JP5110496B2 - Method for producing NaCl type silicon carbide - Google Patents

Method for producing NaCl type silicon carbide Download PDF

Info

Publication number
JP5110496B2
JP5110496B2 JP2005337667A JP2005337667A JP5110496B2 JP 5110496 B2 JP5110496 B2 JP 5110496B2 JP 2005337667 A JP2005337667 A JP 2005337667A JP 2005337667 A JP2005337667 A JP 2005337667A JP 5110496 B2 JP5110496 B2 JP 5110496B2
Authority
JP
Japan
Prior art keywords
silicon carbide
type silicon
nacl
hollow body
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337667A
Other languages
Japanese (ja)
Other versions
JP2007137751A (en
Inventor
哲二 野田
弘 荒木
裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005337667A priority Critical patent/JP5110496B2/en
Publication of JP2007137751A publication Critical patent/JP2007137751A/en
Application granted granted Critical
Publication of JP5110496B2 publication Critical patent/JP5110496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、高密度のNaCl型炭化ケイ素を容易に製造することのできるNaCl型炭化ケイ素の製造方法に関する。   The present invention relates to a method for producing NaCl-type silicon carbide capable of easily producing high-density NaCl-type silicon carbide.

炭化ケイ素(SiC)は、高温半導体、フォトニック材料、研磨剤、さらに構造用材料として応用されている。   Silicon carbide (SiC) is applied as a high-temperature semiconductor, a photonic material, an abrasive, and a structural material.

従来知られている炭化ケイ素は、3C立方晶型(格子定数0.436nm)や、4H、6H、15R等の六方晶型である。最近、ダイヤモンド粉にシリコン(Si)を混ぜ、2500℃、6GPaの高温高圧下で、高密度のNaCl型炭化ケイ素(格子定数0.408nm)を合成できることが報告されている(非特許文献1)。
B.Yao et al., J. Mater. Scie. Lett., 14, (1995), 931-933
Conventionally known silicon carbide is a 3C cubic type (lattice constant 0.436 nm) or a hexagonal type such as 4H, 6H, 15R. Recently, it has been reported that silicon powder (Si) is mixed with diamond powder and high-density NaCl type silicon carbide (lattice constant 0.408 nm) can be synthesized under high temperature and high pressure of 2500 ° C. and 6 GPa (Non-patent Document 1). .
B. Yao et al., J. Mater. Scie. Lett., 14, (1995), 931-933

NaCl型炭化ケイ素は、理論的にはたとえば3C構造等の炭化ケイ素を圧縮すれば実現されるはずであるが、実際には、2500℃、6GPaの高温高圧下でも合成されていない。   Although the NaCl type silicon carbide should theoretically be realized by compressing silicon carbide having a 3C structure or the like, it is not actually synthesized under high temperature and high pressure of 2500 ° C. and 6 GPa.

本発明は、以上の事情に鑑みてなされたものであり、より高性能であると見込まれるNaCl型炭化ケイ素を容易に製造することのできるNaCl型炭化ケイ素の製造方法を提供することを解決すべき課題としている。   The present invention has been made in view of the above circumstances, and solves the problem of providing a method for producing NaCl-type silicon carbide that can easily produce NaCl-type silicon carbide that is expected to have higher performance. It should be a challenge.

本発明は、上記の課題を解決するために、孔径が0μmより大きく1μm以下で柱状の細孔が形成された中空体の細孔内にトリクロロメチルシランを1Torr〜100Torrの減圧下で流通させ、900℃〜1300℃の温度で熱分解させて、中空体の内壁にNaCl型炭化ケイ素を生成させることを特徴としている。
The present invention, in order to you solve the above problem, a pore size of tri chloromethyl silane in the pores of greater than 1μm or less columnar hollow body pores are formed in 0μm under reduced pressure of 1Torr~100Torr It is characterized in that it is made to flow and thermally decomposed at a temperature of 900 ° C. to 1300 ° C. to produce NaCl type silicon carbide on the inner wall of the hollow body.

本発明によれば、高温、高圧を用いず、トリクロロメチルシランの熱分解という簡便な手法で高密度のNaCl型炭素ケイ素を製造することができる。低コストのトリクロロメチルシランを原料に用い、簡便な電気炉を使用することができるため、NaCl型炭化ケイ素を安価に製造することができる。
According to the present invention, high temperature, without the use of high pressure, it is possible to produce a high density of NaCl-type carbon silicon by a simple method that the thermal decomposition of the tri-chloromethyl silane. Since the cost of tri chloromethyl silane used as a raw material, can be used a simple electric furnace, it is possible to inexpensively manufacture the NaCl-type silicon carbide.

以下実施例を示し、本発明のNaCl型炭化ケイ素の製造方法についてさらに説明する。   Hereinafter, the method for producing NaCl-type silicon carbide of the present invention will be further described with reference to examples.

図1に示したように、孔径が0μmより大きく1μm以下で柱状の細孔1が形成された中空体2の細孔1内にクロロシラン3を流通させる。クロロシラン3の流通は、1Torr〜100Torrの減圧下で行い、キャリヤーとして水素ガス、アルゴンガス等を使用することができる。クロロシラン3は、中空体2の下方から上方へと導くことができる。クロロシラン3としては、メチルクロロシラン、エチルクロロシラン等が例示され、クロロシラン3は炭化水素を含有するものであってもよい。中空体2は、たとえば、薄膜を所定間隔で離間配置し、柱状の細孔1が形成されたものとすることができる。   As shown in FIG. 1, chlorosilane 3 is circulated in the pores 1 of the hollow body 2 in which the pore diameter is larger than 0 μm and not larger than 1 μm and the columnar pores 1 are formed. The chlorosilane 3 is circulated under a reduced pressure of 1 Torr to 100 Torr, and hydrogen gas, argon gas or the like can be used as a carrier. The chlorosilane 3 can be guided from the lower side to the upper side of the hollow body 2. Examples of the chlorosilane 3 include methylchlorosilane and ethylchlorosilane, and the chlorosilane 3 may contain a hydrocarbon. The hollow body 2 can be formed, for example, by forming thin columnar pores 1 at a predetermined interval to form columnar pores 1.

このような中空体2は電気炉内に配置することができ、クロロシラン3を流通させながら温度900℃〜1300℃の温度に加熱する。クロロシラン3は中空体2の細孔1内で熱分解し、炭化ケイ素が生成し、図2に示したように、中空体2の内壁にNaCl型の炭化ケイ素4が析出する。熱分解に必要な温度は900℃〜1300℃の範囲が適当であり、この範囲からはずれるとクロロシラン3の分解効率が低下する。   Such a hollow body 2 can be placed in an electric furnace and heated to a temperature of 900 ° C. to 1300 ° C. while circulating the chlorosilane 3. The chlorosilane 3 is thermally decomposed in the pores 1 of the hollow body 2 to produce silicon carbide, and NaCl-type silicon carbide 4 is deposited on the inner wall of the hollow body 2 as shown in FIG. The temperature required for the thermal decomposition is suitably in the range of 900 ° C. to 1300 ° C. If the temperature is out of this range, the decomposition efficiency of the chlorosilane 3 decreases.

このように、クロロシランの熱分解という簡便な手法によりNaCl型炭化ケイ素の製造が可能となり、製造に高温、高圧を要しない。クロロシランは安価な物質であり、簡便な電気炉を利用することができるため、NaCl型炭化ケイ素の製造を低コストで行うことが可能となる。   In this way, NaCl type silicon carbide can be produced by a simple method of pyrolysis of chlorosilane, and high temperature and high pressure are not required for production. Since chlorosilane is an inexpensive substance and a simple electric furnace can be used, it is possible to manufacture NaCl-type silicon carbide at a low cost.

NaCl型炭化ケイ素は、これまでの炭化ケイ素と比較して高密度であり、かつ高剛性を有する材料である。3C型の炭化ケイ素の約1.3倍の剛性を有することが予想され、炭化ケイ素の中で最も強度の高い物質であると考えられる。特に強度の要求される用途への応用が見込まれる。   NaCl type silicon carbide is a material having a higher density and higher rigidity than conventional silicon carbide. It is expected to have about 1.3 times the rigidity of 3C type silicon carbide, and is considered to be the strongest material among silicon carbide. In particular, application to applications requiring strength is expected.

孔径が0μmより大きく1μm以下で柱状の細孔を有する非晶質アルミナ製の中空体を電気炉内に配置し、この中空体の細孔内に、120Torr、1000℃で水素ガスをキャリヤーとしてトリクロロメチルシラン(CHSiCl)を約0.01モル/分の流
量で下方から上方へ導いた。水素ガスの流量は1000SCCMとした。中空体の内壁に微粉状の析出物が生成した。
A hollow body made of amorphous alumina having a pore diameter larger than 0 μm and not larger than 1 μm and having columnar pores is placed in an electric furnace, and trichlorochloromethane is used as a carrier at 120 Torr and 1000 ° C. in the pores of the hollow body. Methylsilane (CH 3 SiCl 3 ) was introduced from below to above at a flow rate of about 0.01 mol / min. The flow rate of hydrogen gas was 1000 SCCM. A fine powdery precipitate was formed on the inner wall of the hollow body.

析出物を電子顕微鏡により観察した。図3に示したように、析出物は、外径が数nm〜数十nmのチューブ状の物質であり、多結晶粒から形成されている。図4に示したマイクロ組織から格子間隔を計ると、NaCl型炭化ケイ素の200面間隔の約0.2nmにほぼ一致している。析出物がNaCl型炭化ケイ素であると同定される。   The precipitate was observed with an electron microscope. As shown in FIG. 3, the precipitate is a tube-shaped substance having an outer diameter of several nanometers to several tens of nanometers, and is formed from polycrystalline grains. When the lattice spacing is measured from the microstructure shown in FIG. 4, the spacing between the 200 planes of NaCl-type silicon carbide is approximately equal to about 0.2 nm. The precipitate is identified as NaCl type silicon carbide.

次いで、X線回折を行った。図5に3C型の炭化ケイ素と合成されたNaCl型炭化ケイ素のX線回折パターンを示した。両X線回折パターンの比較から、NaCl型炭化ケイ素はC型炭化ケイ素と明らかに異なる構造を有することが分かる。   Next, X-ray diffraction was performed. FIG. 5 shows X-ray diffraction patterns of 3C type silicon carbide and synthesized NaCl type silicon carbide. From a comparison of both X-ray diffraction patterns, it can be seen that NaCl-type silicon carbide has a clearly different structure from C-type silicon carbide.

本発明のNaCl型炭化ケイ素の製造方法の概要を示した要部正面図である。It is the principal part front view which showed the outline | summary of the manufacturing method of the NaCl type silicon carbide of this invention. NaCl型炭化ケイ素の生成の様子を概略的に示した断面図である。It is sectional drawing which showed the mode of the production | generation of NaCl type silicon carbide roughly. 実施例で得られたNaCl型炭化ケイ素の電子顕微鏡像である。It is an electron microscopic image of NaCl type silicon carbide obtained in an example. 実施例で得られたNaCl型炭化ケイ素のマイクロ組織を示した電子顕微鏡像である。It is the electron microscope image which showed the microstructure of NaCl type silicon carbide obtained in the Example. 実施例で得られたNaCl型炭化ケイ素のX線回折パターンを3C型炭化ケイ素のX線回折パターンと対比して示した図である。It is the figure which contrasted and showed the X-ray-diffraction pattern of NaCl type silicon carbide obtained in the Example with the X-ray diffraction pattern of 3C-type silicon carbide.

符号の説明Explanation of symbols

1 細孔
2 中空体
3 クロロシラン
4 NaCl型炭化ケイ素
DESCRIPTION OF SYMBOLS 1 Pore 2 Hollow body 3 Chlorosilane 4 NaCl type silicon carbide

Claims (1)

孔径が0μmより大きく1μm以下で柱状の細孔が形成された中空体の細孔内にトリクロロメチルシランを1Torr〜100Torrの減圧下で流通させ、900℃〜1300℃の温度で熱分解させて、中空体の内壁にNaCl型炭化ケイ素を生成させることを特徴とするNaCl型炭化ケイ素の製造方法。
Pore size was circulated under a reduced pressure of 1Torr~100Torr tri chloromethyl silane in the pores of the hollow body pores columnar below larger 1μm than 0μm is formed by thermal decomposition at a temperature of 900 ° C. to 1300 ° C. A method for producing NaCl-type silicon carbide, characterized by producing NaCl-type silicon carbide on the inner wall of a hollow body.
JP2005337667A 2005-11-22 2005-11-22 Method for producing NaCl type silicon carbide Expired - Fee Related JP5110496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337667A JP5110496B2 (en) 2005-11-22 2005-11-22 Method for producing NaCl type silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337667A JP5110496B2 (en) 2005-11-22 2005-11-22 Method for producing NaCl type silicon carbide

Publications (2)

Publication Number Publication Date
JP2007137751A JP2007137751A (en) 2007-06-07
JP5110496B2 true JP5110496B2 (en) 2012-12-26

Family

ID=38201073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337667A Expired - Fee Related JP5110496B2 (en) 2005-11-22 2005-11-22 Method for producing NaCl type silicon carbide

Country Status (1)

Country Link
JP (1) JP5110496B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684091B1 (en) * 1991-11-21 1994-02-25 Pechiney Recherche METHOD FOR MANUFACTURING METAL CARBIDES WITH A LARGE SPECIFIC SURFACE UNDER ATMOSPHERIC PRESSURE INERATED GAS SCANNING.

Also Published As

Publication number Publication date
JP2007137751A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
Shi et al. Ordered mesoporous non-oxide materials
ES2663687T3 (en) Procedure for the production of graphene / silicon carbide ceramic composites
Vakifahmetoglu et al. Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon
Yeon et al. Carbide-derived-carbons with hierarchical porosity from a preceramic polymer
Shi et al. Ordered mesoporous SiOC and SiCN ceramics from atmosphere-assisted in situ transformation
JP3938361B2 (en) Carbon composite material
US10005672B2 (en) Method of forming particles comprising carbon and articles therefrom
Kido et al. Porous chromium-based ceramic monoliths: oxides (Cr 2 O 3), nitrides (CrN), and carbides (Cr 3 C 2)
Rushton et al. Mesoporous boron nitride and boron-nitride-carbon materials from mesoporous silica templates
Kaur et al. Effect of boron incorporation on the phase composition and high-temperature behavior of polymer-derived silicon carbide
JP2010143771A (en) METHOD FOR PRODUCING alpha-SILICON CARBIDE PARTICLE
Lale et al. A comprehensive study on the influence of the polyorganosilazane chemistry and material shape on the high temperature behavior of titanium nitride/silicon nitride nanocomposites
KR20230122187A (en) Process for manufacturing a silicon carbide coated body
TW201043722A (en) Bodies coated by sic and method for creating sic-coated bodies
JP2010520846A (en) Method for preparing ceramic material
Ortega‐Trigueros et al. Synthesis of high‐surface area mesoporous SiC with hierarchical porosity for use as catalyst support
KR101268875B1 (en) Manufacturing method of silicon carbide nanopowder
CN102154706A (en) Method for preparing one-dimension nano materials
Sedov et al. Microporous poly-and monocrystalline diamond films produced from chemical vapor deposited diamond–germanium composites
JP5110496B2 (en) Method for producing NaCl type silicon carbide
JP6098050B2 (en) Composite polycrystalline diamond and method for producing the same
JP2018511708A (en) Method for producing CVD-SiC material
JP2014084248A (en) Polycrystalline diamond and method of producing the same
JP6015325B2 (en) Polycrystalline diamond, method for producing the same, and tool
Salameh Synthesis of boron or aluminum based functional nitrides for energy applications (hydrogen production and storage)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees