JP5105788B2 - Micro spot resistance welding apparatus and welding method thereof - Google Patents

Micro spot resistance welding apparatus and welding method thereof Download PDF

Info

Publication number
JP5105788B2
JP5105788B2 JP2006198081A JP2006198081A JP5105788B2 JP 5105788 B2 JP5105788 B2 JP 5105788B2 JP 2006198081 A JP2006198081 A JP 2006198081A JP 2006198081 A JP2006198081 A JP 2006198081A JP 5105788 B2 JP5105788 B2 JP 5105788B2
Authority
JP
Japan
Prior art keywords
welding
trigger signal
current
upper electrode
welding current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006198081A
Other languages
Japanese (ja)
Other versions
JP2008023554A (en
Inventor
克也 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2006198081A priority Critical patent/JP5105788B2/en
Publication of JP2008023554A publication Critical patent/JP2008023554A/en
Application granted granted Critical
Publication of JP5105788B2 publication Critical patent/JP5105788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明はマイクロスポット抵抗溶接装置およびその溶接方法に関し、特に電池パックの製造工程での溶接に適した多点のマイクロスポット抵抗溶接装置およびその溶接方法に関する。   The present invention relates to a micro spot resistance welding apparatus and a welding method thereof, and more particularly to a multi-point micro spot resistance welding apparatus suitable for welding in a battery pack manufacturing process and a welding method thereof.

リチウムイオン電池などの素電池に保護回路基板やPTC(Positive Temperature Coefficient)素子を付加して電池パックを作製する工程において、素電池、保護回路基板の端子、外部端子の相互間をつなぐ導電タブの接続あるいは2つの導電タブ間の接続に対し、1つの接続部につき、2点、3点、4点、6点などのマイクロスポット抵抗溶接が用いられている。   In the process of manufacturing a battery pack by adding a protection circuit board or PTC (Positive Temperature Coefficient) element to a unit cell such as a lithium ion battery, a conductive tab that connects between the unit cell, the terminal of the protection circuit board, and the external terminal For connection or connection between two conductive tabs, microspot resistance welding such as 2, 3, 4, 6, etc. is used per connection.

2点溶接の場合に、両極性の電極を溶接部材の一方の側に並べて、2点の抵抗溶接を同時に行うシリーズ溶接と呼ばれる溶接方法がある。図5にその溶接装置(従来例1)を示す。図5(a)は溶接装置の全体を示す模式図であり、501は溶接電源、502は溶接部の加圧機構、51は正極の溶接電極、52は負極の溶接電極である。また、図5(b)は図5(a)のB部の溶接時の拡大図であり、53は補助電極、54は第1溶接材料、55は第2溶接材料である。このような溶接装置により、2点の抵抗溶接を同時に行う。   In the case of two-point welding, there is a welding method called series welding in which bipolar electrodes are arranged on one side of a welding member and two-point resistance welding is simultaneously performed. FIG. 5 shows the welding apparatus (conventional example 1). FIG. 5A is a schematic diagram showing the whole welding apparatus, in which 501 is a welding power source, 502 is a pressurizing mechanism of a welded portion, 51 is a positive electrode, and 52 is a negative electrode. FIG. 5B is an enlarged view of the portion B of FIG. 5A when welding, 53 is an auxiliary electrode, 54 is a first welding material, and 55 is a second welding material. With such a welding apparatus, two points of resistance welding are simultaneously performed.

同様の技術に基づく特許文献1の例は、シリーズ溶接において被溶接材の2つの溶接箇所を短い通電時間でほぼ均一な溶接強度に同時接合できるようにしたものである。   The example of patent document 1 based on the same technique makes it possible to simultaneously join two welding locations of a material to be welded to a substantially uniform welding strength in a short energization time in series welding.

他の方法として、対向する2つの電極を用い、複数個の溶接点に1つずつ順番に溶接していくダイレクト溶接と呼ばれる溶接方法がある。図6にその溶接装置(従来例2)を示す。図6(a)は溶接装置の全体を示す模式図であり、601は溶接電源、602は溶接部の加圧機構、61は正極の溶接電極、62は負極の溶接電極、64は第1溶接材料、65は第2溶接材料である。また、図6(b)は図6(a)のC部の溶接時の拡大図である。このような溶接装置により1点ずつ溶接を行う。   As another method, there is a welding method called direct welding in which two electrodes facing each other are used to sequentially weld a plurality of welding points one by one. FIG. 6 shows the welding apparatus (conventional example 2). FIG. 6A is a schematic diagram showing the entire welding apparatus, in which 601 is a welding power source, 602 is a pressurizing mechanism of a welded portion, 61 is a positive electrode, 62 is a negative electrode, and 64 is a first weld. Material 65 is the second welding material. Moreover, FIG.6 (b) is an enlarged view at the time of welding of the C section of Fig.6 (a). Welding is performed point by point with such a welding apparatus.

特開平10−85947号公報Japanese Patent Laid-Open No. 10-85947

従来例2の方法で多点の抵抗溶接を行うには、各溶接点ごとに、移動、加圧、溶接電流通電の過程が必要になり、全溶接工程の時間短縮が困難である。また、従来例1の1工程で2点を同時に溶接するシリーズ溶接では、無効電流が発生しやすく、接合する部材表面の汚れ、表面の粗さ、平坦度等で接触が悪くなっている場合に、特に無効電流が多く流れる場合があり、溶接強度にばらつきが生じる、溶接が出来ない、溶接部がはずれる等の問題点があった。   In order to perform multi-point resistance welding by the method of Conventional Example 2, the process of movement, pressurization, and welding current energization is required for each welding point, and it is difficult to shorten the time of all welding processes. In addition, in series welding in which two points are welded simultaneously in one process of Conventional Example 1, reactive current is likely to be generated, and the contact is poor due to dirt, surface roughness, flatness, etc. of the surfaces of the members to be joined. In particular, there are cases where a lot of reactive current flows, and there are problems such as variations in welding strength, inability to weld, and disconnection of the welded portion.

図5(b)を参照して、その様子を詳しく説明する。第1溶接材料54と第2溶接材料55の境界面を通過し溶接点での発熱に有効に寄与する電流には、(1)第1溶接材料54→第2溶接材料55→第1溶接材料54の順に通過する必要電流56aと、(2)第1溶接材料54→第2溶接材料55→補助電極53→第2溶接材料55→第1溶接材料54の順に通過する必要電流56bとがある。それに対して、第1溶接材料54の中だけを通過して、溶接に寄与しない無効電流57がある。この電流は、補助電極53の配設により減少しているが、接合する部材表面の汚れ、表面の粗さ、平坦度等による影響を受けやすく、溶接強度のばらつきの原因になる。   This will be described in detail with reference to FIG. The current that passes through the boundary surface between the first welding material 54 and the second welding material 55 and effectively contributes to heat generation at the welding point includes (1) the first welding material 54 → the second welding material 55 → the first welding material. There is a required current 56a that passes in the order of 54, and (2) a required current 56b that passes in the order of the first welding material 54 → the second welding material 55 → the auxiliary electrode 53 → the second welding material 55 → the first welding material 54. . On the other hand, there is a reactive current 57 that passes only through the first welding material 54 and does not contribute to welding. This current is reduced by the provision of the auxiliary electrode 53, but it is easily affected by dirt, surface roughness, flatness, etc. on the surfaces of the members to be joined, which causes variations in welding strength.

上記の状況にあって、本発明の課題は、溶接強度のばらつきを低減でき、溶接工程の所要時間を短縮できる、多点のマイクロスポット抵抗溶接装置およびその溶接方法を提供することにある。   In the above situation, an object of the present invention is to provide a multi-point micro spot resistance welding apparatus and a welding method thereof that can reduce variation in welding strength and can shorten the time required for the welding process.

上記課題を解決するために、本発明のマイクロスポット抵抗溶接装置は、2つ以上の極小箇所にスポット溶接を行う多点のマイクロスポット抵抗溶接装置であって、(1)同一面上に配置された2つ以上の同極の上部電極と、(2)1つの共通の下部電極と、(3)前記上部電極と下部電極の間に溶接部材を挟んで加圧を行う加圧機構と、(4)前記加圧が所定値に達したことを検知する圧力検知機構と、(5)この圧力検知機構の出力に基づいてトリガ信号を生成するトリガ信号発生器と、(6)前記トリガ信号に応答して前記上部電極の各々と下部電極との間に順番に前記所定の時間間隔で溶接電流を流すための電源部とを備える。   In order to solve the above-described problems, the micro spot resistance welding apparatus of the present invention is a multi-point micro spot resistance welding apparatus that performs spot welding at two or more minimum locations, and is (1) arranged on the same plane. Two or more same-polarity upper electrodes, (2) one common lower electrode, and (3) a pressurizing mechanism that pressurizes a welding member between the upper electrode and the lower electrode, 4) a pressure detection mechanism for detecting that the pressurization has reached a predetermined value; (5) a trigger signal generator for generating a trigger signal based on an output of the pressure detection mechanism; and (6) a trigger signal. In response, a power supply unit is provided for flowing a welding current at the predetermined time interval in order between each of the upper electrodes and the lower electrode.

また、前記電源部は前記上部電極の各々に対して1つずつ設けられた個別電源からなり、この個別電源の各々は前記トリガ信号を受けた後、他とは異なる遅延時間の後に溶接電流の通電を開始するとよい。   In addition, the power source unit includes individual power sources provided for each of the upper electrodes. Each of the individual power sources receives the trigger signal and then receives a welding current after a delay time different from the others. It is recommended to start energization.

また、本発明のマイクロスポット抵抗溶接方法は、N個(Nは2以上の自然数)の極小箇所にスポット溶接を行う多点のマイクロスポット抵抗溶接方法であって、(1)同一面上に配置されたN個の同極の上部電極と1つの下部電極との間に溶接部材を挟んで加圧する工程と、(2)この加圧の圧力が所定値に達したことを圧力センサで検知した後、トリガ信号発生器と抵抗溶接電源を用い、第1から第Nの上部電極の各々と下部電極との間に所定の時間間隔で溶接電流を流す工程とを有する。   The micro spot resistance welding method of the present invention is a multi-point micro spot resistance welding method in which spot welding is performed on N (N is a natural number of 2 or more) minimum locations, and (1) arranged on the same plane. A step of pressurizing a welding member between the N upper electrodes having the same polarity and one lower electrode, and (2) a pressure sensor detecting that the pressure of the pressurization has reached a predetermined value. Then, using a trigger signal generator and a resistance welding power source, a step of flowing a welding current at a predetermined time interval between each of the first to Nth upper electrodes and the lower electrode.

本発明によれば、シリーズ溶接のように1工程でほぼ同時に2点溶接でき、ダイレクト溶接と同様な安定した溶接強度が1度の溶接工程で得られる。すなわち、溶接強度のばらつきを低減でき、溶接工程の所要時間を短縮できる。   According to the present invention, two points can be welded almost simultaneously in one process as in series welding, and stable welding strength similar to direct welding can be obtained in one welding process. That is, variation in welding strength can be reduced, and the time required for the welding process can be shortened.

図1は本発明の一実施の形態でのマイクロスポット抵抗溶接装置を示す模式図であり、図2はそのA部(溶接ヘッド)の第1の溶接時での通電の様子を示す拡大図であり、図3はA部の第2の溶接時での通電の様子を示す拡大図である。   FIG. 1 is a schematic diagram showing a microspot resistance welding apparatus according to an embodiment of the present invention, and FIG. 2 is an enlarged view showing a state of energization at the time of first welding of the A part (welding head). FIG. 3 is an enlarged view showing a state of energization during the second welding of the A part.

本実施の形態のマイクロスポット抵抗溶接装置は、(1)溶接エネルギーを生成、発生させる2つの第1溶接電源101および第2溶接電源102、(2)溶接する材料を加圧し、設定された加圧力でトリガを発生させるための、シリーズ溶接用加圧機構と同構造の加圧機構部103、および、(3)銅を主材料とする下部電極13から構成される。   The micro spot resistance welding apparatus of the present embodiment includes (1) two first welding power sources 101 and 102 for generating and generating welding energy, and (2) pressurizing a material to be welded, A pressure mechanism 103 having the same structure as the series welding pressure mechanism for generating a trigger by pressure, and (3) a lower electrode 13 made mainly of copper.

第1および第2溶接電源101,102はパルス幅を制御できる電源とする。2つの溶接電源の+端子は、シリーズ溶接用加圧機構と同構造の各々の端子に接続されている。すなわち、第1溶接電源101の+端子は第1上部電極11に接続され、第2溶接電源102の+端子は第2上部電極12に接続されている。また、第1および第2溶接電源101,102の−端子は、いずれも、加圧機構下に設置してある共通の下部電極13に接続され、第1および第2溶接材料14,15に電流を流すように接続されている。   The first and second welding power sources 101 and 102 are power sources capable of controlling the pulse width. The + terminals of the two welding power sources are connected to respective terminals having the same structure as the series welding pressure mechanism. That is, the + terminal of the first welding power source 101 is connected to the first upper electrode 11, and the + terminal of the second welding power source 102 is connected to the second upper electrode 12. Further, the negative terminals of the first and second welding power sources 101 and 102 are both connected to the common lower electrode 13 installed under the pressurizing mechanism, and current is supplied to the first and second welding materials 14 and 15. Is connected to flow.

トリガ信号発生器を内蔵する加圧機構部103のTRG端子(トリガ端子)は、第1および第2溶接電源101,102と接続し、溶接を開始するためのトリガを溶接電源に出力する。第2溶接電源102は第1溶接電源101に対して、溶接トリガ発生時から10ms(ミリ秒)程度の遅延時間を設定しているものとする。   The TRG terminal (trigger terminal) of the pressurizing mechanism unit 103 including the trigger signal generator is connected to the first and second welding power sources 101 and 102 and outputs a trigger for starting welding to the welding power source. It is assumed that the second welding power source 102 sets a delay time of about 10 ms (milliseconds) from the time when the welding trigger is generated with respect to the first welding power source 101.

この加圧機構部103と、下部電極13の間にある第1溶接材料14と第2溶接材料15を溶接する場合、加圧機構部103の全体は外部トリガ、または、フットペダル等で、下方向に動き、第1上部電極11と第2上部電極12が第1溶接材料14に接触し、さらに加圧される。加圧力が増し、加圧機構で設定された加圧力になると、加圧検知機構で検知され、加圧機構部103は内蔵されたトリガ信号発生器により溶接のためのトリガ信号を発生する。トリガ信号を受け取った第1溶接電源101は、溶接電流を+端子の第1上部電極11に流し、図2のように、正極の第1上部電極11から負極の下部電極13へ電流が流れる。このことで第1溶接材料14と第2溶接材料15の間には第1ナゲット16が生成される。   When welding the first welding material 14 and the second welding material 15 between the pressurizing mechanism 103 and the lower electrode 13, the entire pressurizing mechanism 103 is lowered by an external trigger or a foot pedal. The first upper electrode 11 and the second upper electrode 12 come into contact with the first welding material 14 and are further pressurized. When the applied pressure increases and reaches the set pressure set by the pressurizing mechanism, it is detected by the pressurizing detection mechanism, and the pressurizing mechanism section 103 generates a trigger signal for welding by a built-in trigger signal generator. The first welding power source 101 that has received the trigger signal causes a welding current to flow through the first upper electrode 11 of the positive terminal, and the current flows from the first upper electrode 11 of the positive electrode to the lower electrode 13 of the negative electrode as shown in FIG. As a result, a first nugget 16 is generated between the first welding material 14 and the second welding material 15.

図4は本実施の形態での2つの溶接電源の電流パルスを示すタイミングチャートである。図4のように、第1溶接電源の電流パルス幅は数ms程度であり、第2溶接電源の遅延時間に対して、十分マージンがあるものとする。そうすることで、電流の流れが安定する。次に、トリガ発生時から約10ms程度遅延した時間で、第2溶接電源は、溶接電流を+端子に流し、図3のように、正極の第2上部電極12から負極の下部電極13へ溶接電流(必要電流31)が流れる。このことで、第1溶接材料14と第2溶接材料15の間には第2ナゲット17が生成される。但し、前述の第1ナゲット16も生成されているため、無効電流32が発生するが、その量は小さく、第2溶接電源102の電流値を第1溶接電源101の電流値よりも大きく設定することで問題を回避できる。   FIG. 4 is a timing chart showing current pulses of two welding power sources in the present embodiment. As shown in FIG. 4, it is assumed that the current pulse width of the first welding power source is about several ms, and that there is a sufficient margin for the delay time of the second welding power source. By doing so, the current flow is stabilized. Next, in a time delayed by about 10 ms from the time of the trigger, the second welding power source sends a welding current to the + terminal and welds from the positive second upper electrode 12 to the negative lower electrode 13 as shown in FIG. A current (necessary current 31) flows. As a result, a second nugget 17 is generated between the first welding material 14 and the second welding material 15. However, since the first nugget 16 is also generated, the reactive current 32 is generated, but the amount thereof is small, and the current value of the second welding power source 102 is set larger than the current value of the first welding power source 101. Problem can be avoided.

図4に示したタイミングチャートでは、1つのトリガ信号を受けて溶接電源1は直ちに電流パルス(溶接工程1)を発生し、溶接電源2はトリガ信号を受けた後、約10msの遅延時間をおいて、電流パルス(溶接工程2)を発生するようにしたが、各々の上部電極に対して個別の溶接電源を設けるのではなく、1つの溶接電源を用い、複数のトリガ信号に対応した複数の電流パルスを発生するようにしてもよい。   In the timing chart shown in FIG. 4, upon receiving one trigger signal, the welding power source 1 immediately generates a current pulse (welding process 1), and the welding power source 2 has a delay time of about 10 ms after receiving the trigger signal. However, instead of providing a separate welding power source for each upper electrode, a single welding power source is used, and a plurality of trigger signals corresponding to a plurality of trigger signals are generated. A current pulse may be generated.

さらに他の構成として、第1溶接電源101にもトリガ信号発生器を内蔵させ、加圧機構部103で生成したトリガ信号は第1溶接電源101にのみ出力し、第1溶接電源101では直ちに溶接電流パルスを発生させると共に、内蔵されたトリガ信号発生器により、所定の遅延時間後に新たなトリガ信号を発生させ、これを第2溶接電源102に出力し、第2溶接電源102では、それを受けて直ちに溶接電流パルスを発生させる構成とすることも可能である。   As another configuration, a trigger signal generator is also incorporated in the first welding power source 101, and the trigger signal generated by the pressurizing mechanism 103 is output only to the first welding power source 101. In addition to generating a current pulse, a built-in trigger signal generator generates a new trigger signal after a predetermined delay time, and outputs this to the second welding power source 102, which receives it. It is also possible to immediately generate a welding current pulse.

本実施の形態は2点の溶接に関するものであったが、3点以上の溶接も本実施の形態の説明から容易に類推することができる。すなわち、加圧工程の完了後、トリガ信号に応答して上部電極の各々と下部電極との間に順番に所定の時間間隔で溶接電流を流し、それぞれの溶接電流が重ならないようにするとよい。   Although the present embodiment relates to two-point welding, welding of three or more points can be easily inferred from the description of the present embodiment. That is, after the pressurization process is completed, it is preferable that a welding current is sequentially flowed between each of the upper electrode and the lower electrode in response to a trigger signal at predetermined time intervals so that the welding currents do not overlap each other.

以上のように、本発明のマイクロスポット抵抗溶接およびその溶接方法によれば、1工程で、2点以上同時に溶接でき、また、無効電流が、第1の溶接工程では流れないため、シリーズ溶接より安定した溶接強度が得られ、従来のダイレクト溶接では溶接点の数だけ溶接工程が必要であったが、それと比較して短時間で溶接が可能であることがわかる。   As described above, according to the micro spot resistance welding and the welding method of the present invention, two or more points can be welded simultaneously in one process, and the reactive current does not flow in the first welding process. Stable welding strength can be obtained, and the conventional direct welding requires as many welding steps as the number of welding points, but it can be seen that welding can be performed in a shorter time than that.

本発明の一実施例として、2つの導電タブを溶接接続した例を説明する。本実施例で用いたマイクロスポット抵抗溶接装置は本発明の実施の形態で説明した図1のものと同様であり、その溶接ヘッドは図2のようであり、各電極に溶接電流を流すタイミングの概略は図4に示したものと同様であり、2点をほぼ同時に抵抗溶接する例である。   As an embodiment of the present invention, an example in which two conductive tabs are connected by welding will be described. The micro spot resistance welding apparatus used in this example is the same as that of FIG. 1 described in the embodiment of the present invention, and its welding head is as shown in FIG. The outline is the same as that shown in FIG. 4, and is an example in which two points are resistance-welded almost simultaneously.

溶接対象は、2枚の導電タブであり、幅3mm、厚さ0.1mmのニッケル製である。   The welding object is two conductive tabs, which are made of nickel having a width of 3 mm and a thickness of 0.1 mm.

図2を参照して、第1上部電極11および第2上部電極12の径はφ1.0mm、その中心間距離は1.4mmである。また、共通の下部電極13にはアルミナ分散銅を用いたが、クロム銅などを用いてもよい。   Referring to FIG. 2, the diameters of first upper electrode 11 and second upper electrode 12 are φ1.0 mm, and the center-to-center distance is 1.4 mm. Further, although alumina-dispersed copper is used for the common lower electrode 13, chromium copper or the like may be used.

電源部について、図1を参照すると、第1溶接電源101はインバータ電源であり、加圧機構部103からのトリガ信号を受けて、直ちに溶接電流パルスを発生する。また、第2溶接電源102もインバータ電源であり、加圧機構部103からのトリガ信号を受けた後、10msの遅延時間をおいて、溶接電流パルスを発生させるように設定した。このとき溶接電流パルスの電圧は2.0V、電流は1.8〜2.1kA、パルス幅は約2.5msであった。   Referring to FIG. 1 regarding the power source unit, the first welding power source 101 is an inverter power source and receives a trigger signal from the pressurizing mechanism unit 103 and immediately generates a welding current pulse. The second welding power source 102 is also an inverter power source, and is set to generate a welding current pulse after a delay time of 10 ms after receiving the trigger signal from the pressurizing mechanism unit 103. At this time, the voltage of the welding current pulse was 2.0 V, the current was 1.8 to 2.1 kA, and the pulse width was about 2.5 ms.

この溶接条件で得られた、2つのナゲット径は約φ1.3mmであり、その中心間距離は1.4mmであった。また、溶接電流パルスの電圧が1.5Vから2.5Vで、電流が1.3kAから2.5kAの範囲において、良好な溶接強度が得られた。   The two nugget diameters obtained under these welding conditions were about φ1.3 mm, and the center-to-center distance was 1.4 mm. Also, good welding strength was obtained when the voltage of the welding current pulse was 1.5 V to 2.5 V and the current was in the range of 1.3 kA to 2.5 kA.

また、位置合わせ、加圧、溶接電流の通電による全溶接工程の所要時間は8秒であり、従来の1点ずつ溶接した場合の14秒に対して、大きく短縮できた。   Further, the time required for the entire welding process by positioning, pressurization, and energization of the welding current is 8 seconds, which can be greatly shortened from 14 seconds in the case of welding one point at a time.

以上の実施例ではニッケルどうしの溶接について説明したが、錫めっき鉄どうし、あるいは錫めっき鉄とニッケルの溶接も良好に行うことができた。   In the above examples, welding between nickel was described, but welding between tin-plated irons or between tin-plated iron and nickel was also successfully performed.

本発明の一実施の形態でのマイクロスポット抵抗溶接装置を示す模式図。The schematic diagram which shows the micro spot resistance welding apparatus in one embodiment of this invention. 図1のA部の第1の溶接時での通電の様子を示す拡大図。The enlarged view which shows the mode of the electricity supply at the time of the 1st welding of the A section of FIG. 図1のA部の第2の溶接時での通電の様子を示す拡大図。The enlarged view which shows the mode of the electricity supply at the time of the 2nd welding of the A section of FIG. 本発明の一実施の形態での2つの溶接電源の電流パルスを示すタイミングチャート。The timing chart which shows the current pulse of the two welding power supplies in one embodiment of this invention. 従来例1の溶接装置を示し、図5(a)は溶接装置の全体を示す模式図、図5(b)は図5(a)のB部の溶接時の拡大図。The welding apparatus of the prior art example 1 is shown, Fig.5 (a) is a schematic diagram which shows the whole welding apparatus, FIG.5 (b) is an enlarged view at the time of the welding of the B section of Fig.5 (a). 従来例2の溶接装置を示し、図6(a)は溶接装置の全体を示す模式図、図6(b)は図6(a)のC部の溶接時の拡大図。The welding apparatus of the prior art example 2 is shown, Fig.6 (a) is a schematic diagram which shows the whole welding apparatus, FIG.6 (b) is an enlarged view at the time of the welding of the C section of Fig.6 (a).

符号の説明Explanation of symbols

11 第1上部電極
12 第2上部電極
13 下部電極
14,54,64 第1溶接材料
15,55,65 第2溶接材料
16 第1ナゲット
17 第2ナゲット
31,56a,56b 必要電流
32,57 無効電流
51,61 正極の溶接電極
52,62 負極の溶接電極
101 第1溶接電源
102 第2溶接電源
103 加圧機構部
501,601 溶接電源
502,602 加圧機構
11 First upper electrode 12 Second upper electrode 13 Lower electrodes 14, 54, 64 First welding material 15, 55, 65 Second welding material 16 First nugget 17 Second nugget 31, 56a, 56b Required current 32, 57 Invalid Current 51, 61 Positive welding electrode 52, 62 Negative welding electrode 101 First welding power source 102 Second welding power source 103 Pressurization mechanism section 501, 601 Welding power source 502, 602 Pressurization mechanism

Claims (2)

2つ以上の極小箇所にスポット溶接を行う多点のマイクロスポット抵抗溶接装置であって、
同一面上に配置された2つ以上の同極の上部電極と、
溶接部材を挟んで前記上部電極と対向する前記上部電極と極性の異なる1つの共通の下部電極と、
前記上部電極と下部電極の間に前記溶接部材を挟んで加圧を行う加圧機構と、
前記加圧が所定値に達したことを検知する圧力検知機構と、
この圧力検知機構の出力に基づいてトリガ信号を生成するトリガ信号発生器と、
前記トリガ信号に応答して前記上部電極の各々と下部電極との間に順番に所定の時間間隔で溶接電流を流すための電源部と、を備え、
前記電源部は、前記上部電極の各々に対して1つずつ設けられた個別電源からなり、
この個別電源の各々は前記トリガ信号を受けた後、他とは異なる遅延時間の後でかつ他で溶接電流を通電していない状態で、自己の溶接電流の通電を開始する
ことを特徴とするマイクロスポット抵抗溶接装置。
A multi-point micro spot resistance welding apparatus that performs spot welding on two or more minimum points,
Two or more same-polar upper electrodes disposed on the same plane;
One common lower electrode having a polarity different from that of the upper electrode facing the upper electrode across a welding member ;
A pressure mechanism for performing interposed therebetween pressure the welding member between said upper and lower electrodes,
A pressure detection mechanism for detecting that the pressurization has reached a predetermined value;
A trigger signal generator that generates a trigger signal based on the output of the pressure detection mechanism;
In response to the trigger signal, between each lower electrode of the upper electrode, and a power supply unit for supplying a welding current at a predetermined time interval in order,
The power supply unit comprises individual power supplies provided one for each of the upper electrodes,
Each of the individual power supplies receives energization of its own welding current after receiving the trigger signal, after a delay time different from the others, and in a state where no welding current is energized elsewhere. Micro spot resistance welding equipment.
N個(Nは2以上の自然数)の極小箇所にスポット溶接を行う多点のマイクロスポット抵抗溶接方法であって、
同一面上に配置されたN個の同極の上部電極と、溶接部材を挟んで前記上部電極と対向する前記上部電極と極性の異なる1つの下部電極との間に前記溶接部材を挟んで加圧する工程と、
この加圧の圧力が所定値に達したことを圧力検知機構で検知した後、
トリガ信号発生器と電源部を用い、第1から第Nの上部電極の各々と下部電極との間に所定の時間間隔で溶接電流を流す工程と、を有し、
前記電源部は、N個の上部電極の各々に対して1つずつ設けられた個別電源からなり、
前記溶接電流を流す工程では、前記個別電源の各々は、前記トリガ信号発生器からトリガ信号を受けた後、順番に、他とは異なる遅延時間の後でかつ他で溶接電流を通電していない状態で、自己の溶接電流の通電を開始する
ことを特徴とするマイクロスポット抵抗溶接方法。
A multi-point micro spot resistance welding method for spot welding to N (N is a natural number of 2 or more) minimum points,
And an upper electrode of the N same polarity arranged on the same plane, pressurized across the welding member between the upper electrode and the polarity different one lower electrode facing the upper electrode across the welding member Pressing, and
After detecting that the pressure of this pressurization has reached a predetermined value with the pressure detection mechanism,
Using a trigger signal generator and a power supply, and passing a welding current at a predetermined time interval between each of the first to Nth upper electrodes and the lower electrode,
The power supply unit is composed of individual power supplies provided for each of the N upper electrodes.
In the step of flowing the welding current, each of the individual power supplies receives the trigger signal from the trigger signal generator, and then sequentially does not pass the welding current after a delay time different from the others. A microspot resistance welding method characterized by starting energization of a self-welding current in a state.
JP2006198081A 2006-07-20 2006-07-20 Micro spot resistance welding apparatus and welding method thereof Active JP5105788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198081A JP5105788B2 (en) 2006-07-20 2006-07-20 Micro spot resistance welding apparatus and welding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198081A JP5105788B2 (en) 2006-07-20 2006-07-20 Micro spot resistance welding apparatus and welding method thereof

Publications (2)

Publication Number Publication Date
JP2008023554A JP2008023554A (en) 2008-02-07
JP5105788B2 true JP5105788B2 (en) 2012-12-26

Family

ID=39114729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198081A Active JP5105788B2 (en) 2006-07-20 2006-07-20 Micro spot resistance welding apparatus and welding method thereof

Country Status (1)

Country Link
JP (1) JP5105788B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023098A (en) 2008-07-23 2010-02-04 Honda Motor Co Ltd Electrode unit and resistance welding equipment
JP5427074B2 (en) * 2009-03-31 2014-02-26 本田技研工業株式会社 Resistance welding method and apparatus
JP5411792B2 (en) * 2009-06-05 2014-02-12 本田技研工業株式会社 Resistance welding method and apparatus
WO2012033040A1 (en) * 2010-09-06 2012-03-15 本田技研工業株式会社 Welding method and welding device
CN101992341B (en) * 2010-09-30 2013-06-26 周俊雄 Automatic spot welding equipment
CN103153519B (en) 2010-09-30 2016-03-16 本田技研工业株式会社 Welding equipment
JP5523271B2 (en) * 2010-10-01 2014-06-18 本田技研工業株式会社 Indirect feed welding equipment
CN102294557B (en) * 2011-04-25 2014-08-27 深圳市豪鹏科技有限公司 Spot welding mistake proofing device
JP6135703B2 (en) * 2014-05-29 2017-05-31 Jfeスチール株式会社 Resistance spot welding method for automobile and manufacturing method of welding joint for automobile
CN105436682A (en) * 2014-08-28 2016-03-30 上海拖拉机内燃机有限公司 Spot or projection welding method using potential difference between positive and negative electrodes
CN105665909A (en) * 2016-04-22 2016-06-15 贵州航天精工制造有限公司 Welding method for bond strap assembly
GB2560995A (en) * 2017-03-31 2018-10-03 Macgregor Welding Systems Ltd Welding apparatus and method
CN113333927B (en) * 2021-06-04 2022-12-06 广东意杰科技有限公司 Resistance welding equipment for battery tab

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224879A (en) * 1987-03-12 1988-09-19 Kikuchi Press Kogyo Kk Multiple spot welding robot
US5229566A (en) * 1990-11-29 1993-07-20 Alexander Manufacturing Company Process and apparatus for spot-welding a flexible welding board to a battery cell
JPH05192772A (en) * 1992-01-20 1993-08-03 I N R Kenkyusho:Kk Cladding device by welding
JP3385829B2 (en) * 1995-12-05 2003-03-10 株式会社村田製作所 Resistance welding equipment

Also Published As

Publication number Publication date
JP2008023554A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP5105788B2 (en) Micro spot resistance welding apparatus and welding method thereof
JP5427074B2 (en) Resistance welding method and apparatus
KR100727377B1 (en) Metal unite method and solder method
CA3017083C (en) Resistance welding method and resistance welding apparatus
JP2002321068A (en) Resistance welding device for covered wire
JP3314407B2 (en) Method and apparatus for controlling resistance welding of coated conductive member
JP6166052B2 (en) Welding equipment
JP2009262159A (en) Direct welding apparatus and welding method
KR20180120910A (en) Apparatus and Method for Hybrid-Jointing of stacked metal plates
JP5892390B2 (en) Stud welding method and resistance welding machine
WO2007080896A1 (en) Method of welding connection plate in assembled battery
JP2006187791A (en) Power source apparatus for inverter type resistance welding
JP2013046917A (en) Welding equipment
JP5666973B2 (en) Fusing method and fusing apparatus
JP6331198B2 (en) Welding equipment
JP2002035945A (en) Welding apparatus and method for conductive joint member of cell
JP2002210566A (en) Metal member joining method, and ac waveform inverter type power source device
JP2019118921A (en) Welding device
JP6421947B2 (en) Welding apparatus and welding method
JP6220682B2 (en) Welding equipment
JP4164755B2 (en) Method and apparatus for controlling welding current of resistance welding
JP2015058467A (en) Junction structure, junction method, and metal reed
JP2017035707A5 (en)
JP2023076109A (en) Welding device
JP2008142722A (en) Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Ref document number: 5105788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250