JP5110946B2 - FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM - Google Patents

FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM Download PDF

Info

Publication number
JP5110946B2
JP5110946B2 JP2007105173A JP2007105173A JP5110946B2 JP 5110946 B2 JP5110946 B2 JP 5110946B2 JP 2007105173 A JP2007105173 A JP 2007105173A JP 2007105173 A JP2007105173 A JP 2007105173A JP 5110946 B2 JP5110946 B2 JP 5110946B2
Authority
JP
Japan
Prior art keywords
failure
value
calculated
point
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007105173A
Other languages
Japanese (ja)
Other versions
JP2008261751A (en
Inventor
陽 末次
健司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007105173A priority Critical patent/JP5110946B2/en
Publication of JP2008261751A publication Critical patent/JP2008261751A/en
Application granted granted Critical
Publication of JP5110946B2 publication Critical patent/JP5110946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Description

この発明は、電力系統を構成する送電線に故障が発生した際に複数の観測箇所で測定した瞬低電圧の実測値に基づいて故障点を標定する故障点標定装置、故障点標定方法および故障点標定プログラムに関し、特に、高精度で故障点を標定することができる故障点標定装置、故障点標定方法および故障点標定プログラムに関するものである。   The present invention relates to a failure point locating device, a failure point locating method, and a failure locating method for locating a failure point based on measured values of instantaneous voltage drop measured at a plurality of observation points when a failure occurs in a transmission line constituting the power system. More particularly, the present invention relates to a failure point locating device, a failure point locating method, and a failure point locating program capable of locating a failure point with high accuracy.

電力系統を構成する送電線に故障が発生した場合、電力会社は、故障が発生した場所や範囲を迅速に特定し、故障の早期復旧に努める必要がある。また、故障状況やその影響を解析し、需要家へ透明性のある情報提供を行う必要がある。   When a failure occurs in a transmission line that constitutes an electric power system, an electric power company needs to quickly identify the location and range where the failure has occurred and make an effort to quickly recover from the failure. In addition, it is necessary to analyze the failure situation and its effects and provide transparent information to customers.

このため、送電線には故障点を早期に特定する装置としてフォルトロケータ(以下、FLと呼ぶ)が設置されている。FLは、送電線に故障が発生した場合、変電所から故障点までを「距離」として標定する装置である。FLには、サージ受信形、パルスレーダ形などが存在するが、一般的にはインピーダンス演算形が用いられている。インピーダンス演算形は、送電線の片端子に設置された装置において故障発生時の電圧・電流から故障点までのインピーダンスを求め、故障点を標定する。   For this reason, a fault locator (hereinafter referred to as “FL”) is installed in the transmission line as a device for early identification of the failure point. The FL is a device that standardizes a distance from a substation to a failure point as a “distance” when a failure occurs in a transmission line. The FL includes a surge receiving type, a pulse radar type, and the like, but generally an impedance calculation type is used. The impedance calculation type obtains the impedance from the voltage / current at the time of the failure to the failure point in the device installed at one terminal of the transmission line, and determines the failure point.

しかし、FLは、系統の重要性や投資コストの抑制などの観点から、基幹系統などの高電圧、長距離送電線において設置されることが多く、下位系統を含め全ての送電線に設置されることはない。FLが設置されていない送電線では、落雷位置情報システムや送電線経路図などから故障点範囲の予測が行われるが、広範囲の巡視を要する場合や現場に赴くのが困難な送電線の場合は、故障点の特定に膨大な時間と労力を要する。また、保守コスト削減や既存FLの高経年化なども進みつつあり、簡易に適用可能な新たな故障点標定手法が求められている。   However, FL is often installed on high-voltage, long-distance transmission lines such as the main system from the viewpoint of system importance and investment cost control, and is installed on all transmission lines including subordinate systems. There is nothing. For transmission lines that do not have an FL installed, the failure point range is predicted from the lightning location information system and the transmission line route map, etc., but in the case of transmission lines that require extensive inspections or are difficult to reach the site. It takes a lot of time and effort to identify the failure point. In addition, maintenance cost reduction and aging of existing FL are also progressing, and a new failure location method that can be easily applied is required.

そこで、送電線の故障時に発生する瞬低(瞬時電圧低下)現象に着目し、瞬低時に各観測箇所において測定される瞬低電圧値を用いて故障点を標定する故障点標定手法が開発されている(例えば、非特許文献1および2参照)。この故障点標定手法では、各故障位置に対して各観測箇所における瞬低電圧を計算し、計算した瞬低電圧値と故障発生時に測定された瞬低電圧値の差を評価して故障点の標定を行う。   Therefore, focusing on the instantaneous voltage drop (instantaneous voltage drop) phenomenon that occurs at the time of power line failure, a fault location method has been developed that uses the instantaneous low voltage value measured at each observation point during a voltage drop. (See, for example, Non-Patent Documents 1 and 2). In this fault location method, the instantaneous voltage at each observation point is calculated for each fault location, and the difference between the calculated instantaneous voltage value and the instantaneous voltage value measured when the fault occurs is evaluated. Perform orientation.

吉村、森、古川、木原 「瞬低実測値と故障計算値による故障点標定手法の開発(その1)」、平成18年電気学会電力・エネルギー部門大会、No.415、平成18年9月Yoshimura, Mori, Furukawa, Kihara “Development of fault location method based on measured instantaneous drop and calculated fault value (Part 1)”, 2006 IEEJ Power and Energy Division Conference, No. 415, September 2006 末次、堤、吉村、井出、木原 「瞬低実測値と故障計算値による故障点標定手法の開発(その2)」、平成18年電気学会電力・エネルギー部門大会、No.416、平成18年9月Suetsuji, Tsutsumi, Yoshimura, Ide, Kihara “Development of fault location method based on measured instantaneous drop and calculated fault value (Part 2)”, 2006 IEEJ Power and Energy Division Conference, No. 416, September 2006

しかしながら、従来の故障点標定手法では、計算した瞬低電圧値と故障発生時に測定された瞬低電圧値の差の2乗和を評価して故障点の標定を行うため、正確に故障点を標定できない場合があるという問題があった。例えば、観測箇所を2ヶ所とし、正しい故障点Xに対する計算値Vc1およびVc2と測定値Vm1およびVm2と差の2乗が(Vc1−Vm12=aおよび(Vc2−Vm22=bであるとすると、(Vc1−Vm12=bおよび(Vc2−Vm22=aとなるような別の故障点Yについても2乗和は同じa+bとなり、故障点がXであるかYであるかを特定することができない。 However, the conventional fault location method evaluates the sum of squares of the difference between the calculated instantaneous low voltage value and the instantaneous low voltage value measured at the time of failure, and determines the fault point. There was a problem that it could not be standardized. For example, assuming two observation points, the squares of the difference between the calculated values V c1 and V c2 and the measured values V m1 and V m2 for the correct failure point X are (V c1 −V m1 ) 2 = a and (V c2 − If V m2 ) 2 = b, the sum of squares is also the same a + b for another failure point Y such that (V c1 −V m1 ) 2 = b and (V c2 −V m2 ) 2 = a , It cannot be specified whether the failure point is X or Y.

この発明は、上述した従来技術による問題点を解消するためになされたものであり、高精度で故障点を標定することができる故障点標定装置、故障点標定方法および故障点標定プログラムを提供することを目的とする。   The present invention has been made to solve the above-described problems caused by the prior art, and provides a failure point locating device, a failure point locating method, and a failure point locating program capable of locating a failure point with high accuracy. For the purpose.

上述した課題を解決し、目的を達成するため、請求項1に係る発明は、電力系統を構成する送電線に故障が発生した際に複数の観測箇所で測定した瞬低電圧の実測値に基づいて故障点を標定する故障点標定装置であって、複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出する計算値算出手段と、前記計算値算出手段により算出された各観測箇所における計算値と前記実測値との差の標準偏差各観測箇所における計算値と前記実測値との差の絶対値の平均値の和を評価値として各故障位置に対して算出する評価値算出手段と、前記評価値算出手段により各故障位置に対して算出された評価値が最小となる故障位置を故障点として特定する故障点特定手段とを備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the invention according to claim 1 is based on measured values of instantaneous voltage drop measured at a plurality of observation points when a failure occurs in a transmission line constituting the power system. A failure point locating device for locating a failure point, a calculated value calculating means for calculating a calculated value of instantaneous voltage drop at each observation point for each of a plurality of failure positions, and calculated by the calculated value calculating means calculated for each fault location the sum of the average value of the absolute value of the difference between the measured and calculated values of the standard deviation and each observation point of the difference between the measured and calculated values at each observation point as an evaluation value Evaluation value calculating means and failure point specifying means for specifying, as a failure point , a failure position at which the evaluation value calculated for each failure position by the evaluation value calculating means is minimum .

この請求項1の発明によれば、複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出し、算出した各観測箇所における計算値と実測値との差の標準偏差各観測箇所における計算値と実測値との差の絶対値の平均値の和を評価値として各故障位置に対して算出し、各故障位置に対して算出した評価値が最小となる故障位置を故障点として特定するよう構成したので、瞬低電圧の計算値と実測値の分布様相が一致する故障位置を故障点として特定することができる。 According to the invention of claim 1, and the standard deviation of the difference between the calculated and measured at each observation point of calculating the calculated value of the instantaneous low voltage at each observation point for each plurality of fault location, calculated The sum of the absolute value of the difference between the calculated value and the measured value at each observation point is calculated as an evaluation value for each failure location, and the failure location where the evaluation value calculated for each failure location is minimized is calculated. Since it is configured to be specified as a failure point, it is possible to specify a failure position where the distribution aspect of the calculated value of the instantaneous voltage drop and the measured value coincide with each other as the failure point.

また、請求項2に係る発明は、上記の発明において、各観測箇所における前記実測値の誤差を評価し、誤差の大きい実測値が観測される観測箇所を特定する誤差大観測箇所特定手段をさらに備え、前記評価値算出手段は、前記誤差大観測箇所特定手段により特定された観測箇所での実測値を除外して評価値を算出することを特徴とする。   Further, the invention according to claim 2 further comprises an error large observation point specifying means for evaluating an error of the actual measurement value at each observation point and specifying an observation point where the actual measurement value having a large error is observed. And the evaluation value calculating means calculates an evaluation value by excluding an actual measurement value at the observation location specified by the large error observation location specifying means.

この請求項2の発明によれば、各観測箇所における実測値の誤差を評価し、誤差の大きい実測値が観測される観測箇所を特定し、特定した観測箇所での実測値を除外して評価値を算出するよう構成したので、観測箇所での実測誤差の影響を減らすことができる。   According to the invention of claim 2, the error of the actual measurement value at each observation point is evaluated, the observation point where the actual measurement value with a large error is observed is specified, and the measurement value at the specified observation point is excluded and evaluated. Since the configuration is such that the value is calculated, it is possible to reduce the influence of the measurement error at the observation location.

また、請求項3に係る発明は、上記発明において、前記計算値算出手段は、下位系小発電機を電圧源として模擬して計算値を算出することを特徴とする。   The invention according to claim 3 is characterized in that, in the above-mentioned invention, the calculated value calculating means calculates a calculated value by simulating a low-order small generator as a voltage source.

この請求項3の発明によれば、下位系小発電機を電圧源として模擬して計算値を算出するよう構成したので、計算値をより正確に算出することができる。   According to the third aspect of the present invention, since the calculated value is calculated by simulating the low-order small generator as a voltage source, the calculated value can be calculated more accurately.

また、請求項4に係る発明は、上記発明において、上位系に故障が発生した場合には、前記複数の観測箇所に上位系の観測箇所を含めることを特徴とする。   The invention according to claim 4 is characterized in that, in the above invention, when a failure occurs in the upper system, the observation points of the upper system are included in the plurality of observation points.

この請求項4の発明によれば、上位系に故障が発生した場合には、複数の観測箇所に上位系の観測箇所を含めるよう構成したので、瞬低電圧の計算値と実測値の分布様相をより正確に把握することができる。   According to the fourth aspect of the present invention, when a failure occurs in the upper system, the observation points of the upper system are included in the plurality of observation points. Can be grasped more accurately.

また、請求項5に係る発明は、上記発明において、上位系に故障が発生した場合には、前記複数の観測箇所を上位系の観測箇所のみとすることを特徴とする。   Further, the invention according to claim 5 is characterized in that, in the above invention, when a failure occurs in the upper system, the plurality of observation points are only the observation points of the upper system.

この請求項5の発明によれば、上位系に故障が発生した場合には、複数の観測箇所を上位系の観測箇所のみとするよう構成したので、瞬低電圧の計算値と実測値の分布様相をより正確に把握することができる。   According to the invention of claim 5, when a failure occurs in the upper system, the plurality of observation points are configured to be only the observation points of the upper system. It is possible to grasp the aspect more accurately.

また、請求項6に係る発明は、上記発明において、前記故障点特定手段により特定される故障点の範囲を限定する故障点範囲限定手段をさらに備え、前記計算値算出手段は、前記故障点範囲限定手段により限定された範囲で複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出することを特徴とする。   The invention according to claim 6 further comprises failure point range limiting means for limiting a range of failure points specified by the failure point specifying means in the above invention, wherein the calculated value calculation means includes the failure point range. A calculation value of the instantaneous voltage drop at each observation point is calculated for each of a plurality of failure positions within a range limited by the limiting unit.

この請求項6の発明によれば、特定する故障点の範囲を限定し、限定した範囲で複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出するよう構成したので、計算量を減らすことができる。   According to the invention of claim 6, the range of the failure point to be specified is limited, and the calculation value of the instantaneous voltage drop at each observation point is calculated for each of the plurality of failure positions within the limited range. The amount of calculation can be reduced.

また、請求項に係る発明は、上記発明において、前記実測値および計算値として電圧残留率を用いることを特徴とする。 The invention according to claim 7 is characterized in that, in the above invention, a voltage residual ratio is used as the actual measurement value and the calculation value.

この請求項の発明によれば、実測値および計算値として電圧残留率を用いるよう構成したので、電圧階級によらない残留電圧の評価を行うことができる。 According to the seventh aspect of the present invention, since the voltage residual ratio is used as the actually measured value and the calculated value, the residual voltage can be evaluated regardless of the voltage class.

また、請求項に係る発明は、電力系統を構成する送電線に故障が発生した際に複数の観測箇所で測定した瞬低電圧の実測値に基づいて故障点を標定する故障点標定装置による故障点標定方法であって、複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出する計算値算出ステップと、前記計算値算出ステップにより算出された各観測箇所における計算値と前記実測値との差の標準偏差各観測箇所における計算値と前記実測値との差の絶対値の平均値の和を評価値として各故障位置に対して算出する評価値算出ステップと、前記評価値算出ステップにより各故障位置に対して算出された評価値が最小となる故障位置を故障点として特定する故障点特定ステップとを含んだことを特徴とする。 The invention according to claim 8 is based on a failure point locating device that locates a failure point based on measured values of instantaneous low voltage measured at a plurality of observation points when a failure occurs in a transmission line constituting the power system. A failure point locating method, a calculated value calculation step for calculating a calculated value of instantaneous voltage drop at each observation point for each of a plurality of failure positions, and a calculated value at each observation point calculated by the calculated value calculation step an evaluation value calculation step of calculating for each fault location the sum of the average value of the absolute value of the difference between the measured and calculated values of the standard deviation and each observation point of the difference between the measured value as an evaluation value, And a failure point specifying step of specifying, as a failure point , a failure location where the evaluation value calculated for each failure location in the evaluation value calculating step is minimum .

この請求項の発明によれば、複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出し、算出した各観測箇所における計算値と実測値との差の標準偏差各観測箇所における計算値と実測値との差の絶対値の平均値の和を評価値として各故障位置に対して算出し、各故障位置に対して算出した評価値が最小となる故障位置を故障点として特定するよう構成したので、瞬低電圧の計算値と実測値の分布様相が一致する故障位置を故障点として特定することができる。 According to the invention of claim 8, and the standard deviation of the difference between the calculated and measured at each observation point of calculating the calculated value of the instantaneous low voltage at each observation point for each plurality of fault location, calculated The sum of the absolute value of the difference between the calculated value and the measured value at each observation point is calculated as an evaluation value for each failure location, and the failure location where the evaluation value calculated for each failure location is minimized is calculated. Since it is configured to be specified as a failure point, it is possible to specify a failure position where the distribution aspect of the calculated value of the instantaneous voltage drop and the measured value coincide with each other as the failure point.

また、請求項に係る発明は、電力系統を構成する送電線に故障が発生した際に複数の観測箇所で測定した瞬低電圧の実測値に基づいて故障点を標定する故障点標定プログラムであって、複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出する計算値算出手順と、前記計算値算出手順により算出された各観測箇所における計算値と前記実測値との差の標準偏差各観測箇所における計算値と前記実測値との差の絶対値の平均値の和を評価値として各故障位置に対して算出する評価値算出手順と、前記評価値算出手順により各故障位置に対して算出された評価値が最小となる故障位置を故障点として特定する故障点特定手順とをコンピュータに実行させることを特徴とする。 The invention according to claim 9 is a failure point locating program for locating a failure point based on measured values of instantaneous low voltage measured at a plurality of observation points when a failure occurs in a transmission line constituting the power system. A calculation value calculation procedure for calculating a calculated value of the instantaneous voltage drop at each observation point for each of a plurality of failure positions, a calculation value at each observation point calculated by the calculation value calculation procedure, and the actual measurement value, an evaluation value calculation step of calculating for each fault location the sum of the average value of the absolute value of the difference and the standard deviation between the measured values and calculated values at each observation point of the difference as an evaluation value of the evaluation value calculation procedure In this manner, the computer is caused to execute a failure point specifying procedure for specifying, as a failure point , a failure location having a minimum evaluation value calculated for each failure location.

この請求項の発明によれば、複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出し、算出した各観測箇所における計算値と実測値との差の標準偏差各観測箇所における計算値と実測値との差の絶対値の平均値の和を評価値として各故障位置に対して算出し、各故障位置に対して算出した評価値が最小となる故障位置を故障点として特定するよう構成したので、瞬低電圧の計算値と実測値の分布様相が一致する故障位置を故障点として特定することができる。 According to the invention of claim 9, and the standard deviation of the difference between the calculated and measured at each observation point of calculating the calculated value of the instantaneous low voltage at each observation point for each plurality of fault location, calculated The sum of the absolute value of the difference between the calculated value and the measured value at each observation point is calculated as an evaluation value for each failure location, and the failure location where the evaluation value calculated for each failure location is minimized is calculated. Since it is configured to be specified as a failure point, it is possible to specify a failure position where the distribution aspect of the calculated value of the instantaneous voltage drop and the measured value coincide with each other as the failure point.

請求項1、8または9の発明によれば、瞬低電圧の計算値と実測値の分布様相が一致する故障位置を故障点として特定するので、高精度で故障点を標定することができるという効果を奏する。 According to the invention of claim 1, 8 or 9, the failure point where the calculated value of the instantaneous voltage drop matches the distribution aspect of the actual measurement value is specified as the failure point, so that the failure point can be determined with high accuracy. There is an effect.

また、請求項2の発明によれば、観測箇所での実測誤差の影響を減らすので、より高精度で故障点を標定することができるという効果を奏する。   According to the invention of claim 2, since the influence of the measurement error at the observation location is reduced, the failure point can be determined with higher accuracy.

また、請求項3の発明によれば、計算値をより正確に算出するので、より高精度で故障点を標定することができるという効果を奏する。   According to the invention of claim 3, since the calculated value is calculated more accurately, the failure point can be located with higher accuracy.

また、請求項4または5の発明によれば、瞬低電圧の計算値と実測値の分布様相をより正確に把握するので、より高精度で故障点を標定することができるという効果を奏する。   Further, according to the invention of claim 4 or 5, since the distribution aspect of the calculated value and the actually measured value of the instantaneous voltage drop can be grasped more accurately, there is an effect that the failure point can be determined with higher accuracy.

また、請求項6の発明によれば、計算量を減らすので、効率良く故障点を標定することができるという効果を奏する。   Further, according to the invention of claim 6, since the amount of calculation is reduced, there is an effect that the failure point can be efficiently determined.

また、請求項の発明によれば、電圧階級によらない残留電圧の評価を行うので、様々な電圧階級の観測箇所での実測値を用いて故障点を標定することができるという効果を奏する。 Further, according to the invention of claim 7 , since the residual voltage is evaluated without depending on the voltage class, there is an effect that it is possible to determine the failure point using the actually measured values at the observation points of various voltage classes. .

以下に添付図面を参照して、この発明に係る故障点標定装置、故障点標定方法および故障点標定プログラムの好適な実施例を詳細に説明する。   Exemplary embodiments of a fault location device, a fault location method, and a fault location program according to the present invention will be described below in detail with reference to the accompanying drawings.

まず、本実施例1に係る故障点標定装置による故障点標定手法の概要について説明する。図1は、本実施例1に係る故障点標定装置による故障点標定手法の概要を説明するための説明図である。ある送電線において故障が発生した場合、その故障付近およびそれより下位系統においては瞬低が発生する。この際、各観測箇所では、オシログラフや瞬低記録装置などからその時の瞬低電圧の実測値を得ることができる。一方、ある特定の故障送電線、故障位置、故障様相に対して複数の地点(観測箇所)の瞬低電圧の計算値を得ることができる。   First, an overview of the failure location method by the failure location system according to the first embodiment will be described. FIG. 1 is an explanatory diagram for explaining an outline of a fault location method by the fault location apparatus according to the first embodiment. When a failure occurs in a certain power transmission line, an instantaneous drop occurs in the vicinity of the failure and in a lower system. At this time, at each observation location, an actual measured value of the instantaneous voltage can be obtained from an oscillograph, an instantaneous voltage recording device, or the like. On the other hand, it is possible to obtain a calculated value of instantaneous voltage drop at a plurality of points (observation points) with respect to a specific failure transmission line, failure location, and failure aspect.

そこで、本実施例1に係る故障点標定装置は、図1に示すように、トリップした遮断器や保護リレーからの情報によって故障送電線と故障様相が与えられた条件下で、瞬低時に各観測箇所で測定される瞬低電圧の実測値(V1,V2,・・・VN)と解析的に算出される瞬低電圧の計算値とを比較し、故障位置を特定する。 Therefore, as shown in FIG. 1, the failure point locating device according to the first embodiment has a fault power transmission line and a failure aspect given by a tripped circuit breaker and information from a protection relay. The measured value (V 1 , V 2 ,... V N ) of the instantaneous voltage that is measured at the observation point is compared with the calculated value of the instantaneous voltage that is analytically calculated to identify the failure location.

具体的には、本実施例1に係る故障標定装置は、故障送電線および故障様相は所与とした上で様々な故障位置において故障点抵抗(アーク抵抗Ra、塔脚抵抗Rr)を推定しながら瞬低電圧を繰返し計算し、実測値と計算値が最も一致する位置を故障点とする。言い換えれば、「どこで故障を発生させれば、各観測箇所の瞬低電圧が得られたような実測値分布になるか」を繰返し計算によって探索し、故障点を標定する。 Specifically, the fault locating apparatus according to the first embodiment provides fault point resistance (arc resistance R a , tower base resistance R r ) at various fault positions with a given fault transmission line and fault mode. While estimating, the instantaneous voltage drop is repeatedly calculated, and the position where the measured value and the calculated value are the best is determined as the failure point. In other words, the search is performed by iterative calculation to determine “where the failure occurs and where the measured value distribution is such that the instantaneous voltage drop at each observation point is obtained”, and the failure point is determined.

次に、本実施例1に係る故障点標定装置の構成について説明する。図2は、本実施例1に係る故障点標定装置の構成を示す機能ブロック図である。同図に示すように、この故障点標定装置100は、故障前電圧算出部110と、故障前電圧記憶部120と、送電線故障データ読込部130と、送電線故障データ記憶部140と、電圧残留率計算値算出部150と、評価部160とを有する。   Next, the configuration of the failure point location apparatus according to the first embodiment will be described. FIG. 2 is a functional block diagram illustrating the configuration of the fault location apparatus according to the first embodiment. As shown in the figure, this fault location apparatus 100 includes a pre-failure voltage calculation unit 110, a pre-failure voltage storage unit 120, a transmission line fault data reading unit 130, a transmission line fault data storage unit 140, and a voltage. A residual ratio calculated value calculation unit 150 and an evaluation unit 160 are included.

故障前電圧算出部110は、各観測箇所における故障前の電圧を算出し、故障前電圧記憶部120に格納する処理部である。具体的には、この故障前電圧算出部110は、基準となる系統データと故障発生直前の遮断器・送電線のジャンパー入切状態、発電機の個別出力、調相設備投入容量などの情報から、各観測箇所の電圧が適正範囲になるよう発電機出力などを調整し、故障前潮流断面の作成を行う。そして、作成した故障前潮流断面に基づいて潮流計算を行い、各観測箇所における故障前電圧を算出する。故障前電圧記憶部120は、各観測箇所における故障前電圧を記憶する記憶部である。   The pre-failure voltage calculation unit 110 is a processing unit that calculates a pre-failure voltage at each observation location and stores it in the pre-failure voltage storage unit 120. Specifically, the pre-failure voltage calculation unit 110 is based on information such as the reference grid data and the circuit breaker / transmission line jumper on / off status immediately before the failure occurs, the individual output of the generator, and the phase-adjustment equipment input capacity. Then, adjust the generator output etc. so that the voltage at each observation point is within the proper range, and create the tidal current cross section before failure. Then, tidal current calculation is performed based on the created pre-failure tidal current section, and pre-fault voltage at each observation location is calculated. The pre-failure voltage storage unit 120 is a storage unit that stores the pre-failure voltage at each observation location.

送電線故障データ読込部130は、各観測箇所における瞬低電圧の実測値、トリップした遮断器や保護リレーから特定された故障送電線および故障様相の情報を読み込み、送電線故障データ記憶部140に格納する処理部である。なお、送電線故障データ読込部130は、瞬低電圧の実測値として電圧残留率を読み込む。ここで、電圧残留率は、図3に示すように、瞬低電圧(残留電圧)/基準電圧(定格電圧)で定義される。電圧残留率を用いることによって、電圧階級に依存しない残留電圧の評価が可能となる。送電線故障データ記憶部140は、各観測箇所における電圧残留率の実測値、故障送電線および故障様相の情報を記憶する記憶部である。   The transmission line fault data reading unit 130 reads the measured value of the instantaneous voltage drop at each observation point, the information on the fault transmission line and the fault mode identified from the tripped circuit breaker and the protection relay, and stores them in the transmission line fault data storage unit 140. A processing unit for storing. The transmission line failure data reading unit 130 reads the voltage residual ratio as an actual measurement value of the instantaneous voltage drop. Here, the voltage residual ratio is defined by instantaneous voltage drop (residual voltage) / reference voltage (rated voltage) as shown in FIG. By using the voltage residual ratio, it is possible to evaluate the residual voltage independent of the voltage class. The transmission line fault data storage unit 140 is a storage unit that stores the measured value of the voltage residual ratio at each observation location, information on the faulty transmission line and the fault mode.

電圧残留率計算値算出部150は、故障送電線および故障様相において故障位置を移動させ、故障点抵抗を推定しながら各観測箇所における電圧残留率の計算値を故障前電圧記憶部120が記憶する故障前電圧を用いて算出する処理部である。   The voltage residual ratio calculation value calculation unit 150 moves the fault location in the fault transmission line and the fault mode, and the pre-failure voltage storage unit 120 stores the calculation value of the voltage residual ratio at each observation location while estimating the fault point resistance. It is a processing unit that calculates using the pre-failure voltage.

評価部160は、電圧残留率計算値算出部150により故障位置ごとに算出された電圧残留率の計算値と送電線故障データ記憶部140が記憶する電圧残留率の実測値を比較し、両者が最も一致する故障点抵抗の推定と故障位置の特定を行う処理部である。この評価部160は、電圧残留率の計算値および実測値の分布様相に基づいて両者の一致度を評価することによって故障位置を特定する。   The evaluation unit 160 compares the calculated value of the voltage residual rate calculated for each failure position by the voltage residual rate calculated value calculation unit 150 with the actually measured value of the voltage residual rate stored in the transmission line fault data storage unit 140. It is a processing unit that estimates the most suitable failure point resistance and identifies the failure location. The evaluation unit 160 identifies the failure location by evaluating the degree of coincidence between the calculated value of the voltage residual ratio and the distribution aspect of the actual measurement value.

図4は、評価部160が電圧残留率の計算値および実測値の一致度を評価するために用いる評価関数を説明するための説明図である。評価部160は、N個の観測箇所における電圧残留率の実測値と計算値の差の標準偏差に実測値と計算値の差の絶対値の平均値を加えた値を評価値Fとしている。図4に示すように、実測値と計算値の差の標準偏差によって、実測値と計算値の「形」の一致度、すなわち、実測値を結んだ折れ線と計算値を結んだ折れ線の形の一致度を評価することができ、実測値と計算値の差の絶対値の平均値によって、実測値と計算値の「間隔」、すなわち、実測値と計算値の一致度を評価することができる。   FIG. 4 is an explanatory diagram for explaining an evaluation function used by the evaluation unit 160 to evaluate the degree of coincidence between the calculated value of the voltage residual ratio and the actual measurement value. The evaluation unit 160 uses the value obtained by adding the average value of the absolute values of the difference between the measured value and the calculated value to the standard deviation of the difference between the measured value and the calculated value of the voltage residual ratio at the N observation points. As shown in FIG. 4, according to the standard deviation of the difference between the measured value and the calculated value, the degree of coincidence of the “shape” between the measured value and the calculated value, that is, the shape of the broken line connecting the measured value and the calculated value. The degree of coincidence can be evaluated, and the “interval” between the actual value and the calculated value, that is, the degree of coincidence between the actual value and the calculated value can be evaluated by the average value of the absolute values of the difference between the actual value and the calculated value. .

具体的には、評価部160は、以下の手順で故障点を特定する。まず、各観測箇所における実測値と計算値の差をとり、「差の平均」を計算する。すなわち、

Figure 0005110946
を計算する。ここで、Vmiは観測箇所iにおける電圧残留率の実測値であり、Vciは観測箇所iにおける電圧残留率の計算値である。 Specifically, the evaluation unit 160 identifies the failure point by the following procedure. First, the difference between the actually measured value and the calculated value at each observation point is taken, and the “average of differences” is calculated. That is,
Figure 0005110946
Calculate Here, V mi is an actual measurement value of the voltage residual rate at the observation point i, and V ci is a calculated value of the voltage residual rate at the observation point i.

そして、各観測箇所における実測値と計算値の差が、「差の平均」からどれだけ離れているかを計算し、実測値と計算値の差の標準偏差を計算する。すなわち、

Figure 0005110946
を計算する。ここで、この標準偏差を小さくすることにより実測値と計算値のばらつきをなくし、実測値と計算値の「形」を近づけることができる。 Then, how far the difference between the actually measured value and the calculated value at each observation point is from the “average of the difference” is calculated, and the standard deviation of the difference between the actually measured value and the calculated value is calculated. That is,
Figure 0005110946
Calculate Here, by reducing the standard deviation, it is possible to eliminate the variation between the actually measured value and the calculated value, and to approximate the “shape” of the actually measured value and the calculated value.

また、実測値と計算値の「間隔」を評価するために、実測値と計算値の差の絶対値の平均値を計算する。すなわち、

Figure 0005110946
を計算する。 Further, in order to evaluate the “interval” between the actually measured value and the calculated value, an average value of absolute values of the difference between the actually measured value and the calculated value is calculated. That is,
Figure 0005110946
Calculate

以上より、次式で表される評価関数の値が計算される。

Figure 0005110946
From the above, the value of the evaluation function expressed by the following equation is calculated.
Figure 0005110946

そして、この評価関数を最小化することにより、電圧残留率の実測値と計算値の「形」および「間隔」を近づけることができる。すなわち、この評価関数を用いた両者の比較評価を行うことで、両者が最も一致する故障点抵抗を推定し、故障位置を特定することができる。   Then, by minimizing this evaluation function, it is possible to bring the measured value of the voltage residual ratio to the “shape” and “interval” of the calculated values close to each other. That is, by performing comparative evaluation between the two using this evaluation function, it is possible to estimate the failure point resistance that best matches the two and identify the failure location.

次に、本実施例1に係る故障点標定装置100による故障点標定処理の処理手順について説明する。図5は、本実施例1に係る故障点標定装置100による故障点標定処理の処理手順を示すフローチャートである。同図に示すように、この故障点標定処理では、故障前電圧算出部110が、故障前潮流断面を作成し(ステップS1)、作成した故障前潮流断面を用いて各観測箇所の故障前電圧を計算する(ステップS2)。   Next, the process procedure of the fault location process by the fault location apparatus 100 according to the first embodiment will be described. FIG. 5 is a flowchart illustrating the processing procedure of the fault location process by the fault location apparatus 100 according to the first embodiment. As shown in the figure, in this fault location processing, the pre-failure voltage calculation unit 110 creates a pre-failure power flow section (step S1), and uses the created pre-failure power flow section, the pre-failure voltage at each observation location. Is calculated (step S2).

そして、送電線故障データ読込部130が、電圧残留率の実測値、故障送電線および故障様相の情報を読み込み(ステップS3)、送電線故障データ記憶部140に格納する。そして、電圧残留率計算値算出部150が故障位置を移動させながら故障計算により各観測箇所における電圧残留率の計算値を算出し(ステップS4)、評価部160が実測値と計算値の評価値Fを計算して(ステップS5)、評価値Fを最小にする計算値に対応する故障点抵抗、故障位置を特定する(ステップS6)。   Then, the transmission line failure data reading unit 130 reads the measured value of the voltage residual ratio, the information on the failed transmission line and the failure aspect (step S3), and stores them in the transmission line failure data storage unit 140. Then, the voltage residual ratio calculation value calculation unit 150 calculates the calculation value of the voltage residual ratio at each observation location by failure calculation while moving the failure position (step S4), and the evaluation unit 160 evaluates the actual measurement value and the evaluation value of the calculation value. F is calculated (step S5), and the failure point resistance and the failure position corresponding to the calculated value that minimizes the evaluation value F are specified (step S6).

このように、評価部160が実測値と計算値の評価値Fを計算し、評価値Fを最小にする計算値に対応する故障点抵抗、故障位置を特定することによって、故障点を標定することができる。   As described above, the evaluation unit 160 calculates the evaluation value F of the actual measurement value and the calculation value, and specifies the failure point resistance and the failure position corresponding to the calculation value that minimizes the evaluation value F, thereby locating the failure point. be able to.

次に、本実施例1に係る故障点標定装置100の評価結果について説明する。なお、評価に使用した系統は、発電機数:約100機、送電線数:約500、母線数:約450を有する実系統モデルである。また、故障前潮流断面の作成においては、可能な限り故障発生直前の潮流図を採用し、遮断器および送電線のジャンパー入切状態、発電機の個別出力、既知の母線電圧、調相設備容量、総需要を入力データとした。   Next, the evaluation result of the failure point location apparatus 100 according to the first embodiment will be described. The system used for the evaluation is a real system model having about 100 generators, about 500 transmission lines, and about 450 buses. In preparing the current cross section before the failure, the current flow diagram immediately before the failure is used as much as possible, the circuit breaker and transmission line jumper on / off status, the individual generator output, the known bus voltage, and the phased equipment capacity The total demand was used as input data.

また、送電線故障発生時の電圧残留率を観測する記録装置は、主に66KV(一部110KV)母線に設置されていることから、評価に用いた故障ケースは主に下位系の送電線を対象としている。   In addition, since the recording device for observing the voltage residual rate at the time of transmission line failure is mainly installed on 66KV (partially 110KV) bus, the failure cases used for evaluation are mainly low-order transmission lines. It is targeted.

図6は、本実施例1に係る故障点標定装置100の評価に用いた故障データを示す図である。同図に示すように、故障データは、19のケースについて故障が発生した送電線の電圧階級、その故障の様相、瞬低電圧が観測された箇所数を表している。この観測箇所数は故障の規模によってばらつきはあるものの、観測された実測値は全て計算に使用している。なお、上記ケースにおける実際の故障位置は、既存FLや事後巡視によって得られており、本実施例1に係る故障点標定装置100による標定結果の評価を行うことが可能である。   FIG. 6 is a diagram illustrating failure data used for the evaluation of the failure point locating apparatus 100 according to the first embodiment. As shown in the figure, the failure data represents the voltage class of the transmission line in which failure occurred in 19 cases, the state of the failure, and the number of locations where instantaneous voltage drop was observed. Although the number of observation points varies depending on the scale of the failure, all observed actual values are used in the calculation. In addition, the actual failure position in the above case is obtained by the existing FL or the subsequent patrol, and it is possible to evaluate the orientation result by the failure point locating device 100 according to the first embodiment.

図7は、本実施例1に係る故障点標定装置100による故障点標定結果を示す図である。なお、ここでは、送電線を20分割(5%刻み)して計算値を算出し、故障点標定装置100が特定した故障点と実際の故障位置との差を標定誤差としている。   FIG. 7 is a diagram illustrating a fault location result by the fault location apparatus 100 according to the first embodiment. Here, the calculated value is calculated by dividing the power transmission line into 20 (in increments of 5%), and the difference between the failure point specified by the failure point locating device 100 and the actual failure position is used as an orientation error.

図7より、実際の故障位置との標定誤差が2km以内となったものは、全19ケース中11ケースであった。FLの標定誤差は、電圧階級および送電線距離などにも拠るが一般的に1〜2km程度である。したがって、故障点標定装置100は、精度よく標定を行うと評価することができる。   As shown in FIG. 7, 11 cases out of 19 cases have a positioning error within 2 km from the actual failure position. The orientation error of FL is generally about 1 to 2 km although it depends on the voltage class and the transmission line distance. Therefore, the failure point locating device 100 can be evaluated when locating with high accuracy.

なお、故障点標定に使用した系統モデルには、主に下位系に連系されている小水力発電機や特高の発電機などは含まれていない。系統データとしても、図8(a)に示すような静的負荷モデル(定インピーダンス負荷)として扱われるなど、これらの連系は簡略化されている。しかし、実際の発電機は図8(b)のように内部電圧とリアクタンスで構成されるため、これらの発電機が多く連系された系統において故障が発生した場合、標定結果に与える影響は無視できなくなる。   Note that the system model used for fault location does not include small hydropower generators or extra high power generators that are mainly linked to lower systems. The grid data is also simplified as it is treated as a static load model (constant impedance load) as shown in FIG. However, since an actual generator is composed of internal voltage and reactance as shown in Fig. 8 (b), if a failure occurs in a system in which many of these generators are connected, the effect on the orientation result is ignored. become unable.

図9は、小発電機の連系を模擬した場合としない場合で電圧残留率を比較した結果を示す図ある。なお、ここでの電圧残留率の計算は、小発電機の連系有無による比較が目的であるため、実故障データとして得られている故障送電線、故障様相、故障位置を用いて算出している(ただし、故障点抵抗は考慮していない)。図9より、小発電機の連系を模擬した場合は、その連系付近の観測箇所の電圧残留率が模擬しない場合に比べ、実測値に近い値に維持されていることが分かる。また、故障点標定装置100は電圧残留率の実測値と計算値を比較するものである。そのため、図9のように小発電機の連系によって電圧残留率の計算値が変化すれば標定結果にも影響を与える。   FIG. 9 is a diagram illustrating a result of comparing the voltage residual ratios with and without simulating interconnection of a small generator. Note that the calculation of the voltage residual ratio here is based on the comparison with the presence or absence of interconnection of small generators, so it is calculated using the fault transmission line, fault mode, and fault location obtained as actual fault data. (However, failure point resistance is not considered). From FIG. 9, it can be seen that when the interconnection of the small generator is simulated, the voltage residual ratio at the observation location near the interconnection is maintained at a value close to the actually measured value as compared with the case where the voltage residual rate is not simulated. Further, the failure point locating apparatus 100 compares the measured value and the calculated value of the voltage residual ratio. Therefore, if the calculated value of the voltage residual ratio changes due to the interconnection of small generators as shown in FIG. 9, the orientation result is also affected.

そこで、図6において小発電機の連系が考えられる12ケースについてこれを模擬し、故障点標定を行った。その結果、図10に示すように、多くのケースにおいて標定精度の向上が見られた。これは、小発電機の考慮によって、電圧残留率の計算値が適切に算出され、実測値により近づいたためと考えられる。したがって、標定精度の向上には小発電機の連系を始め、系統データの正確な模擬が必要不可欠であると考えられる。   Therefore, in FIG. 6, 12 cases where interconnection of small generators can be considered were simulated, and fault location was performed. As a result, as shown in FIG. 10, improvement in the orientation accuracy was observed in many cases. This is considered to be due to the fact that the calculated value of the voltage residual ratio was appropriately calculated and brought closer to the actually measured value by considering the small generator. Therefore, it is thought that accurate simulation of system data is indispensable for improving the orientation accuracy, including the interconnection of small generators.

上述してきたように、本実施例1では、評価部160が、観測箇所の電圧残留率の実測値と計算値の差の標準偏差に電圧残留率の実測値と計算値の差の絶対値の平均値を加えた評価値Fを各故障位置に対して算出し、評価値Fが最小となる故障位置を故障点として標定することとしたので、各観測箇所で得られた電圧残留率の実測値分布に「形」および「間隔」が最も一致する故障点を標定することができ、高精度で故障点を標定することができる。   As described above, in the first embodiment, the evaluation unit 160 adds the absolute value of the difference between the measured value and the calculated value of the voltage residual ratio to the standard deviation of the difference between the measured value and the calculated value of the voltage residual rate at the observation location. Since the evaluation value F including the average value is calculated for each failure position, and the failure position where the evaluation value F is minimized is determined as the failure point, the voltage residual ratio obtained at each observation point is actually measured. It is possible to determine the failure point having the most similar “shape” and “interval” to the value distribution, and it is possible to determine the failure point with high accuracy.

観測箇所から得られる実測値には、観測装置の故障や取り込みエラーなどにより大きな誤差が含まれる可能性がある。このような誤差を含んだ実測値は、計算値との適切な比較ができないため、標定結果にも影響を及ぼすことになる。そこで、本実施例2では、誤差の多い実測値を特定し、特定した実測値に対応する観測箇所の測定結果を標定には用いないようにする故障点標定装置について説明する。   The actual measurement value obtained from the observation location may include a large error due to a failure of the observation device or an acquisition error. The actual measurement value including such an error cannot be appropriately compared with the calculated value, and thus affects the orientation result. Therefore, in the second embodiment, a failure point locating device that identifies actual measurement values with many errors and prevents the measurement results of the observation points corresponding to the identified actual measurement values from being used for the orientation will be described.

まず、本実施例2に係る故障点標定装置の構成について説明する。図11は、本実施例2に係る故障点標定装置の構成を示す機能ブロック図である。なお、ここでは説明の便宜上、図2に示した各部と同様の役割を果たす機能部については同一符号を付すこととしてその詳細な説明を省略する。図11に示すように、この故障点標定装置200は、図2に示した故障点標定装置100と比較して、評価部160の代わりに評価部260を有し、実測値評価部270を新たに有する。   First, the configuration of the fault location apparatus according to the second embodiment will be described. FIG. 11 is a functional block diagram illustrating the configuration of the fault location apparatus according to the second embodiment. Here, for convenience of explanation, functional units that play the same functions as the respective units shown in FIG. As shown in FIG. 11, the failure point locating device 200 has an evaluation unit 260 instead of the evaluation unit 160 in comparison with the failure point locating device 100 shown in FIG. 2, and a measured value evaluation unit 270 is newly added. Have.

実測値評価部270は、各観測箇所における電圧残留率の実測値と計算値の差の標準偏差に基づいて各観測箇所の実測値の精度を評価し、誤差の大きい実測値を特定する処理部であり、特定した実測値に対応する観測箇所を評価部260に通知する。なお、計算値としては、故障発生後の巡視などによって得られた実故障データ(故障送電線、故障様相、故障位置)から電圧残留率計算値算出部150を用いて計算した値を使用する。   The actual measurement value evaluation unit 270 evaluates the accuracy of the actual measurement value at each observation location based on the standard deviation of the difference between the actual measurement value and the calculated value of the voltage residual ratio at each observation location, and identifies a measurement value with a large error. The observation part corresponding to the specified actual measurement value is notified to the evaluation unit 260. As the calculated value, a value calculated by using the voltage residual ratio calculated value calculation unit 150 from actual fault data (fault transmission line, fault mode, fault position) obtained by patrol after the occurrence of the fault is used.

図12は、誤差の大きい実測値の特定例を示す図である。同図では、電圧残留率の実測値と計算値の差が2σ(σは標準偏差)以上である観測箇所が誤差の大きい観測箇所として特定されている。   FIG. 12 is a diagram illustrating a specific example of an actually measured value with a large error. In the figure, an observation point where the difference between the measured value and the calculated value of the voltage residual ratio is 2σ (σ is a standard deviation) or more is specified as an observation point with a large error.

評価部260は、評価部160と同様に、電圧残留率の計算値および実測値の分布様相に基づいて両者の一致度を評価するが、実測値評価部270から通知された観測箇所を除いて評価値Fを計算する。このように、誤差の大きい実測値を除いて評価値Fを計算することによって、より高精度で故障点を標定することができる。   Similar to the evaluation unit 160, the evaluation unit 260 evaluates the degree of coincidence of both based on the calculated value of the voltage residual ratio and the distribution aspect of the actual measurement value, except for the observation point notified from the actual value evaluation unit 270. An evaluation value F is calculated. Thus, by calculating the evaluation value F by removing the actual measurement value having a large error, the failure point can be determined with higher accuracy.

図13は、本実施例2に係る故障点標定装置200による故障点標定結果を示す図である。同図において、「選別前」の欄が誤差の大きい観測箇所を除くことなく評価値Fを計算した場合を示し、「選別後」の欄が誤差の大きい観測箇所を除いて評価値Fを計算した場合を示す。   FIG. 13 is a diagram illustrating a fault location result by the fault location apparatus 200 according to the second embodiment. In the figure, the column “Before selection” shows the case where the evaluation value F is calculated without removing observation points with large errors, and the column “After selection” calculates the evaluation value F excluding observation points with large errors. Shows the case.

同図に示すように、ケース[4]、[9]において標定精度の向上が見られる。これは、誤差の大きい実測値を取り除くことによって電圧残留率の計算値を実測値により近づけることができたためと考えられる。   As shown in the figure, improvement in the orientation accuracy is seen in cases [4] and [9]. This is considered to be because the calculated value of the voltage residual ratio can be made closer to the actually measured value by removing the actually measured value having a large error.

一方、ケース[16]においては標定精度の向上が見られなかった。これは、除外された観測箇所が、この故障(電圧残留率の分布様相)を特徴づけるものであったためと考えられる。このような観測箇所は、故障点を探索する上で大きな手がかりとなるため、その除外可否については注意が必要であり、1回の精度評価で除外対象とするのではなく、この評価の蓄積により判断することが重要である。   On the other hand, in case [16], no improvement in orientation accuracy was observed. This is thought to be because the excluded observation points were characteristic of this failure (distribution aspect of the voltage residual ratio). Such observation points are a great clue in searching for failure points, so it is necessary to be careful about whether or not they can be excluded, and it is not excluded from a single accuracy evaluation. It is important to judge.

また、実測値の評価には標準偏差を用いているため、除外箇所を特定する場合には十分な量の実測値が必要である。観測箇所が少ない場合には誤差の大きい観測箇所の除外によって更に実測値が少なくなることもあり、精度向上が見られない場合もある。そのため、比較的実測値の少ない下位系の故障ケースでは観測箇所の除外は行わないようにすることも必要である。   In addition, since standard deviation is used for evaluation of actual measurement values, a sufficient amount of actual measurement values are required when specifying an excluded portion. When there are few observation points, the actual measurement value may be further reduced by excluding observation points with large errors, and accuracy may not be improved. For this reason, it is necessary not to exclude observation points in the case of a subordinate fault case with relatively few actual measurement values.

上述してきたように、本実施例2では、実測値評価部270が誤差の大きい実測値および観測箇所を特定し、評価部260が誤差の大きい観測箇所を除いて評価値Fを計算することとしたので、より高精度で故障点を標定することができる。   As described above, in the second embodiment, the actual measurement value evaluation unit 270 specifies the actual measurement value and the observation location with a large error, and the evaluation unit 260 calculates the evaluation value F except for the observation location with the large error. Therefore, the failure point can be determined with higher accuracy.

なお、本実施例2では、誤差の多い実測値に対応する観測箇所を特定し、それらの観測箇所の測定結果をその後の標定には用いないようにする場合について説明したが、電圧残留率の計算値を算出しながら誤差の大きい実測値を特定することによって、誤差の大きい観測箇所を除外しながら故障点を標定するようにすることもできる。   In the second embodiment, the observation points corresponding to the actually measured values with many errors are specified, and the measurement results at those observation points are not used for the subsequent orientation. By specifying the actual measurement value with a large error while calculating the calculated value, it is possible to determine the failure point while excluding the observation point with the large error.

また、図7では、下位系の故障ケースにおいて比較的標定精度のよい結果が得られたものの、上位系の故障ケース、特にケース[5]については大きな誤差を生じている。これは、500kv送電線故障を下位系母線の実測値を用いて標定しているため、その分布様相を的確に捉えることができなかったためと考えられる。   Further, in FIG. 7, although a relatively good result of the positioning accuracy was obtained in the failure case of the lower system, a large error has occurred in the failure case of the upper system, particularly case [5]. This is considered to be because the distribution aspect could not be accurately grasped because the 500 kv transmission line failure was standardized using the measured value of the lower bus.

そこで、ケース[5]において新たに故障発生時の上位系(220kv,500kv)実測値を含め、故障点標定を行った。その結果、図14に示す通り、標定精度の向上が見られた。これは、上位系実測値を含めることにより、評価する実測値数が増えたため、その分布様相を捉え易くやすくなったためと考えられる。   Therefore, in the case [5], the fault location is newly performed including the actually measured value of the upper system (220 kv, 500 kv) at the time of occurrence of the fault. As a result, as shown in FIG. 14, improvement in the orientation accuracy was observed. This is probably because the number of actually measured values to be evaluated has increased by including the host system actually measured values, making it easier to grasp the distribution aspect.

また、図15および図16は、事後解析的に電圧残留率の計算値を算出し、実測値と比較したものである。図15は、上位系実測値を含めた場合を示し、図16は、上位系実測値のみの場合を示す。これらの図を比較すると、上位系実測値のみの場合は実測値と計算値が非常に近い値を示している。したがって、上位系に事故が発生した場合には、上位系実測値のみで故障点標定を行うことにより、図14に示すように更なる標定精度の向上を図ることができる。このように、標定精度の向上には故障電圧階級付近の実測値を用いることが有効であると考えられる。   FIGS. 15 and 16 show the post-analytical calculation of the calculated voltage residual ratio and compare it with the actual measurement. FIG. 15 shows a case where the higher system actual measurement value is included, and FIG. 16 shows a case where only the upper system actual measurement value is included. Comparing these figures, the measured value and the calculated value are very close in the case of only the higher-order measured value. Therefore, when an accident occurs in the host system, the fault location is determined using only the host system actually measured values, thereby further improving the orientation accuracy as shown in FIG. As described above, it is considered effective to use an actual measurement value in the vicinity of the fault voltage class in order to improve the orientation accuracy.

図17は、本実施例1および2に係る故障点標定装置100および200による故障点標定結果をまとめて示す図である。同図において、「向上方策前」の欄は故障点標定装置100による故障点標定結果を示し、「向上方策」の欄は小発電機模擬(小発電機)、誤差の大きい観測箇所の除外(選別)、上位系実測値の使用(上位系)のうち追加した精度向上策を示し、「向上方策後」の欄は「向上方策」の欄に示した精度向上策を追加した場合の故障点標定結果を示している。ただし、故障を特徴づける観測箇所は除外の対象としていない。図17に示すように、全19ケース中15ケースにおいて標定誤差が2km以内となり、既存FLとほぼ同程度の標定結果が得られている。   FIG. 17 is a diagram collectively showing the failure point location results by the failure point location apparatuses 100 and 200 according to the first and second embodiments. In the figure, the column “Before Improvement Measure” shows the failure point location result by the failure point locating apparatus 100, and the column “Improvement Measure” is a small generator simulation (small generator) and excludes observation points with large errors ( (Selection), use of higher system measured values (upper system) shows the added accuracy improvement measures, and the column “After Improvement Measures” shows the failure point when the accuracy improvement measures shown in the “Enhancement Measures” column are added The orientation results are shown. However, observation points that characterize failures are not excluded. As shown in FIG. 17, the orientation error is within 2 km in 15 cases out of 19 cases, and the orientation result is almost the same as that of the existing FL.

なお、本実施例1および2では、故障点標定装置について説明したが、故障点標定装置が有する構成をソフトウェアによって実現することで、同様の機能を有する故障点標定プログラムを得ることができる。そこで、この故障点標定プログラムを実行するコンピュータについて説明する。   In the first and second embodiments, the failure point locating device has been described. However, a failure point locating program having the same function can be obtained by realizing the configuration of the failure point locating device with software. Therefore, a computer that executes this fault location program will be described.

図18は、本実施例1および2に係る故障点標定プログラムを実行するコンピュータの構成を示す機能ブロック図である。同図に示すように、このコンピュータ300は、RAM310と、CPU320と、HDD330と、LANインタフェース340と、入出力インタフェース350と、DVDドライブ360とを有する。   FIG. 18 is a functional block diagram illustrating the configuration of a computer that executes the fault location program according to the first and second embodiments. As shown in the figure, the computer 300 includes a RAM 310, a CPU 320, an HDD 330, a LAN interface 340, an input / output interface 350, and a DVD drive 360.

RAM310は、プログラムやプログラムの実行途中結果などを記憶するメモリであり、CPU320は、RAM310からプログラムを読み出して実行する中央処理装置である。HDD330は、プログラムやデータを格納するディスク装置であり、LANインタフェース340は、コンピュータ300をLAN経由で他のコンピュータに接続するためのインタフェースである。入出力インタフェース350は、マウスやキーボードなどの入力装置および表示装置を接続するためのインタフェースであり、DVDドライブ360は、DVDの読み書きを行う装置である。   The RAM 310 is a memory that stores a program, a program execution result, and the like. The CPU 320 is a central processing unit that reads a program from the RAM 310 and executes the program. The HDD 330 is a disk device that stores programs and data, and the LAN interface 340 is an interface for connecting the computer 300 to other computers via the LAN. The input / output interface 350 is an interface for connecting an input device such as a mouse or a keyboard and a display device, and the DVD drive 360 is a device for reading / writing a DVD.

そして、このコンピュータ300において実行される故障点標定プログラム311は、DVDに記憶され、DVDドライブ360によってDVDから読み出されてコンピュータ300にインストールされる。あるいは、この故障点標定プログラム311は、LANインタフェース340を介して接続された他のコンピュータシステムのデータベースなどに記憶され、これらのデータベースから読み出されてコンピュータ300にインストールされる。そして、インストールされた故障点標定プログラム311は、HDD330に記憶され、RAM310に読み出されてCPU320によって実行される。   The failure location program 311 executed in the computer 300 is stored in the DVD, read from the DVD by the DVD drive 360, and installed in the computer 300. Alternatively, the fault location program 311 is stored in a database or the like of another computer system connected via the LAN interface 340, read from these databases, and installed in the computer 300. The installed fault location program 311 is stored in the HDD 330, read into the RAM 310, and executed by the CPU 320.

また、本実施例1および2では、故障点標定装置が故障送電線および故障様相の情報を外部から入力する場合について説明したが、本発明はこれに限定されるものではなく、故障点標定装置が瞬低電圧から故障送電線および故障様相を特定する場合にも同様に適用することができる。すなわち、電圧残留率の計算値を算出する際に、未知数として故障点抵抗、故障位置の他に故障様相および故障送電線を加えることによって故障様相および故障送電線を推定しながら故障位置を特定することもできる。ただし、未知数の数を増やすと計算量が増えるため、故障点の範囲をある程度限定し、限定した範囲で詳細に故障位置を特定するといったことが必要となる。   Further, in the first and second embodiments, the case where the failure point locating device inputs information on the failure transmission line and the failure aspect from the outside has been described. However, the present invention is not limited to this, and the failure point locating device. However, the present invention can be similarly applied to the case where the faulty transmission line and the fault appearance are identified from the instantaneous low voltage. That is, when calculating the calculated value of the voltage residual ratio, the fault location is specified while estimating the fault mode and the fault transmission line by adding the fault mode and fault transmission line in addition to the fault point resistance and fault location as unknowns. You can also. However, if the number of unknowns is increased, the amount of calculation increases. Therefore, it is necessary to limit the range of failure points to some extent and specify the failure location in detail within the limited range.

例えば、本実施例1および2では、電圧残留率の計算値を算出する際に送電線を20分割して順番に計算することとしたが、最初により少ない分割で故障位置をスクリーニング(限定)し、スクリーニングした範囲でより細かく送電線を分割して計算値を算出することによって、効率良く電圧残留率の計算値を算出することができる。   For example, in the first and second embodiments, when calculating the calculated value of the voltage residual ratio, the transmission line is divided into 20 parts and calculated in order. However, the failure location is screened (limited) with fewer divisions first. By dividing the transmission line more finely within the screened range and calculating the calculated value, the calculated value of the voltage residual ratio can be calculated efficiently.

以上のように、本発明に係る故障点標定装置、故障点標定方法および故障点標定プログラムは、電力系統を構成する送電線の故障位置の特定に有用であり、特に、FLが設置されていない送電線に故障が発生した場合に適している。   As described above, the failure point locating device, the failure point locating method, and the failure point locating program according to the present invention are useful for specifying the failure position of the transmission line constituting the power system, and in particular, the FL is not installed. Suitable when a failure occurs in the transmission line.

本実施例1に係る故障点標定装置による故障点標定手法の概要を説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of the fault location method by the fault location apparatus which concerns on the present Example 1. FIG. 本実施例1に係る故障点標定装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the failure point location apparatus which concerns on the present Example 1. FIG. 電圧残留率の定義を示す図である。It is a figure which shows the definition of a voltage residual ratio. 評価部が電圧残留率の計算値および実測値の一致度を評価するために用いる評価関数を説明するための説明図である。It is explanatory drawing for demonstrating the evaluation function used in order for an evaluation part to evaluate the coincidence of the calculated value of a voltage residual ratio, and an actual value. 本実施例1に係る故障点標定装置による故障点標定処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the failure point location process by the failure point location apparatus which concerns on the present Example 1. FIG. 本実施例1に係る故障点標定装置の評価に用いた故障データを示す図である。It is a figure which shows the failure data used for evaluation of the failure point location apparatus which concerns on the present Example 1. FIG. 本実施例1に係る故障点標定装置による故障点標定結果を示す図である。It is a figure which shows the failure point location result by the failure point location apparatus which concerns on the present Example 1. FIG. 小発電機モデルを示す図である。It is a figure which shows a small generator model. 小発電機の連系を模擬した場合としない場合で電圧残留率を比較した結果を示す図である。It is a figure which shows the result of having compared the voltage residual rate with the case where it does not simulate the interconnection of a small generator, and the case where it does not. 小発電機を模擬した場合の標定結果を示す図である。It is a figure which shows the orientation result at the time of simulating a small generator. 本実施例2に係る故障点標定装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the failure point location apparatus which concerns on the present Example 2. 誤差の大きい実測値の特定例を示す図である。It is a figure which shows the specific example of the actual value with a big error. 本実施例2に係る故障点標定装置による故障点標定結果を示す図である。It is a figure which shows the failure point location result by the failure point location apparatus which concerns on the present Example 2. FIG. 上位系実測値を用いた場合の標定結果を示す図である。It is a figure which shows the orientation result at the time of using a higher system actual value. 上位系実測値を用いた場合の電圧残留率の実測値と計算値を示す図である。It is a figure which shows the measured value and calculated value of a voltage residual rate at the time of using a higher system measured value. 上位系実測値のみを用いた場合の電圧残留率の実測値と計算値を示す図である。It is a figure which shows the measured value and calculated value of a voltage residual rate at the time of using only a high-order system measured value. 本実施例1および2に係る故障点標定装置による故障点標定結果をまとめて示す図である。It is a figure which shows collectively the failure point location result by the failure point location apparatus which concerns on the present Examples 1 and 2. 本実施例に係る故障点標定プログラムを実行するコンピュータの構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the computer which executes the fault location program concerning a present Example.

符号の説明Explanation of symbols

100,200 故障点標定装置
110 故障前電圧算出部
120 故障前電圧記憶部
130 送電線故障データ読込部
140 送電線故障データ記憶部
150 電圧残留率計算値算出部
160,260 評価部
270 実測値評価部
300 コンピュータ
310 RAM
311 故障点標定プログラム
320 CPU
330 HDD
340 LANインタフェース
350 入出力インタフェース
360 DVDドライブ
100, 200 Fault location device 110 Pre-failure voltage calculation unit 120 Pre-failure voltage storage unit 130 Transmission line failure data reading unit 140 Transmission line failure data storage unit 150 Voltage residual ratio calculation value calculation unit 160, 260 Evaluation unit 270 Actual value evaluation Part 300 Computer 310 RAM
311 Fault location program 320 CPU
330 HDD
340 LAN interface 350 I / O interface 360 DVD drive

Claims (9)

電力系統を構成する送電線に故障が発生した際に複数の観測箇所で測定した瞬低電圧の実測値に基づいて故障点を標定する故障点標定装置であって、
複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出する計算値算出手段と、
前記計算値算出手段により算出された各観測箇所における計算値と前記実測値との差の標準偏差各観測箇所における計算値と前記実測値との差の絶対値の平均値の和を評価値として各故障位置に対して算出する評価値算出手段と、
前記評価値算出手段により各故障位置に対して算出された評価値が最小となる故障位置を故障点として特定する故障点特定手段と
を備えたことを特徴とする故障点標定装置。
A failure point locating device for locating a failure point based on measured values of instantaneous low voltage measured at a plurality of observation points when a failure occurs in a transmission line constituting the power system,
A calculated value calculating means for calculating a calculated value of the instantaneous voltage drop at each observation point for each of a plurality of failure positions;
The calculated value calculation means calculated value and the actual measurement value and the evaluation value of the sum of the average value of the absolute value of the difference and the standard deviation of the difference between the measured and calculated values at each observation point of at each observation point calculated by Evaluation value calculation means for calculating for each failure position as,
A failure point locating device comprising: a failure point specifying unit that specifies, as a failure point , a failure position having a minimum evaluation value calculated for each failure location by the evaluation value calculating unit.
各観測箇所における前記実測値の誤差を評価し、誤差の大きい実測値が観測される観測箇所を特定する誤差大観測箇所特定手段をさらに備え、
前記評価値算出手段は、前記誤差大観測箇所特定手段により特定された観測箇所での実測値を除外して評価値を算出することを特徴とする請求項1に記載の故障点標定装置。
An error large observation point specifying means for evaluating an error of the actual measurement value at each observation point and specifying an observation point where the actual measurement value with a large error is observed is further provided,
The failure point locating apparatus according to claim 1, wherein the evaluation value calculating unit calculates an evaluation value by excluding an actual measurement value at an observation point specified by the large error observation point specifying unit.
前記計算値算出手段は、下位系小発電機を電圧源として模擬して計算値を算出することを特徴とする請求項1または2に記載の故障点標定装置。   The failure point locating device according to claim 1, wherein the calculated value calculating means calculates a calculated value by simulating a low-order small generator as a voltage source. 上位系に故障が発生した場合には、前記複数の観測箇所に上位系の観測箇所を含めることを特徴とする請求項1、2または3に記載の故障点標定装置。   The failure point locating apparatus according to claim 1, 2, or 3, wherein when a failure occurs in the upper system, the observation points of the upper system are included in the plurality of observation points. 上位系に故障が発生した場合には、前記複数の観測箇所を上位系の観測箇所のみとすることを特徴とする請求項1、2または3に記載の故障点標定装置。   The fault location apparatus according to claim 1, 2, or 3, wherein when a fault occurs in the upper system, the plurality of observation points are only the upper system observation points. 前記故障点特定手段により特定される故障点の範囲を限定する故障点範囲限定手段をさらに備え、
前記計算値算出手段は、前記故障点範囲限定手段により限定された範囲で複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出することを特徴とする請求項1〜5のいずれか一つに記載の故障点標定装置。
Further comprising failure point range limiting means for limiting the range of failure points specified by the failure point specifying means;
6. The calculated value calculating means calculates a calculated value of an instantaneous voltage drop at each observation point for each of a plurality of failure positions within a range limited by the failure point range limiting means. The fault location apparatus as described in any one of these.
前記実測値および計算値として電圧残留率を用いることを特徴とする請求項1〜のいずれか一つに記載の故障点標定装置。 Fault point locating system according to any one of claims 1-6, characterized by using the voltage remaining constant as said measured values and calculated values. 電力系統を構成する送電線に故障が発生した際に複数の観測箇所で測定した瞬低電圧の実測値に基づいて故障点を標定する故障点標定装置による故障点標定方法であって、
複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出する計算値算出ステップと、
前記計算値算出ステップにより算出された各観測箇所における計算値と前記実測値との差の標準偏差各観測箇所における計算値と前記実測値との差の絶対値の平均値の和を評価値として各故障位置に対して算出する評価値算出ステップと、
前記評価値算出ステップにより各故障位置に対して算出された評価値が最小となる故障位置を故障点として特定する故障点特定ステップと
を含んだことを特徴とする故障点標定方法。
A failure point locating method by a failure point locating device for locating a failure point based on measured values of instantaneous low voltage measured at a plurality of observation points when a failure occurs in a transmission line constituting the power system,
A calculated value calculating step for calculating a calculated value of instantaneous voltage drop at each observation point for each of a plurality of failure positions;
The calculated value evaluation value sum of the average value of the absolute value of the difference between the calculated value and the measured value of the standard deviation and each observation point of the difference between the calculated value and the measured value at each observation point calculated by the calculating step An evaluation value calculating step for calculating for each failure position as
A failure point locating method comprising: a failure point specifying step of specifying, as a failure point , a failure position having a minimum evaluation value calculated for each failure location in the evaluation value calculating step.
電力系統を構成する送電線に故障が発生した際に複数の観測箇所で測定した瞬低電圧の実測値に基づいて故障点を標定する故障点標定プログラムであって、
複数の故障位置それぞれに対して各観測箇所における瞬低電圧の計算値を算出する計算値算出手順と、
前記計算値算出手順により算出された各観測箇所における計算値と前記実測値との差の標準偏差各観測箇所における計算値と前記実測値との差の絶対値の平均値の和を評価値として各故障位置に対して算出する評価値算出手順と、
前記評価値算出手順により各故障位置に対して算出された評価値が最小となる故障位置を故障点として特定する故障点特定手順と
をコンピュータに実行させることを特徴とする故障点標定プログラム。
A fault location program that locates a fault point based on measured values of instantaneous voltage drop at a plurality of observation points when a fault occurs in a transmission line constituting the power system,
A calculation value calculation procedure for calculating a calculation value of instantaneous voltage drop at each observation point for each of a plurality of failure positions;
The calculated value calculation procedure calculated value and the actual measurement value and the evaluation value of the sum of the average value of the absolute value of the difference and the standard deviation of the difference between the measured and calculated values at each observation point of at each observation point calculated by As an evaluation value calculation procedure to calculate for each failure position,
A failure point locating program that causes a computer to execute a failure point specifying procedure for specifying, as a failure point , a failure position having a minimum evaluation value calculated for each failure location by the evaluation value calculation procedure.
JP2007105173A 2007-04-12 2007-04-12 FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM Expired - Fee Related JP5110946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105173A JP5110946B2 (en) 2007-04-12 2007-04-12 FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105173A JP5110946B2 (en) 2007-04-12 2007-04-12 FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM

Publications (2)

Publication Number Publication Date
JP2008261751A JP2008261751A (en) 2008-10-30
JP5110946B2 true JP5110946B2 (en) 2012-12-26

Family

ID=39984334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105173A Expired - Fee Related JP5110946B2 (en) 2007-04-12 2007-04-12 FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM

Country Status (1)

Country Link
JP (1) JP5110946B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111258B2 (en) * 2008-06-23 2013-01-09 一般財団法人電力中央研究所 FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM
JP5412563B2 (en) * 2012-08-14 2014-02-12 一般財団法人電力中央研究所 FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM
CN103105563B (en) * 2013-01-28 2016-01-20 山东电力集团公司济宁供电公司 A kind of feeder line fault ripple network localization method

Also Published As

Publication number Publication date
JP2008261751A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
Pereira et al. Improved fault location on distribution feeders based on matching during-fault voltage sags
Li et al. An innovative software tool suite for power plant model validation and parameter calibration using PMU measurements
US6671634B2 (en) System and method for reliability assessment of a power system having integrated modules
JP6602895B2 (en) Power system model analysis apparatus and method
Clements et al. Systemic modelling and integrated assessment of asset management strategies and staff constraints on distribution network reliability
Lee Automatic fault location on distribution networks using synchronized voltage phasor measurement units
JP5110946B2 (en) FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM
JP5111258B2 (en) FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM
Asprou et al. The effect of instrument transformer accuracy class on the WLS state estimator accuracy
Ghaedi et al. Modified WLS three-phase state estimation formulation for fault analysis considering measurement and parameter errors
Baldwin et al. Fault locating in distribution networks with the aid of advanced metering infrastructure
CN104317987A (en) Error analysis method for simulating calculation of short-circuit current
Zeljković et al. Performance assessment of fault locators and fault passage indicators in distribution networks by the non-sequential Monte Carlo simulation
JP5412563B2 (en) FAILURE LOCATION DEVICE, FAILURE LOCATION METHOD, AND FAILURE LOCATION PROGRAM
Papic et al. Reliability assessment of multiple substations in Idaho system using a node-breaker model
de Ávila Dilli et al. Conductor break detection in distribution system through negative sequence voltage
CN114421453A (en) Power distribution network parameter estimation method and system based on mixed measured values
CN113567805A (en) Power distribution network fault diagnosis method and device based on data correlation
KR101200675B1 (en) Method for evaluating risk level of power system
Sonwane et al. Distribution System Reliability: An Overview
McGuinness et al. Grid‐wide area protection settings analysis using protection settings evaluation tool
Datta et al. A diagnostics tool for risk-based dynamic security assessment of renewable generation
US20230280712A1 (en) Electric grid model error reduction
Pacis Development of search algorithm for contingency case identification using matlab
Sankhyan Identification of exact fault location on a distribution network using combined fault location and heuristic-based sensor placement algorithm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees