JP5110469B2 - Ti-Cu-Zr-Pd metallic glass alloy - Google Patents

Ti-Cu-Zr-Pd metallic glass alloy Download PDF

Info

Publication number
JP5110469B2
JP5110469B2 JP2008043996A JP2008043996A JP5110469B2 JP 5110469 B2 JP5110469 B2 JP 5110469B2 JP 2008043996 A JP2008043996 A JP 2008043996A JP 2008043996 A JP2008043996 A JP 2008043996A JP 5110469 B2 JP5110469 B2 JP 5110469B2
Authority
JP
Japan
Prior art keywords
metallic glass
atomic
glass alloy
composition
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008043996A
Other languages
Japanese (ja)
Other versions
JP2009052131A (en
Inventor
明久 井上
新敏 王
勝利 朱
風香 秦
武 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2008043996A priority Critical patent/JP5110469B2/en
Publication of JP2009052131A publication Critical patent/JP2009052131A/en
Application granted granted Critical
Publication of JP5110469B2 publication Critical patent/JP5110469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

本発明は、Ti−Cu−Zr−Pd金属ガラス合金に関する。   The present invention relates to a Ti—Cu—Zr—Pd metallic glass alloy.

従来、Cu基の金属ガラス合金として、Cu−(Zr+Hf)−Ti金属ガラス合金(例えば、特許文献1参照)や、Cu−(Hf、Zr)−Ag金属ガラス合金(例えば、特許文献2参照)が開発されている。   Conventionally, as a Cu-based metallic glass alloy, a Cu— (Zr + Hf) —Ti metallic glass alloy (for example, see Patent Document 1) or a Cu— (Hf, Zr) —Ag metallic glass alloy (for example, see Patent Document 2). Has been developed.

特開2002−256401号公報JP 2002-256401 A 特開2007−63634号公報JP 2007-63634 A

特許文献1に記載のCu−(Zr+Hf)−Ti金属ガラス合金では、バルク形成の臨界寸法が4mmであり、特許文献2に記載のCu−(Hf、Zr)−Ag金属ガラス合金では、バルク形成の臨界寸法が6mmである。このように、バルク形成能が大きいCu基の金属ガラス合金が開発されてきたが、さらに優れたバルク形成能を有する金属ガラス合金の開発が望まれている。   In the Cu- (Zr + Hf) -Ti metallic glass alloy described in Patent Document 1, the critical dimension for bulk formation is 4 mm. In the Cu- (Hf, Zr) -Ag metallic glass alloy described in Patent Document 2, bulk formation is performed. The critical dimension is 6 mm. Thus, although a Cu-based metallic glass alloy having a large bulk forming ability has been developed, development of a metallic glass alloy having a further excellent bulk forming ability is desired.

本発明は、このような課題に着目してなされたもので、優れたバルク形成能を有するTi−Cu−Zr−Pd金属ガラス合金を提供することを目的としている。   The present invention has been made paying attention to such problems, and an object thereof is to provide a Ti—Cu—Zr—Pd metallic glass alloy having an excellent bulk forming ability.

上記目的を達成するために、本発明に係るTi−Cu−Zr−Pd金属ガラス合金は、式:Ti100−a−b−cCuZrPd[式中のa、b、cは原子%で、aは30乃至50原子%、bは0.5乃至20原子%、cは0.5乃至20原子%である]で示される組成を有することを、特徴とする。 In order to achieve the above object, the Ti—Cu—Zr—Pd metallic glass alloy according to the present invention has the formula: Ti 100- abc Cu a Zr b Pd c [where a, b, c are In the atomic%, a is 30 to 50 atomic%, b is 0.5 to 20 atomic%, and c is 0.5 to 20 atomic%.

本発明に係るTi−Cu−Zr−Pd金属ガラス合金は、優れたバルク形成能を有し、直径または厚さが4mm以上、最大で7mm程度のバルクを形成することができる。本発明に係るTi−Cu−Zr−Pd金属ガラス合金は、ΔTx=Tx−Tg(ただし、Txは結晶化開始温度、Tgはガラス遷移温度を示す)の式で表わされる過冷却液体領域の温度間隔ΔTxが50K以上であり、Tg/T(ただし、Tは合金の完全融解温度を示す)の式で表わされる換算ガラス化温度が0.58以上である。このように、本発明に係るTi−Cu−Zr−Pd金属ガラス合金は、優れた非晶質の安定性、加工性および非晶質形成能力を有している。 The Ti—Cu—Zr—Pd metallic glass alloy according to the present invention has an excellent bulk forming ability, and can form a bulk having a diameter or thickness of 4 mm or more and a maximum of about 7 mm. The Ti—Cu—Zr—Pd metallic glass alloy according to the present invention has a supercooled liquid region temperature represented by the equation: ΔTx = Tx−Tg (where Tx is the crystallization start temperature and Tg is the glass transition temperature). The space | interval (DELTA) Tx is 50K or more, and the conversion vitrification temperature represented by the type | formula of Tg / TL (however, TL shows the complete melting temperature of an alloy) is 0.58 or more. Thus, the Ti—Cu—Zr—Pd metallic glass alloy according to the present invention has excellent amorphous stability, workability, and amorphous forming ability.

なお、「過冷却液体領域」は、毎分40Kの加熱速度で示差走査熱量分析(DTA)を行うことにより得られるガラス遷移温度と結晶化温度との差で定義され、結晶化に対する抵抗力、すなわち非晶質の安定性および加工性を示すものである。また、「換算ガラス化温度」は、ガラス遷移温度と、毎分20Kの加熱速度で示差走査熱量分析を行うことにより得られる合金の融解温度との比で定義され、非晶質形成能力を示すものである。   The “supercooled liquid region” is defined as the difference between the glass transition temperature and the crystallization temperature obtained by performing differential scanning calorimetry (DTA) at a heating rate of 40 K / min. That is, it exhibits amorphous stability and processability. The “equivalent vitrification temperature” is defined by the ratio between the glass transition temperature and the melting temperature of the alloy obtained by performing differential scanning calorimetry at a heating rate of 20 K / min. Is.

本発明に係るTi−Cu−Zr−Pd金属ガラス合金は、式:Ti100−a−b−cCuZrPd[式中のa、b、cは原子%で、aは32乃至42原子%、bは8乃至18原子%、cは8乃至18原子%である]で示される組成を有することが好ましい。この場合、特にバルク形成能に優れ、直径または厚さが6mm以上のバルクを形成することができる。 The Ti—Cu—Zr—Pd metallic glass alloy according to the present invention has the formula: Ti 100-ab-c Cu a Zr b Pd c [where a, b, c are atomic%, and a is 32 to 42 atom%, b is 8 to 18 atom%, and c is 8 to 18 atom%]. In this case, the bulk forming ability is particularly excellent, and a bulk having a diameter or thickness of 6 mm or more can be formed.

本発明に係るTi−Cu−Zr−Pd金属ガラス合金は、式:Ti100−a−b−cCuZrPd[式中のa、b、cは原子%で、aは36乃至42原子%、bは18乃至20原子%、cは8乃至14原子%である]で示される組成を有していてもよい。また、本発明に係るTi−Cu−Zr−Pd金属ガラス合金は、式:Ti100−a−b−cCuZrPd[式中のa、b、cは原子%で、aは30乃至32原子%、bは8乃至12原子%、cは18乃至20原子%である]で示される組成を有していてもよい。これらの場合、過冷却液体領域の温度間隔ΔTxが60K以上であり、特に非晶質の安定性および加工性に優れている。本発明に係るTi−Cu−Zr−Pd金属ガラス合金は、塑性変形能を有し、Nbを1〜3原子%、または、Taを0.5〜1.4原子%含み、残部が前記組成から成っていてもよい。この場合、3〜5%以上に達する塑性変形能を有し、銅鋳型の場合、最大2mmのバルクを作製することができる。 The Ti—Cu—Zr—Pd metallic glass alloy according to the present invention has the formula: Ti 100- abc Cu a Zr b Pd c [where a, b, c are atomic%, and a is 36 to 42 atom%, b is 18 to 20 atom%, and c is 8 to 14 atom%]. In addition, the Ti—Cu—Zr—Pd metallic glass alloy according to the present invention has the formula: Ti 100- abc Cu a Zr b Pd c [where a, b, c are atomic%, and a is 30 to 32 atom%, b is 8 to 12 atom%, and c is 18 to 20 atom%. In these cases, the temperature interval ΔTx of the supercooled liquid region is 60K or more, and the amorphous stability and workability are particularly excellent. The Ti—Cu—Zr—Pd metallic glass alloy according to the present invention has plastic deformability, includes 1 to 3 atomic% of Nb, or 0.5 to 1.4 atomic% of Ta, and the balance is the composition. May consist of: In this case, it has a plastic deformability reaching 3 to 5% or more, and in the case of a copper mold, a maximum 2 mm bulk can be produced.

また、本発明に係るTi−Cu−Zr−Pd金属ガラス合金は、式:{(Ti1−a−bZrNb0.5(Cu1−c−dPdAg0.5100−xSi[式中のa、b、c、dは原子比で、aは0.005乃至0.2、bは0.005乃至0.1、cは0.005乃至0.2、dは0.005乃至0.1であり、xは原子%で、0.5乃至10原子%である]で示される組成を有していてもよい。この場合、Siを含有するため、過冷却液体領域の温度間隔ΔTxが60K以上、換算ガラス化温度が0.55以上となり、過冷却の熱安定性が向上している。Nbを含有するため、耐食性が向上している。Agを含有するため、Cuを置換することができ、生体適応性が向上している。 Further, the Ti—Cu—Zr—Pd metallic glass alloy according to the present invention has a formula: {(Ti 1-ab Zr a Nb b ) 0.5 (Cu 1-c-d Pd c Ag d ) 0. 5 } 100-x Si x [wherein a, b, c, d are atomic ratios, a is 0.005 to 0.2, b is 0.005 to 0.1, and c is 0.005 to 0. .2, d is 0.005 to 0.1, and x is atomic%, and may be 0.5 to 10 atomic%. In this case, since Si is contained, the temperature interval ΔTx of the supercooled liquid region is 60K or more, the converted vitrification temperature is 0.55 or more, and the thermal stability of supercooling is improved. Since Nb is contained, the corrosion resistance is improved. Since it contains Ag, Cu can be substituted, and biocompatibility is improved.

本発明によれば、優れたバルク形成能を有するTi−Cu−Zr−Pd金属ガラス合金を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the Ti-Cu-Zr-Pd metallic glass alloy which has the outstanding bulk formation ability can be provided.

以下、図面に基づき、本発明の実施の形態について説明する。
図1乃至図7は、本発明の第1の実施の形態のTi−Cu−Zr−Pd金属ガラス合金を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 7 show a Ti—Cu—Zr—Pd metallic glass alloy according to a first embodiment of the present invention.

本発明の第1の実施の形態のTi−Cu−Zr−Pd金属ガラス合金は、式:Ti100−a−b−cCuZrPd[式中のa、b、cは原子%で、aは30乃至50原子%、bは0.5乃至20原子%、cは0.5乃至20原子%である]で示される組成を有している。 The Ti—Cu—Zr—Pd metallic glass alloy of the first embodiment of the present invention has the formula: Ti 100- abc Cu a Zr b Pd c [where a, b and c are atomic%. Wherein a is 30 to 50 atomic%, b is 0.5 to 20 atomic%, and c is 0.5 to 20 atomic%.

図1に、Ti−Cu−Zr−Pd金属ガラス合金の過冷却液体領域の温度依存性を示す四元組成図を示す。図1中の丸数字は、過冷却液体領域の温度間隔ΔTx(K)を示す。図1に示すように、Ti−Cu−Zr−Pd金属ガラス合金の過冷却液体領域の温度間隔ΔTxは、50K以上である。特に、36原子%≦a≦42原子%、18原子%≦b≦20原子%、8原子%≦c≦14原子%の場合、および、30原子%≦a≦32原子%、8原子%≦b≦12原子%、18原子%≦c≦20原子%の場合、過冷却液体領域の温度間隔ΔTxが60K以上であり、特に非晶質の安定性および加工性に優れている。   In FIG. 1, the quaternary composition diagram which shows the temperature dependence of the supercooled liquid area | region of a Ti-Cu-Zr-Pd metallic glass alloy is shown. The circled numbers in FIG. 1 indicate the temperature interval ΔTx (K) in the supercooled liquid region. As shown in FIG. 1, the temperature interval ΔTx of the supercooled liquid region of the Ti—Cu—Zr—Pd metallic glass alloy is 50K or more. In particular, 36 atomic% ≦ a ≦ 42 atomic%, 18 atomic% ≦ b ≦ 20 atomic%, 8 atomic% ≦ c ≦ 14 atomic%, and 30 atomic% ≦ a ≦ 32 atomic%, 8 atomic% ≦ When b ≦ 12 atomic% and 18 atomic% ≦ c ≦ 20 atomic%, the temperature interval ΔTx of the supercooled liquid region is 60 K or more, and the amorphous stability and workability are particularly excellent.

図2に、Ti−Cu−Zr−Pd金属ガラス合金のバルク形成能を示す四元組成図を示す。図2中の丸数字は、形成されるバルクの直径(mm)を示す。図2に示すように、Ti−Cu−Zr−Pd金属ガラス合金は、直径または厚さが4mm以上、最大で7mm程度のバルクを形成することができ、優れたバルク形成能を有している。特に、32原子%≦a≦42原子%、8原子%≦b≦18原子%、8原子%≦c≦18原子%の場合(図2中の斜線の範囲)、直径6mm以上のバルクを形成することができ、特にバルク形成能に優れている。   FIG. 2 shows a quaternary composition diagram showing the bulk forming ability of a Ti—Cu—Zr—Pd metallic glass alloy. The circled numbers in FIG. 2 indicate the diameter (mm) of the bulk to be formed. As shown in FIG. 2, the Ti—Cu—Zr—Pd metallic glass alloy can form a bulk having a diameter or thickness of 4 mm or more and a maximum of about 7 mm, and has an excellent bulk forming ability. . In particular, in the case of 32 atomic% ≦ a ≦ 42 atomic%, 8 atomic% ≦ b ≦ 18 atomic%, and 8 atomic% ≦ c ≦ 18 atomic% (the hatched area in FIG. 2), a bulk with a diameter of 6 mm or more is formed. In particular, the bulk forming ability is excellent.

Ti50−xZrCu50−xPd[x=6,8,10,12,14,16,18,20]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、示差走査熱量分析(DSC)による分析結果を図3(a)に、示差熱分析(DTA)による分析結果を図3(b)に示す。図3に示すように、過冷却液体領域の温度間隔ΔTxが広く、50K以上であることが確認された。また、換算ガラス化温度Tg/Tが0.55以上であり、優れた非晶質の安定性、加工性および非晶質形成能力を有していることも確認された。 Ti 50-x Zr x Cu of Ti-Cu-Zr-Pd amorphous alloy having a composition of 50-x Pd x [x = 6,8,10,12,14,16,18,20], differential scanning calorimetry The analysis result by the analysis (DSC) is shown in FIG. 3 (a), and the analysis result by the differential thermal analysis (DTA) is shown in FIG. 3 (b). As shown in FIG. 3, it was confirmed that the temperature interval ΔTx of the supercooled liquid region was wide and was 50K or more. Moreover, it was also confirmed that the conversion vitrification temperature Tg / TL is 0.55 or more, and it has excellent amorphous stability, workability, and amorphous forming ability.

Ti50−xZrCu50−xPd[x=8,10,12,14,16,18,20]の組成を有するTi−Cu−Zr−Pd金属ガラス合金のX線回折結果を図4に示す。図4に示すように、ブロードなハローピークしか認められず、非晶質相であることが確認された。 X-ray diffraction results of a Ti-Cu-Zr-Pd metallic glass alloy having a composition of Ti 50-x Zr x Cu 50-x Pd x [x = 8, 10, 12, 14, 16, 18, 20] 4 shows. As shown in FIG. 4, only a broad halo peak was observed, confirming the amorphous phase.

Ti40Zr10Cu40−xPd10+x[x=0,2,4,6,8,10]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、示差走査熱量分析(DSC)による分析結果を図5(a)に、示差熱分析(DTA)による分析結果を図5(b)に、X線回折結果を図6に示す。図5に示すように、過冷却液体領域の温度間隔ΔTxが広く、50K以上であることが確認された。また、換算ガラス化温度Tg/Tが0.55以上であり、優れた非晶質の安定性、加工性および非晶質形成能力を有していることも確認された。図6に示すように、ブロードなハローピークしか認められず、非晶質相であることが確認された。 Differential scanning calorimetry (DSC) analysis of Ti-Cu-Zr-Pd metallic glass alloy having a composition of Ti 40 Zr 10 Cu 40-x Pd 10 + x [x = 0, 2, 4, 6, 8, 10 ] The results are shown in FIG. 5A, the analysis results by differential thermal analysis (DTA) are shown in FIG. 5B, and the X-ray diffraction results are shown in FIG. As shown in FIG. 5, it was confirmed that the temperature interval ΔTx of the supercooled liquid region was wide and was 50K or more. Moreover, it was also confirmed that the conversion vitrification temperature Tg / TL is 0.55 or more, and it has excellent amorphous stability, workability, and amorphous forming ability. As shown in FIG. 6, only a broad halo peak was observed, confirming the amorphous phase.

Ti40Zr10Cu40−xPd10+x[x=0,2,4,6]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、圧縮試験結果を図7に示す。図7に示すように、2000MPa以上の圧縮強度を有しており、機械的性能にも優れていることが確認された。 FIG. 7 shows a compression test result of a Ti—Cu—Zr—Pd metallic glass alloy having a composition of Ti 40 Zr 10 Cu 40-x Pd 10 + x [x = 0, 2, 4, 6]. As shown in FIG. 7, it has a compressive strength of 2000 MPa or more and was confirmed to be excellent in mechanical performance.

Ti−Cu−Zr−Pd金属ガラス合金の耐食性を調べるため、Ti40Cu36Zr10Pd14の組成を有する金属ガラス合金の試験試料について、腐食試験を行った。試験溶液として、細胞外液に近い組成を有するハンクス溶液を使用した。試験溶液中に、金属ガラス合金の試験試料から成る作用極を入れ、電位の変化に対する電流の変化を調べた。試験溶液の温度は、310Kである。試験結果を、分極曲線として図8に示す。なお、図8中には、比較のため、TiおよびTi−6Al−4V合金の分極曲線も示している。 In order to investigate the corrosion resistance of the Ti—Cu—Zr—Pd metallic glass alloy, a corrosion test was performed on a metallic glass alloy test sample having a composition of Ti 40 Cu 36 Zr 10 Pd 14 . A Hanks solution having a composition close to that of extracellular fluid was used as a test solution. A working electrode composed of a metallic glass alloy test sample was placed in the test solution, and the change in current with respect to the change in potential was examined. The temperature of the test solution is 310K. The test results are shown in FIG. 8 as polarization curves. In FIG. 8, the polarization curves of Ti and Ti-6Al-4V alloy are also shown for comparison.

図8に示すように、金属ガラス合金の試験試料は、TiおよびTi−6Al−4V合金に比べ、0.0〜0.3Vの電位範囲での不動態保持電流密度が低く、生体内での耐食性が高いことが確認された。なお、不動態保持電流密度は、その電位で不動態皮膜の部分的溶解と再析出とに必要な電流密度、すなわち不動態皮膜を通しての金属の溶解の起こりやすさを示しており、値が低いほど耐食性が高いことを示している。   As shown in FIG. 8, the test sample of the metallic glass alloy has a low passive holding current density in the potential range of 0.0 to 0.3 V compared to Ti and Ti-6Al-4V alloy, It was confirmed that the corrosion resistance was high. The passive holding current density indicates the current density required for partial dissolution and reprecipitation of the passive film at that potential, that is, the ease of metal dissolution through the passive film, and the value is low. It shows that the corrosion resistance is high.

図9乃至図12は、本発明の第2の実施の形態のTi−Cu−Zr−Pd金属ガラス合金を示している。
本発明の第2の実施の形態のTi−Cu−Zr−Pd金属ガラス合金は、式:{(Ti1−a−bZrNb0.5(Cu1−c−dPdAg0.5100−xSi[式中のa、b、c、dは原子比で、aは0.005乃至0.2、bは0.005乃至0.1、cは0.005乃至0.2、dは0.005乃至0.1であり、xは原子%で、0.5乃至10原子%である]で示される組成を有している。
9 to 12 show a Ti—Cu—Zr—Pd metallic glass alloy according to a second embodiment of the present invention.
The Ti—Cu—Zr—Pd metallic glass alloy of the second embodiment of the present invention has the formula: {(Ti 1-ab Zr a Nb b ) 0.5 (Cu 1-cd Pd c Ag d ) 0.5 } 100-x Si x [wherein a, b, c, d are atomic ratios, a is 0.005 to 0.2, b is 0.005 to 0.1, and c is 0. 0.005 to 0.2, d is 0.005 to 0.1, and x is atomic%, and is 0.5 to 10 atomic%].

本発明の第2の実施の形態のTi−Cu−Zr−Pd金属ガラス合金は、Siを含有するため、過冷却液体領域の温度間隔ΔTxが60K以上、換算ガラス化温度が0.55以上となり、過冷却の熱安定性が向上している。また、Nbを含有するため、耐食性が向上している。さらに、Agを含有するため、Cuを置換することができ、生体適応性が向上している。   Since the Ti—Cu—Zr—Pd metallic glass alloy of the second embodiment of the present invention contains Si, the temperature interval ΔTx of the supercooled liquid region is 60K or more, and the converted vitrification temperature is 0.55 or more. The thermal stability of supercooling has been improved. Moreover, since it contains Nb, the corrosion resistance is improved. Furthermore, since it contains Ag, Cu can be substituted, and biocompatibility is improved.

以下に、本発明の第2の実施の形態のTi−Cu−Zr−Pd金属ガラス合金が優れた非晶質の安定性、加工性および非晶質形成能力を有することを確認するため、Ag、Nb、Siのそれぞれを含む場合について試験を行った。   Hereinafter, in order to confirm that the Ti—Cu—Zr—Pd metallic glass alloy of the second embodiment of the present invention has excellent amorphous stability, workability, and amorphous forming ability, Ag , Nb and Si were included for the test.

Ti40Zr10Cu40−xAgPd10[x=0,2,4,6,8]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、示差走査熱量分析(DSC)による分析結果を図9(a)に、示差熱分析(DTA)による分析結果を図9(b)に示す。図9に示すように、過冷却液体領域の温度間隔ΔTxが40K以上、換算ガラス化温度が0.55以上であることが確認された。 Of Ti 40 Zr 10 Cu 40-x Ag x Pd 10 [x = 0,2,4,6,8] Ti-Cu-Zr-Pd amorphous alloy having a composition of, analysis by differential scanning calorimetry (DSC) The results are shown in FIG. 9 (a), and the analysis results by differential thermal analysis (DTA) are shown in FIG. 9 (b). As shown in FIG. 9, it was confirmed that the temperature interval ΔTx of the supercooled liquid region was 40 K or more and the converted vitrification temperature was 0.55 or more.

Ti40Zr10−xNbCu40Pd10[x=0,2,4,6,8]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、示差走査熱量分析(DSC)による分析結果を図10(a)に、示差熱分析(DTA)による分析結果を図10(b)に示す。図10に示すように、過冷却液体領域の温度間隔ΔTxが50K以上、換算ガラス化温度が0.55以上であることが確認された。 Of Ti 40 Zr 10-x Nb x Cu 40 Pd 10 [x = 0,2,4,6,8] Ti-Cu-Zr-Pd amorphous alloy having a composition of, analysis by differential scanning calorimetry (DSC) The results are shown in FIG. 10 (a), and the analysis results by differential thermal analysis (DTA) are shown in FIG. 10 (b). As shown in FIG. 10, it was confirmed that the temperature interval ΔTx of the supercooled liquid region was 50K or more, and the converted vitrification temperature was 0.55 or more.

(Ti0.4Zr0.1Cu0.36Pd0.14100−xSi[x=0,1,2,3,4,5]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、示差走査熱量分析(DSC)による分析結果を図11(a)に、示差熱分析(DTA)による分析結果を図11(b)に示す。図11に示すように、過冷却液体領域の温度間隔ΔTxが60K以上、換算ガラス化温度が0.55以上であることが確認された。 (Ti 0.4 Zr 0.1 Cu 0.36 Pd 0.14) Ti-Cu-Zr-Pd metal having a composition of 100-x Si x [x = 0,1,2,3,4,5] FIG. 11 (a) shows the analysis results of the glass alloy by differential scanning calorimetry (DSC), and FIG. 11 (b) shows the analysis results of differential thermal analysis (DTA). As shown in FIG. 11, it was confirmed that the temperature interval ΔTx of the supercooled liquid region was 60K or more, and the converted vitrification temperature was 0.55 or more.

Ti40ZrNbCu40Pd10、Ti40Zr10Cu36Pd10Ag、Ti40Zr10Cu38Pd10Ag、および、Ti40Zr10Cu40Pd10の組成を有するTi−Cu−Zr−Pd金属ガラス合金のX線回折結果を図12に示す。図12に示すように、ブロードなハローピークしか認められず、非晶質相であることが確認された。 Ti 40 Zr 8 Nb 2 Cu 40 Pd 10 , Ti 40 Zr 10 Cu 36 Pd 10 Ag 4 , Ti 40 Zr 10 Cu 38 Pd 10 Ag 2 , and Ti 40 Zr 10 Cu 40 Pd 10 having a composition of Ti 40 Zr 10 Cu 40 Pd 10 The X-ray diffraction result of the —Zr—Pd metallic glass alloy is shown in FIG. As shown in FIG. 12, only a broad halo peak was observed, confirming the amorphous phase.

図13乃至図18は、本発明の第3の実施の形態のTi−Cu−Zr−Pd金属ガラス合金を示している。   13 to 18 show a Ti—Cu—Zr—Pd metallic glass alloy according to a third embodiment of the present invention.

(Ti40Zr10Cu36Pd14100−XNb[x=0,1,3,5]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、圧縮試験結果を図13に示す。図13に示すように、Nbを1〜3%添加することにより、直径2mmのバルクは、5%の塑性変形ができることが確認された。 FIG. 13 shows a compression test result of a Ti—Cu—Zr—Pd metallic glass alloy having a composition of (Ti 40 Zr 10 Cu 36 Pd 14 ) 100-X Nb X [x = 0, 1, 3, 5]. . As shown in FIG. 13, it was confirmed that by adding 1 to 3% of Nb, the bulk of 2 mm in diameter can be plastically deformed by 5%.

(Ti40Zr10Cu36Pd1499Nbの組成を有するTi−Cu−Zr−Pd金属ガラス合金の、X線回折結果を図14に、示差走査熱量分析(DSC)による分析結果を図15に示す。図15に示すように、金属バルクの直径が大きいほど、ナノ結晶の量が多く含まれることが確認された。 (Ti 40 Zr 10 Cu 36 Pd 14 ) 99 Nb 1 Ti—Cu—Zr—Pd metallic glass alloy having a composition of X-ray diffraction is shown in FIG. 14, and differential scanning calorimetry (DSC) is shown in FIG. As shown in FIG. As shown in FIG. 15, it was confirmed that the larger the metal bulk diameter, the greater the amount of nanocrystals.

(Ti40Zr10Cu36Pd14100−XTa[x=0,1,3,5]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、圧縮試験結果を図16に示す。図16に示すように、Taを1%添加することにより、直径2mmのバルクは、3%の塑性変形ができることが確認された。 FIG. 16 shows a compression test result of a Ti—Cu—Zr—Pd metallic glass alloy having a composition of (Ti 40 Zr 10 Cu 36 Pd 14 ) 100-X Ta X [x = 0, 1, 3, 5]. . As shown in FIG. 16, it was confirmed that by adding 1% of Ta, a bulk having a diameter of 2 mm can be plastically deformed by 3%.

(Ti40Zr10Cu36Pd1499Taの組成を有するTi−Cu−Zr−Pd金属ガラス合金の、X線回折結果を図17に、示差走査熱量分析(DSC)による分析結果を図18に示す。図18に示すように、金属バルクの直径が大きいほど、ナノ結晶の量が多く含まれることが確認された。 FIG. 17 shows an X-ray diffraction result of a Ti—Cu—Zr—Pd metallic glass alloy having a composition of (Ti 40 Zr 10 Cu 36 Pd 14 ) 99 Ta 1 , and FIG. 17 shows an analysis result by differential scanning calorimetry (DSC). 18 shows. As shown in FIG. 18, it was confirmed that the larger the metal bulk diameter, the greater the amount of nanocrystals.

本発明の第1の実施の形態のTi−Cu−Zr−Pd金属ガラス合金の、過冷却液体領域の温度依存性(図中の丸数字は、過冷却液体領域の温度間隔ΔTx(K)である)を示す四元組成図である。Temperature dependence of the supercooled liquid region of the Ti—Cu—Zr—Pd metallic glass alloy of the first embodiment of the present invention (the number in the figure is the temperature interval ΔTx (K) of the supercooled liquid region). 4 is a quaternary composition diagram. 図1に示すTi−Cu−Zr−Pd金属ガラス合金の、バルク形成能(図中の丸数字は、形成されるバルクの直径(mm)である)を示す四元組成図である。It is a quaternary composition diagram showing the bulk forming ability (the circled numbers in the figure are the diameter (mm) of the formed bulk) of the Ti—Cu—Zr—Pd metallic glass alloy shown in FIG. 図1に示すTi50−xZrCu50−xPd[x=6,8,10,12,14,16,18,20]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、(a)示差走査熱量分析(DSC)による分析結果を示すグラフ、(b)示差熱分析(DTA)による分析結果を示すグラフである。Ti 50-x Zr x Cu 50-x Pd x [x = 6, 8, 10, 12, 14, 16, 18, 20] shown in FIG. 1 of Ti—Cu—Zr—Pd metallic glass alloy (A) The graph which shows the analysis result by differential scanning calorimetry (DSC), (b) The graph which shows the analysis result by differential thermal analysis (DTA). 図1に示すTi50−xZrCu50−xPd[x=8,10,12,14,16,18,20]の組成を有するTi−Cu−Zr−Pd金属ガラス合金のX線回折結果を示すグラフである。X-ray of the Ti-Cu-Zr-Pd amorphous alloy having a composition of Ti 50-x Zr x Cu 50 -x Pd x [x = 8,10,12,14,16,18,20] shown in FIG. 1 It is a graph which shows a diffraction result. 図1に示すTi40Zr10Cu40−xPd10+x[x=0,2,4,6,8,10]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、(a)示差走査熱量分析(DSC)による分析結果を示すグラフ、(b)示差熱分析(DTA)による分析結果を示すグラフである。(A) Differential scanning of Ti—Cu—Zr—Pd metallic glass alloy having the composition of Ti 40 Zr 10 Cu 40-x Pd 10 + x [x = 0, 2, 4, 6, 8, 10 ] shown in FIG. It is a graph which shows the analysis result by calorimetric analysis (DSC), (b) The graph which shows the analysis result by differential thermal analysis (DTA). 図1に示すTi40Zr10Cu40−xPd10+x[x=0,2,4,6,8,10]の組成を有するTi−Cu−Zr−Pd金属ガラス合金のX線回折結果を示すグラフである。Showing the X-ray diffraction pattern of Ti-Cu-Zr-Pd amorphous alloy having a composition of Ti 40 Zr 10 Cu 40-x Pd 10 + x [x = 0,2,4,6,8,10] shown in FIG. 1 It is a graph. 図1に示すTi40Zr10Cu40−xPd10+x[x=0,2,4,6]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の圧縮試験結果を示すグラフである。It is a graph showing the compression test results of Ti-Cu-Zr-Pd amorphous alloy having a composition of Ti 40 Zr 10 Cu 40-x Pd 10 + x [x = 0,2,4,6] shown in FIG. 図1に示すTi40Cu36Zr10Pd14の組成を有するTi−Cu−Zr−Pd金属ガラス合金、ならびに、比較例としてのTiおよびTi−6Al−4V合金の分極曲線を示すグラフである。Ti-Cu-Zr-Pd amorphous alloy having a composition of Ti 40 Cu 36 Zr 10 Pd 14 shown in FIG. 1, and is a graph showing the polarization curves of Ti and Ti-6Al-4V alloy as a comparative example. 本発明の第2の実施の形態のTi40Zr10Cu40−xAgPd10[x=0,2,4,6,8]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、(a)示差走査熱量分析(DSC)による分析結果を示すグラフ、(b)示差熱分析(DTA)による分析結果を示すグラフである。The Ti-Cu-Zr-Pd metallic glass alloy having the composition of Ti 40 Zr 10 Cu 40-x Ag x Pd 10 [x = 0, 2, 4, 6, 8] according to the second embodiment of the present invention. (A) The graph which shows the analysis result by differential scanning calorimetry (DSC), (b) The graph which shows the analysis result by differential thermal analysis (DTA). 本発明の第2の実施の形態のTi40Zr10−xNbCu40Pd10[x=0,2,4,6,8]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、(a)示差走査熱量分析(DSC)による分析結果を示すグラフ、(b)示差熱分析(DTA)による分析結果を示すグラフである。The Ti-Cu-Zr-Pd amorphous alloy having a composition of Ti 40 Zr 10-x Nb x Cu 40 Pd 10 of the second embodiment of the present invention [x = 0,2,4,6,8] (A) The graph which shows the analysis result by differential scanning calorimetry (DSC), (b) The graph which shows the analysis result by differential thermal analysis (DTA). 本発明の第2の実施の形態の(Ti0.4Zr0.1Cu0.36Pd0.14100−xSi[x=0,1,2,3,4,5]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の、(a)示差走査熱量分析(DSC)による分析結果を示すグラフ、(b)示差熱分析(DTA)による分析結果を示すグラフである。The composition of the second embodiment of the present invention (Ti 0.4 Zr 0.1 Cu 0.36 Pd 0.14) 100-x Si x [x = 0,1,2,3,4,5] (A) The graph which shows the analysis result by differential scanning calorimetry (DSC), (b) The graph which shows the analysis result by differential thermal analysis (DTA) of Ti-Cu-Zr-Pd metallic glass alloy which has this. 本発明の第2の実施の形態のTi40ZrNbCu40Pd10、Ti40Zr10Cu36Pd10Ag、Ti40Zr10Cu38Pd10Ag、および、Ti40Zr10Cu40Pd10の組成を有するTi−Cu−Zr−Pd金属ガラス合金のX線回折結果を示すグラフである。Ti 40 Zr 8 Nb 2 Cu 40 Pd 10 , Ti 40 Zr 10 Cu 36 Pd 10 Ag 4 , Ti 40 Zr 10 Cu 38 Pd 10 Ag 2 , and Ti 40 Zr 10 Cu according to the second embodiment of the present invention is a graph showing the X-ray diffraction pattern of Ti-Cu-Zr-Pd amorphous alloy having a composition of 40 Pd 10. 本発明の第3の実施の形態の(Ti40Zr10Cu36Pd14100−XNb[x=0,1,3,5]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の圧縮試験結果を示すグラフである。Ti-Cu-Zr-Pd metallic glass alloy having a composition of (Ti 40 Zr 10 Cu 36 Pd 14 ) 100-X Nb X [x = 0, 1, 3, 5] according to the third embodiment of the present invention It is a graph which shows the compression test result. 本発明の第3の実施の形態の(Ti40Zr10Cu36Pd1499Nbの組成を有するTi−Cu−Zr−Pd金属ガラス合金のX線回折結果を示すグラフである。It is a third graph showing (Ti 40 Zr 10 Cu 36 Pd 14) X -ray diffraction results of the Ti-Cu-Zr-Pd amorphous alloy having a composition of 99 Nb 1 of the embodiment of the present invention. 本発明の第3の実施の形態の(Ti40Zr10Cu36Pd1499Nbの組成を有するTi−Cu−Zr−Pd金属ガラス合金の示差走査熱量分析(DSC)による分析結果を示すグラフである。The analytical results of the third embodiment of the present invention (Ti 40 Zr 10 Cu 36 Pd 14) Differential scanning calorimetry of the Ti-Cu-Zr-Pd amorphous alloy having a composition of 99 Nb 1 (DSC) It is a graph. 本発明の第3の実施の形態の(Ti40Zr10Cu36Pd14100−XTa[x=0,1,3,5]の組成を有するTi−Cu−Zr−Pd金属ガラス合金の圧縮試験結果を示すグラフである。Ti-Cu-Zr-Pd metallic glass alloy having a composition of (Ti 40 Zr 10 Cu 36 Pd 14 ) 100-X Ta X [x = 0, 1, 3, 5] according to the third embodiment of the present invention It is a graph which shows the compression test result. 本発明の第3の実施の形態の(Ti40Zr10Cu36Pd1499Taの組成を有するTi−Cu−Zr−Pd金属ガラス合金のX線回折結果を示すグラフである。It is a third graph showing (Ti 40 Zr 10 Cu 36 Pd 14) X -ray diffraction results of the Ti-Cu-Zr-Pd amorphous alloy having a composition of 99 Ta 1 in the embodiment of the present invention. 本発明の第3の実施の形態の(Ti40Zr10Cu36Pd1499Taの組成を有するTi−Cu−Zr−Pd金属ガラス合金の示差走査熱量分析(DSC)による分析結果を示すグラフである。The analytical results of the third embodiment of the present invention (Ti 40 Zr 10 Cu 36 Pd 14) Differential scanning calorimetry of the Ti-Cu-Zr-Pd amorphous alloy having a composition of 99 Ta 1 (DSC) It is a graph.

Claims (4)

式:Ti100−a−b−cCuZrPd[式中のa、b、cは原子%で、aは30乃至50原子%、bは0.5乃至20原子%、cは0.5乃至20原子%である]で示される組成を有することを、特徴とするTi−Cu−Zr−Pd金属ガラス合金。 Formula: Ti 100-ab-c Cu a Zr b Pd c [where a, b, c are atomic%, a is 30-50 atomic%, b is 0.5-20 atomic%, c is A Ti—Cu—Zr—Pd metallic glass alloy characterized by having a composition represented by 0.5 to 20 atomic%. 式:Ti100−a−b−cCuZrPd[式中のa、b、cは原子%で、aは32乃至42原子%、bは8乃至18原子%、cは8乃至18原子%である]で示される組成を有することを、特徴とするTi−Cu−Zr−Pd金属ガラス合金。 Formula: Ti 100- abc Cu a Zr b Pd c [wherein a, b and c are atomic%, a is 32 to 42 atomic%, b is 8 to 18 atomic%, and c is 8 to A Ti—Cu—Zr—Pd metallic glass alloy characterized by having a composition represented by 式:{(Ti1−a−bZrNb0.5(Cu1−c−dPdAg0.5100−xSi[式中のa、b、c、dは原子比で、aは0.005乃至0.2、bは0.005乃至0.1、cは0.005乃至0.2、dは0.005乃至0.1であり、xは原子%で、0.5乃至10原子%である]で示される組成を有することを、特徴とするTi−Cu−Zr−Pd金属ガラス合金。 Formula: {(Ti 1-a-b Zr a Nb b ) 0.5 (Cu 1-cd Pd c Ag d ) 0.5 } 100-x Si x [a, b, c, d in formula Is an atomic ratio, a is 0.005 to 0.2, b is 0.005 to 0.1, c is 0.005 to 0.2, d is 0.005 to 0.1, and x is an atom. A Ti—Cu—Zr—Pd metallic glass alloy characterized by having a composition represented by: 塑性変形能を有し、Nbを1〜3原子%、または、Taを0.5〜1.4原子%含み、残部が前記組成から成ることを特徴とする、請求項1または2記載のTi−Cu−Zr−Pd金属ガラス合金。
3. The Ti according to claim 1, which has plastic deformability, contains 1 to 3 atomic% of Nb, or 0.5 to 1.4 atomic% of Ta, and the balance consists of the composition. -Cu-Zr-Pd metallic glass alloy.
JP2008043996A 2007-08-01 2008-02-26 Ti-Cu-Zr-Pd metallic glass alloy Expired - Fee Related JP5110469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043996A JP5110469B2 (en) 2007-08-01 2008-02-26 Ti-Cu-Zr-Pd metallic glass alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007201160 2007-08-01
JP2007201160 2007-08-01
JP2008043996A JP5110469B2 (en) 2007-08-01 2008-02-26 Ti-Cu-Zr-Pd metallic glass alloy

Publications (2)

Publication Number Publication Date
JP2009052131A JP2009052131A (en) 2009-03-12
JP5110469B2 true JP5110469B2 (en) 2012-12-26

Family

ID=40503454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043996A Expired - Fee Related JP5110469B2 (en) 2007-08-01 2008-02-26 Ti-Cu-Zr-Pd metallic glass alloy

Country Status (1)

Country Link
JP (1) JP5110469B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494076B (en) * 2011-04-18 2015-08-01 Univ Nat Central Medical drill

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997381B2 (en) * 1993-08-12 2000-01-11 健 増本 Ti-Cu amorphous alloy
JPH07252561A (en) * 1994-03-15 1995-10-03 Takeshi Masumoto Ti-zr alloy
JP3682885B2 (en) * 1994-11-07 2005-08-17 株式会社カスプデンタルサプライ Ti-based brazing and brazing structure using Ti-based brazing
JPH08253847A (en) * 1995-03-16 1996-10-01 Takeshi Masumoto Titanium-zirconium amorphous metal filament
JP4011316B2 (en) * 2000-12-27 2007-11-21 独立行政法人科学技術振興機構 Cu-based amorphous alloy

Also Published As

Publication number Publication date
JP2009052131A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP6301681B2 (en) Bulk nickel-phosphorus-boron glass containing manganese
JP5990270B2 (en) Bulk nickel-based chromium and phosphorus-containing metallic glass
CN102719707B (en) Ni-Ti work in-process and methods involving
JP3805601B2 (en) High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy
US9556504B2 (en) Bulk nickel-phosphorus-boron glasses bearing chromium and tantalum
WO2018218077A1 (en) Hypoeutectic amorphous metal-based materials for additive manufacturing
US7582172B2 (en) Pt-base bulk solidifying amorphous alloys
US9920400B2 (en) Bulk nickel-based glasses bearing chromium, niobium, phosphorus and silicon
JP2001303219A (en) Nickel base amorphous alloy composition
US9863025B2 (en) Bulk nickel-phosphorus-boron glasses bearing manganese, niobium and tantalum
CN104822852A (en) Bulk nickel-based chromium and phosphorus bearing metallic glasses with high toughness
JP4633580B2 (en) Cu- (Hf, Zr) -Ag metallic glass alloy.
JP3860445B2 (en) Cu-Be based amorphous alloy
WO2014169133A1 (en) Ti-based filler alloy compositions
WO2006109708A1 (en) Ti ALLOY, Ti ALLOY MEMBER AND METHOD FOR PRODUCING SAME
JP5110469B2 (en) Ti-Cu-Zr-Pd metallic glass alloy
KR20170041594A (en) Fabricating method for metallic glass composite with controlling work hardening capacity and composites fabricated by the method
Shu et al. Effects of ternary elements on the ductility of TiAl
WO2000036175A1 (en) Amorphous zirconium alloy with high corrosion resistance
JPH09118940A (en) Superheat resistant molybdenium base alloy and its production
JP5321999B2 (en) Ni-based metallic glass alloy
JP5110470B2 (en) Ti-Zr-Cu-Pd-Sn metallic glass alloy
JP5305121B2 (en) Biomaterial
JP4086195B2 (en) Ni-based metallic glass alloy with excellent mechanical properties and plastic workability
US20190218649A9 (en) Bulk nickel-niobium-phosphorus-boron glasses bearing low fractions of chromium and exhibiting high toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees