JP5106344B2 - Fuel assembly - Google Patents

Fuel assembly Download PDF

Info

Publication number
JP5106344B2
JP5106344B2 JP2008265246A JP2008265246A JP5106344B2 JP 5106344 B2 JP5106344 B2 JP 5106344B2 JP 2008265246 A JP2008265246 A JP 2008265246A JP 2008265246 A JP2008265246 A JP 2008265246A JP 5106344 B2 JP5106344 B2 JP 5106344B2
Authority
JP
Japan
Prior art keywords
tube
neutron
void
coolant
neutron leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008265246A
Other languages
Japanese (ja)
Other versions
JP2009020121A (en
Inventor
健悦 白川
慎一 師岡
直 奈良林
徹 光武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008265246A priority Critical patent/JP5106344B2/en
Publication of JP2009020121A publication Critical patent/JP2009020121A/en
Application granted granted Critical
Publication of JP5106344B2 publication Critical patent/JP5106344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は水冷却型原子炉用燃料集合体に係り、特にボイド反応度を負とするための燃料集合体に関する。   The present invention relates to a fuel assembly for a water-cooled nuclear reactor, and more particularly to a fuel assembly for making a void reactivity negative.

一般に水冷却型原子炉の炉心は、核分裂性物質(燃料)を装填した多数の燃料ロッドを結束した燃料集合体を多数体配置して構成され、核分裂性物質で発生する熱除去のための冷却材として水が使用されている。   In general, the core of a water-cooled nuclear reactor is composed of a large number of fuel assemblies in which a large number of fuel rods loaded with fissile material (fuel) are bound, and cooling for removing heat generated by the fissile material. Water is used as a material.

水は中に含まれる水素原子の中性子減速能力が大きいため、水の割合が大きい従来の水冷却型原子炉では核分裂により発生する高エネルギ中性子を大きく減速し、エネルギの低い熱中性子が中性子の大部分をしめている。   Because water has a large neutron moderating ability for hydrogen atoms contained in water, high-energy neutrons generated by nuclear fission are greatly decelerated in conventional water-cooled nuclear reactors with a large proportion of water, and thermal neutrons with low energy are large neutrons. The part is tightened.

エネルギの低い中性子を核分裂性物質が吸収した場合には、中性子を約3個発生させる核分裂反応ではなく、核分裂を起こさず原子核の中に取り込んでしまう捕獲反応の割合が大きくなる。即ち、中性子吸収当たりの発生中性子数が低エネルギ中性子による核分裂では少なくなる。   When a fissile material absorbs neutrons with low energy, the ratio of the capture reaction that does not cause fission and is captured in the nucleus increases rather than the fission reaction that generates about three neutrons. That is, the number of neutrons generated per neutron absorption is reduced by fission by low energy neutrons.

一方、高エネルギ中性子では、捕獲反応の割合が小さいため、捕獲による効果を含めても吸収当たりの平均中性子発生数は2個以上とすることが可能であり、1個が連鎖反応の維持に使われ、残りの1個はU−238等の親物質に吸収させて核分裂性物質を効率的に生成することが可能である。この核分裂性物質の生成と消滅の比率が1以上であれば燃料の増殖ができたこととなり資源エネルギの確保の点から各国で増殖炉が開発されている。   On the other hand, with high-energy neutrons, the rate of capture reaction is small, so the average number of neutrons generated per absorption can be 2 or more, including the effect of capture, and one is used to maintain the chain reaction. The remaining one can be absorbed by a parent material such as U-238 to efficiently produce a fissile material. If the ratio of generation and extinction of this fissile material is 1 or more, it means that the fuel has been propagated, and breeding reactors have been developed in various countries from the viewpoint of securing resource energy.

しかし、従来の水冷却型原子炉では水の燃料に対する割合が大きく中性子は低エネルギであるために、増殖はできず、核分裂性物質の生成と消滅の比率(増殖比と称する。なお、この比が1以下であれば、転換比と称しているがここでは簡単にすべて増殖比と称する。)が1以下(0.5程度)の値となっていた。このため増殖炉であれば原理的には100%熱エネルギに変換できるウラン資源の1%程度が利用できるに過ぎなかった。   However, in a conventional water-cooled nuclear reactor, the ratio of water to fuel is large and neutrons have low energy. Therefore, breeding cannot be performed, and the ratio of generation and extinction of fissile material (referred to as the proliferation ratio. If it is 1 or less, it is referred to as a conversion ratio, but here it is simply referred to as a growth ratio.) Was 1 or less (about 0.5). For this reason, in the case of a breeder reactor, in principle, only about 1% of uranium resources that can be converted to 100% heat energy can be used.

但し、高エネルギスペクトルとすると従来の大型高速炉のように冷却材の沸騰による反応度(ボイド反応度)が正となる可能性がある。水冷却型原子炉では炉心の安定性や安全性の観点でボイド反応度は負の値にすることが重要である。   However, if the high energy spectrum is used, the reactivity due to boiling of the coolant (void reactivity) may be positive as in a conventional large fast reactor. In water-cooled nuclear reactors, it is important to make the void reactivity negative in terms of core stability and safety.

このため、従来では燃料集合体の中に内部が空洞の中性子漏れ管を設けてボイド反応度を低減する構造が提案されている。すなわち、チャンネルボックスの内部に多数本の燃料ロッドを配置し、かつ多数本の燃料ロッドの中央部に中性子漏れ管を設けた構造の燃料集合体である。この種の燃料集合体は、横断面が正六角形の筒状チャンネルボックス内に多数本の燃料棒が整列配置され、中央部軸心線に沿って中性子漏れ管が配置され冷却水が下方から上方へ流れるように構成されている。中性子漏れ管の内部を流れる冷却材のボイド率は、炉心の出力が上昇とともに大きくなるので中性子の漏洩が増加する。この効果により、ボイド反応度を低減させている。   For this reason, conventionally, a structure has been proposed in which a neutron leak tube having a hollow inside is provided in the fuel assembly to reduce the void reactivity. That is, the fuel assembly has a structure in which a large number of fuel rods are arranged inside the channel box and a neutron leakage tube is provided at the center of the large number of fuel rods. In this type of fuel assembly, a number of fuel rods are aligned in a cylindrical channel box having a regular hexagonal cross section, a neutron leak tube is arranged along the center axis, and cooling water flows upward from below. It is configured to flow to. The void fraction of the coolant flowing inside the neutron leak tube increases as the power of the core rises, so neutron leakage increases. This effect reduces the void reactivity.

しかし、従来の水冷却型原子炉において、チャンネルボックス内に中性子漏れ管を設けて増殖比を増大させ、同時にボイド反応度を負とする燃料集合体は、水の分子の放射化および被覆管と水との反応により水素が発生し、この水素が中性子漏れ管内部に閉じ込められ、最悪の場合は爆発する危険性の課題がある。   However, in a conventional water-cooled nuclear reactor, a fuel assembly having a neutron leakage tube in the channel box to increase the proliferation ratio and at the same time have a negative void reactivity is used for the activation of water molecules and the cladding tube. Hydrogen is generated by the reaction with water, and this hydrogen is trapped inside the neutron leak tube. In the worst case, there is a risk of explosion.

また、従来の中性子漏れ管では、下端の角が鋭角なため中性子漏れ管に溜まった多量の蒸気が急にあるいは偏って抜けるため、ボイド反応度が時間的に急激に変化し、被覆管の健全性に悪い影響を与える。過渡変化時においては、炉心の熱的な健全性が劣化するので、ボイド反応度をさらに小さくし、炉心出力を小さくし、炉心の熱的余裕をさらに向上させる必要がある。   In addition, in the conventional neutron leak tube, the corner at the lower end is acute, so a large amount of vapor accumulated in the neutron leak tube suddenly or unevenly escapes. Adversely affects sex. At the time of transient change, the thermal integrity of the core deteriorates, so it is necessary to further reduce the void reactivity, reduce the core output, and further improve the thermal margin of the core.

中性子の漏れを効果的に行うためには、冷却材流路と中性子漏れ管からなる全体の断面積に占める中性子漏れ管の面積比を大きくする必要がある。従来のように、冷却材流路を環状部とし、中央部に中性子漏れ管を設ける構成では、中性子漏れ管の断面積比を大きくすると環状部の冷却材流路の内壁(中性子漏れ管の外壁)と外壁との間隙が狭くなり、流路直径が狭くなって流路抵抗が増して冷却材流路を流れる流量が低下したり、流速が大きくなって流力振動の問題が生じるおそれがある。   In order to effectively perform neutron leakage, it is necessary to increase the area ratio of the neutron leakage tube to the entire cross-sectional area composed of the coolant channel and the neutron leakage tube. In the conventional configuration in which the coolant channel is an annular part and the neutron leak tube is provided in the center, the inner wall of the coolant channel in the annular part (the outer wall of the neutron leak tube is increased when the cross-sectional area ratio of the neutron leak tube is increased. ) And the outer wall are narrowed, the diameter of the flow path is narrowed, the flow resistance is increased, the flow rate flowing through the coolant flow path is decreased, and the flow velocity is increased to cause a problem of hydrodynamic vibration. .

さらに、稠密バンドルの核特性として、出力が増加し、ボイド率が増加すると共にボイド反応度(ボイド率増加に対する反応度増加割合)が正になる傾向がある。そこで、炉心のボイド率が増加すると共に、中性子漏れ管での中性子漏れ率が増加する必要がある。   Furthermore, as the core characteristics of the dense bundle, the output increases, the void ratio increases, and the void reactivity (reactivity increase ratio with respect to the void ratio increase) tends to be positive. Therefore, it is necessary to increase the void rate of the core and increase the neutron leakage rate in the neutron leakage tube.

本発明はこのような事情に鑑みてなされたものであり、増殖比を増大させ、同時にボイド反応度を負とする水冷却型原子炉においてその性能を向上させた冷却型原子炉用燃料集合体を提供する事を目的とする。   The present invention has been made in view of such circumstances, and a fuel assembly for a cooled nuclear reactor whose performance has been improved in a water-cooled nuclear reactor having an increased proliferation ratio and negative void reactivity at the same time. The purpose is to provide.

また、本発明は運転状態で中性子漏れ管の機能を損なうことなく、出力上昇時には中性子漏れ管内部にボイドを効果的に溜めることができる燃料集合体を提供することにある。
さらに、ボイド反応度が時間的に急激に変化することがなく、燃料皮覆管の健全性に悪影響を及ぼすことがない燃料集合体を提供することにある。
Another object of the present invention is to provide a fuel assembly that can effectively store voids inside the neutron leak tube when the output is increased without impairing the function of the neutron leak tube in the operating state.
It is another object of the present invention to provide a fuel assembly in which the void reactivity does not change rapidly with time and does not adversely affect the soundness of the fuel cladding tube.

請求項1に対応する発明は、チャンネルボックスと、このチャンネルボックス内に配置され核分裂性物質を装填した複数本の燃料ロッドと、この複数本の燃料ロッド間に配置され高さ方向に接続された上部の中性子漏れ管と下部の中性子漏れ管からなる中性子漏れ管と、前記上部の中性子漏れ管及び下部の中性子漏れ管の上面にそれぞれ設けられた小孔と、前記各小孔に接続され内部に鉛直な冷却材流路が形成された内管と、前記各内管と前記上部の中性子漏れ管及び下部の中性子漏れ管との間にそれぞれ形成されたボイド蓄積部と、前記下部の中性子漏れ管の下部に設けられた複数の流路孔を有する中性子吸収またはガンマ線吸収による発熱体と、を具備した燃料集合体であって、前記上部の中性子漏れ管の冷却材流路直径は前記下部の中性子漏れ管の冷却材流路直径よりも小さいことを特徴とする。 The invention corresponding to claim 1 is a channel box, a plurality of fuel rods arranged in the channel box and loaded with fissile material, and arranged between the plurality of fuel rods and connected in the height direction. A neutron leak tube composed of an upper neutron leak tube and a lower neutron leak tube, small holes respectively provided on the upper surfaces of the upper neutron leak tube and the lower neutron leak tube, and connected to each small hole inside An inner tube in which a vertical coolant channel is formed; a void accumulation portion formed between each inner tube and the upper neutron leak tube and lower neutron leak tube; and the lower neutron leak tube of a heating element by neutron absorption or gamma ray absorption having a plurality of flow path hole provided in the lower, a fuel assembly provided with the diameter of the coolant channel of the neutron leakage tube of the upper of the lower Characterized in that less than the diameter of the coolant channel of the neutron leakage tube.

この発明によれば、冷却材流路を中央部に配置し、中性子漏れ機能を有する高ボイド率領域を環状部とする構造とする断面構造を有する中性子漏れ管を軸方向に2段に配置し、冷却材のボイド率増加に先行してボイド蓄積領域のボイド率が増加するために、中央部の冷却材流路の直径が上部で大きく、下部で小さくなっている。   According to the present invention, the neutron leakage tube having a cross-sectional structure in which the coolant channel is arranged in the central portion and the high void ratio region having a neutron leakage function is an annular portion is arranged in two stages in the axial direction. In order to increase the void ratio in the void accumulation region prior to the increase in the void ratio of the coolant, the diameter of the coolant channel in the central portion is larger at the upper portion and smaller at the lower portion.

請求項2に対応する発明は、前記上部の中性子漏れ管の冷却材流路は狭まり流路と広まり流路とからなることを特徴とする。   The invention corresponding to claim 2 is characterized in that the coolant flow path of the upper neutron leakage tube is formed by a narrow flow path and a wide flow path.

この発明によれば、上部の冷却材流路を狭まり流路と広まり流路が引き続くベンチュリ型流路とすることにより、冷却材流路中のボイド率が増加すると共に上部の環状ボイド蓄積部が高ボイド領域となる。   According to the present invention, the upper coolant channel is made narrower and the venturi-type channel continues and the flow channel continues, so that the void ratio in the coolant channel is increased and the upper annular void accumulation portion is High void area.

本発明によれば、運転状態では中性子漏れ管の機能を損なう事無く、出力上昇時には中性子漏れ管内部にボイドを溜めることが出来る。さらに、本発明の中性子漏れ管が従来技術に比べて1.5倍以上のボイド断面積比が得られ、効果的にボイドを蓄積することができる。   According to the present invention, voids can be accumulated inside the neutron leak tube when the output is increased without impairing the function of the neutron leak tube in the operating state. Furthermore, the neutron leakage tube of the present invention can obtain a void cross-sectional area ratio 1.5 times or more that of the prior art, and can effectively accumulate voids.

これにより、冷却材中の異常な溶存酸素濃度の増加を抑える事ができ、また、ボイド反応度が時間的に急激に変化する事が無くなり、被覆管の健全性に与える悪い影響を排除できる。加えて、通常時の運転の影響を与える事無く、過渡変化時においてもボイド反応度を小さくし、炉心出力を小さくすることができ、炉心の熱的余裕をさらに向上させる事ができる。   As a result, an abnormal increase in dissolved oxygen concentration in the coolant can be suppressed, and the void reactivity can be prevented from changing rapidly in time, and adverse effects on the soundness of the cladding tube can be eliminated. In addition, the void reactivity can be reduced even during a transient change without affecting the normal operation, the core output can be reduced, and the thermal margin of the core can be further improved.

よって、水冷却型原子炉で増殖を増大できウラン資源の利用率を従来より大幅に増大できるのみならず、従来炉心の径方向サイズと同等の大きさでボイド反応度は負の値にすることができるため、環境保護、安全性、経済性が同時に満足できる原子炉が構成可能となる。   Therefore, not only can the proliferation be increased in water-cooled reactors, but the utilization rate of uranium resources can be greatly increased as compared to the conventional one, and the void reactivity should be negative with a size equivalent to the radial size of the conventional core. Therefore, a nuclear reactor that can simultaneously satisfy environmental protection, safety, and economic efficiency can be configured.

図1から3により、本発明に係る燃料集合体の第1の実施の形態を説明する。   A first embodiment of a fuel assembly according to the present invention will be described with reference to FIGS.

本実施の形態は図1に示したように正六角形角筒状チャンネルボックス1内に燃料ロッド2と内部が空洞の中性子漏れ管3を設けてボイド反応度を低減する構造の燃料集合体である。なお、ここでは、六角型燃料集合体の実施例を示しているが、特に、燃料集合体の形状にはこだわらず、例えば正方型燃料集合体でも構わない。   As shown in FIG. 1, the present embodiment is a fuel assembly having a structure in which a fuel rod 2 and a neutron leak tube 3 having a hollow inside are provided in a regular hexagonal rectangular channel box 1 to reduce void reactivity. . Although an example of a hexagonal fuel assembly is shown here, the shape of the fuel assembly is not particularly limited, and for example, a square fuel assembly may be used.

図2は図1における中性子漏れ管3の縦断面を示している。すなわち、中性子漏れ管3は上下両端が上部端栓4と下部端栓6により閉塞され、上部端栓4に上端部が絞られた複数のテーパ状冷却材流出孔5を有し、下部端栓6の近傍に冷却材流入孔7を有している。これにより、中性子漏れ管内のボイド率上昇時は、上端部の流出孔5の流動抵抗が増大し、中性子漏れ管内のボイドを抜け難くさせている。   FIG. 2 shows a longitudinal section of the neutron leak tube 3 in FIG. That is, the neutron leakage tube 3 is closed at both upper and lower ends by an upper end plug 4 and a lower end plug 6, and has a plurality of tapered coolant outlet holes 5 whose upper ends are constricted at the upper end plug 4. A coolant inflow hole 7 is provided in the vicinity of 6. Thereby, when the void ratio rises in the neutron leakage tube, the flow resistance of the outflow hole 5 at the upper end portion increases, making it difficult to remove the void in the neutron leakage tube.

図3に中性子漏れ管3内部の冷却材の様子を示した。流入孔7から流入した流入冷却材8は、ガンマ線などの放射線により発熱するので、流入孔7及び流出孔5の大きさを適切に設定することで、図3に示すように中性子漏れ管3内部でボイド化が可能となる。   FIG. 3 shows the state of the coolant inside the neutron leakage tube 3. The inflow coolant 8 that has flowed in from the inflow hole 7 generates heat due to radiation such as gamma rays. Therefore, by appropriately setting the sizes of the inflow hole 7 and the outflow hole 5, as shown in FIG. Voiding becomes possible.

その場合、発熱量は炉心の出力によって変化するため、低出力時は図3(a)に示すように中性子漏れ管3内部はボイドが割合が低い状態であるが、高出力時には図3(b)の状態となり、中性子漏れ管3内部のボイド割合が上昇する。このボイド割合の増加により、テーパ状冷却材流出孔5の流動抵抗は増大するため、中性子漏れ管3内のボイドを抜け難くなる。従って、この空間を通過する中性子を反射させる効果が減少し、中性子の漏洩が増加するため、ボイド反応度を低減することができる。   In that case, since the heat generation amount changes depending on the output of the core, the void ratio is low in the neutron leakage tube 3 as shown in FIG. 3A at the time of low output, but FIG. ) And the void ratio inside the neutron leak tube 3 increases. As the void ratio increases, the flow resistance of the tapered coolant outflow hole 5 increases, so that it is difficult to escape the void in the neutron leakage tube 3. Therefore, the effect of reflecting neutrons passing through this space is reduced and the leakage of neutrons is increased, so that the void reactivity can be reduced.

つぎに図4(a)、(b)により本発明に係る第2の実施の形態を説明する。   Next, a second embodiment according to the present invention will be described with reference to FIGS.

本実施の形態は第1の実施の形態における上部端栓4を改良したことにあり、その他の部分は第1の実施の形態と同様なので、重複する部分の説明は省略する。すなわち、図4(b)に示したように上部端栓4に設けたテーパ状冷却材流出孔5の表面を粗くし、かつ、内部を流れる冷却材の流れに対して抵抗となる階段状溝13を設けて、階段状テーパ形流出孔としたことにある。   This embodiment is obtained by improving the upper end plug 4 in the first embodiment. Since other parts are the same as those in the first embodiment, the description of the overlapping parts is omitted. That is, as shown in FIG. 4 (b), the surface of the tapered coolant outflow hole 5 provided in the upper end plug 4 is roughened, and the step-like groove that resists the flow of the coolant flowing through the inside is provided. 13 is provided as a step-like tapered outflow hole.

本実施の形態によれば、ボイド流出時の流動抵抗を増加させることで、高出力時の中性子漏れ管内部のボイド流出を更に抑制され、これにより中性子の漏洩をより増加させ、ボイド反応度を低減することができる。   According to the present embodiment, by increasing the flow resistance at the time of void outflow, void outflow inside the neutron leakage tube at high output is further suppressed, thereby further increasing neutron leakage and increasing the void reactivity. Can be reduced.

つぎに図5により本発明に係る第3の実施の形態を説明する。
図5は、本発明の第3の実施の形態にける中性子漏れ管の縦断面形状を示している。
Next, a third embodiment according to the present invention will be described with reference to FIG.
FIG. 5 shows a vertical cross-sectional shape of a neutron leak tube according to the third embodiment of the present invention.

本実施の形態は第1の実施の形態において示した中性子漏れ管3aを、図5に示したように、中性子漏れ管3aの内部に冷却材が上部へ流れ、かつ中性子漏れ管3の内部は両端を閉じた薄肉密閉細管15を束ねた密閉細管束14の構造としたことにあり、その他の部分は第1の実施の形態と同様である。   In the present embodiment, as shown in FIG. 5, the coolant flows upward in the neutron leak tube 3a shown in the first embodiment, and the inside of the neutron leak tube 3 is The structure of the closed thin tube bundle 14 in which the thin closed thin tubes 15 whose both ends are closed is bundled, and other parts are the same as those in the first embodiment.

本実施の形態によれば、密閉細管15の肉厚は管径が小さいため、0.2mm程度まで薄くすることができる。したがって、密閉細管15による中性子の吸収を抑制する事が出来、かつ、流動条件に係わらず中性子漏れ管内の中空を安定して維持出来るため、この空間を通過する中性子を反射させる効果が減少し、中性子の漏洩が増加するため、ボイド反応度を低減することができる。   According to the present embodiment, since the thickness of the sealed narrow tube 15 is small, it can be reduced to about 0.2 mm. Therefore, the absorption of neutrons by the sealed capillary 15 can be suppressed, and the hollow in the neutron leakage tube can be stably maintained regardless of the flow conditions, so the effect of reflecting neutrons passing through this space is reduced, Since neutron leakage increases, void reactivity can be reduced.

つぎに図6により本発明に係る第4の実施の形態を説明する。
本実施の形態は第3の実施の形態に準じるもので、図6は本実施の形態に係る中性子漏れ管3bの縦断面形状を示している。すなわち、図6において、中性子漏れ管3bの内部は薄肉ハネカム密閉構造16にすることで中性子の吸収を抑制し、かつ、流動条件に係わらず中性子漏れ管3b内の中空を安定して維持出来るため、この空間を通過する中性子を反射させる効果が減少し、中性子の漏洩が増加するため、ボイド反応度を低減することができる。
Next, a fourth embodiment according to the present invention will be described with reference to FIG.
This embodiment conforms to the third embodiment, and FIG. 6 shows the longitudinal sectional shape of the neutron leakage tube 3b according to the present embodiment. That is, in FIG. 6, since the inside of the neutron leak tube 3b has a thin-walled honeycomb sealing structure 16, neutron absorption can be suppressed and the hollow in the neutron leak tube 3b can be stably maintained regardless of the flow conditions. Since the effect of reflecting neutrons passing through this space is reduced and leakage of neutrons is increased, void reactivity can be reduced.

つぎに図7により本発明に係る第5の実施の形態を説明する。
本実施の形態は第1の実施の形態における中性子漏れ管3の他の例にあり、図7は本実施の形態の中性子漏れ管3cとその周囲の蒸気流の流れの状態を示している。
Next, a fifth embodiment according to the present invention will be described with reference to FIG.
The present embodiment is another example of the neutron leakage tube 3 in the first embodiment, and FIG. 7 shows the state of the flow of the neutron leakage tube 3c of the present embodiment and the surrounding vapor flow.

本実施の形態は図7に示したように、中性子漏れ管、3cとその下方に中性子またはガンマ線吸収により発熱する材質、例えば、ハフニウム、ステンレス鋼等で形成した流路孔18を有する発熱体19を配置し、中性子漏れ管3cの上部に形状記憶合金で構成される形状記憶合金製管20とから構成されている。常温では、中性子漏れ管3c内部と外部が形状記憶合金製管20により連通している。   In the present embodiment, as shown in FIG. 7, a heating element 19 having a neutron leak tube 3c and a flow path hole 18 formed of a material that generates heat by neutron or gamma ray absorption, for example, hafnium, stainless steel, or the like below. And a shape memory alloy tube 20 made of a shape memory alloy at the upper part of the neutron leakage tube 3c. At normal temperature, the inside and outside of the neutron leakage tube 3 c communicate with each other through a shape memory alloy tube 20.

従来のように形状記憶合金製管20が無い場合は、この中性子漏れ管3c内部に閉じ込められた空気23が抜ける通路が無いため、除去する事ができない。このため、この空気23が冷却材に溶け込み冷却材の溶存酸素濃度が上昇し、燃料被覆管に悪い影響を及ぼす。   If there is no shape memory alloy tube 20 as in the prior art, it cannot be removed because there is no passage through which the air 23 trapped inside the neutron leak tube 3c escapes. For this reason, the air 23 dissolves in the coolant, and the dissolved oxygen concentration of the coolant increases, which adversely affects the fuel cladding tube.

本実施の形態では、常温では形状記憶合金製管20が連通しており、運転状態(つまり、冷却材温度が高い)では形状記憶合金製管20が塞がれるように構成されている。つまり、常温状態で形状記憶合金製管20を通って空気23がすべて外に出てしまう。   In the present embodiment, the shape memory alloy pipe 20 is communicated at normal temperature, and the shape memory alloy pipe 20 is closed in the operating state (that is, the coolant temperature is high). That is, all the air 23 goes out through the shape memory alloy pipe 20 at room temperature.

高温状態になると、形状記憶合金製管20が封鎖されるため、発熱体18で加熱され発生した蒸気21は、中性子漏れ管3cの内部が蒸気24で満たされるまで、中性子漏れ管3cに流入する。一方、中性子漏れ管3cの内部が蒸気24で満たされた後は、発生した蒸気21の大部分は、燃料ロッド被覆管25との間の外側の流路22を通過するようになる。   When the temperature becomes high, the shape memory alloy tube 20 is sealed, so that the steam 21 generated by heating by the heating element 18 flows into the neutron leakage tube 3 c until the inside of the neutron leakage tube 3 c is filled with the vapor 24. . On the other hand, after the inside of the neutron leakage tube 3 c is filled with the vapor 24, most of the generated vapor 21 passes through the outer flow path 22 between the fuel rod cladding tube 25.

つぎに図8(a)、(b)により本発明の第6の実施の形態を説明する。
図8(a)は、本実施の形態における中性子漏れ管の縦断面図、(b)は(a)のA−A矢視断面図である。
Next, a sixth embodiment of the present invention will be described with reference to FIGS.
Fig.8 (a) is a longitudinal cross-sectional view of the neutron leak tube in this Embodiment, (b) is AA arrow sectional drawing of (a).

本実施の形態は中性子漏れ管3dの上蓋26の中央部に金属円筒27を設け、この金属円筒27の内部に金属円筒27の金属よりも熱膨脹率の大きな金属で作られた金属円柱28を設置し、金属円筒29の上と下に図8(b)に示すように複数の板29を設置したことにある。   In this embodiment, a metal cylinder 27 is provided at the center of the upper cover 26 of the neutron leakage tube 3d, and a metal cylinder 28 made of a metal having a larger thermal expansion coefficient than the metal of the metal cylinder 27 is installed inside the metal cylinder 27. In addition, a plurality of plates 29 are installed above and below the metal cylinder 29 as shown in FIG.

常温では、金属円筒27と金属円柱28の間に隙間30があるため、中性子漏れ管3d内部の空気23がこの隙間30から抜ける事ができる。本実施の形態では、金属円柱28は、金属円筒27よりも熱膨脹率の大きな金属で作られているため、運転状態(つまり、冷却材温度が高い)では隙間30が無くなるように構成されている。   At normal temperature, since there is a gap 30 between the metal cylinder 27 and the metal column 28, the air 23 inside the neutron leak tube 3d can escape from the gap 30. In the present embodiment, the metal column 28 is made of a metal having a larger coefficient of thermal expansion than the metal cylinder 27, and thus is configured such that the gap 30 is eliminated in the operating state (that is, the coolant temperature is high). .

つまり、常温状態で隙間30を通って空気23がすべて外に出てしまう。高温状態になると、隙間30が封鎖されるため、図7に示すように発熱体19で加熱され発生した蒸気21は、中性子漏れ管の内部が蒸気で満たされるまで、中性子漏れ管3dに流入する。一方、中性子漏れ管3dの内部が蒸気24で満たされた後は、発生した蒸気21の大部分は、外側の流路22を通過するようになる。   That is, all the air 23 goes out through the gap 30 in the normal temperature state. When the temperature is high, the gap 30 is sealed, so that the steam 21 heated and generated by the heating element 19 flows into the neutron leak tube 3d until the inside of the neutron leak tube is filled with steam as shown in FIG. . On the other hand, after the inside of the neutron leakage tube 3d is filled with the steam 24, most of the generated steam 21 passes through the outer flow path 22.

つぎに図9(a)(b)により本発明の第7の実施の形態を説明する。
本実施の形態は第6の実施の形態に準じたものなので、図9中、図8と同一部分には同一符号を付して重複する部分の説明は省略する。
Next, a seventh embodiment of the present invention will be described with reference to FIGS.
Since this embodiment conforms to the sixth embodiment, the same parts in FIG. 9 as those in FIG.

本実施の形態は中性子漏れ管3dの上蓋26をNiで構成したことにある。運転状態では、図9に示すように水の分子の放射化および被覆管と水との反応により水素31が発生し、水素31が中性子漏れ管3dの内部に閉じ込められ最悪の場合は、爆発する危険性がある。本実施の形態では、中性子漏れ管3dは上蓋26がNiで形成されている。この構成では、水素原子は小さいので、Ni製の上蓋26から抜け、水素31を除去する事が可能となる。   In this embodiment, the upper lid 26 of the neutron leakage tube 3d is made of Ni. In the operating state, as shown in FIG. 9, hydrogen 31 is generated by the activation of water molecules and the reaction between the cladding tube and the water, and the hydrogen 31 is trapped inside the neutron leakage tube 3d and, in the worst case, explodes. There is a risk. In this embodiment, the upper lid 26 of the neutron leak tube 3d is made of Ni. In this configuration, since the hydrogen atoms are small, the hydrogen 31 can be removed from the Ni lid 26 and removed.

つぎに図10により本発明の第8の実施の形態を説明する。
図10(a)は本実施の形態を説明する中性子漏れ管の縦断面図、図10(b)は(a)の比較図である。
Next, an eighth embodiment of the present invention will be described with reference to FIG.
FIG. 10A is a longitudinal sectional view of a neutron leakage tube for explaining the present embodiment, and FIG. 10B is a comparative view of FIG.

本実施の形態における基本的な構成は図7から図9に示した実施の形態と同様である。上述した中性子漏れ管3c、3dでは図10(b)に示したように、下端の角が鋭角なため、多量の蒸気泡32が溜まって急にあるいは偏って抜けるため、ボイド反応度が時間的に急激に変化し、被覆管の健全性に悪い影響を与える可能性がある。そこで、本実施の形態では図10(a)に示すように中性子漏れ管の角を丸く曲面33に形成することにある。本実施の形態によれば蒸気の抜けをスムーズにして上述したボイド反応度の急激な時間変化を緩和する事ができる。   The basic configuration of the present embodiment is the same as that of the embodiment shown in FIGS. In the neutron leakage tubes 3c and 3d described above, as shown in FIG. 10 (b), since the lower end has an acute angle, a large amount of vapor bubbles 32 accumulate and suddenly or unevenly escape. May suddenly change and adversely affect the soundness of the cladding. Therefore, in the present embodiment, as shown in FIG. 10A, the corners of the neutron leak tube are rounded and formed on the curved surface 33. According to the present embodiment, it is possible to smooth out the escape of the vapor and to alleviate the rapid time change of the void reactivity described above.

つぎに図11により本発明の第9の実施の形態を説明する。
本実施の形態は、中性子漏れ管3cまたは3dの下部に多数の横穴34を開けたことにある。本実施の形態によれば、蒸気の抜けをスムーズにして上述したボイド反応度の急激な時間変化を緩和する事ができる。
Next, a ninth embodiment of the present invention will be described with reference to FIG.
In the present embodiment, a large number of lateral holes 34 are formed in the lower part of the neutron leakage tube 3c or 3d. According to the present embodiment, it is possible to smooth out the escape of steam and to alleviate the rapid time change of the void reactivity described above.

つぎに図12により本発明の第10の実施の形態を説明する。
図12は、本実施の形態を説明する中性子漏れ管の縦断面図である。
本実施の形態の基本的な構成は図7から図11の実施の形態と同様であるが、本実施の形態は中性子漏れ管3cまたは3dの上蓋35を大径としたことにある。すなわち、上蓋の外径を大きくした大径上蓋35により外側の流路22を中性子漏れ管3cまたは3dの出口で絞ったことにある。
Next, a tenth embodiment of the present invention will be described with reference to FIG.
FIG. 12 is a vertical cross-sectional view of a neutron leakage tube for explaining the present embodiment.
Although the basic configuration of the present embodiment is the same as that of the embodiment of FIGS. 7 to 11, the present embodiment is that the upper lid 35 of the neutron leakage tube 3c or 3d has a large diameter. That is, the outer flow path 22 is throttled at the exit of the neutron leak tube 3c or 3d by the large-diameter upper lid 35 having an enlarged outer diameter of the upper lid.

例えば、ポンプが停止した場合、発熱体18への冷却材の量が少なくなるため、発生蒸気量は増大する。中性子漏れ管の内部はすでの蒸気24で満たされているため、発生した蒸気21は外側の流路22を流れ、この部分のボイド率を増大し、これによりボイド反応度を減少させる事ができる。   For example, when the pump is stopped, the amount of generated steam increases because the amount of coolant to the heating element 18 decreases. Since the inside of the neutron leak tube is filled with steam 24, the generated steam 21 flows through the outer flow path 22 and increases the void fraction in this portion, thereby reducing the void reactivity. it can.

本実施の形態によれば、外側の流路22のボイド率を大きくし、ボイド反応度を抑えるために、上蓋35の端部Bの部分を絞っている。過渡変化時には通常に比べて発生ボイド量が増える。上部を狭くしておくと、過渡変化時にはそこを通過するボイド量が増えで結果的に圧損が増える。つまり、蒸気が抜けにくくなり、結果的に外側の流路22のボイド率が上昇し、ボイド反応度をさらに抑える事ができる。   According to the present embodiment, the portion of the end portion B of the upper lid 35 is narrowed down in order to increase the void ratio of the outer flow path 22 and suppress the void reactivity. At the time of transient change, the amount of generated voids increases compared to normal. If the upper part is narrowed, the amount of voids passing therethrough increases during a transient change, resulting in an increase in pressure loss. That is, it becomes difficult for the vapor to escape, and as a result, the void ratio of the outer flow path 22 increases, and the void reactivity can be further suppressed.

つぎに図13(a)、(b)により本発明の第11の実施の形態を説明する。
本実施の形態は第10の実施の形態において、大径上蓋35に図13(b)に示したように複数の縦穴36を設けたことにある。図12に示した構成では、通常時にボイドが角に溜まり急激に抜けて、脇の流路のボイド変化が激しい。そこで、大径35に複数の穴36を設ける事により通常時のボイドの抜けをスムーズにすることができる。
Next, an eleventh embodiment of the present invention will be described with reference to FIGS. 13 (a) and 13 (b).
In this embodiment, in the tenth embodiment, the large-diameter upper lid 35 is provided with a plurality of vertical holes 36 as shown in FIG. 13 (b). In the configuration shown in FIG. 12, during normal times, voids accumulate at the corners and abruptly escape, and the change in the voids in the side channel is severe. Therefore, by providing a plurality of holes 36 in the large diameter 35, it is possible to smoothly remove voids during normal operation.

つぎに図14により本発明の第12の実施の形態を説明する。
図14は、本実施の形態における中性子漏れ管3eを概略的に鳥瞰図で示している。すなわち本実施の形態は中性子漏れ管3e内に水-蒸気二相流が流入することにより高ボイド率領域となる環状のボイド蓄積部37、水-蒸気二相流が流入し、流出する冷却材流路38、水-蒸気二相流を供給するために熱を供給する発熱体39および内管40とから構成されている。
Next, a twelfth embodiment of the present invention will be described with reference to FIG.
FIG. 14 schematically shows the neutron leakage tube 3e in the present embodiment in a bird's-eye view. That is, in the present embodiment, an annular void accumulating portion 37 that becomes a high void ratio region when the water-steam two-phase flow flows into the neutron leakage pipe 3e, and the coolant that flows into and out of the water-steam two-phase flow. It is composed of a flow path 38, a heating element 39 for supplying heat to supply a water-steam two-phase flow, and an inner tube 40.

炉心出力が低く、発熱体の熱発生量も小さい条件では比較的小さなボイド率の水-蒸気二相流が流入することにより、環状部に流入する蒸気は環状部に蓄積して高ボイド率領域となる。入口の断面内蒸気(ボイド)の分布は水-蒸気二相流が未だサブクールボイド条件では一般にボイドの空間分布はいわゆる鞍型分布となり、外周部にボイド率が高くなる傾向がある。   When the core power is low and the heat generation amount of the heating element is small, the water-steam two-phase flow with a relatively small void rate flows in, so that the steam flowing into the annular part accumulates in the annular part and has a high void rate region. It becomes. As for the distribution of steam (void) in the cross section of the inlet, the void spatial distribution generally has a so-called saddle-type distribution under the subcooled void condition in which the water-steam two-phase flow is still under the condition, and the void ratio tends to increase at the outer periphery.

環状部にボイドが供給される割合が高いため、環状部に効果的にボイドを蓄積することができるメリットがある。また、中央の冷却材流路に流入したボイドは冷却材流路38を通って流出する。入口から流入するボイド率が高くなるとともに、ボイド蓄積部37、冷却材流路共に高ボイド率となり、中性子漏れ率が高くなる。   Since the proportion of voids supplied to the annular part is high, there is an advantage that voids can be effectively accumulated in the annular part. Further, the void flowing into the central coolant channel flows out through the coolant channel 38. As the void rate flowing from the inlet increases, both the void accumulation part 37 and the coolant channel have a high void rate, and the neutron leakage rate increases.

図15に示す従来の中性子漏れ管41において、ボイドを蓄積する円筒型ボイド蓄積部42が中央に設けられている場合では、本実施の形態の環状のボイド蓄積部37の場合に比べて、次のようにボイド率の面積比を大きくすることができる。図15の中性子漏れ管41の外管の直径をD、従来技術の流路を同心円流路として外壁との幅をdとし、本実施の形態の中央部の流路直径を2dとした場合のボイド蓄積部の面積比を比較すると、従来技術が1-4d/D、本発明が1-4d2/D2である。 In the conventional neutron leakage tube 41 shown in FIG. 15, in the case where the cylindrical void accumulating portion 42 for accumulating voids is provided at the center, the following is compared to the case of the annular void accumulating portion 37 of the present embodiment. Thus, the area ratio of the void ratio can be increased. The diameter of the outer tube of the neutron leakage tube 41 in FIG. 15 is D, the flow path of the conventional technology is a concentric flow path, the width with the outer wall is d, and the flow path diameter at the center of this embodiment is 2d. Comparing the area ratio of the void accumulation part, the prior art is 1-4d / D and the present invention is 1-4d 2 / D 2 .

例えば、d/D=0.1(10%)とした場合、ボイドの占める断面積比は従来技術が60%、本実施の形態が96%となり、本実施の形態の中性子漏れ管が従来技術に比べて1.5倍以上のボイド断面積比が得られ、効果的にボイドを蓄積することができることがわかる。   For example, when d / D = 0.1 (10%), the cross-sectional area ratio occupied by the void is 60% in the conventional technique and 96% in the present embodiment, and the neutron leakage tube of the present embodiment is compared with the conventional technique. It can be seen that a void cross-sectional area ratio of 1.5 times or more can be obtained, and voids can be accumulated effectively.

つぎに図16および図17(a)、(b)により本発明の第13の実施の形態を説明する。
図16は、本実施の形態を説明するための中性子漏れ管43の鳥瞰図である。本実施の形態は、中性子漏れ管43上部の中性子漏れ管44、下部の中性子漏れ管45、水-蒸気二相流が流入することにより高ボイド率領域となる上部の環状ボイド蓄積部46、水-蒸気二相流が流入し、流出する上部中性子漏れ管の冷却材流路47、水-蒸気二相流が流入することにより高ボイド率領域となる下部の環状ボイド蓄積部48、水-蒸気二相流が流入し、流出する下部中性子漏れ管の冷却材流路49、中性子漏れ管上面の小孔50および水-蒸気二相流を供給するために熱を供給する発熱体39とから構成されている。
Next, a thirteenth embodiment of the present invention will be described with reference to FIG. 16 and FIGS. 17 (a) and 17 (b).
FIG. 16 is a bird's-eye view of the neutron leakage tube 43 for explaining the present embodiment. In this embodiment, the neutron leakage tube 44 at the upper part of the neutron leakage tube 43, the neutron leakage tube 45 at the lower part, the upper annular void accumulating part 46 that becomes a high void ratio region by the flow of the water-vapor two-phase flow, the water -Coolant flow path 47 of the upper neutron leak pipe that flows in and out of the steam two-phase flow, the lower annular void accumulating section 48 that becomes a high void ratio region by the flow of water-steam two-phase flow, water-steam Consists of a coolant flow path 49 in the lower neutron leak pipe that flows in and out of the two-phase flow, a small hole 50 on the upper surface of the neutron leak pipe, and a heating element 39 that supplies heat to supply the water-vapor two-phase flow Has been.

炉心出力が低く、発熱体の熱発生量も小さい条件では比較的小さなボイド率の水-蒸気二相流が流入することにより、環状部に流入する蒸気は環状部に蓄積して高ボイド率領域となる。入口の断面内蒸気(ボイド)の分布は水-蒸気二相流が未だサブクールボイド条件では一般にボイドの空間分布はいわゆる鞍型分布となり、外周部にボイド率が高くなる傾向がある。   When the core power is low and the heat generation amount of the heating element is small, the water-steam two-phase flow with a relatively small void rate flows in, so that the steam flowing into the annular part accumulates in the annular part and has a high void rate region. It becomes. As for the distribution of steam (void) in the cross section of the inlet, the void spatial distribution generally has a so-called saddle-type distribution under the subcooled void condition in which the water-steam two-phase flow is still under the condition, and the void ratio tends to increase at the outer periphery.

環状部にボイドが供給される割合が高くなり、環状部に効果的にボイドを蓄積することができるメリットがある。下部の中性子漏れ管45における下部の環状ボイド蓄積部48では冷却材が二相流となる条件で、上述の機能により高ボイド率領域となる。   There is a merit that the proportion of voids supplied to the annular part increases, and voids can be effectively accumulated in the annular part. In the lower annular void accumulation part 48 in the lower neutron leakage tube 45, a high void ratio region is obtained by the above-described function under the condition that the coolant becomes a two-phase flow.

一方、中性子漏れ管44の上部では、蒸気(ボイド)を含む流れが上部ボイド蓄積部46に流入する経路は上部の冷却材流路47と下部の冷却材流路49の冷却材流路径d2,d1の違いによる環状部分(流路幅(d2-d1)/2)である。   On the other hand, in the upper part of the neutron leak tube 44, the path through which the flow containing the vapor (void) flows into the upper void accumulation part 46 is the coolant channel diameter d2, of the upper coolant channel 47 and the lower coolant channel 49. An annular portion (channel width (d2-d1) / 2) due to the difference in d1.

従って、炉心出力が増加して下部の冷却材流路49の冷却材中のボイド率が増加すると、ボイド蓄積部へのボイド流入量が増加して高ボイド率領域を形成するので、中性子漏れ率が高くなる。   Therefore, if the core power increases and the void rate in the coolant in the lower coolant channel 49 increases, the amount of void inflow into the void accumulation section increases and forms a high void rate region, so the neutron leakage rate Becomes higher.

図17(a)、(b)に原子炉運転状態での本実施の形態の中性子漏れ管43内ボイド率を示す。図17(a)は炉心出力が低く、冷却材中のボイド率が低い状態、図17(b)は炉心出力が高く、冷却材中のボイド率が高い状態を示す。   17 (a) and 17 (b) show the void ratio in the neutron leak tube 43 of the present embodiment in the reactor operation state. FIG. 17A shows a state in which the core power is low and the void ratio in the coolant is low, and FIG. 17B shows a state in which the core power is high and the void ratio in the coolant is high.

下部の中性子漏れ管45ではボイド蓄積部48が高ボイド率領域となるため、炉心出力が高い状態も低い状態も、高ボイド率となる。上部と下部の冷却材流路径の違いによる環状流路(流路幅(d2-d1)/2)から上部のボイド蓄積部46に流入するボイド率の違いにより、炉心出力が高い状態では上部のボイド蓄積部のボイド率が増加する。   In the lower neutron leak tube 45, since the void accumulation part 48 is in a high void ratio region, both the high core output state and the low core output state have high void ratios. Due to the difference in the void ratio flowing into the upper void accumulation part 46 from the annular flow path (flow path width (d2-d1) / 2) due to the difference between the upper and lower coolant flow path diameters, The void ratio of the void accumulation part increases.

沸騰水型原子炉の場合、入口からサブクール水が入ってくるので下部は比較的ボイド率が低い。従って、下部のボイド蓄積部48を炉心出力低の状態にも高ボイド率領域とするのは中性子漏れ効果が高い。   In the case of a boiling water reactor, subcooled water enters from the inlet, so the lower void ratio is relatively low. Accordingly, the neutron leakage effect is high when the lower void accumulating portion 48 is set to the high void ratio region even when the core power is low.

つぎに図18により本発明の第14の実施の形態を説明する。
図18は、本実施の形態を説明するための中性子漏れ管の鳥瞰図である。
本実施の形態は中性子漏れ管51上部中性子漏れ管44、下部中性子漏れ管45、水-蒸気二相流が流入することにより高ボイド率領域となる上部の環状ボイド蓄積部46、水-蒸気二相流が流入し、流出する上部中性子漏れ管の冷却材流路47、上部冷却材流路の狭まり流路52、上部冷却材流路の広まり流路53、水-蒸気二相流が流入することにより高ボイド率領域となる下部の環状ボイド蓄積部48、水-蒸気二相流が流入し、流出する下部中性子漏れ管の冷却材流路49、水-蒸気二相流を供給するために熱を供給する発熱体39とからより構成されている。
Next, a fourteenth embodiment of the present invention will be described with reference to FIG.
FIG. 18 is a bird's-eye view of a neutron leak tube for explaining the present embodiment.
This embodiment includes a neutron leakage tube 51, an upper neutron leakage tube 44, a lower neutron leakage tube 45, an upper annular void accumulation part 46 that becomes a high void ratio region by the flow of water-steam two-phase flow, water-steam two Phase flow enters and exits upper neutron leak pipe coolant channel 47, upper coolant channel narrowing channel 52, upper coolant channel widening channel 53, water-steam two phase flow in In order to supply the lower annular void accumulating section 48, which becomes a high void ratio region, the water-steam two-phase flow flows in, the coolant channel 49 of the lower neutron leakage pipe that flows out, and the water-steam two-phase flow And a heating element 39 for supplying heat.

炉心出力が低く、発熱体の熱発生量も小さい条件では比較的小さなボイド率の水-蒸気二相流が流入することにより、環状部に流入する蒸気は環状部に蓄積して高ボイド率領域となる。入口の断面内蒸気(ボイド)の分布は水-蒸気二相流が未だサブクールボイド条件では一般にボイドの空間分布はいわゆる鞍型分布となり、外周部にボイド率が高くなる傾向があるため、環状部にボイドが供給される割合が高いため環状部に効果的にボイドを蓄積することができる効果がある。   When the core power is low and the heat generation amount of the heating element is small, the water-steam two-phase flow with a relatively small void rate flows in, so that the steam flowing into the annular part accumulates in the annular part and has a high void rate region. It becomes. The distribution of steam (voids) in the cross section of the inlet is generally a so-called saddle type distribution under the subcooled void condition in which the water-steam two-phase flow is still sub-void, and the void ratio tends to increase at the outer periphery. Since there is a high ratio of supplying voids, there is an effect that voids can be effectively accumulated in the annular portion.

下部の中性子漏れ管45のボイド蓄積部では冷却材が二相流となる条件で、上述の機能により高ボイド率領域となる。一方、上部の中性子漏れ管44の上部では、冷却材中のボイド率が低い条件では上部の冷却材流路の広まり流路53の下部の冷却材流れは上部の冷却材流路47に流入するだけであるから、ほとんどボイドの蓄積はない。   In the void accumulation part of the lower neutron leakage tube 45, a high void ratio region is obtained by the above-described function under the condition that the coolant has a two-phase flow. On the other hand, in the upper part of the upper neutron leakage tube 44, the coolant flow in the lower part of the upper coolant channel 53 flows into the upper coolant channel 47 under the condition that the void ratio in the coolant is low. Therefore, there is almost no void accumulation.

ボイド率が増加し、狭まり流路52と広まり流路53が引き続くベンチュリ型流路ののど部(最小流路直径dt)でボイド率の高い流れが大きな流動抵抗となって流量が低下すると、蒸気(ボイド)を含む流れが上部ボイド蓄積部46に流入し、高ボイド率領域を形成し、中性子漏れ率が高くなる。   When the void ratio increases, the flow with a high void ratio becomes a large flow resistance at the throat (minimum channel diameter dt) of the venturi-type flow path where the narrow flow path 52 and the wide flow path 53 continue, and the flow rate decreases. A flow containing (voids) flows into the upper void accumulation part 46, forms a high void rate region, and increases the neutron leakage rate.

ベンチュリ型流路の狭まり角、広まり角は例えば流路壁で流れの剥離が生じない角度(約10゜以下)にすることにより圧力が回復し、流れに対する抵抗を抑えることができる。また、のど部の流路面積を入口部流路面積の半分とすると、のど部直径dtはdt=0.7d2とすれば良い。   The narrowing angle and widening angle of the venturi-type flow path can be set to an angle (about 10 ° or less) at which flow separation does not occur on the flow path wall, for example, so that the pressure is recovered and resistance to flow can be suppressed. If the flow area of the throat is half of the flow area of the inlet, the throat diameter dt may be dt = 0.7d2.

図19(a)、(b)に原子炉運転状態での本発明の中性子漏れ管内ボイド率を示す。図19(a)は炉心出力が低く、冷却材中のボイド率が低い状態、図19(b)は炉心出力が高く、冷却材中のボイド率が高い状態を示す。下部の中性子漏れ管ではボイド蓄積部が高ボイド率領域となるため、炉心出力が高い状態も低い状態も、高ボイド率となる。   19 (a) and 19 (b) show the void ratio in the neutron leakage tube of the present invention in the reactor operating state. FIG. 19 (a) shows a state where the core power is low and the void ratio in the coolant is low, and FIG. 19 (b) shows a state where the core power is high and the void ratio in the coolant is high. In the lower neutron leak tube, the void accumulation portion is in a high void ratio region, so that the void ratio is high in both the high and low core power.

炉心出力が高く、冷却材流路のボイド率が高くなると、下部の冷却材流路から流入する二相流があふれて上部のボイド蓄積部に流入すると共に、ボイド率が蓄積されるので、図20に示すように冷却材流路中のボイド率増加に先行して上部のボイド蓄積部が高ボイド率領域を形成する。   When the core power is high and the void ratio of the coolant flow path becomes high, the two-phase flow flowing from the lower coolant flow path overflows and flows into the upper void accumulation part, and the void ratio is accumulated. As shown at 20, the void accumulation portion in the upper part forms a high void ratio region prior to the increase in the void ratio in the coolant channel.

沸騰水型原子炉の場合、入口からサブクール水が入ってくるので下部は比較的ボイド率が低い。従って、下部のボイド蓄積部を炉心出力低の状態にも高ボイド率領域とするのは中性子漏れ効果が高い。   In the case of a boiling water reactor, subcooled water enters from the inlet, so the lower void ratio is relatively low. Therefore, the neutron leakage effect is high when the lower void accumulating portion is in a high void ratio region even in a state where the core power is low.

つぎに図21および図22により本発明の第15の実施の形態を説明する。
図21は、本実施の形態を説明するための中性子漏れ管54の鳥瞰図である。
本実施の形態は中性子漏れ管54内下部に環状ボイド蓄積部55を設け、環状ボイド蓄積部55内に冷却材流路56を設け、上部に燃料領域57を設けるとともに、環状ボイド蓄積部55の下方に発熱体39を設けている。
Next, a fifteenth embodiment of the present invention will be described with reference to FIGS.
FIG. 21 is a bird's-eye view of the neutron leakage tube 54 for explaining the present embodiment.
In the present embodiment, an annular void accumulation part 55 is provided in the lower part of the neutron leakage tube 54, a coolant channel 56 is provided in the annular void accumulation part 55, a fuel region 57 is provided in the upper part, and the annular void accumulation part 55 A heating element 39 is provided below.

したがって、中性子スペクトルの高い炉心構成とするために冷却材領域を減らしたとえば燃料棒を稠密配置とする炉心の場合、効果的に水を排除するためには冷却材中の水密度の大きな炉心下部に中性子漏れ機能を持つ中性子漏れ管を設ける。中性子漏れ管を設けると、燃料棒を配置する空間が少なくなるので、燃料サイクルコスト上有利とはいえない。   Therefore, in the case of a core in which the coolant region is reduced in order to achieve a core configuration with a high neutron spectrum, for example, in which fuel rods are densely arranged, in order to effectively eliminate water, it is necessary to place the core in the lower part of the core where the water density in the coolant is large. A neutron leakage tube with a neutron leakage function will be provided. Providing the neutron leak tube is not advantageous in terms of fuel cycle cost because the space for arranging the fuel rods is reduced.

そこで、本実施の形態のように中性子漏れ管54の上部を燃料領域57として複数の燃料棒を配置することにより、燃料領域を増やした構成とする。このような中性子漏れ管54を設けたことにより、燃料サイクルコスト上のデメリットを小さくすると共に、ボイド反応度を低減した炉心を提供することができる。   Therefore, as in the present embodiment, the fuel region is increased by arranging a plurality of fuel rods with the upper portion of the neutron leakage tube 54 as the fuel region 57. By providing such a neutron leakage tube 54, it is possible to provide a reactor core with reduced fuel cycle cost and reduced void reactivity.

図22に原子炉運転状態での通常の燃料集合体高さ方向のボイド率分布を示す。沸騰水型原子炉の場合、入口からサブクール水が入ってくるので下部は比較的ボイド率が低い。従って、下部に中性子漏れ管を設けることにより効果的に水を排除することが可能なる。また、上部を燃料領域として複数の燃料棒を配置することにより、燃料サイクルコストの向上を図っている。   FIG. 22 shows the distribution of the void fraction in the normal fuel assembly height direction when the reactor is operating. In the case of a boiling water reactor, subcooled water enters from the inlet, so the lower void ratio is relatively low. Therefore, it is possible to effectively eliminate water by providing a neutron leakage tube in the lower part. Further, the fuel cycle cost is improved by arranging a plurality of fuel rods with the upper portion as the fuel region.

本発明に係る燃料集合体の第1の実施の形態を説明するための横断面図。1 is a cross-sectional view for explaining a first embodiment of a fuel assembly according to the present invention. 図1における中性子漏れ管を拡大して示す縦断面図。The longitudinal cross-sectional view which expands and shows the neutron leak tube in FIG. (a)は図1における中性子漏れ管の低出力時の冷却材の挙動を説明するための概略縦断面図、(b)は同じく高出力時を説明するための概略縦断面図。(A) is a schematic longitudinal cross-sectional view for demonstrating the behavior of the refrigerant | coolant at the time of the low output of the neutron leak tube in FIG. 1, (b) is a schematic longitudinal cross-sectional view for demonstrating the time of the same high output. (a)は本発明に係る燃料集合体の第2の実施の形態の要部を示す縦断面図、(b)は(a)におけるA部を拡大して示す縦断面図。(A) is a longitudinal cross-sectional view which shows the principal part of 2nd Embodiment of the fuel assembly which concerns on this invention, (b) is a longitudinal cross-sectional view which expands and shows the A section in (a). 本発明に係る燃料集合体の第3の実施の形態の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of 3rd Embodiment of the fuel assembly which concerns on this invention. 本発明に係る燃料集合体の第4の実施の形態の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of 4th Embodiment of the fuel assembly which concerns on this invention. 本発明に係る燃料集合体の第5の実施の形態の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of 5th Embodiment of the fuel assembly which concerns on this invention. (a)は本発明に係る燃料集合体の第6の実施の形態の要部を示す縦断面図、(b)は(a)におけるA−A矢視方向に切断して示す横断面図。(A) is a longitudinal cross-sectional view which shows the principal part of 6th Embodiment of the fuel assembly which concerns on this invention, (b) is a cross-sectional view cut | disconnected and shown to the AA arrow direction in (a). (a)は本発明に係る燃料集合体の第7の実施の形態の要部を示す縦断面図、(b)は(a)におけるA−A矢視方向に切断して示す横断面図。(A) is a longitudinal cross-sectional view which shows the principal part of 7th Embodiment of the fuel assembly which concerns on this invention, (b) is a cross-sectional view cut | disconnected and shown to the AA arrow direction in (a). (a)は本発明に係る燃料集合体の第8の実施の形態の要部を示す縦断面図、(b)は(a)の作用を比較するための従来例の縦断面図。(A) is a longitudinal cross-sectional view which shows the principal part of 8th Embodiment of the fuel assembly which concerns on this invention, (b) is a longitudinal cross-sectional view of the prior art example for comparing the effect | action of (a). 本発明に係る燃料集合体の第9の実施の形態の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of 9th Embodiment of the fuel assembly which concerns on this invention. 本発明に係る燃料集合体の第10の実施の形態の要部を示す縦断面図。FIG. 20 is a longitudinal sectional view showing a main part of a tenth embodiment of a fuel assembly according to the present invention. (a)は本発明に係る燃料集合体の第11の実施の形態の要部を示す縦断面図、(b)は(a)における大径上蓋の上面図。(A) is a longitudinal cross-sectional view which shows the principal part of 11th Embodiment of the fuel assembly which concerns on this invention, (b) is a top view of the large diameter upper cover in (a). 本発明に係る燃料集合体の第12の実施の形態の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of 12th Embodiment of the fuel assembly which concerns on this invention. 図14における中性子漏れ管を従来例と比較して作用を説明するための斜視図。The perspective view for demonstrating an effect | action compared with the prior art example in the neutron leak tube in FIG. 本発明に係る燃料集合体の第13の実施の形態の要部を示す斜視図。The perspective view which shows the principal part of 13th Embodiment of the fuel assembly which concerns on this invention. (a)は第13の実施の形態における炉心出力が低状態(冷却材中のボイド率が低い)でのボイド率分布図、(b)は同じく炉心出力が高状態(冷却材中のボイド率が高い)でのボイド率分布図。(A) is a void ratio distribution diagram when the core power in the thirteenth embodiment is low (the void ratio in the coolant is low), and (b) is also in the high core power (void ratio in the coolant). Is a void ratio distribution map. 本発明に係る燃料集合体の第14の実施の形態の要部を示す斜視図。The perspective view which shows the principal part of 14th Embodiment of the fuel assembly which concerns on this invention. (a)は第14の実施の形態における炉心出力が低状態(冷却材中のボイド率が低い)でのボイド率分布図、(b)は同じく炉心出力が高状態(冷却材中のボイド率が高い)でのボイド率分布図。(A) is a void ratio distribution diagram in the 14th embodiment when the core power is low (the void ratio in the coolant is low), and (b) is also in the high core output (void ratio in the coolant). Is a void ratio distribution map. 第14の実施の形態における中性子漏れ管の上部ボイド蓄積部のボイド率変化をしめす特性図。FIG. 23 is a characteristic diagram showing a change in the void ratio of the upper void accumulation part of the neutron leakage tube in the fourteenth embodiment. 本発明に係る燃料集合体の第15の実施の形態の要部を示す縦断面図。A longitudinal sectional view showing a main part of a fifteenth embodiment of a fuel assembly according to the present invention. 第15の実施の形態における原子炉中のボイド率分布と中性子漏れ管の高さ方向の関係を示す曲線図。FIG. 18 is a curve diagram showing a relationship between a void ratio distribution in a nuclear reactor and a height direction of a neutron leak tube in a fifteenth embodiment.

符号の説明Explanation of symbols

1…チャンネルボックス、2…燃料ロッド、3…中性子漏れ管、4…上部端栓、5…テーパ状冷却材流出孔、6…下部端栓、7…冷却材流入孔、8…流入冷却材、9…流出冷却材、10…冷却材(液相)、11…冷却材(気泡)、12…冷却材(蒸気)、13…階段状溝、14…密閉細管束、15…密閉細管、16…薄肉ハネカム構造、17…空洞部、18…流路孔、19…発熱体、20…形状記憶合金製管、21…発生した蒸気、22…外側の流路、23…空気、24…中性子漏れ管内の蒸気、25…燃料ロッド被覆管、26…上蓋、27…金属円筒、28…金属円柱、29…板、30…隙間、31…水素、32…蒸気の泡、33…曲面(アール)、34…横穴、35…大径上蓋、36…縦穴、37…環状のボイド蓄積部、38…流出する冷却材流路、39…発熱体、40…内管、41…従来の中性子漏れ管、42…円筒型ボイド蓄積部、43…中性子漏れ管、44…上部の中性子漏れ管、45…下部の中性子漏れ管、46…上部の環状ボイド蓄積部、47…上部の冷却材流路、48…下部の環状ボイド蓄積部、49…下部の冷却材流路、50…小孔、51…中性子漏れ管、52…上部の冷却材流路の狭まり流路、53…上部の冷却材流路の広まり流路、54…中性子漏れ管、55…環状ボイド蓄積部、56…冷却材流路、57…燃料領域。   DESCRIPTION OF SYMBOLS 1 ... Channel box, 2 ... Fuel rod, 3 ... Neutron leak pipe, 4 ... Upper end plug, 5 ... Tapered coolant outlet, 6 ... Lower end stopper, 7 ... Coolant inflow hole, 8 ... Inflow coolant, 9 ... Outflow coolant, 10 ... Coolant (liquid phase), 11 ... Coolant (bubbles), 12 ... Coolant (steam), 13 ... Stepped groove, 14 ... Sealed capillary bundle, 15 ... Sealed capillary, 16 ... Thin honeycomb structure, 17 ... cavity, 18 ... channel hole, 19 ... heating element, 20 ... shape memory alloy tube, 21 ... generated steam, 22 ... outer channel, 23 ... air, 24 ... inside neutron leak tube 25 ... Fuel rod cladding tube, 26 ... Upper lid, 27 ... Metal cylinder, 28 ... Metal cylinder, 29 ... Plate, 30 ... Gap, 31 ... Hydrogen, 32 ... Steam bubble, 33 ... Curved surface (R), 34 ... Horizontal hole, 35 ... Large diameter top cover, 36 ... Vertical hole, 37 ... Annular void accumulation part, 38 ... Outflow coolant channel, 39 ... Heating element, 40 ... Inner tube, 41 ... Conventional neutron leak tube, 42 ... Cylindrical void storage 43 ... Neutron leak tube, 44 ... Upper neutron leak tube, 45 ... Lower neutron leak tube, 46 ... Upper annular void accumulator, 47 ... Upper coolant channel, 48 ... Lower annular void accumulator, 49 ... lower coolant channel, 50 ... small hole, 51 ... neutron leak tube, 52 ... narrow coolant channel in upper coolant channel, 53 ... wide channel in coolant channel in upper part, 54 ... neutron leak tube 55 ... annular void accumulating part, 56 ... coolant flow path, 57 ... fuel region.

Claims (2)

チャンネルボックスと、このチャンネルボックス内に配置され核分裂性物質を装填した複数本の燃料ロッドと、この複数本の燃料ロッド間に配置され高さ方向に接続された上部の中性子漏れ管と下部の中性子漏れ管からなる中性子漏れ管と、前記上部の中性子漏れ管及び下部の中性子漏れ管の上面にそれぞれ設けられた小孔と、前記各小孔に接続され内部に鉛直な冷却材流路が形成された内管と、前記各内管と前記上部の中性子漏れ管及び下部の中性子漏れ管との間にそれぞれ形成されたボイド蓄積部と、前記下部の中性子漏れ管の下部に設けられた複数の流路孔を有する中性子吸収またはガンマ線吸収による発熱体と、を具備した燃料集合体であって、
前記上部の中性子漏れ管の冷却材流路直径は前記下部の中性子漏れ管の冷却材流路直径よりも小さいことを特徴とする燃料集合体。
A channel box, a plurality of fuel rods arranged in the channel box and loaded with fissile material, an upper neutron leak tube and a lower neutron arranged between the fuel rods and connected in the height direction A neutron leakage tube composed of a leakage tube, small holes respectively provided on the upper surface of the upper neutron leakage tube and the lower neutron leakage tube, and a vertical coolant channel connected to each of the small holes is formed. and the tube another, wherein a void accumulating portions formed respectively between the neutron leakage tube and the lower neutron leakage tube of the upper and the inner tube, a plurality of flow provided in the lower portion of the neutron leakage tube of the lower A fuel assembly comprising a neutron absorbing or gamma ray absorbing heating element having a passage hole ,
The fuel assembly according to claim 1, wherein a diameter of a coolant channel of the upper neutron leak tube is smaller than a diameter of a coolant channel of the lower neutron leak tube.
前記上部の中性子漏れ管の冷却材流路は狭まり流路と広まり流路とからなることを特徴とする請求項1記載の燃料集合体。   2. The fuel assembly according to claim 1, wherein the coolant flow path of the upper neutron leakage tube is composed of a narrowed flow path and a widened flow path.
JP2008265246A 2008-10-14 2008-10-14 Fuel assembly Expired - Fee Related JP5106344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008265246A JP5106344B2 (en) 2008-10-14 2008-10-14 Fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265246A JP5106344B2 (en) 2008-10-14 2008-10-14 Fuel assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000241200A Division JP4316119B2 (en) 2000-08-09 2000-08-09 Fuel assembly

Publications (2)

Publication Number Publication Date
JP2009020121A JP2009020121A (en) 2009-01-29
JP5106344B2 true JP5106344B2 (en) 2012-12-26

Family

ID=40359849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265246A Expired - Fee Related JP5106344B2 (en) 2008-10-14 2008-10-14 Fuel assembly

Country Status (1)

Country Link
JP (1) JP5106344B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296192A (en) * 1988-05-25 1989-11-29 Nippon Atom Ind Group Co Ltd Fuel assembly
JP2791077B2 (en) * 1989-01-27 1998-08-27 株式会社日立製作所 Fuel assembly
JPH04127084A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Water rod
JP3432965B2 (en) * 1995-09-07 2003-08-04 株式会社日立製作所 Fast reactor and fast reactor core protection equipment
JPH09127282A (en) * 1995-11-02 1997-05-16 Toshiba Corp Fast reactor core and its special assembly
JP4028088B2 (en) * 1998-06-10 2007-12-26 株式会社東芝 Fuel assembly

Also Published As

Publication number Publication date
JP2009020121A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
Kolev Multiphase flow dynamics 5: nuclear thermal hydraulics
JP4786616B2 (en) Reactor
CA3088265A1 (en) Direct heat exchanger for molten chloride fast reactor
JPS63253290A (en) Thin-wall channel
KR102239043B1 (en) Low pressure drop nuclear fuel assembly bottom nozzle
JPH0816710B2 (en) Fuel bundle with extended fuel height in a boiling water reactor
JP5106344B2 (en) Fuel assembly
JP4316119B2 (en) Fuel assembly
JP6345481B2 (en) Fuel assembly, core, and method for producing fuel assembly
JP7316232B2 (en) fuel assembly
JP4558477B2 (en) Boiling water reactor fuel assemblies
JP6965200B2 (en) Fuel assembly
JP2011174728A (en) Nuclear reactor of reflector control type
JP2003294878A (en) Fuel assembly
JP4028088B2 (en) Fuel assembly
JP6670133B2 (en) Fuel assemblies and reactor cores
JP6588155B2 (en) Fuel assemblies and reactor cores loaded with them
JP7212644B2 (en) boiling water reactor
JP2015059791A (en) Fast reactor core and fast reactor comprising the core
KR20140063733A (en) Grooved nuclear fuel assembly component insert
JP2007192784A (en) Channel box, fuel body, fuel assembly, and method of assembling fuel assembly
JP2016176719A (en) Square boiling-water reactor
JP2014163806A (en) Fuel assembly
JP2021012116A (en) Fuel assembly
JP2018004445A (en) Fuel assembly for fast reactor and core of fast reactor loaded with the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees