinylidene fluoride (PVdF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), porous polypropylene (E-PP), etc. are used. There was something that was there. These piezoelectric / pyroelectric elements are widely used because they have flexibility, flexibility, and wear resistance that are not found in inorganic piezoelectric / pyroelectric elements.

PVdFは、成形した無孔質のシートを延伸し、分極することによって、圧電・焦電素子として作成される(特許文献1)。FEPは、無極性のポリマーであるが、ポリマー表面に電荷がトラップされることによって圧電・焦電素子となることが知られており、FEPの無孔質のシートにコロナ放電等によって電荷をトラップさせることによって圧電・焦電素子として作成される。しかしながら、PVdF、FEPは、無機材料の圧電・焦電素子に比べて圧電性が低いという難点があった。   PVdF is produced as a piezoelectric / pyroelectric element by stretching and polarizing a molded nonporous sheet (Patent Document 1). FEP is a non-polar polymer, but it is known to become a piezoelectric / pyroelectric element by trapping charges on the polymer surface, and traps charges by corona discharge etc. on the non-porous sheet of FEP. By doing so, it is created as a piezoelectric / pyroelectric element. However, PVdF and FEP have a drawback that their piezoelectricity is lower than that of inorganic material piezoelectric / pyroelectric elements.

これに対し、E−PPは、ポリプロピレンのフィルムを延伸して、窒素などのガスを利用して独立する空孔が多数存在するフィルムに成形し、該フィルムの空孔の上下面に電荷をトラップさせることによって圧電・焦電素子として作成されたものである。E−PPは、多数の空孔が巨大な双極子を構成し、フィルム面に圧力が加わると空孔が圧縮されるため、フィルムの両面の電極に誘導される電荷も変化することになる。上記の仕組みにより、E−PPの圧電・焦電素子は高い圧電性を有している。   On the other hand, E-PP stretches a polypropylene film, forms it into a film with many independent holes using a gas such as nitrogen, and traps charges on the upper and lower surfaces of the film holes. It was created as a piezoelectric / pyroelectric element. In E-PP, a large number of holes constitute a huge dipole, and when pressure is applied to the film surface, the holes are compressed, so that the charge induced in the electrodes on both sides of the film also changes. Due to the above mechanism, the piezoelectric / pyroelectric element of E-PP has high piezoelectricity.

特開昭60−055034号公報JP 60-055034 A

上述したE−PPは、耐環境性、耐熱性の面で問題があり、使用環境が限定される。そして、作成に手間が掛かるため高価である。
本発明は、上記のような種々の課題に鑑みなされたものであり、その目的は、高い圧電性を有する高分子物質の圧電・焦電素子を提供することにある。さらに、耐環境性、耐熱性に優れた安価な高分子物質の圧電・焦電素子を提供することにある。
E-PP mentioned above has a problem in terms of environmental resistance and heat resistance, and the usage environment is limited. And it is expensive because it takes time to create.
The present invention has been made in view of the various problems as described above, and an object of the present invention is to provide a piezoelectric / pyroelectric element of a polymer material having high piezoelectricity. Another object of the present invention is to provide an inexpensive polymer piezoelectric / pyroelectric element having excellent environmental resistance and heat resistance.

上記目的達成のため、本発明の圧電・焦電素子では、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)に発泡の核材を混合し、複数の独立気泡を含有する高分子物質の圧電・焦電素子であって、紫外線照射されつつ分極処理されていることを特徴としている。これにより、紫外線が独立気泡内の放電をアシストし、該放電で発生した多くの電荷が独立気泡内壁に帯電することになるので、当該素子の圧電性を高めることができる。そして、素子内部に多数存在する気泡が全て独立しているので、圧縮応力が掛かっても潰れ難く、当該素子の剛性を高めることができる。 In order to achieve the above object, in the piezoelectric / pyroelectric device of the present invention , a foamed core material is mixed with tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and a piezoelectric polymer material containing a plurality of closed cells. A pyroelectric element that is polarized while being irradiated with ultraviolet rays. Thereby, the ultraviolet rays assist the discharge in the closed bubbles, and many charges generated by the discharge are charged on the inner walls of the closed bubbles, so that the piezoelectricity of the element can be improved. Since all the bubbles present inside the element are all independent, it is difficult to collapse even when compressive stress is applied, and the rigidity of the element can be increased.

また、前記高分子物質は、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)であり、該FEPに発泡の核材を混合し、前記独立気泡を生成したので、耐環境性、耐熱性に優れた素子とすることができ、該素子に内包される独立気泡を簡易に生成することができる。 In addition, the polymer substance is a tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and the foamed core material is mixed with the FEP to generate the closed cells. An excellent element can be obtained, and closed cells included in the element can be easily generated.

以下、本発明の実施形態を、図面を参照して説明する。尚、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが本発明の成立に必須であるとは限らない。   Embodiments of the present invention will be described below with reference to the drawings. The embodiments described below do not limit the invention according to the scope of claims, and all combinations of features described in the embodiments are not necessarily essential to the establishment of the present invention. Absent.

まず、本実施形態の圧電・焦電素子について図1を用いて説明する。
図1(A)は、本実施形態の圧電・焦電素子の平面図であり、図1(B)は、図1のα−α線断面図である。
この圧電・焦電素子1は、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)を発泡させて成形した発泡FEP(F−FEP)のシートを図1(A)に示すように矩形状に切断し、本発明の特徴的な部分である紫外線(以下、UV光という)を照射しつつコロナ放電を加えて電荷をトラップ(分極)させることにより作成されている。
First, the piezoelectric / pyroelectric device of this embodiment will be described with reference to FIG.
FIG. 1A is a plan view of the piezoelectric / pyroelectric element of this embodiment, and FIG. 1B is a cross-sectional view taken along the line α-α in FIG.
In this piezoelectric / pyroelectric element 1, a foamed FEP (F-FEP) sheet formed by foaming a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) is formed into a rectangular shape as shown in FIG. It is created by cutting and trapping (polarizing) charges by applying corona discharge while irradiating with ultraviolet rays (hereinafter referred to as UV light) which is a characteristic part of the present invention.

このような圧電・焦電素子1は、図1(B)に示すように、針状の独立気泡2を多数有している。この圧電・焦電素子1にUV光を照射しつつコロナ放電を加えると、素子上面11、素子下面12と、針状の独立気泡2の気泡上面21、気泡下面22とにそれぞれ電荷がトラップされる。本実施形態では、素子上面11と気泡下面22にプラスの電荷がトラップされ、素子下面12と気泡上面21にマイナスの電荷がトラップされている。そして、この電荷をトラップした針状の独立気泡2は、圧電・焦電素子1の内部に多数存在しているため、圧電・焦電素子1の内部で巨大な双極子を構成することになる。   Such a piezoelectric / pyroelectric element 1 has many needle-like closed cells 2 as shown in FIG. When corona discharge is applied while irradiating the piezoelectric / pyroelectric element 1 with UV light, charges are trapped on the element upper surface 11, the element lower surface 12, the bubble upper surface 21 of the needle-like closed cell 2, and the bubble lower surface 22, respectively. The In the present embodiment, positive charges are trapped on the element upper surface 11 and the bubble lower surface 22, and negative charges are trapped on the element lower surface 12 and the bubble upper surface 21. A large number of needle-like closed cells 2 trapping this electric charge are present inside the piezoelectric / pyroelectric element 1, so that a huge dipole is formed inside the piezoelectric / pyroelectric element 1. .

次に、この圧電・焦電素子1の作成手順について説明する。
この圧電・焦電素子1は、第1の手順としてFEPベースのペレットを作成する。第2の手順としてそのFEPベースのペレットをシートとして成形して矩形状に切断し矩形シートを作成する。第3の手順としてその矩形シートにUV光を照射しつつコロナ放電を加えて電荷をトラップさせ圧電・焦電素子1を作成する。
Next, a procedure for creating the piezoelectric / pyroelectric element 1 will be described.
The piezoelectric / pyroelectric element 1 creates FEP-based pellets as a first procedure. As a second procedure, the FEP-based pellet is formed as a sheet and cut into a rectangular shape to create a rectangular sheet. As a third procedure, a piezoelectric / pyroelectric element 1 is produced by applying corona discharge while irradiating the rectangular sheet with UV light to trap charges.

先ず、第1の手順であるFEPベースのペレットの作成について説明する。
FEPに発泡の核材となるホウ酸アルミニウを混合し、二軸押出機により押し出すことによってFEPベースのペレットを作成する。FEPとホウ酸アルミニウムとの重量比は、FEPが100に対して、ホウ酸アルミニウムが5である。なお、本実施形態では発泡の核材にホウ酸アルミニウムを使用しているが、これに限定されるものではなく、例えば窒化ホウ素であっても構わない。
First, the production of FEP-based pellets, which is the first procedure, will be described.
FEP-based pellets are prepared by mixing FOB with aluminum borate as a foam core and extruding it with a twin-screw extruder. The weight ratio of FEP to aluminum borate is 5 for aluminum borate with respect to 100 for FEP. In this embodiment, aluminum borate is used as the foam core material, but the present invention is not limited to this. For example, boron nitride may be used.

次に、第2の手順であるFEPを発泡させたF−FEPの矩形シートの作成について説明する。
窒素ガスをシリンダー途中から導入することが可能な押出機にT字型のダイを取り付け、この押出機に第1の手順で作成されたペレットをセットする。そして、一定の圧力で窒素ガスを加えながらペレットをシリンダーから押出し、ダイ温度より低い温度の熱ロールによって巻き取りながら冷却することにより、針状の独立気泡2を有するシートを成形する。そして、そのシートを矩形状に切断して矩形シートを作成する。なお、本実施形態では、FEPを発泡させた独立気泡2を有するシートは、幅150mm、厚さ200μm、発泡率40%で成形されている。また、矩形シートは、60mm×60mmの正方形に切断されている。
Next, the creation of a F-FEP rectangular sheet obtained by foaming FEP, which is the second procedure, will be described.
A T-shaped die is attached to an extruder capable of introducing nitrogen gas from the middle of the cylinder, and the pellets produced in the first procedure are set in the extruder. Then, the pellet is extruded from the cylinder while adding nitrogen gas at a constant pressure, and cooled while being wound by a hot roll having a temperature lower than the die temperature, thereby forming a sheet having needle-like closed cells 2. Then, the sheet is cut into a rectangular shape to create a rectangular sheet. In this embodiment, the sheet having closed cells 2 obtained by foaming FEP is formed with a width of 150 mm, a thickness of 200 μm, and a foaming rate of 40%. Further, the rectangular sheet is cut into a 60 mm × 60 mm square.

最後に、第3の手順であるUV光照射分極による圧電・焦電素子1の作成ついて説明する。
図2は、UV光照射分極に使用するコロナ放電装置を示す概略図である。
このコロナ放電装置4は、土台41、側板42、電極プレート43、グリッド電極44、複数のワイヤ電極45、高圧水銀ランプ46を備えている。土台41の左右両端に側板42が1枚づつ設けられており、中央上面に電極プレート43が置かれている。2枚の側板42間には、グリッド電極44と複数のワイヤ電極45が掛け渡されている。複数のワイヤ電極45は、側板42間に所定間隔をあけて平行に掛け渡されている。
Finally, the creation of the piezoelectric / pyroelectric element 1 by UV light irradiation polarization, which is the third procedure, will be described.
FIG. 2 is a schematic view showing a corona discharge device used for UV light irradiation polarization.
The corona discharge device 4 includes a base 41, a side plate 42, an electrode plate 43, a grid electrode 44, a plurality of wire electrodes 45, and a high-pressure mercury lamp 46. One side plate 42 is provided on each of the left and right ends of the base 41, and an electrode plate 43 is placed on the center upper surface. A grid electrode 44 and a plurality of wire electrodes 45 are spanned between the two side plates 42. The plurality of wire electrodes 45 are spanned in parallel with a predetermined interval between the side plates 42.

グリッド電極44は、矩形シート3の表面を均一に帯電して分極させるため、矩形シート3の表面から上方に距離a(例えば3mm)を空けて配置されている。ワイヤ電極45は、矩形シート3の表面から上方に距離b(例えば35mm)を空けて配置されている。ワイヤ電極45には正電圧が印加され、グリッド電極44には負電圧が印加され、電極プレート43は接地されている。高圧水銀ランプ46は、矩形シート3の表面から上方に距離c(例えば300mm)を空けて配置されている。   The grid electrode 44 is disposed at a distance a (for example, 3 mm) upward from the surface of the rectangular sheet 3 in order to uniformly charge and polarize the surface of the rectangular sheet 3. The wire electrode 45 is disposed at a distance b (for example, 35 mm) upward from the surface of the rectangular sheet 3. A positive voltage is applied to the wire electrode 45, a negative voltage is applied to the grid electrode 44, and the electrode plate 43 is grounded. The high-pressure mercury lamp 46 is disposed at a distance c (for example, 300 mm) upward from the surface of the rectangular sheet 3.

そして、この度使用したコロナ放電装置4は、土台41、側板42はポリテトラフルオロエチレン(PTFE)、電極プレート43はステンレス、グリッド電極44とワイヤ電極45はタングステンでそれぞれ作成されている。ただし、土台41、側板42の材質は、PTFEに限定されるものではなく、耐熱性があり電荷をトラップする際に影響を及ぼさないものであればかまわない。   The corona discharge device 4 used this time is made of a base 41, the side plate 42 is made of polytetrafluoroethylene (PTFE), the electrode plate 43 is made of stainless steel, and the grid electrode 44 and the wire electrode 45 are made of tungsten. However, the material of the base 41 and the side plate 42 is not limited to PTFE, and any material may be used as long as it has heat resistance and does not affect the charge trapping.

このようなコロナ放電装置4の電極プレート43の上に矩形シート3を置いて、250Wの高圧水銀ランプ46を用いてUV光(波長は250nm〜440nm)を照射しながら、ワイヤ電極45に16kV〜20kVの正電圧を印加し、グリッド電極44に1.5kV〜3kVの負電圧を印加して分極し、矩形シート3に電荷をトラップさせて圧電・焦電素子1を作成する。なお、グリッド電極44によるUV光の減衰は30%以下である。   The rectangular sheet 3 is placed on the electrode plate 43 of the corona discharge device 4 as described above, and the wire electrode 45 is irradiated with UV light (wavelength: 250 nm to 440 nm) using a 250 W high-pressure mercury lamp 46. A piezoelectric / pyroelectric element 1 is formed by applying a positive voltage of 20 kV, applying a negative voltage of 1.5 kV to 3 kV to the grid electrode 44 for polarization, and trapping charges in the rectangular sheet 3. The attenuation of UV light by the grid electrode 44 is 30% or less.

次に、UV光を照射したときと照射しないときの圧電・焦電素子1の準静的圧電率d33値の試験結果について図3を参照して説明する。
図3は、UV光を照射したときと照射しないときの圧電・焦電素子1の準静的圧電率d33値(pC/N)の比較図であり、図3(A)はグリッド電極44の電圧(Grid voltage(kV))を変化させたときの圧電・焦電素子1の準静的圧電率d33値を示したグラフ、図3(B)は分極時間(分)を変化させたときの圧電・焦電素子1の準静的圧電率d33値を示したグラフである。この試験は、圧電・焦電素子1に圧力を加えた時に発生する準静的圧電率d33値を測定したものである。
Next, the test results of the quasi-static piezoelectric rate d 33 value of the piezoelectric / pyroelectric element 1 when UV light is irradiated and when not irradiated will be described with reference to FIG.
FIG. 3 is a comparison diagram of the quasi-static piezoelectric constant d 33 value (pC / N) of the piezoelectric / pyroelectric element 1 when UV light is irradiated and not irradiated, and FIG. voltage graph showing the quasi-static piezoelectric constant d 33 value of the piezoelectric-pyroelectric element 1 at the time of changing the (Grid voltage (kV)), FIG. 3 (B) was changed polarization time (min) it is a graph showing a quasi-static piezoelectric constant d 33 value of the piezoelectric-pyroelectric element 1 when. This test is a measurement of the quasi-static piezoelectric rate d 33 value generated when pressure is applied to the piezoelectric / pyroelectric element 1.

図3(A)に示すように、ワイヤ電極45の電圧(Corona voltage(kV))は20kV、分極時間は4分間と一定である。UV光を照射しない場合、グリッド電極44の電圧が1.5kVのときの準静的圧電率d33値は349pC/N±18pC/N、グリッド電極44の電圧が3kVのときの準静的圧電率d33値は298pC/N±89pC/Nであった。 As shown in FIG. 3A, the voltage (Corona voltage (kV)) of the wire electrode 45 is constant at 20 kV and the polarization time is 4 minutes. If not irradiated with UV light, quasi-static piezoelectric when quasistatic piezoelectric constant d 33 value when the voltage of the grid electrode 44 is 1.5kV is 349pC / N ± 18pC / N, the voltage of the grid electrode 44 is 3kV rate d 33 value was 298pC / N ± 89pC / N.

一方、UV光を照射した場合、グリッド電極44の電圧が1.5kVのときの準静的圧電率d33値は452pC/N±18pC/N、グリッド電極44の電圧が3kVのときの準静的圧電率d33値は375pC/N±45pC/Nであった。このように、準静的圧電率d33値は、UV光を照射した方がUV光を照射しない方に比べ、約25%から約30%上昇しており、UV光による効果は大であると考えられる。 On the other hand, when UV light is irradiated, the quasi-static piezoelectric constant d 33 value when the voltage of the grid electrode 44 is 1.5 kV is 452 pC / N ± 18 pC / N, and the quasi-static voltage when the voltage of the grid electrode 44 is 3 kV. The target piezoelectric constant d 33 value was 375 pC / N ± 45 pC / N. Thus, the quasi-static piezoelectric constant d 33 value is increased by about 25% to about 30% in the case of irradiating UV light compared to the case of not irradiating UV light, and the effect of UV light is great. it is conceivable that.

図3(B)に示すように、ワイヤ電極45の電圧(Corona voltage(kV))は16kV、グリッド電極44の電圧は1.5kVと一定である。UV光を照射しない場合、分極時間が8分のときの準静的圧電率d33値は266pC/N±40pC/Nであった。 As shown in FIG. 3B, the voltage of the wire electrode 45 (Corona voltage (kV)) is constant at 16 kV, and the voltage of the grid electrode 44 is constant at 1.5 kV. When UV light was not irradiated, the quasi-static piezoelectric constant d 33 value when the polarization time was 8 minutes was 266 pC / N ± 40 pC / N.

一方、UV光を照射した場合、分極時間が2分のときの準静的圧電率d33値は388pC/N±50pC/N、分極時間が8分のときの準静的圧電率d33値は420pC/N±37pC/Nであった。このように、準静的圧電率d33値は、UV光を照射した方がUV光を照射しない方に比べ、約60%上昇しており、UV光による効果は大であると考えられる。 On the other hand, when UV light is irradiated, the quasi-static piezoelectric constant d 33 value when the polarization time is 2 minutes is 388 pC / N ± 50 pC / N, and the quasi-static piezoelectric constant d 33 value when the polarization time is 8 minutes. Was 420 pC / N ± 37 pC / N. Thus, the quasi-static piezoelectric constant d 33 value is increased by about 60% in the case of irradiating with UV light compared to the case of not irradiating with UV light, and the effect of UV light is considered to be great.

ここで、UV光の照射による準静的圧電率d33値の上昇は次のように推測される。UV光のエネルギは約2eV〜6eVであり、圧電・焦電素子1のエネルギバンドに比べるとやや小さい。このため、圧電・焦電素子1の表面にてUV光が吸収されることなく、圧電・焦電素子1の独立気泡2内部にまでUV光が届く。これにより以下の効果が期待できる。すなわち、独立気泡2近傍部で発生したキャリアが放電をアシストする。独立気泡2内に達したUV光が独立気泡2内のガスを励起し放電の発生を容易にする。圧電・焦電素子1の抵抗率を減少させ、独立気泡2に印加される電圧を相対的に上昇させる。これらの効果により、圧電・焦電素子1の分極処理が進行し、圧電性が向上したと推測される。 Here, the increase in the quasi-static piezoelectric constant d 33 value due to the irradiation of UV light is estimated as follows. The energy of the UV light is about 2 eV to 6 eV, which is slightly smaller than the energy band of the piezoelectric / pyroelectric element 1. For this reason, the UV light reaches the inside of the closed cell 2 of the piezoelectric / pyroelectric element 1 without being absorbed by the surface of the piezoelectric / pyroelectric element 1. As a result, the following effects can be expected. That is, the carrier generated in the vicinity of the closed cell 2 assists the discharge. The UV light reaching the closed cell 2 excites the gas in the closed cell 2 and facilitates the generation of discharge. The resistivity of the piezoelectric / pyroelectric element 1 is decreased, and the voltage applied to the closed cell 2 is relatively increased. Due to these effects, it is presumed that the polarization treatment of the piezoelectric / pyroelectric element 1 has progressed and the piezoelectricity has been improved.

図4は、本実施形態と従来の圧電・焦電素子の性能差を示す図である。図4では、UV光を照射したときのF−FEPを使用した圧電・焦電素子、UV光を照射しないときのF−FEPを使用した圧電・焦電素子、ソリッドのFEPを使用した圧電・焦電素子、ポリ弗化ビリニデン(PVdF)を使用した圧電・焦電素子、多孔質ポリプロピレン(E−PP)を使用した圧電・焦電素子それぞれの準静的圧電率d33値、剛性、耐環境性、耐熱性について記載した。 FIG. 4 is a diagram showing a difference in performance between the present embodiment and a conventional piezoelectric / pyroelectric element. In FIG. 4, a piezoelectric / pyroelectric element using F-FEP when irradiated with UV light, a piezoelectric / pyroelectric element using F-FEP when not irradiating UV light, and a piezoelectric / pyroelectric element using solid FEP. Pyroelectric elements, piezoelectric / pyroelectric elements using poly (vinylidene fluoride) (PVdF), piezoelectric / pyroelectric elements using porous polypropylene (E-PP), quasi-static piezoelectric constant d 33 value, rigidity, resistance The environmental properties and heat resistance were described.

図4に示されているように、本実施形態のUV光を照射したときのF−FEPの圧電・焦電素子1は、準静的圧電率d33値では上から2番目となっており、最も高い値を示しているのはE−PPの圧電・焦電素子である。しかしながら、E−PPは剛性、耐環境性、耐熱性に難点がある。したがって、本実施形態のUV光を照射したときのF−FEPの圧電・焦電素子1が、圧電性及び剛性が高く、耐環境性、耐熱性に優れていることが分かる。 As shown in FIG. 4, the F-FEP piezoelectric / pyroelectric element 1 when irradiated with UV light according to the present embodiment is the second from the top in terms of the quasi-static piezoelectric constant d 33 value. The highest value is E-PP piezoelectric / pyroelectric element. However, E-PP has difficulties in rigidity, environmental resistance, and heat resistance. Therefore, it can be seen that the F-FEP piezoelectric / pyroelectric element 1 of the present embodiment when irradiated with UV light has high piezoelectricity and rigidity, and is excellent in environmental resistance and heat resistance.

以上のように、本実施形態の圧電・焦電素子1によれば、複数の独立気泡2を含有する高分子物質で成り、UV光照射されつつ分極処理されているので、UV光が独立気泡2内の放電をアシストし、該放電で発生した多くの電荷が独立気泡2内壁に帯電することになり、当該素子1の圧電性を高めることができる。そして、素子1内部に多数存在する気泡2が全て独立しているので、圧縮応力が掛かっても潰れ難く、当該素子1の剛性を高めることができる。   As described above, according to the piezoelectric / pyroelectric element 1 of the present embodiment, it is made of a polymer material containing a plurality of closed cells 2 and is polarized while being irradiated with UV light. Assisting the discharge in 2 and a large amount of electric charge generated by the discharge is charged on the inner wall of the closed cell 2, so that the piezoelectricity of the element 1 can be enhanced. Since all the bubbles 2 existing inside the element 1 are all independent, it is difficult to collapse even when a compressive stress is applied, and the rigidity of the element 1 can be increased.

また、上記高分子物質は、FEPであり、該FEPにホウ酸アルミニウムや窒化ホウ素等の発泡の核材を混合し、独立気泡2を生成しているので、耐環境性、耐熱性に優れた素子1とすることができ、該素子1に内包される独立気泡2を簡易に生成することができる。   The polymer substance is FEP, and the foamed core material such as aluminum borate or boron nitride is mixed with the FEP to form closed cells 2, which are excellent in environmental resistance and heat resistance. The element 1 can be formed, and the closed cell 2 included in the element 1 can be easily generated.

可撓性を有する圧電・焦電素子を備えた機器であれば、どのような機器でも適応可能である。例えば、計算機、コンピュータ、携帯電話等の電子機器でも適用可能であり、さらに、自動車、飛行機等の制御機器を狭小部に搭載する必要のある機械の制御回路にも適応可能である。   Any device provided with a flexible piezoelectric / pyroelectric device is applicable. For example, the present invention can be applied to electronic devices such as a computer, a computer, and a mobile phone, and can also be applied to a control circuit of a machine that needs to be equipped with a control device such as an automobile or an airplane in a narrow portion.

本実施形態の圧電・焦電素子を説明する図である。It is a figure explaining the piezoelectric and pyroelectric element of this embodiment. 図1の圧電・焦電素子を分極するコロナ放電装置の図である。It is a figure of the corona discharge apparatus which polarizes the piezoelectric / pyroelectric element of FIG. UV光を照射したときと照射しないときの圧電・焦電素子の準静的圧電率d33値の比較図である。It is a comparison diagram of the quasi-static piezoelectric constant d 33 value of the piezoelectric-pyroelectric element when not irradiated with when irradiated with UV light. 本実施形態と従来の圧電・焦電素子の性能差を示す図である。It is a figure which shows the performance difference of this embodiment and the conventional piezoelectric / pyroelectric element.

符号の説明Explanation of symbols

1 圧電・焦電素子
2 独立気泡
3 矩形シート
4 コロナ放電装置
11 素子上面
12 素子下面
21 気泡上面
22 気泡下面
41 土台
42 側板
43 電極プレート
44 グリッド電極
45 ワイヤ電極
DESCRIPTION OF SYMBOLS 1 Piezoelectric / pyroelectric element 2 Independent bubble 3 Rectangular sheet 4 Corona discharge device 11 Element upper surface 12 Element lower surface 21 Bubble upper surface 22 Bubble lower surface 41 Base 42 Side plate 43 Electrode plate 44 Grid electrode 45 Wire electrode

Claims (1)

テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)に発泡の核材を混合し、複数の独立気泡を含有する高分子物質の圧電・焦電素子であって、紫外線照射されつつ分極処理されていることを特徴とする高分子物質の圧電・焦電素子。 A polymeric piezoelectric / pyroelectric element comprising a foam core material mixed with tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and containing a plurality of closed cells, which is polarized while being irradiated with ultraviolet rays. Piezoelectric / pyroelectric element of polymer material characterized by
JP2007164434A 2007-06-21 2007-06-21 Piezoelectric and pyroelectric elements made of polymer materials Expired - Fee Related JP5112758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164434A JP5112758B2 (en) 2007-06-21 2007-06-21 Piezoelectric and pyroelectric elements made of polymer materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164434A JP5112758B2 (en) 2007-06-21 2007-06-21 Piezoelectric and pyroelectric elements made of polymer materials

Publications (2)

Publication Number Publication Date
JP2009001689A JP2009001689A (en) 2009-01-08
JP5112758B2 true JP5112758B2 (en) 2013-01-09

Family

ID=40318442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164434A Expired - Fee Related JP5112758B2 (en) 2007-06-21 2007-06-21 Piezoelectric and pyroelectric elements made of polymer materials

Country Status (1)

Country Link
JP (1) JP5112758B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191257B2 (en) * 2013-06-11 2017-09-06 株式会社リコー Polarization processing apparatus and piezoelectric element manufacturing method
JPWO2015167014A1 (en) * 2014-05-01 2017-06-08 日本バルカー工業株式会社 Sound wave detection element
JP2016219687A (en) * 2015-05-25 2016-12-22 一般財団法人小林理学研究所 Polling device and polling method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252978A (en) * 1986-03-27 1987-11-04 Daikin Ind Ltd Pressure sensitive material
JP4851031B2 (en) * 2001-07-17 2012-01-11 日本バイリーン株式会社 Polarizing body manufacturing method and manufacturing apparatus thereof
JP2004010754A (en) * 2002-06-06 2004-01-15 Toyobo Co Ltd Electret body and method for producing the same
JP4540038B2 (en) * 2004-01-26 2010-09-08 株式会社潤工社 Foamed resin composition, foam using the same, and coaxial insulated cable

Also Published As

Publication number Publication date
JP2009001689A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US9340653B2 (en) Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator
US8951456B2 (en) Method for producing ultra-high-molecular-weight polyethylene porous membrane, method for producing ultra-high-molecular-weight polytheylene film, and porous membrane and film obtained by these methods
JP5112758B2 (en) Piezoelectric and pyroelectric elements made of polymer materials
CN102317066A (en) Ferroelectric electret two-and more-layer composite material and method for producing the same
JP2013529884A5 (en)
KR20160111547A (en) Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device
EP3252850B1 (en) Multilayered heat-resistant separator element and method for manufacturing same
JP2011109095A (en) Two- or multi-layer ferroelectrets and method for manufacturing the same
TWI625239B (en) Multicomponent layered dielectric films and uses thereof
US20150364472A1 (en) Semiconductor device, method of manufacturing the same, and electronic device including the same
Qaiss et al. Theoretical modeling and experiments on the piezoelectric coefficient in cellular polymer films
JP2014143369A (en) Electret sheet
TWI491273B (en) Electretflat loudspeaker device
JP4903002B2 (en) Piezoelectric and pyroelectric elements made of polymer materials
US20150105482A1 (en) Method of manufacturing a foam showing a gradient poisson's ratio behaviour
TW202027108A (en) Electret sheet and piezoelectric sensor
EP3397453B1 (en) Three-dimensional article and method of making the same
CN108604499B (en) Electret sheet
Wang et al. Unexpected bipolar space-charge polarization across transcrystalline interfaces in polypropylene electret films
EP3397452B1 (en) Three-dimensional article and method of making the same
US20210178732A1 (en) Electroactive polymers, methods of manufacture, and structures formed thereof
US11688563B2 (en) Electret sheet
KR101702439B1 (en) Insulating foam, and apparatus for manufacturing the same
Beco Albuquerque Lifetime of dielectric elastomer actuators under DC electric fields
Gerhard Dielectric materials for electro-active (electret) and/or electro-passive (insulation) applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees