JP5105288B2 - Insulation system for fuel cell - Google Patents

Insulation system for fuel cell Download PDF

Info

Publication number
JP5105288B2
JP5105288B2 JP2008191970A JP2008191970A JP5105288B2 JP 5105288 B2 JP5105288 B2 JP 5105288B2 JP 2008191970 A JP2008191970 A JP 2008191970A JP 2008191970 A JP2008191970 A JP 2008191970A JP 5105288 B2 JP5105288 B2 JP 5105288B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
fuel cell
material layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008191970A
Other languages
Japanese (ja)
Other versions
JP2010033745A (en
Inventor
憲司 井前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMAE INDUSTRY CO., LTD.
Original Assignee
IMAE INDUSTRY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMAE INDUSTRY CO., LTD. filed Critical IMAE INDUSTRY CO., LTD.
Priority to JP2008191970A priority Critical patent/JP5105288B2/en
Publication of JP2010033745A publication Critical patent/JP2010033745A/en
Application granted granted Critical
Publication of JP5105288B2 publication Critical patent/JP5105288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池本体あるいはさらにその附帯装置からなる燃料電池発電システム組み込まれる燃料電池用断熱システムに関する。
The present invention relates to a thermal insulation system for a fuel cell incorporated in the fuel cell body, or more fuel cell power generation system consisting of the incidental device.

燃料電池発電システムは、天然ガス、液化石油ガス(LPG)、灯油等の化石燃料、メタノールやジメチルエーテル等の合成燃料、さらにはエチルアルコール等のバイオ燃料から、これらの燃料に含まれる水素が有する化学的エネルギーを直接電気エネルギーに変換して取り出す装置であり、カルノーサイクルの制約を受けずエネルギー変換効率が高いことや、燃焼過程がないためにエネルギー変換をクリーンに行えること、また、稼働中に振動や騒音を発することもないことから、次世代の発電システムとして注目されている。さらには、災害時のライフラインとして重要な電力を簡易に確保することができるコンパクトな発電システムとしても注目されている。   The fuel cell power generation system uses natural gas, liquefied petroleum gas (LPG), fossil fuels such as kerosene, synthetic fuels such as methanol and dimethyl ether, and biofuels such as ethyl alcohol. This is a device that directly converts electrical energy into electrical energy and extracts it. It has high energy conversion efficiency without being restricted by Carnot cycle, can clean energy conversion because there is no combustion process, and vibrates during operation. It is attracting attention as the next generation power generation system. Furthermore, it attracts attention as a compact power generation system that can easily secure important power as a lifeline in the event of a disaster.

燃料電池発電システムは、一般に燃料電池本体と燃料電池本体の付帯装置から構成される。   A fuel cell power generation system generally includes a fuel cell main body and an auxiliary device for the fuel cell main body.

燃料電池本体は、電解質と空気極と燃料極とで構成されており、空気極側に酸化剤として酸素ガスが供給され、燃料極側に水素ガスが供給されることにより、触媒作用により発生した酸素イオンと水素イオンとを電解質を介して両イオンを結合させる電気化学反応により電気エネルギーが発生する。   The fuel cell body is composed of an electrolyte, an air electrode, and a fuel electrode. Oxygen gas is supplied as an oxidant to the air electrode side, and hydrogen gas is supplied to the fuel electrode side. Electric energy is generated by an electrochemical reaction in which oxygen ions and hydrogen ions are combined with each other through an electrolyte.

燃料電池には、固体酸化物型燃料電池、溶融炭酸塩型燃料電池、リン酸型燃料電池および固体高分子型燃料電池などの種類がある。そして、それぞれの燃料電池の運転温度は、固体酸化物型燃料電池で約800〜1000℃、溶融炭酸塩型燃料電池で約650℃、リン酸型燃料電池で約250℃および固体高分子型燃料電池で約80℃である。   There are various types of fuel cells such as solid oxide fuel cells, molten carbonate fuel cells, phosphoric acid fuel cells, and polymer electrolyte fuel cells. The operating temperature of each fuel cell is about 800 to 1000 ° C. for a solid oxide fuel cell, about 650 ° C. for a molten carbonate fuel cell, about 250 ° C. for a phosphoric acid fuel cell, and a solid polymer fuel. The battery is about 80 ° C.

このように、燃料電池の種類により上記の最適な運転温度があり、この運転温度を維持しなければ所定の電気化学反応が行われず発電効率を低下させることとなる。   Thus, depending on the type of fuel cell, there is the above-mentioned optimum operating temperature, and unless this operating temperature is maintained, a predetermined electrochemical reaction is not performed and power generation efficiency is reduced.

一方、燃料電池本体の付帯装置には、燃料ガス処理装置、燃料ガス混合器、熱交換器、燃料ガス用ブロワ、酸化剤ガス用ブロワなどが挙げられる。付帯装置は、燃料電池の種類、使用条件等によって適宜最適な仕様、最適な組合せが検討されるものである。   On the other hand, the auxiliary devices of the fuel cell main body include a fuel gas processing device, a fuel gas mixer, a heat exchanger, a fuel gas blower, an oxidant gas blower, and the like. Appropriate specifications and optimum combinations of the accessory devices are considered as appropriate depending on the type of fuel cell, usage conditions, and the like.

たとえば、燃料ガス処理装置は、改質器、CO変成器などから構成されるが、一般的に改質器の運転温度は約700〜800℃、CO変成器の運転温度は約350℃であり、この運転温度を維持しなければ所定の改質反応、シフト反応が行われず、所定の組成の燃料ガスを生成することができない。熱交換器などもそれぞれに適した運転温度があり、その温度を維持する必要がある。   For example, the fuel gas processing apparatus is composed of a reformer, a CO converter, and the like. Generally, the operating temperature of the reformer is about 700 to 800 ° C., and the operating temperature of the CO converter is about 350 ° C. Unless this operating temperature is maintained, the predetermined reforming reaction and shift reaction are not performed, and a fuel gas having a predetermined composition cannot be generated. Heat exchangers and the like also have operating temperatures suitable for each, and it is necessary to maintain that temperature.

固体高分子形(PEFC)の燃料電池で説明すると、これは電解質に固体高分子のイオン交換膜を使用するものであり、空気極側に酸化剤として酸素ガスが供給され、燃料極側に水素ガスが供給して、固体高分子のイオン交換膜中を水素イオンが移動することで、電気化学(電池)反応を起して発電をするものである。この場合、家庭用、小型業務用、自動車用、携帯用など実用化をするために燃料ガスとして水素以外の都市ガス・LPG・灯油等を用いる場合には、燃料改質器を用いてたとえば水蒸気改質方法により水素リッチな改質された燃料ガスを精製することが行われている。ここで製造された水素ガスを、固体高分子形(PEFC)の発電スタックで酸化ガスである空気と電気化学的に反応させて発電するようにしている。   In the case of a solid polymer type (PEFC) fuel cell, this uses a solid polymer ion exchange membrane as an electrolyte, oxygen gas is supplied as an oxidant to the air electrode side, and hydrogen is supplied to the fuel electrode side. When gas is supplied and hydrogen ions move in the ion exchange membrane of the solid polymer, an electrochemical (battery) reaction is caused to generate electricity. In this case, when using city gas / LPG / kerosene other than hydrogen as fuel gas for practical use such as home use, small business use, automobile use, portable use, etc., using a fuel reformer, for example, steam Purification of hydrogen-rich reformed fuel gas by a reforming method has been performed. The hydrogen gas produced here is made to generate electricity by electrochemically reacting with air, which is an oxidizing gas, in a polymer electrolyte (PEFC) power generation stack.

ところが、1KW級の家庭用の燃料電池システムであっても、この改質器の作動温度は触媒の活性温度が通常750℃前後であるから断熱システムが必要となる。しかしながら、数十W級の業務用発電システムと同じ業務用発電システムをそのまま採用すると効率が悪い。また、家庭用の燃料電池システムとしては、当然ながら設置スペースを出来る限りコンパクトにしなければいけないので、より高効率の断熱システムを安価に提供することが要望されている。   However, even a 1 KW class household fuel cell system requires an adiabatic system because the catalyst activation temperature is usually around 750 ° C. However, if the same commercial power generation system as a commercial power generation system of several tens of watts is adopted as it is, efficiency is poor. Moreover, as a fuel cell system for home use, the installation space must naturally be made as compact as possible. Therefore, it is desired to provide a more efficient heat insulation system at a low cost.

従来から、燃料電池本体やその付帯装置の運転温度を維持するために、燃料電池本体やその付帯装置の周囲にセラミックス系断熱材を充填することによって断熱構造とすることがなされてきた。   Conventionally, in order to maintain the operating temperature of the fuel cell main body and its auxiliary devices, a heat insulating structure has been made by filling a ceramic-based heat insulating material around the fuel cell main body and its auxiliary devices.

たとえば、特許文献1には燃料電池本体やその付帯装置の周囲を真空断熱構造で包囲することが提案されている。また、特許文献2には、セラミックス系断熱材層と真空断熱構造を併用して、燃料電池本体やその付帯装置の周囲を包囲することが提案されている。   For example, Patent Document 1 proposes surrounding the fuel cell main body and its associated devices with a vacuum heat insulating structure. Further, Patent Document 2 proposes that a ceramic-based heat insulating material layer and a vacuum heat insulating structure are used in combination to surround the periphery of a fuel cell main body and its associated devices.

さらに、特許文献3には、改質器とその関連機器とを一つのユニットとしてまとめて、内筒と外筒との間に真空の断熱層を形成した真空断熱容器をこのユニットに被せて覆うことにより、真空断熱容器内部を改質器の燃焼ガスの流路とした燃料改質装置を構成してセラミックファイバ等の断熱材の充填を不要とし断熱層の容積を低減して装置の小型化並びに熱効率向上を図ることが提案されている。   Furthermore, in Patent Document 3, the reformer and related equipment are combined as one unit, and a vacuum heat insulating container in which a vacuum heat insulating layer is formed between the inner cylinder and the outer cylinder is covered and covered. This makes it possible to configure a fuel reformer that uses the inside of the vacuum insulation container as a flow path for the combustion gas of the reformer, eliminating the need for filling with a heat insulating material such as ceramic fibers, and reducing the volume of the heat insulation layer, thereby reducing the size of the device. In addition, it has been proposed to improve the thermal efficiency.

また、特許文献4には、内部に水蒸気を含むガスが充満する炉の断熱構造が提案されている。ここでは、ケーシングの内側から順に炉内側に向かって、発泡セラミックス体や発泡ガラス体のような独立気泡を有する無機系の断熱材でできた第一層に配置された断熱材と、第一層の内側の第2層に配置された断熱材と、第2層の内側の第3層に配置された断熱材とを具備するように配置した燃料電池用断熱システムが提案されている。ここでは、第2層に配置された断熱材は、第3層に配置された断熱材よりも断熱性が優れ、第一層に配置された断熱材と第2層に配置された断熱材と第3層に配置された断熱材の厚さを第一層に配置された断熱材と第2層に配置された断熱材との境界の温度が排燃料ガスの露点温度より高くなるように設計されており、水蒸気の結露により断熱性能が低下することを防ぐことができるとしている。   Patent Document 4 proposes a heat insulating structure for a furnace filled with a gas containing water vapor. Here, the heat insulating material arranged in the first layer made of an inorganic heat insulating material having closed cells such as a foamed ceramic body and a foamed glass body in order from the inside of the casing toward the inside of the furnace, and the first layer There has been proposed a heat insulation system for a fuel cell arranged so as to include a heat insulating material arranged in the second layer inside the first layer and a heat insulating material arranged in the third layer inside the second layer. Here, the heat insulating material arranged in the second layer is superior to the heat insulating material arranged in the third layer, and the heat insulating material arranged in the first layer and the heat insulating material arranged in the second layer The thickness of the heat insulating material arranged in the third layer is designed so that the boundary temperature between the heat insulating material arranged in the first layer and the heat insulating material arranged in the second layer is higher than the dew point temperature of the exhaust fuel gas. It is said that heat insulation performance can be prevented from deteriorating due to condensation of water vapor.

そして、断熱材自体としては、特許文献5には、−273℃から最高950℃までの温度範囲に利用できる断熱特性を有するマイクロポーラス断熱材が開示されている。このマイクロポーラス断熱材を燃料電池および燃料電池の改質器のような高温発熱体の断熱構造として利用することが考えられる。   And as a heat insulating material itself, patent document 5 is disclosing the microporous heat insulating material which has the heat insulation characteristic which can be utilized in the temperature range from -273 degreeC to a maximum of 950 degreeC. It is conceivable to use this microporous heat insulating material as a heat insulating structure of a high-temperature heating element such as a fuel cell and a fuel cell reformer.

特開2001−229949号公報JP 2001-229949 A 特開2002−280041号公報JP 2002-280041 A 特開2003−327405号公報JP 2003-327405 A 特開2008−16264号公報JP 2008-16264 A 特開平7−10651号公報Japanese Patent Laid-Open No. 7-10651

しかしながら、セラミックス系断熱材を燃料電池本体やその付帯装置の周囲に断熱材を充填することによって、このような高い運転温度を維持しようとすると、断熱構造層を厚くせざるを得ないため、燃料電池用断熱システムは大がかりなものとなっていた。したがって、特に、災害時のライフラインとして重要な電力を簡易に確保するためにコンパクトさが要求され、とりわけ家庭用発電システムとして用いられる場合は、省スペースすなわち断熱材で占められる部分のコンパクト化が求められるため燃料電池発電システムの断熱構造としては採用できないものであった。   However, since it is necessary to increase the thickness of the heat insulating structure layer if it is intended to maintain such a high operating temperature by filling the ceramic-based heat insulating material around the fuel cell main body and its associated devices, Battery insulation systems have become massive. Therefore, in particular, compactness is required in order to easily secure power important as a lifeline at the time of a disaster. Especially when it is used as a household power generation system, space saving, that is, compaction of the portion occupied by heat insulating material is required. Therefore, it cannot be adopted as a heat insulation structure for a fuel cell power generation system.

そして、特許文献1に記載の燃料電池発電装置では、燃料電池本体の周囲を真空断熱構造で包囲するので断熱構造層を薄くできるものの、気密空間を形成する壁面には外圧がかかるため、この壁面には高強度の金属材料を用いる必要がある。しかしながら、燃料電池本体の高い運転温度の影響を直接に受けて気密空間を形成する壁面が高温となるため、この壁面に用いた金属材料は高温酸化腐食を受けやすく、かつ外圧も掛かることから、破損して気密性がなくなり、真空断熱構造が破れるおそれがある。また、金属材料の溶接部分の耐熱性が不十分の場合には、溶接部分の歪みや破損により壁面に変形を生じて、真空断熱構造が破れるおそれがある。   In the fuel cell power generation device described in Patent Document 1, the surroundings of the fuel cell main body are surrounded by a vacuum heat insulating structure, so that the heat insulating structure layer can be thinned, but the wall surface forming the airtight space is subjected to external pressure. It is necessary to use a high-strength metal material. However, since the wall surface that forms the airtight space directly affected by the high operating temperature of the fuel cell body becomes high temperature, the metal material used for this wall surface is susceptible to high-temperature oxidative corrosion, and is subject to external pressure, There is a risk that the vacuum insulation structure may be broken due to breakage resulting in loss of airtightness. In addition, when the heat resistance of the welded portion of the metal material is insufficient, the wall surface may be deformed due to distortion or breakage of the welded portion, and the vacuum heat insulating structure may be broken.

特許文献2に記載の燃料電池では、真空断熱構造を形成する気密空間の内側に断熱材層を設けて燃料電池本体やその付帯装置の周囲を包囲しているので、気密空間を形成する壁面の温度は幾分低くなるものの、断熱材層の厚みが不十分の場合には、気密空間を形成する壁面が高温となるため、破損又は変形が生じて、真空断熱構造が破れるおそれがある。   In the fuel cell described in Patent Document 2, a heat insulating material layer is provided inside the airtight space forming the vacuum heat insulating structure to surround the periphery of the fuel cell main body and its associated devices. Although the temperature is somewhat lowered, if the thickness of the heat insulating material layer is insufficient, the wall surface forming the hermetic space becomes high temperature, which may cause breakage or deformation and break the vacuum heat insulating structure.

特許文献3に記載の燃料電池発電システムでは、改質器とその関連機器とを一つのユニットとしてまとめて、内筒と外筒との間に真空の断熱層を形成した真空断熱容器をこのユニットに被せて覆うためには、気密空間とする気密構造やメンテナンス作業が必要である。また、耐熱性が必要とされるため使用する材質は耐熱性金属、たとえばステンレス鋼等からなる壁板を用いた密封容器でなければならず、このような真空断熱構造を軽量化やコンパクト化が要求される家庭用定置型燃料電池に用いるには重量の点で問題があり、また、壁板の内外面での熱歪みの対策を講ずる必要がある。   In the fuel cell power generation system described in Patent Document 3, the reformer and related equipment are combined as one unit, and a vacuum heat insulating container in which a vacuum heat insulating layer is formed between the inner cylinder and the outer cylinder is provided in this unit. In order to cover the cover, an airtight structure that forms an airtight space and maintenance work are required. In addition, since heat resistance is required, the material used must be a sealed container using a wall plate made of a heat-resistant metal, such as stainless steel, and this vacuum insulation structure can be reduced in weight and size. There is a problem in terms of weight when used in a stationary fuel cell for home use, and it is necessary to take measures against thermal distortion on the inner and outer surfaces of the wallboard.

特許文献4に記載の燃料電池の断熱構造では、炉の外部から順に断熱材の層を構成するものではないが、第2層に配置された断熱材は、第3層に配置された断熱材よりも断熱性が優れた構成で、断熱材を三層にしている。しかし、この断熱材の層においては熱伝導率の低い断熱構造を構成していないので、燃料電池および燃料電池の改質器のような高温に対する断熱構造とするには、断熱材の各層の厚さを十分に取る必要があり、そのため、断熱材層の容積が大きくなってしまう。   In the heat insulating structure of the fuel cell described in Patent Document 4, the heat insulating material is not formed in order from the outside of the furnace, but the heat insulating material arranged in the second layer is the heat insulating material arranged in the third layer. The heat insulating material has a three-layer structure with better heat insulation. However, since this heat insulating material layer does not constitute a heat insulating structure with low thermal conductivity, the thickness of each layer of the heat insulating material is not suitable for a heat insulating structure against high temperatures such as a fuel cell and a fuel cell reformer. It is necessary to take sufficient thickness, so that the volume of the heat insulating material layer becomes large.

次に、特許文献5に開示されているマイクロポーラス断熱材は、ボード状に成形することができるが、その嵩密度を0.22〜0.35g/cmとする必要があるので、可撓性をもったシート状にすることはできない。したがって、これを燃料電池および燃料電池の改質器のような高温発熱体の断熱構造として利用しようとすると、燃料電池の本体や改質器の本体の形状に沿うように、たとえば円筒状に機械加工したり、専用の成形型で製造したりする必要がある。このため、製作時の歩留まりが悪く、また、大がかりな製造装置が必要となるので、設計変更がし難いなどの問題がある。 Next, the microporous heat insulating material disclosed in Patent Document 5 can be formed into a board shape, but its bulk density needs to be 0.22 to 0.35 g / cm 3. It cannot be made into a sheet with properties. Therefore, when this is used as a heat insulation structure of a high-temperature heating element such as a fuel cell and a reformer of the fuel cell, a machine such as a cylinder is formed so as to follow the shape of the main body of the fuel cell or the reformer. It must be processed or manufactured with a dedicated mold. For this reason, the yield at the time of manufacture is bad, and since a large-scale manufacturing apparatus is required, there is a problem that it is difficult to change the design.

本願発明は、このような従来技術の問題点を解決するためになされたものであって、機械加工が不要であり、安価で軽量な燃料電池用断熱システムを提供することを目的とする。   The present invention has been made to solve such problems of the prior art, and an object thereof is to provide an inexpensive and lightweight heat insulation system for a fuel cell that does not require machining.

本発明者は、燃料電池発電システムの断熱構造に関して、種々の検討と実験を繰り返した結果、次の(a)〜(g)に示す知見を得た。   As a result of repeating various studies and experiments regarding the heat insulation structure of the fuel cell power generation system, the present inventor has obtained the knowledge shown in the following (a) to (g).

(a) 燃料電池用断熱システムの断熱構造全体の厚みを薄くするためには、燃料電池本体やその付帯装置を包囲する真空断熱構造を採用すればよい。しかしながら、上述のとおり、真空断熱構造は気密空間を形成する壁面が高温となるため、その壁面に用いられる材料に熱破損又は熱変形が生じ易く、真空断熱構造が破れるおそれがあるので、断熱構造としての信頼性に欠ける。   (a) In order to reduce the thickness of the entire heat insulating structure of the fuel cell heat insulating system, a vacuum heat insulating structure that surrounds the fuel cell main body and its associated devices may be employed. However, as described above, since the wall surface forming the hermetic space becomes high temperature in the vacuum heat insulating structure, the material used for the wall surface is likely to be thermally damaged or deformed, and the vacuum heat insulating structure may be broken. As a lack of reliability.

(b) 真空断熱構造の気密空間を利用しないことを前提にして、燃料電池用断熱システムを構築しようとすると、燃料電池本体及び/又はその付帯装置の回りに断熱材を1種又は2種以上充填することになる。しかしながら、引用文献4の断熱構造のように、断熱材だけで燃料電池用断熱システムを構築しようとすると、その断熱材の充填厚さを増やさざるを得ないため、燃料電池用断熱システムは大がかりなものになってしまう。   (b) On the premise that the airtight space of the vacuum heat insulation structure is not used, if one tries to construct a heat insulation system for a fuel cell, one or more kinds of heat insulation materials are provided around the fuel cell main body and / or its auxiliary devices. Will be filled. However, if a thermal insulation system for a fuel cell is constructed using only the thermal insulation material as in the thermal insulation structure of the cited document 4, the insulation thickness for the fuel cell is inevitably increased because the filling thickness of the thermal insulation material must be increased. It becomes a thing.

(c) 発明者は、燃料電池用断熱システムに用いる断熱材の充填厚さを減らすべく、種々に検討した結果、「酸化剤ガスと燃料ガスとを高温作動温度環境下の電池室内に供給し、この酸化剤ガスと燃料ガスとを電気化学的に反応させて電力を得るようにした燃料電池本体及び/又はその附帯装置の周囲に、内側から順に、可撓性無機質断熱材からなる第1の断熱材層、可撓性エアロゲル断熱材からなる第2の断熱材層、可撓性無機質断熱材からなる第3の断熱材層を有することを特徴とする燃料電池用断熱システム。」とすればよいことに思い至った。   (c) As a result of various studies to reduce the filling thickness of the heat insulating material used in the heat insulation system for fuel cells, the inventor has found that `` oxidant gas and fuel gas are supplied into the battery chamber under a high temperature operating temperature environment. First, consisting of a flexible inorganic heat insulating material, in order from the inside, around the fuel cell main body and / or its auxiliary device that is configured to electrochemically react the oxidant gas and the fuel gas to obtain electric power. A heat insulating system for a fuel cell, comprising a second heat insulating material layer made of a flexible airgel heat insulating material, and a third heat insulating material layer made of a flexible inorganic heat insulating material. I came up with a good idea.

これは、第1の理由としては、断熱材を燃料電池本体及び/又はその附帯装置の周囲に設置するには、ボード状の成型物であると設置作業がはかどらないが、可撓性を有する断熱材であれば設置作業がはかどると考えたからである。そして、第2の理由としては、燃料電池本体及び/又はその附帯装置の周囲に設置する断熱材の機能を、3つの断熱材増に分担させることによって、断熱材の全体の充填厚さを減らせると考えたからである。   This is because, as a first reason, in order to install the heat insulating material around the fuel cell main body and / or its auxiliary device, the installation work is not facilitated if it is a board-like molded product, but it has flexibility. This is because it was thought that the installation work would be faster if it was a heat insulating material. And as a second reason, the overall filling thickness of the heat insulating material can be reduced by sharing the function of the heat insulating material installed around the fuel cell main body and / or its ancillary devices with three additional heat insulating materials. Because I thought.

すなわち、最も高温となる最内層となる第1の断熱材層には、ある程度の断熱効果は期待するが、1000℃程度の高温に耐えることができるものであって、耐熱性の方を優先して断熱材を選択し、そして、その外層の第2の断熱材層には大幅な断熱性を発揮できる断熱材を選択し、そして、最外層となる第3の断熱材層にはその表面に手を触れてもやけどをしない程度の断熱性を有する断熱材であればよい、と考えたのである。   In other words, the first heat insulating material layer, which is the innermost layer at the highest temperature, is expected to have a certain degree of heat insulation effect, but can withstand high temperatures of about 1000 ° C., and heat resistance is given priority. Select a heat insulating material, and select a heat insulating material capable of exerting a significant heat insulating property for the second heat insulating material layer of the outer layer, and a third heat insulating material layer as the outermost layer on the surface thereof. I thought that it would be good if it is a heat insulating material that does not cause burns even if it is touched.

(d) 第1の断熱材層は、可撓性無機質断熱材を用いることができ、シリカ繊維等からなるセラミック繊維などが好ましい。これは、1000℃の高温に耐えることができるだけでなく、可撓性があるので、燃料電池本体の外周に密接するように捲回することができる。   (d) A flexible inorganic heat insulating material can be used for the first heat insulating material layer, and ceramic fibers made of silica fibers or the like are preferable. This not only can withstand high temperatures of 1000 ° C., but is flexible so that it can be wound close to the outer periphery of the fuel cell body.

(e) そして、第2の断熱材層としては、その充填厚さを減らしても断熱効果が大きいという観点からは、前記特許文献5で開示されているマイクロポーラス断熱材が候補に挙げられる。しかしながら、作業性を考えた場合、マイクロポーラス断熱材は問題が多い。   (e) And as a 2nd heat insulating material layer, the microporous heat insulating material currently disclosed by the said patent document 5 is mentioned from a viewpoint that the heat insulation effect is large even if the filling thickness is reduced. However, when considering workability, microporous heat insulating materials have many problems.

したがって、第2の断熱材層として、作業性の面から可撓性を有するものが好ましく、ただし、耐熱性はそれ程要求されないという観点から、さらに検討した結果、可撓性エアロゲル断熱材が適していることが分かった。   Therefore, as the second heat insulating material layer, a material having flexibility from the viewpoint of workability is preferable. However, from the viewpoint that heat resistance is not so much required, as a result of further examination, a flexible airgel heat insulating material is suitable. I found out.

ここで、可撓性エアロゲル断熱材とは、溶液の中でシリカをゾル化させてその水分を超臨界流体で除去し乾燥させてできた気孔が1〜20nmの連続気泡構造のシリカ多孔体を不織布に分布させて気孔率が97%以上とした断熱体素子からなり、熱伝導率の温度変化が少ない材料である。この断熱体素子はガラスやシリカのような無機繊維からなり、たとえば、特表2007−524528号公報に示すような製造方法により、前記シリカ材を不織布に分布させて気孔率が97%以上とすることができる。なお、不織布としては、ガラス繊維、PET繊維、OPAN繊維等を用いることができる。   Here, the flexible airgel heat insulating material is a silica porous body having an open cell structure having pores of 1 to 20 nm, which is formed by solating silica in a solution, removing the water with a supercritical fluid, and drying. It is made of a heat insulating element that is distributed in a non-woven fabric and has a porosity of 97% or more. This heat insulating element is made of inorganic fibers such as glass and silica. For example, the silica material is distributed in the nonwoven fabric by a manufacturing method as shown in JP-T-2007-524528, so that the porosity is 97% or more. be able to. In addition, as a nonwoven fabric, glass fiber, PET fiber, OPAN fiber, etc. can be used.

このシリカ材からなるエアロゲル物質は、たとえば、特表2003−512277号公報の段落番号0038に記載されたとおり、約80容積%以上の空隙率を有し孔径が約0.5〜500ナノメートルの範囲である細孔を有する物質であって、ゲル化のために用いた溶剤をその物質から、乾燥中に細孔構造を破壊または実質的に収縮させることなく、乾燥によって除くことが可能である任意のゲル形成性物質から製造することができる。この乾燥は超臨界抽出、大気乾燥、冷凍乾燥、真空排気、などによって達成可能である。好ましくは、エアロゲルは出発ゲルを製造するために用いられた溶剤(またはその溶剤の代りになる任意の液体)の超臨界抽出によって製造される。エアロゲルの空隙率は少なくとも85容積%が好ましいが、より好ましくは約90容積%以上である。   The airgel substance made of this silica material has, for example, a porosity of about 80% by volume or more and a pore size of about 0.5 to 500 nanometers, as described in paragraph No. 0038 of JP-T-2003-512277. A material having pores that are in range, and the solvent used for gelation can be removed from the material by drying without destroying or substantially shrinking the pore structure during drying It can be made from any gel-forming material. This drying can be achieved by supercritical extraction, air drying, freeze drying, vacuum evacuation, and the like. Preferably, the aerogel is made by supercritical extraction of the solvent used to make the starting gel (or any liquid in place of the solvent). The porosity of the airgel is preferably at least 85% by volume, more preferably about 90% by volume or more.

(f) 次に、第3の断熱材層は可撓性無機質断熱材を用いることができ、シリカ繊維等からなるセラミック繊維などが好ましい。あるいは、安価なグラスウールを用いてもよい。 (g) そして、燃料電池本体及び/又はその附帯装置の周囲に設置する作業を考えた場合、可撓性を有する断熱材がシート状の形状であると作業性がよいから、好ましい。この可撓性を有する断熱材を燃料電池本体及び/又はその附帯装置の周囲に設置する作業の手順としては、たとえば、シート形状の断熱材の端縁同士を突き合わすことによって1層ごとに環状に捲回することができる。この手順は、可撓性無機質断熱材と可撓性エアロゲルの両方に適用できる。あるいは、シート形状の断熱材の端縁を重ね合わせて、第1から第3までの断熱材層を順に螺旋状に捲回してもよい。   (f) Next, a flexible inorganic heat insulating material can be used for the third heat insulating material layer, and ceramic fibers made of silica fibers or the like are preferable. Alternatively, inexpensive glass wool may be used. (g) Then, considering the work to be installed around the fuel cell main body and / or its auxiliary device, it is preferable that the flexible heat insulating material has a sheet-like shape because workability is good. As a procedure of the operation of installing the flexible heat insulating material around the fuel cell main body and / or its auxiliary device, for example, the edge of the sheet-shaped heat insulating material is abutted against each other to form a ring. Can be wound up. This procedure is applicable to both flexible inorganic insulation and flexible airgel. Or the edge of a sheet-shaped heat insulating material may be overlapped, and the first to third heat insulating material layers may be wound in order in a spiral manner.

本発明は、以上の知見に基づいて完成したものであり、その要旨は、次の(1)〜(8)に示す通りである。以下、それぞれ、「本発明1」〜「本発明8」といい、併せて「本発明」ということもある。   The present invention has been completed based on the above findings, and the gist thereof is as shown in the following (1) to (8). Hereinafter, they are referred to as “present invention 1” to “present invention 8”, respectively, and sometimes referred to as “present invention”.

(1)
酸化剤ガスと燃料ガスとを高温作動温度環境下の電池室内に供給し、この酸化剤ガスと燃料ガスとを電気化学的に反応させて電力を得るようにした燃料電池本体あるいはさらにその附帯装置からなる燃料電池の周囲に、内側から順に、可撓性無機質断熱材からなる第1の断熱材層、シート形状の可撓性エアロゲル断熱材からなる第2の断熱材層、可撓性無機質断熱材からなる第3の断熱材層を有することを特徴とする燃料電池用断熱システム。
(1)
A fuel cell main body or an auxiliary device for supplying power by supplying an oxidant gas and a fuel gas into a battery chamber under a high temperature operating temperature environment and electrochemically reacting the oxidant gas and the fuel gas. A first heat insulating material layer made of a flexible inorganic heat insulating material, a second heat insulating material layer made of a sheet-shaped flexible airgel heat insulating material, and a flexible inorganic heat insulating material, around the fuel cell , in order from the inside. A heat insulating system for a fuel cell, comprising a third heat insulating material layer made of a material.

(2)可撓性無機質断熱材シート形状であることを特徴とする、上記(1)の燃料電池用断熱システム。
(2) The heat insulation system for a fuel cell according to (1), wherein the flexible inorganic heat insulation material has a sheet shape.

(3) シート形状の可撓性無機質断熱材及び/又はシート形状の可撓性エアロゲル断熱材は捲回されて、1層の構造又は2層以上の積層構造を形成していることを特徴とする、上記(1)又は(2)の燃料電池用断熱システム。
(3) The sheet-shaped flexible inorganic heat insulating material and / or the sheet-shaped flexible airgel heat insulating material are wound to form a single-layer structure or a laminated structure of two or more layers. The fuel cell thermal insulation system according to (1) or (2) above.

(4) シート形状の可撓性無機質断熱材及び/又はシート形状の可撓性エアロゲル断熱材の端縁同士が突き合わされることによって1層ごとに環状に捲回されることを特徴とする、上記(3)の燃料電池用断熱システム。
(4) The sheet-shaped flexible inorganic heat insulating material and / or the edge of the sheet-shaped flexible airgel heat insulating material are abutted against each other, and each layer is wound in an annular shape, The fuel cell thermal insulation system as described in (3) above.

(5) シート形状の可撓性無機質断熱材の端縁とシート形状の可撓性エアロゲル断熱材の端縁が重なるようにして、第1から第3までの断熱材層が順に螺旋状に捲回されることを特徴とする、上記(3)の燃料電池用断熱システム。
(5) The edge of the sheet-shaped flexible inorganic heat insulating material and the edge of the sheet-shaped flexible airgel heat insulating material overlap so that the first to third heat insulating material layers spirally in order. (3) The fuel cell heat insulation system according to (3) above.

(6) 可撓性無機質断熱材は、セラミック繊維であることを特徴とする、上記(1)〜(5)のいずれかの燃料電池用断熱システム。   (6) The heat insulation system for a fuel cell according to any one of (1) to (5), wherein the flexible inorganic heat insulating material is a ceramic fiber.

(7) 可撓性無機質断熱材は、グラスウールであることを特徴とする、上記(1)〜(6)のいずれかの燃料電池用断熱システム。   (7) The heat insulation system for a fuel cell according to any one of the above (1) to (6), wherein the flexible inorganic heat insulation material is glass wool.

(8) 第1層の断熱材層の可撓性無機質断熱材はセラミック繊維であり、かつ、第3層の断熱材層の可撓性無機質断熱材はグラスウールであることを特徴とする、上記(1)〜(5)のいずれかの燃料電池用断熱システム。   (8) The flexible inorganic heat insulating material of the first heat insulating material layer is a ceramic fiber, and the flexible inorganic heat insulating material of the third heat insulating material layer is glass wool, (1) to (5) any one of the fuel cell thermal insulation systems.

本発明によれば、機械加工が不要であり、安価で軽量な燃料電池用断熱システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, machining is unnecessary and it can provide the cheap and lightweight heat insulation system for fuel cells.

以下に、本発明の燃料電池用断熱システムについて、その実施形態を図面に基づいて説明する。なお、この実施形態に示す燃料電池および燃料電池の改質器の本体の外形は円筒状で各層が一点鎖線を中心軸とする同心円状であることを示しているが、断面が楕円の形状や直方体のような平面を組み合わせた形状さらには曲面を組み合わせた形状など適宜選択して用いてもよい。   Embodiments of a heat insulation system for a fuel cell according to the present invention will be described below with reference to the drawings. Although the outer shape of the fuel cell and the reformer body of the fuel cell shown in this embodiment is cylindrical and each layer is concentrically centered on the one-dot chain line, A shape such as a rectangular parallelepiped combined with a plane or a shape combined with a curved surface may be appropriately selected and used.

図1に本発明に係る燃料電池用断熱システムの一例を示す。上図に各断熱層の斜視配置を示し、下図に断熱構造内の温度分布を示す。   FIG. 1 shows an example of a heat insulation system for a fuel cell according to the present invention. The upper figure shows the perspective arrangement of each heat insulation layer, and the lower figure shows the temperature distribution in the heat insulation structure.

燃料電池または燃料電池の改質器の本体1は700℃から750℃の高温の熱源で、外形は略円筒状に形成されており、その外周には内側から順に第1の断熱材層2、第2の断熱材層3および第3の断熱材層4を略同心軸状に捲回して密着かつ積層されている。この場合、第1の断熱材層2、第2の断熱材層3および第3の断熱材層4は断熱体素子で環状に変形させることができるように可撓性のある構成となっている。また、第1の断熱材層2、第2の断熱材層3および第3の断熱材層4を固着する方法としては、第1の断熱材層2および第3の断熱材層4はケイ酸ソーダやコロイダルシリカなどの無機バインダーを含浸させて成形する方法や第3の断熱材層4の最外表面に帯状のガラスクロスを巻きつけて保持する方法を採用すればよい。   The main body 1 of the fuel cell or the reformer of the fuel cell is a high-temperature heat source of 700 ° C. to 750 ° C., and the outer shape is formed in a substantially cylindrical shape. The second heat insulating material layer 3 and the third heat insulating material layer 4 are wound in a substantially concentric shaft shape and are adhered and laminated. In this case, the 1st heat insulating material layer 2, the 2nd heat insulating material layer 3, and the 3rd heat insulating material layer 4 become a flexible structure so that it can deform | transform into an annular shape with a heat insulator element. . Further, as a method of fixing the first heat insulating material layer 2, the second heat insulating material layer 3, and the third heat insulating material layer 4, the first heat insulating material layer 2 and the third heat insulating material layer 4 are silicic acid. A method of forming by impregnating an inorganic binder such as soda or colloidal silica or a method of winding and holding a belt-like glass cloth around the outermost surface of the third heat insulating material layer 4 may be employed.

第1の断熱材層2は、セラミック繊維やシリカ繊維などで1000℃の高温に耐える無機質材でできた断熱体素子であって可撓性があるので、燃料電池本体1の外周に密接するように捲回することができる。第1の断熱材層2の厚さはたとえば1KW級の家庭用小型燃料電池システムの場合、5mmから35mm程度である。   The first heat insulating material layer 2 is a heat insulating element made of an inorganic material that can withstand a high temperature of 1000 ° C. such as ceramic fiber or silica fiber, and is flexible, so that it is in close contact with the outer periphery of the fuel cell main body 1. Can be wound up. The thickness of the first heat insulating material layer 2 is, for example, about 5 mm to 35 mm in the case of a 1 KW class small household fuel cell system.

第2の断熱材層3は、Aspen社のアエロゲル(商品名:Pyrogel)を使用した。これは、厚み6mm、幅1.47m、長さ75mのロール状であって、熱伝導率14、密度120kg/mであった。なお、補強材(不織布)としてガラスマットを用いている。 The second heat insulating material layer 3 was made of Aspen Aerogel (trade name: Pyrogel). This was a roll having a thickness of 6 mm, a width of 1.47 m, and a length of 75 m, a thermal conductivity of 14, and a density of 120 kg / m 3 . A glass mat is used as the reinforcing material (nonwoven fabric).

可撓性エアロゲル断熱材を第2の断熱材層3として用いるときの厚さは、たとえば1KW級の家庭用小型燃料電池システムの場合、6mm程度の厚さのシート状のものを二層から五層に環状に積み重ねて12mmから30mmの厚さにした状態で用いることができる。   The thickness of the flexible airgel heat insulating material used as the second heat insulating material layer 3 is, for example, in the case of a 1 KW class small household fuel cell system, a sheet-like material having a thickness of about 6 mm is used in two to five layers. It can be used in a state where the layers are circularly stacked to a thickness of 12 to 30 mm.

次に、第3の断熱材層4は可撓性無機質断熱材を用いることができ、シリカ繊維等のセラミック繊維からなる断熱体素子である。あるいは、安価なグラスウールを用いてもよい。可撓性があり、環状にして第2の断熱材層3の外周に密接するように捲回することができる。第3の断熱材層の厚さは、たとえば1KW級の家庭用小型燃料電池システムの場合、4mmから30mm程度である。   Next, the 3rd heat insulating material layer 4 can use a flexible inorganic heat insulating material, and is a heat insulator element which consists of ceramic fibers, such as a silica fiber. Alternatively, inexpensive glass wool may be used. It is flexible and can be rolled so as to be in close contact with the outer periphery of the second heat insulating material layer 3. The thickness of the third heat insulating material layer is, for example, about 4 mm to 30 mm in the case of a 1 KW class small household fuel cell system.

図2は、本発明に係る燃料電池用断熱システムの各断熱層の捲回手順の一例を示す断面図(上面図)である。   FIG. 2 is a cross-sectional view (top view) showing an example of a winding procedure of each heat insulation layer of the heat insulation system for a fuel cell according to the present invention.

第1の断熱材層2と第2の断熱材層3と第3の断熱材層4とを順に略円筒状の燃料電池または燃料電池の改質器の本体1の外周に密接するように同心軸状に捲回したものである。第1の断熱材層2は厚さが20mm程度の断熱体素子を本体1に捲回し、その端縁2Aを接合させて環状に閉じて燃料電池または燃料電池の改質器の本体1の外周に密着させる。同様に、第2の断熱材層3は一層の厚さが6mm程度の断熱体素子で内側から順に三層の第2の断熱材層31、32、33をそれぞれの端縁31A、32Aおよび33Aを接合させて18mmの厚さで環状に積層して環状に閉じて捲回して第1の断熱材層2の外周に密着させる。この場合、三層の第2の断熱材として図示しているが、四層など適宜層数を選定すればよい。また、第3の断熱材層4は一層の厚さが10mmから15mm程度の断熱体素子で、二層の第3の断熱材層41、42をそれぞれの端縁41A、42Aを接合させて環状に積層して環状に捲回して第2の断熱材層3の外周に密着させる。この場合、第3の断熱材層4は厚さが25mm程度の一層の断熱体素子で構成してもよい。上記、第1の断熱材層2と第2の断熱材層3と第3の断熱材層4はそれぞれの端縁を接合して環状に閉じて略円筒状の本体1に同心軸状に捲回する際、それぞれの端縁位置を半径方向に重ならないように変位させることにより断熱性が向上する。   The first heat insulating material layer 2, the second heat insulating material layer 3, and the third heat insulating material layer 4 are concentric so as to be in close contact with the outer periphery of the main body 1 of the substantially cylindrical fuel cell or fuel cell reformer in order. It is wound in the shape of a shaft. The first heat insulating material layer 2 is formed by winding a heat insulator element having a thickness of about 20 mm around the main body 1, joining the edge 2 </ b> A and closing it in an annular shape, and the outer periphery of the main body 1 of the fuel cell or fuel cell reformer. Adhere to. Similarly, the second heat insulating material layer 3 is a heat insulating element having a thickness of about 6 mm, and the three second heat insulating material layers 31, 32, 33 are sequentially arranged from the inner side to the respective edges 31A, 32A and 33A. Are joined in an annular shape with a thickness of 18 mm, closed in an annular shape and wound to adhere to the outer periphery of the first heat insulating material layer 2. In this case, although illustrated as a three-layer second heat insulating material, the number of layers may be appropriately selected such as four layers. The third heat insulating material layer 4 is a heat insulating element having a thickness of about 10 mm to 15 mm, and the two third heat insulating material layers 41 and 42 are annularly formed by joining the respective edges 41A and 42A. And are wound in an annular shape and are brought into close contact with the outer periphery of the second heat insulating material layer 3. In this case, the third heat insulating material layer 4 may be composed of a single heat insulating element having a thickness of about 25 mm. The first heat insulating material layer 2, the second heat insulating material layer 3, and the third heat insulating material layer 4 are joined in a circular shape by joining their respective edges, and are concentrically formed on the substantially cylindrical body 1. When turning, the thermal insulation is improved by displacing each edge position so as not to overlap in the radial direction.

図3は、本発明に係る燃料電池用断熱システムの各断熱層の捲回手順の他の例を示す断面図(上面図)である。   FIG. 3 is a cross-sectional view (top view) showing another example of the winding procedure of each heat insulation layer of the heat insulation system for a fuel cell according to the present invention.

第1の断熱材層2と第2の断熱材層3と第3の断熱材層4とを順に略円筒状の燃料電池または燃料電池の改質器の本体1の外周に密接するように捲回したものである。第1の断熱材層2は厚さが20mm程度の断熱体素子を始端2Bから終端2Cに向かって始端2Bと終端2Cとが重なるようにして本体1に捲回されている。第2の断熱材層3は一層の厚さが6mm程度の断熱体素子でできた三層の断熱材で、第1の断熱材層2の始端2Aと終端2Bとの間に第2の断熱材層3の始端3Bを介在させて第1の断熱材層2の外周を覆うように螺旋状に3捲回されて18mmの厚さとなるように積層されている。第3の断熱材層4は一層の厚さが10mmから15mm程度の断熱体素子でできた二層の断熱材で第2の断熱材層3の終端3Cを挟むようにして始端4Bから第1の断熱材層2の外周を覆うように螺旋状に2捲回されて終端4Cが最外周面として20mmから30mm程度の厚さとなるように積層されている。   The first heat insulating material layer 2, the second heat insulating material layer 3, and the third heat insulating material layer 4 are sequentially in close contact with the outer periphery of the main body 1 of the substantially cylindrical fuel cell or the reformer of the fuel cell. It is a turn. The first heat insulating material layer 2 is wound around the main body 1 so that the heat insulating element having a thickness of about 20 mm is overlapped with the start end 2B and the end 2C from the start end 2B toward the end 2C. The second heat insulating material layer 3 is a three-layer heat insulating material made of a heat insulating element having a thickness of about 6 mm. The second heat insulating material layer 3 is provided between the start end 2A and the terminal end 2B of the first heat insulating material layer 2. The material layer 3 is spirally wound 3 times so as to cover the outer periphery of the first heat insulating material layer 2 with the start end 3B interposed therebetween and laminated so as to have a thickness of 18 mm. The third heat insulating material layer 4 is a two-layer heat insulating material made of a heat insulating element having a thickness of about 10 mm to 15 mm, and the first heat insulating material from the start end 4B so as to sandwich the terminal end 3C of the second heat insulating material layer 3. The material layer 2 is spirally wound so as to cover the outer periphery of the material layer 2, and the terminal end 4C is laminated so as to have a thickness of about 20 mm to 30 mm as the outermost peripheral surface.

次に、燃料電池用断熱システムにおける断熱構造の温度分布を確認するために、改質器の略円筒状の本体を例にして、第1の断熱材層2と、第2の断熱材層3と第3の断熱材層4とを順に前記本体1に螺旋状に捲回(図3参照)して断熱構造とする2つの実施例を用意した。   Next, in order to confirm the temperature distribution of the heat insulating structure in the fuel cell heat insulating system, the first heat insulating material layer 2 and the second heat insulating material layer 3 are taken using the substantially cylindrical main body of the reformer as an example. And the third heat insulating material layer 4 were sequentially wound around the main body 1 in a spiral manner (see FIG. 3) to prepare two examples having a heat insulating structure.

実施例1においては、第1の断熱材層は18mm厚の1層のシリカ繊維からなる断熱体素子で、第2の断熱材層は1層の厚さ6mmの断熱体素子を3層にして厚さが18mmの断熱体素子で、第3の断熱材層は18mm厚で1層のグラスウールからなる断熱体素子として、螺旋状に捲回した。   In Example 1, the first heat insulating material layer is a heat insulating element made of one layer of silica fiber having a thickness of 18 mm, and the second heat insulating material layer is made of three heat insulating elements having a thickness of 6 mm. A heat insulating element having a thickness of 18 mm, and the third heat insulating material layer was wound in a spiral shape as a heat insulating element having a thickness of 18 mm and made of one layer of glass wool.

実施例2においては、第1の断熱材層は32.5mm厚の1層のセラミック繊維からなる断熱体素子で、第2の断熱材層は1層の厚さ6mmの断熱体素子を3層にして厚さが18mmの断熱体素子で、第3の断熱材層は12.5mm厚で1層のセラミック繊維からなる断熱体素子として、螺旋状に捲回した。   In Example 2, the first heat insulating material layer is a heat insulating element made of one layer of ceramic fiber having a thickness of 32.5 mm, and the second heat insulating material layer is a single layer of heat insulating element having a thickness of 6 mm. Then, the heat insulating element having a thickness of 18 mm and the third heat insulating material layer having a thickness of 12.5 mm and being formed of a single layer of ceramic fibers were spirally wound.

図1に示すように、その本体1の外周面と第1の断熱材層2との間の部位Aの温度、第1の断熱材層2と第2の断熱材層3との間の部位Bの温度、第2の断熱材層3と第3の断熱材層4との間の部位Cの温度および本体1の最外表面である第3の断熱材層4の表面の部位Dの温度を測定した。その際、外気温度は25℃で、各断熱材の断熱体素子の材料厚さを2通り選定して、実施例1および実施例2として表1の温度分布が得られた。その結果、第3の断熱材層4の表面の部位Dにおいて所定の温度が得られた。   As shown in FIG. 1, the temperature of the part A between the outer peripheral surface of the main body 1 and the first heat insulating material layer 2, the part between the first heat insulating material layer 2 and the second heat insulating material layer 3. The temperature of B, the temperature of the part C between the second heat insulating material layer 3 and the third heat insulating material layer 4, and the temperature of the part D on the surface of the third heat insulating material layer 4 which is the outermost surface of the main body 1 Was measured. At that time, the outside air temperature was 25 ° C., and the material thickness of the heat insulating element of each heat insulating material was selected in two ways, and the temperature distribution shown in Table 1 was obtained as Example 1 and Example 2. As a result, a predetermined temperature was obtained at the portion D on the surface of the third heat insulating material layer 4.

なお、本体の最外表面の部位Dの温度は60℃以下が望まれるので、比較例として、微細多孔質成形体すなわちマイクロポーラス状の成形体を厚さ62.5mmに加工して改質器の略円筒状の本体に用いて、本体の最外表面の部位Dの温度を測定した。その結果、本願実施例1および2においても満足できる本体の最外表面の部位Dの温度が得られた。   Since the temperature of the part D on the outermost surface of the main body is desired to be 60 ° C. or less, as a comparative example, a microporous molded body, that is, a microporous shaped body, is processed to a thickness of 62.5 mm, and a reformer The temperature of the part D on the outermost surface of the main body was measured. As a result, the temperature of the portion D on the outermost surface of the main body that was satisfactory in Examples 1 and 2 of the present application was obtained.

Figure 0005105288
Figure 0005105288

なお、本願実施形態で示す第1の断熱材層2を本体1の外周に捲回し、第2の断熱材層3を第1の断熱材層2の外周に捲回し、第3の断熱材層4を第2の断熱材層3の外周に捲回する方法としては、図示しないが、燃料電池や改質器の本体1の外径に相当する芯管を回転させ第1の断熱材層2から順次捲回して閉じた環状に積層させることにより連続生産により生産性を向上して産業界から要請される価格にも対応ができる。   In addition, the 1st heat insulating material layer 2 shown by this-application embodiment is wound around the outer periphery of the main body 1, the 2nd heat insulating material layer 3 is wound around the outer periphery of the 1st heat insulating material layer 2, and the 3rd heat insulating material layer As a method of winding 4 around the outer periphery of the second heat insulating material layer 3, although not shown, the core tube corresponding to the outer diameter of the main body 1 of the fuel cell or reformer is rotated to rotate the first heat insulating material layer 2. In order to improve the productivity by continuous production, it is possible to meet the price required by the industry.

以上のとおり、本発明の燃料電池用断熱システムは、少なくとも燃料電池および燃料電池の改質器の何れか一方の本体の外周に無機質材でできた可撓性のある断熱体素子からなる第1の断熱材層と、溶液の中でシリカをゾル化させてその水分を超臨界流体で除去し乾燥させてできた気孔が1〜20nmの連続気泡構造のシリカ多孔体を不織布に分布させて気孔率が97%以上とした可撓性のある断熱体素子からなる第2の断熱材層と、無機質材でできた可撓性のある断熱体素子からなる第3の断熱材層と順にそれぞれを閉じた環状で捲回して積層して、前記第2の断熱材層は他の断熱材層よりも温度に対する熱伝導率が低い材料で構成しているので、機械加工が不要で安価で軽量な断熱体素子を用いることができる。たとえば燃料電池の本体または改質器の本体の外径に相当する芯管を回転させ第1の断熱材から順次積層することにより、連続生産が可能となり著しく生産性が向上するとともに、歩留まりも個体ブロックからの機械加工を必要としないため改善され、産業界から要請される価格にも対応することができる。   As described above, the heat insulation system for a fuel cell according to the present invention includes a first flexible heat insulator element made of an inorganic material on the outer periphery of at least one of the main body of the fuel cell and the reformer of the fuel cell. And a porous silica material having an open-cell structure with pores of 1 to 20 nm formed by solating silica in a solution and removing the moisture with a supercritical fluid and drying the solution in a nonwoven fabric. A second heat insulating material layer made of a flexible heat insulating element having a rate of 97% or more and a third heat insulating material layer made of a flexible heat insulating element made of an inorganic material, respectively, in order. Since the second heat insulating material layer is made of a material having a lower thermal conductivity with respect to temperature than the other heat insulating material layers, it is not necessary to be machined and is inexpensive and lightweight. An insulator element can be used. For example, by rotating the core tube corresponding to the outer diameter of the main body of the fuel cell or the main body of the reformer and laminating sequentially from the first heat insulating material, continuous production becomes possible and productivity is significantly improved, and the yield is also individual. It is improved because it does not require machining from the block, and can meet the price required by the industry.

また、前記第1の断熱材層を前記本体の外周に捲回して端縁を接合させ、第2の断熱材層を前記第1の断熱材層の外周に捲回して端縁を接合させ、第3の断熱材層を前記第2の断熱材層の外周に捲回して端縁を接合させて、これら前記第1の断熱材層、第2の断熱材層および第3の断熱材層を順に閉じた環状に積層させて前記本体の外周に密着させて、それぞれの断熱材を隙間なく環状にすることができて断熱効果が向上する。   Further, the first heat insulating material layer is wound around the outer periphery of the main body to join the edge, the second heat insulating material layer is wound around the outer periphery of the first heat insulating material layer, and the edge is joined. A third heat insulating material layer is wound around the outer periphery of the second heat insulating material layer to join edges, and the first heat insulating material layer, the second heat insulating material layer, and the third heat insulating material layer are combined. The heat insulation effect is improved by laminating them in a closed ring in order and bringing them into close contact with the outer periphery of the main body so that each heat insulating material can be made into a ring without gaps.

さらに、前記第1の断熱材層を前記本体の外周に始端と終端とが重なるように螺旋状に捲回させ、第2の断熱材層を前記第1の断熱材層の外周に始端と終端とが重なるように螺旋状に捲回させ、第3の断熱材層を前記第2の断熱材層の外周に始端と終端とが重なるように螺旋状に捲回させて、これら前記第1の断熱材層、第2の断熱材層および第3の断熱材層を順に閉じた環状に積層させて前記本体の外周に密着させることにより、これら前記第1の断熱材層、第2の断熱材層および第3の断熱材層を順に、環状に積層させる作業が容易となり、前記本体の外周に密着させてそれぞれの断熱材を隙間なく環状にすることができて断熱効果が向上する。   Furthermore, the first heat insulating material layer is spirally wound so that the starting end and the terminal end overlap the outer periphery of the main body, and the second heat insulating material layer is formed on the outer periphery of the first heat insulating material layer. And the third heat insulating material layer is spirally wound so that the start end and the terminal end overlap the outer periphery of the second heat insulating material layer. The first heat insulating material layer, the second heat insulating material layer, and the third heat insulating material layer are sequentially laminated in a closed ring shape and closely adhered to the outer periphery of the main body, thereby the first heat insulating material layer and the second heat insulating material. The work of laminating the layer and the third heat insulating material layer in order is facilitated, and the heat insulating effect can be improved because the heat insulating materials can be formed in an annular shape without any gap by being in close contact with the outer periphery of the main body.

しかも、前記第3の断熱材層がグラスウールでできた断熱体素子とすることにより捲回作業がよく安価な断熱構造を提供することができる。   In addition, when the third heat insulating material layer is a heat insulating element made of glass wool, it is possible to provide a heat insulating structure with good winding work and low cost.

本発明によれば、機械加工が不要であり、安価で軽量な燃料電池用断熱システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, machining is unnecessary and it can provide the cheap and lightweight heat insulation system for fuel cells.

本発明に係る燃料電池用断熱システムの概念図である。It is a conceptual diagram of the heat insulation system for fuel cells which concerns on this invention. 本発明に係る燃料電池用断熱システムの各断熱層の捲回手順の一例を示す断面図(上面図)である。It is sectional drawing (top view) which shows an example of the winding procedure of each heat insulation layer of the heat insulation system for fuel cells which concerns on this invention. 本発明に係る燃料電池用断熱システムの各断熱層の捲回手順の他の例を示す断面図(上面図)である。It is sectional drawing (top view) which shows the other example of the winding procedure of each heat insulation layer of the heat insulation system for fuel cells which concerns on this invention.

符号の説明Explanation of symbols

1 燃料電池または燃料電池の改質器の本体
2 第1の断熱材層
3 第2の断熱材層
4 第3の断熱材層
DESCRIPTION OF SYMBOLS 1 Main body of fuel cell or fuel cell reformer 2 First heat insulating material layer 3 Second heat insulating material layer 4 Third heat insulating material layer

Claims (8)

酸化剤ガスと燃料ガスとを高温作動温度環境下の電池室内に供給し、この酸化剤ガスと燃料ガスとを電気化学的に反応させて電力を得るようにした燃料電池本体あるいはさらにその附帯装置からなる燃料電池の周囲に、内側から順に、可撓性無機質断熱材からなる第1の断熱材層、シート形状の可撓性エアロゲル断熱材からなる第2の断熱材層、可撓性無機質断熱材からなる第3の断熱材層を有することを特徴とする燃料電池用断熱システム。 A fuel cell main body or an auxiliary device for supplying power by supplying an oxidant gas and a fuel gas into a battery chamber under a high temperature operating temperature environment and electrochemically reacting the oxidant gas and the fuel gas. A first heat insulating material layer made of a flexible inorganic heat insulating material, a second heat insulating material layer made of a sheet-shaped flexible airgel heat insulating material, and a flexible inorganic heat insulating material, around the fuel cell , in order from the inside. A heat insulating system for a fuel cell, comprising a third heat insulating material layer made of a material. 可撓性無機質断熱材シート形状であることを特徴とする、請求項1に記載の燃料電池用断熱システム。 The heat insulation system for a fuel cell according to claim 1, wherein the flexible inorganic heat insulation material has a sheet shape. シート形状の可撓性無機質断熱材及び/又はシート形状の可撓性エアロゲル断熱材は捲回されて、1層の構造又は2層以上の積層構造を形成していることを特徴とする、請求項1又は2に記載の燃料電池用断熱システム。 The sheet-shaped flexible inorganic heat insulating material and / or the sheet-shaped flexible airgel heat insulating material are wound to form a one-layer structure or a laminated structure of two or more layers. Item 3. The heat insulation system for a fuel cell according to Item 1 or 2 . シート形状の可撓性無機質断熱材及び/又はシート形状の可撓性エアロゲル断熱材の端縁同士が突き合わされることによって1層ごとに環状に捲回されることを特徴とする、請求項3に記載の燃料電池用断熱システム。 The sheet-shaped flexible inorganic heat insulating material and / or the edge of the sheet-shaped flexible airgel heat insulating material are abutted to each other, and each layer is wound in an annular shape. A heat insulation system for a fuel cell as described in 1. シート形状の可撓性無機質断熱材の端縁とシート形状の可撓性エアロゲル断熱材の端縁が重なるようにして、第1から第3までの断熱材層が順に螺旋状に捲回されることを特徴とする、請求項3に記載の燃料電池用断熱システム。 The first to third heat insulating material layers are spirally wound in order so that the edge of the sheet-shaped flexible inorganic heat insulating material and the edge of the sheet-shaped flexible airgel heat insulating material overlap. The heat insulation system for fuel cells according to claim 3, wherein 可撓性無機質断熱材は、セラミック繊維であることを特徴とする、請求項1から5までのいずれかに記載の燃料電池用断熱システム。   The heat insulation system for a fuel cell according to any one of claims 1 to 5, wherein the flexible inorganic heat insulating material is a ceramic fiber. 可撓性無機質断熱材は、グラスウールであることを特徴とする、請求項1から6までのいずれかに記載の燃料電池用断熱システム。   The heat insulation system for a fuel cell according to any one of claims 1 to 6, wherein the flexible inorganic heat insulating material is glass wool. 第1層の断熱材層の可撓性無機質断熱材はセラミック繊維であり、かつ、第3層の断熱材層の可撓性無機質断熱材はグラスウールであることを特徴とする、請求項1から5までのいずれかに記載の燃料電池用断熱システム。
The flexible inorganic heat insulating material of the first heat insulating material layer is ceramic fiber, and the flexible inorganic heat insulating material of the third heat insulating material layer is glass wool. 5. A heat insulation system for a fuel cell according to any one of 5 to 5.
JP2008191970A 2008-07-25 2008-07-25 Insulation system for fuel cell Active JP5105288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191970A JP5105288B2 (en) 2008-07-25 2008-07-25 Insulation system for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191970A JP5105288B2 (en) 2008-07-25 2008-07-25 Insulation system for fuel cell

Publications (2)

Publication Number Publication Date
JP2010033745A JP2010033745A (en) 2010-02-12
JP5105288B2 true JP5105288B2 (en) 2012-12-26

Family

ID=41737992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191970A Active JP5105288B2 (en) 2008-07-25 2008-07-25 Insulation system for fuel cell

Country Status (1)

Country Link
JP (1) JP5105288B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794619B2 (en) * 2010-08-18 2015-10-14 井前工業株式会社 Cylindrical heat insulating material and thermal equipment using the same
JP6057515B2 (en) * 2012-01-31 2017-01-11 井前工業株式会社 Cylindrical insulation and equipment equipped with the same
JP2016070493A (en) * 2014-09-26 2016-05-09 Jfeスチール株式会社 Heat insulation method of pipeline
JP6508223B2 (en) 2015-01-27 2019-05-08 日立化成株式会社 Method of manufacturing airgel laminate and airgel lamination roll
KR102461577B1 (en) 2017-07-17 2022-11-01 삼성에스디아이 주식회사 Secondary Battery Module
CN113512875A (en) * 2020-03-27 2021-10-19 江苏泛亚微透科技股份有限公司 Silicon dioxide aerogel ceramic fiber cloth composite material thin plate for electric vehicle storage battery, heat insulation pad product and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521204B1 (en) * 2000-07-27 2003-02-18 General Motors Corporation Method for operating a combination partial oxidation and steam reforming fuel processor
US20030134161A1 (en) * 2001-09-20 2003-07-17 Gore Makarand P. Protective container with preventative agent therein
KR100570756B1 (en) * 2004-03-29 2006-04-12 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having thereof
JP2008016264A (en) * 2006-07-04 2008-01-24 Mitsubishi Heavy Ind Ltd Heat insulation structure, and fuel cell system

Also Published As

Publication number Publication date
JP2010033745A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5105288B2 (en) Insulation system for fuel cell
JP6463203B2 (en) Electrochemical element, electrochemical module including the same, electrochemical device and energy system
TW535321B (en) Energy system for producing at least one of electricity, chemical stock, and a conditioned thermal medium
JP2012124134A (en) Structure of fuel cell
JP6139231B2 (en) Solid oxide electrochemical cell stack structure and hydrogen power storage system
JP6749125B2 (en) Cell unit, electrochemical module, electrochemical device and energy system
JP2008251507A (en) Solid oxide fuel cell
WO2016199223A1 (en) Solid-oxide fuel cell
JP6839926B2 (en) Electrochemical modules, electrochemical equipment and energy systems
JP2003002602A (en) Fuel reforming device
KR20220158083A (en) Electrochemical element, electrochemical module, electrochemical device, and energy system
JP4297104B2 (en) Solid oxide fuel cell
JP5116182B1 (en) Fuel cell structure
JP5726023B2 (en) Solid oxide fuel cell, cell stack device, fuel cell module and fuel cell device
JP5017536B2 (en) Insulation system for fuel cell
JP5501882B2 (en) Solid oxide fuel cell and method for producing the same
JP2009245627A (en) Solid oxide fuel cell
JP6277808B2 (en) Solid oxide fuel cell stack, solid oxide fuel cell module, and solid oxide fuel cell system
WO2009119106A1 (en) Solid oxide fuel cell
JP6973622B2 (en) Solid oxide fuel cell
JP5940470B2 (en) FUEL CELL MODULE AND FUEL CELL SYSTEM INCLUDING THE SAME
JP5415140B2 (en) Fuel cell module
JP4288919B2 (en) Fuel cell system
JP2017174545A (en) Solid oxide type fuel battery stack, manufacturing method thereof, solid oxide type fuel battery module and solid oxide type fuel battery system
JP2005294152A (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5105288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20211012

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250