JP5105228B2 - Induction heat treatment equipment - Google Patents

Induction heat treatment equipment Download PDF

Info

Publication number
JP5105228B2
JP5105228B2 JP2007040032A JP2007040032A JP5105228B2 JP 5105228 B2 JP5105228 B2 JP 5105228B2 JP 2007040032 A JP2007040032 A JP 2007040032A JP 2007040032 A JP2007040032 A JP 2007040032A JP 5105228 B2 JP5105228 B2 JP 5105228B2
Authority
JP
Japan
Prior art keywords
induction heating
workpiece
heating coil
ring body
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007040032A
Other languages
Japanese (ja)
Other versions
JP2008202099A5 (en
JP2008202099A (en
Inventor
正幸 小松
守 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2007040032A priority Critical patent/JP5105228B2/en
Publication of JP2008202099A publication Critical patent/JP2008202099A/en
Publication of JP2008202099A5 publication Critical patent/JP2008202099A5/ja
Application granted granted Critical
Publication of JP5105228B2 publication Critical patent/JP5105228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は高周波熱処理装置に係り、さらに詳しくは、被加工物の被加熱局部に近接し高周波誘導加熱を行う際に、被加工物の加熱に伴う寸法変化を正確に測定し、誘導加熱コイルと被加工物との距離を一定に保持して熱処理ができる高周波熱処理装置に関するものである。   The present invention relates to a high-frequency heat treatment apparatus. More specifically, when high-frequency induction heating is performed in the vicinity of a heated portion of a workpiece, the dimensional change accompanying the heating of the workpiece is accurately measured, and an induction heating coil and The present invention relates to a high-frequency heat treatment apparatus capable of performing heat treatment while maintaining a constant distance from a workpiece.

例えば、コンクリートミキサー車に備えられる大口径リング体である内歯歯車などには高周波誘導加熱による熱処理が施されている。この内歯歯車の歯面に硬度付与や耐摩耗性を保有させるために、複数の誘導加熱コイルを内歯歯車の内側に配置し、各誘導加熱コイルを1つ置きの歯と歯の谷間に近接状態に位置して高周波誘導加熱を行う。加熱を終了すると、各誘導加熱コイルを干渉しない位置に離れさせてから内歯歯車を一定角度回転させて停止し、再び各誘導加熱コイルを歯と歯の谷間に近接状態に位置して高周波誘導加熱を行う、ということを反復し、内歯歯車を2回転させて全部の歯面を例えば1000℃に加熱し、その後急冷することで熱処理している。このとき、誘導加熱コイルと歯面とのギャップを一定に保って高周波誘導加熱を均一に行えるようにする工夫がなされている(特許文献1参照)。しかし、この加熱方法によれば、処理時間が極めて多くかかる。   For example, heat treatment by high frequency induction heating is applied to an internal gear that is a large-diameter ring body provided in a concrete mixer truck. In order to impart hardness and wear resistance to the tooth surface of the internal gear, a plurality of induction heating coils are arranged inside the internal gear, and each induction heating coil is placed between every other tooth and tooth valley. High frequency induction heating is performed in the proximity state. When heating is finished, each induction heating coil is moved to a position where it does not interfere, and then the internal gear is rotated by a fixed angle to stop it. Heating is repeated, and the internal gear is rotated twice to heat all the tooth surfaces to, for example, 1000 ° C., and then rapidly cooled to perform heat treatment. At this time, a device has been devised so that high-frequency induction heating can be performed uniformly while keeping the gap between the induction heating coil and the tooth surface constant (see Patent Document 1). However, this heating method requires a very long processing time.

そこで、処理時間の短縮化のため、内歯歯車の外周面を一周して断面が半円形状であるレース溝を設け、このレース溝を被加熱局部として円弧状の誘導加熱コイルを近接して高周波誘導加熱を行い、その後急冷するようにした大口径リング体の高周波熱処理装置が開発され実用化されている。   Therefore, in order to shorten the processing time, a race groove having a semicircular cross section is provided around the outer peripheral surface of the internal gear, and the arc-shaped induction heating coil is provided close to the race groove as a heated portion. A high-frequency heat treatment apparatus for large-diameter ring bodies that has been subjected to high-frequency induction heating and then rapidly cooled has been developed and put into practical use.

上記熱処理装置では、外周が円周面であってこの円周面を一周する被加熱局部を該円周面に有する大口径リング体をテーブル上に載置し、略半円リング体形状の一対の誘導加熱コイルを大口径リング体の両側の待機位置から大口径リング体を挟むように接近移動し、上記一対の誘導加熱コイルを前記被加熱局部に近接して高周波誘導加熱を行う。この加熱方式によれば、処理時間は短縮されるが、一対の誘導加熱コイルが完全な半円を合体させて円となって被加熱局部に近接する状態ではないので、一方の誘導加熱コイルの端部と他方の誘導加熱コイルの端部との間における高周波誘導加熱が不足し、この部分の焼入れが十分ではないという不具合がある。   In the heat treatment apparatus, a large-diameter ring body having an outer periphery on a circumferential surface and a heated local portion that goes around the circumferential surface on the circumferential surface is placed on a table, and a pair of substantially semicircular ring body shapes is placed. The induction heating coils are moved closer to each other so as to sandwich the large-diameter ring body from the standby positions on both sides of the large-diameter ring body, and the pair of induction heating coils are brought close to the heated local portion to perform high-frequency induction heating. According to this heating method, the processing time is shortened, but the pair of induction heating coils are not in a state of being combined with a complete semicircle into a circle and being close to the heated local part. There is a problem that high-frequency induction heating is insufficient between the end portion and the end portion of the other induction heating coil, and this portion is not sufficiently quenched.

特許文献2には、大口径リング体を回転させつつ高周波誘導焼入れを行う方法が開示されている。大口径リング体の高周波誘導焼入れは、外周が円周面であってこの円周面を一周する被加熱局部を該円周面に有する大口径リング体を回転テーブル上に載置して行われ、焼入れ前に大口径リング体を1回転させて、大口径リング体の触れ回りを測定して数値データを記憶している。   Patent Document 2 discloses a method of performing induction hardening while rotating a large-diameter ring body. High-frequency induction quenching of a large-diameter ring body is performed by placing a large-diameter ring body on the rotary table, the outer periphery of which has a circumferential surface and a heated local portion that goes around the circumferential surface on the circumferential surface. Before the quenching, the large-diameter ring body is rotated once, and the contact around the large-diameter ring body is measured to store numerical data.

この場合、2つの接触式距離センサの接触子を大口径リング体の円周面とレース溝底面に接触させ、この状態で大口径リング体を回転させて、両接触子の変位の合成から軌跡を対応する軸上変位として分解して計測して位置データとし、この結果に基づいて適正なコイルギャップを保持している。   In this case, the contacts of the two contact-type distance sensors are brought into contact with the circumferential surface of the large-diameter ring body and the bottom surface of the race groove, and the large-diameter ring body is rotated in this state, and the locus is determined from the combination of the displacements of both contacts. Is decomposed and measured as a corresponding on-axis displacement to obtain position data, and an appropriate coil gap is held based on the result.

次いで、円弧状の一対の誘導加熱コイルを大口径リング体の両側の待機位置から大口径リング体を挟むように接近移動し、一対の誘導加熱コイルを前記被加熱局部に記憶した数値データに基づいて近接させる。   Next, the pair of arc-shaped induction heating coils are moved closer to each other so as to sandwich the large-diameter ring body from the standby positions on both sides of the large-diameter ring body, and the pair of induction heating coils are based on the numerical data stored in the heated local portion. Close.

続いて、大口径リング体を回転すると共に、記憶した数値データに基づいて誘導加熱コイルと被加熱局部とのギャップを一定に保つように一対の誘導加熱コイルを変動させ、一対の誘導加熱コイルに高周波誘導電流を給電して高周波誘導加熱を行うものである。   Subsequently, while rotating the large-diameter ring body, the pair of induction heating coils is changed so as to keep the gap between the induction heating coil and the heated local portion constant based on the stored numerical data, and the pair of induction heating coils High frequency induction heating is performed by feeding a high frequency induction current.

特開昭61−99623号公報JP 61-99623 A 特開昭61−106709号公報JP-A-61-106709

しかしながら、特許文献2に開示されている大口径リング体を回転させつつ高周波誘導焼入れを行う方法は、高周波誘導加熱を行う前に、2つの接触式距離センサの接触子を大口径リング体の円周面とレース溝底面に接触させてギャップ測定を行うものであり、大口径リング体の熱膨張を考慮に入れていないので、以下のような不都合がある。   However, the method of performing induction induction hardening while rotating the large-diameter ring body disclosed in Patent Document 2 is that the contacts of the two contact-type distance sensors are connected to the circle of the large-diameter ring body before performing high-frequency induction heating. The gap measurement is performed by contacting the peripheral surface and the bottom surface of the race groove, and since the thermal expansion of the large-diameter ring body is not taken into consideration, there are the following disadvantages.

すなわち、例えば直径1200mmの大口径リング体に焼入れを行うとき、円弧状などの形状を有する誘導加熱コイルにより加熱される被加熱局部は1000℃前後になり、被加熱局部から最も離れた位置でも約300℃程度になる。このため、被加熱局部の焼入れ時の大口径リング体の熱膨張の値が大きくなる。大口径リング体の材質を鉄系材料とすると、線膨張係数は約12×10−6であるから、直径1200mmの大口径リング体は、被加熱局部の近傍で比較的速く温度上昇して約300℃になり、大口径リング体中心部も次第に温度上昇して約300℃になる。直径1200mmの大口径リング体の全体が約300℃になると、直径で約4mm程度(半径で約2mm程度)膨張する。従って、大口径リング体と誘導加熱コイルとの間のギャップ設定値は2mm程度なので、加熱時に大口径リング体と誘導加熱コイルが接触する可能性があるため、コイル温度が上昇するにつれて、誘導加熱コイルを後退させる必要があることが分かった。   That is, for example, when quenching a large-diameter ring body having a diameter of 1200 mm, the heated local portion heated by the induction heating coil having a shape such as an arc shape is about 1000 ° C., and even at the position farthest from the heated local portion It becomes about 300 ° C. For this reason, the value of the thermal expansion of the large-diameter ring body at the time of quenching of the heated portion is increased. When the material of the large-diameter ring body is an iron-based material, the linear expansion coefficient is about 12 × 10 −6, so the large-diameter ring body having a diameter of 1200 mm rises relatively quickly in the vicinity of the heated portion and is about The temperature of the large-diameter ring body gradually increases to about 300 ° C. at 300 ° C. When the entire large-diameter ring body having a diameter of 1200 mm reaches about 300 ° C., the diameter expands by about 4 mm (about 2 mm by radius). Therefore, since the gap setting value between the large-diameter ring body and the induction heating coil is about 2 mm, there is a possibility that the large-diameter ring body and the induction heating coil come into contact with each other at the time of heating. It turns out that the coil needs to be retracted.

特許文献2に開示されているギャップ測定方法は、大口径リング体の熱膨張時に接触子が大口径リング体に接触して該接触子に過大な負荷がかかり、接触子並びに計測器を破損させてしまう可能性もある。また、接触子の先端形状も小さいR形状となっているため、膨張しながら大口径リング体が回転する場合、その先端部分で大口径リング体を傷付けてしまうことも考えられる。さらに、接触子と大口径リング体の接触力が規定されていないため、大口径リング体への押し付け力が強いと大口径リング体に傷を付けることもあるし、弱いと膨熱張の状態によって大口径リング体から離れてしまい、誤測定の原因となる。   In the gap measuring method disclosed in Patent Document 2, when the large-diameter ring body is thermally expanded, the contactor contacts the large-diameter ring body, an excessive load is applied to the contactor, and the contactor and the measuring instrument are damaged. There is also a possibility that. Moreover, since the tip shape of the contactor is also a small R shape, when the large-diameter ring body rotates while expanding, it is conceivable that the large-diameter ring body is damaged at the tip portion. In addition, since the contact force between the contact and the large-diameter ring body is not specified, if the pressing force against the large-diameter ring body is strong, the large-diameter ring body may be damaged, and if it is weak, it is in a state of expansion and thermal expansion. Will leave the large-diameter ring body and cause erroneous measurement.

従って、高周波誘導加熱を行っている間、被加工物に接触子が傷を付けることがなく、さらに、被加工物の高温の影響を受けないで耐熱温度に限界がある距離センサを正常に機能させることができる測定装置が必要であることが分かった。   Therefore, during high-frequency induction heating, the contact is not damaged on the work piece, and the distance sensor that has a limited heat resistance without being affected by the high temperature of the work piece functions normally. It has been found that there is a need for a measuring device that can be made to operate.

本発明は、上記課題に鑑み、高周波誘導加熱を行っている間中、誘導加熱コイルにより加熱される被加熱局部の熱膨張変位の測定を正確に行うことができ、被加工物の温度上昇があっても誘導加熱コイルと被加工物との間隔を一定に保つことができる、高周波熱処理装置を提供することを目的としている。   In view of the above problems, the present invention can accurately measure the thermal expansion displacement of a heated local portion heated by an induction heating coil during high-frequency induction heating, and the temperature rise of the workpiece Even if it exists, it aims at providing the high frequency heat processing apparatus which can keep the space | interval of an induction heating coil and a workpiece constant.

上記目的を達成するため、本発明の高周波熱処理装置は、被加工物の被加熱局部を駆動する被加工物駆動手段と、被加工物を誘導加熱する誘導加熱コイルと、誘導加熱コイルを支持し移動する誘導加熱コイル支持移動手段と、被加工物の熱膨張変位を測定する熱膨張変位測定手段と、を備え、熱膨張変位測定手段は、誘導加熱コイルとは離隔した位置で被加工物に対向配置され、被加工物の被加熱局部の近傍に当接する接触子と距離センサと、距離センサが耐熱温度以下の熱伝導となるように接触子と距離センサの変位検出軸とを連結する軸と、を有し、誘導加熱コイル支持移動手段は、距離センサにより測定された熱膨張変位に応じて、誘導加熱コイルを被加工物から離隔する方向に移動させることを特徴とする。
In order to achieve the above object, the high-frequency heat treatment apparatus of the present invention supports a workpiece driving means for driving a heated portion of a workpiece, an induction heating coil for induction heating of the workpiece, and an induction heating coil. an induction heating coil support moving means for moving, and a thermal expansion displacement measuring means for measuring the thermal expansion displacement of the workpiece, the thermal expansion displacement measuring means, the workpiece in a position away from the induction heating coil A contact that is disposed oppositely and that contacts the vicinity of the heated portion of the workpiece , a distance sensor, and the contact and the displacement detection shaft of the distance sensor are coupled so that the distance sensor has a heat conduction temperature lower than the heat resistance temperature. And the induction heating coil support moving means moves the induction heating coil in a direction away from the workpiece in accordance with the thermal expansion displacement measured by the distance sensor .

上記構成によれば、距離センサにより被加工物の熱膨張による変位を常時検出して、高周波誘導加熱を行うことができる。
また、熱膨張変位測定手段により検出した熱膨張変位に応じて、誘導加熱コイルを被加工物から離隔する方向に随時移動しながら高周波誘導加熱を行うことができる。したがって、誘導加熱コイルと被加工物との接触を防止することができる。
According to the said structure, the displacement by the thermal expansion of a workpiece can always be detected with a distance sensor, and high frequency induction heating can be performed.
Further, high-frequency induction heating can be performed while the induction heating coil is moved in the direction away from the workpiece as needed according to the thermal expansion displacement detected by the thermal expansion displacement measuring means. Therefore, contact between the induction heating coil and the workpiece can be prevented.

接触子と変位検出軸とを連結する軸の外側には、接触子を付勢する付勢手段が取り付けられている。このように接触子を付勢することで、接触子を被加工物に接触させることができる。しかも、付勢手段を所定の長さにすれば、放熱作用を大きくでき、高温に熱せられる被加工物からの熱伝導の大きく低減することができる。したがって、耐熱温度が100℃以下であるような距離センサを正常に機能させることができる。
Biasing means for biasing the contact is attached to the outside of the shaft connecting the contact and the displacement detection shaft . By urging the contact in this way, the contact can be brought into contact with the workpiece. Moreover, if the urging means has a predetermined length, the heat dissipation action can be increased, and the heat conduction from the workpiece heated to a high temperature can be greatly reduced. Therefore, a distance sensor whose heat-resistant temperature is 100 ° C. or lower can be normally functioned.

上記熱膨張変位測定手段の接触子が耐熱性ベアリングであると、被加工物とベアリングが確実に接触するが、被加工物が熱膨張して被加工物と耐熱性ベアリングとの圧力が増しても、被加工物に傷を付ける惧れがない。   If the contact of the thermal expansion displacement measuring means is a heat-resistant bearing, the workpiece and the bearing are in reliable contact, but the workpiece is thermally expanded and the pressure between the workpiece and the heat-resistant bearing increases. However, there is no risk of scratching the workpiece.

本発明の高周波熱処理装置がさらに演算手段を備え、この演算手段が、高周波誘導加熱を行う前に、距離センサの接触子が被加工物に接触して付勢手段が一定の長さに圧縮されたときに距離センサの検出信号を入力して基準値とするように構成されていると、高周波誘導加熱を開始した時点より被加工物体の熱膨張に対応したギャップ変動を測定することができる。   The high-frequency heat treatment apparatus of the present invention further includes a calculating means, and before the high-frequency induction heating is performed, the calculating means contacts the work piece of the distance sensor and the urging means is compressed to a certain length. When the detection signal of the distance sensor is inputted to be a reference value at this time, the gap variation corresponding to the thermal expansion of the workpiece can be measured from the time when the high frequency induction heating is started.

被加工物は外周に円周面を有し、該被加工物の被加熱局部が円周面を一周するように設けられ、該被加熱局部を、被加工物駆動手段で回転駆動しつつ円弧状の誘導加熱コイルにより誘導加熱することが好ましい。The workpiece has a circumferential surface on the outer periphery, and the heated local portion of the workpiece is provided so as to go around the circumferential surface, and the heated local portion is rotated while being rotated by the workpiece driving means. It is preferable to perform induction heating with an arc-shaped induction heating coil.

本発明によれば、距離センサの耐熱温度以下の熱伝導となるように耐熱性接触子と距離センサの変位検出軸とが連結された熱膨張変位測定手段を採用したので、距離センサが正常に機能することが保障され、高周波誘導加熱を行っている間中、誘導加熱コイルにより加熱される被加熱局部近傍の熱膨張変位の測定を正確に行うことができると共に、被加工物の温度が上昇するにつれて、物誘導加熱コイルを、被加工物との間のギャップを一定に保つように後退させることができる。したがって、被加熱局部の対する高周波誘導加熱による熱処理を、高速に、かつ、ムラなく行うことができる。   According to the present invention, since the thermal expansion displacement measuring means in which the heat-resistant contactor and the displacement detection shaft of the distance sensor are connected so that the heat conduction is less than or equal to the heat resistance temperature of the distance sensor is adopted, the distance sensor can be operated normally. While functioning and high-frequency induction heating, it is possible to accurately measure the thermal expansion displacement in the vicinity of the heated local area heated by the induction heating coil and to increase the temperature of the workpiece. In doing so, the object induction heating coil can be retracted to maintain a constant gap with the workpiece. Therefore, the heat treatment by high frequency induction heating for the heated portion can be performed at high speed and without unevenness.

以下、本発明の実施の形態を図面を参照して詳細に説明する。各図において同一又は対応する部材には同一符号を用いる。
図1は本実施形態に係る高周波熱処理装置の概略平面図であり、図2は、図1のY−Y方向に沿って切断した状態の、被加工物と熱膨張変位測定手段との配置を説明するための部分側断面図である。
図1及び図2に示すように、本発明に係る実施形態の高周波熱処理装置10は、被加工物駆動手段11と、被加工物20を誘導加熱する誘導加熱コイル15と、誘導加熱コイル15を支持し移動する誘導加熱コイル支持移動手段14と、被加工物の膨張変位を測定する熱膨張変位測定手段40と、高周波熱処理装置の制御部30と、を備えて構成されている。熱膨張変位測定手段40は、被加工物20に対向する位置に誘導加熱コイル15とは離隔して配置されている。なお、図示の場合には、熱膨張変位測定手段40は一つだけ設けられているが、被加工物20に応じて複数の熱膨張変位測定手段40を設けてもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same or corresponding members are denoted by the same reference numerals.
FIG. 1 is a schematic plan view of the high-frequency heat treatment apparatus according to the present embodiment, and FIG. 2 shows the arrangement of the workpiece and the thermal expansion displacement measuring means in a state cut along the YY direction of FIG. It is a fragmentary sectional side view for demonstrating.
As shown in FIGS. 1 and 2, the high-frequency heat treatment apparatus 10 according to the embodiment of the present invention includes a workpiece driving means 11, an induction heating coil 15 that induction-heats the workpiece 20, and an induction heating coil 15. The induction heating coil support moving means 14 that supports and moves, the thermal expansion displacement measuring means 40 that measures the expansion displacement of the workpiece, and the control unit 30 of the high-frequency heat treatment apparatus are provided. The thermal expansion displacement measuring means 40 is arranged at a position facing the workpiece 20 and separated from the induction heating coil 15. In the illustrated case, only one thermal expansion displacement measuring means 40 is provided, but a plurality of thermal expansion displacement measuring means 40 may be provided according to the workpiece 20.

図2に示すように、熱膨張変位測定手段40は、距離センサ41と演算手段60とを具備してなる。距離センサ41は、被加工物20に接触して、被加工物の高周波誘導加熱に伴う寸法変位を測定できればよい。このような距離センサ41としては、例えば接触式距離センサを用いることができる。   As shown in FIG. 2, the thermal expansion displacement measuring means 40 includes a distance sensor 41 and a calculating means 60. The distance sensor 41 may be in contact with the workpiece 20 and measure the dimensional displacement accompanying the high frequency induction heating of the workpiece. As such a distance sensor 41, for example, a contact type distance sensor can be used.

制御部30は、高周波熱処理装置10の全ての駆動手段を制御する制御部である。この制御部30は、回転軸11Aの昇降と回転の動作、内径チャック手段13a〜13dのチャックとチャック解除の動作、図示しない高周波電源から誘導加熱コイル15への高周波通電と遮電、可動テーブル装置14A,14Bの移動、コイル用冷却液循環装置への指令、さらには焼入れ用冷却液の噴射や噴射停止等の諸々の制御を行う。   The control unit 30 is a control unit that controls all driving means of the high-frequency heat treatment apparatus 10. The controller 30 moves the rotating shaft 11A up and down, rotates the chuck of the inner diameter chuck means 13a to 13d, and releases the chuck, performs high-frequency energization and electric shielding from a high-frequency power source (not shown) to the induction heating coil 15, and a movable table device. Various controls such as movement of 14A and 14B, instruction to the coil coolant circulating apparatus, and injection and stop of quenching coolant are performed.

図3は本発明の実施形態に係る熱膨張変位測定手段を示す側面図である。図3に示すように、熱膨張変位測定手段40は、耐熱性接触子43と距離センサ41とを有し、かつ、距離センサ41の耐熱温度以下の熱伝導となるように耐熱性の接触子43と距離センサ41の変位検出軸41aとが連結されてなる。詳しくは、熱膨張変位測定手段40は、距離センサ41と、ボールスプライン42と、耐熱性の接触子43と、付勢手段44と、を具備して構成されている。   FIG. 3 is a side view showing the thermal expansion displacement measuring means according to the embodiment of the present invention. As shown in FIG. 3, the thermal expansion displacement measuring means 40 includes a heat-resistant contact 43 and a distance sensor 41, and the heat-resistant contact so that the heat conduction is less than the heat-resistant temperature of the distance sensor 41. 43 and the displacement detection shaft 41a of the distance sensor 41 are connected. Specifically, the thermal expansion displacement measuring means 40 includes a distance sensor 41, a ball spline 42, a heat-resistant contact 43, and an urging means 44.

耐熱性の接触子43としては、耐熱性ベアリングを用いることができる。この構成によれば、被加工物20と耐熱性ベアリング43が確実に接触する。したがって、被加工物20が熱膨張して被加工物20と耐熱性ベアリング43との圧力が増しても、被加工物に傷を付ける惧れがなくなる。   A heat-resistant bearing can be used as the heat-resistant contact 43. According to this configuration, the workpiece 20 and the heat-resistant bearing 43 are reliably in contact with each other. Therefore, even if the workpiece 20 is thermally expanded and the pressure between the workpiece 20 and the heat-resistant bearing 43 is increased, there is no possibility of scratching the workpiece.

付勢手段44としては、例えば各種のバネを用いることができ、圧縮コイルばね等が挙げられる。接触子43を付勢して被加工物20に接触させることができる。付勢手段44の長さを調節して熱伝導度に応じた所定の長さにすれば、この長さ部分における放熱作用が大きくなり、高温に熱せられる被加工物からの熱伝導を著しく低減することができる。これにより、距離センサ41のセンサ部の耐熱温度以下とすることができる。例えば、耐熱温度が100℃以下である接触式距離センサ41を正常に機能させることができる。   As the urging means 44, various springs can be used, for example, a compression coil spring or the like. The contact 43 can be urged to contact the workpiece 20. If the length of the urging means 44 is adjusted to a predetermined length according to the thermal conductivity, the heat radiation action in this length portion increases, and the heat conduction from the workpiece heated to a high temperature is remarkably reduced. can do. Thereby, it can be set to below the heat-resistant temperature of the sensor part of distance sensor 41. For example, the contact-type distance sensor 41 having a heat-resistant temperature of 100 ° C. or less can function normally.

熱膨張変位測定手段40は、接触子43を付勢手段44で付勢し、接触子43を、被加工物20の被加熱局部22の高周波誘導加熱が行われる部分の近傍に当接させることができる。これにより、距離センサ41によって被加工物の熱膨張による変位を常時検出して高周波誘導加熱を行うことができる。   The thermal expansion displacement measuring means 40 urges the contactor 43 by the urging means 44 and brings the contactor 43 into contact with the vicinity of the portion of the workpiece 20 to be heated by high frequency induction heating of the workpiece 20. Can do. Thereby, the distance sensor 41 can always detect the displacement due to the thermal expansion of the workpiece and perform high-frequency induction heating.

演算手段60には、距離センサ41の検出信号が入力される。高周波誘導加熱を行う前に、距離センサ41の接触子43が被加工物20に接触して付勢手段44が一定の長さに圧縮されたときに、距離センサ41の検出信号を入力して基準値とするように構成されている。したがって、高周波誘導加熱を開始した時点より被加工物20の熱膨張に対応したギャップ変動を測定することができる。
この場合、演算手段60は高周波誘導加熱を開始する前の距離センサ41の検出信号を入力して基準値としたが、基準値をゼロ点に設定する場合も含まれる。
A detection signal from the distance sensor 41 is input to the calculation means 60. Before the high frequency induction heating is performed, when the contact 43 of the distance sensor 41 comes into contact with the workpiece 20 and the urging means 44 is compressed to a certain length, the detection signal of the distance sensor 41 is input. It is comprised so that it may become a reference value. Therefore, the gap fluctuation corresponding to the thermal expansion of the workpiece 20 can be measured from the time when the high frequency induction heating is started.
In this case, the calculation means 60 inputs the detection signal of the distance sensor 41 before the start of the high frequency induction heating and sets it as the reference value.

誘導加熱コイル支持移動手段14は、誘導加熱コイル15と被加工物20の被加熱局部22との間隔(以下、適宜に、ギャップとも称する。)を高周波誘導加熱の開始時から終了時まで略一定に保つように、熱膨張変位測定手段40により検出した熱膨張変位に応じて、誘導加熱コイル15を被加工物20から離隔する方向に移動するように構成されている。   The induction heating coil support moving means 14 has a substantially constant interval between the induction heating coil 15 and the heated local portion 22 of the workpiece 20 (hereinafter also referred to as a gap as appropriate) from the start to the end of the high frequency induction heating. The induction heating coil 15 is configured to move in a direction away from the workpiece 20 in accordance with the thermal expansion displacement detected by the thermal expansion displacement measuring means 40.

本実施形態の高周波熱処理装置10によれば、距離センサ41の耐熱温度以下の熱伝導となるように、耐熱性接触子43と距離センサの変位検出軸41aとが連結された熱膨張変位測定手段40を採用したので、距離センサ41が正常に機能することができる。したがって、高周波誘導加熱を行っている間中、誘導加熱コイル15により加熱される被加工物20の被加熱局部22における熱膨張変位の測定を正確に行うことができると共に、被加工物20の温度が上昇するにつれて、物誘導加熱コイル15を、被加工物20との間のギャップを一定に保つように後退させることができる。このため、被加工物20の被加熱局部22に対する高周波誘導加熱による熱処理を、高速に、かつ、ムラなく行うことができる。
ここで、高周波誘導加熱による熱処理は、加熱後急速冷却する焼入れ、加熱後の冷却速度を変えて焼戻しや焼鈍する場合も含む。
According to the high frequency heat treatment apparatus 10 of the present embodiment, the thermal expansion displacement measuring means in which the heat resistant contactor 43 and the displacement detection shaft 41a of the distance sensor are connected so that the heat conduction is not more than the heat resistant temperature of the distance sensor 41. Since 40 is employed, the distance sensor 41 can function normally. Therefore, while performing high-frequency induction heating, it is possible to accurately measure the thermal expansion displacement in the heated local portion 22 of the workpiece 20 heated by the induction heating coil 15 and to measure the temperature of the workpiece 20. As the temperature rises, the object induction heating coil 15 can be retracted to keep the gap between the workpiece 20 constant. For this reason, the heat processing by high frequency induction heating with respect to the to-be-heated local part 22 of the to-be-processed object 20 can be performed at high speed and without unevenness.
Here, the heat treatment by high frequency induction heating includes quenching for rapid cooling after heating, and tempering and annealing by changing the cooling rate after heating.

次に、本発明の上記実施形態に係る高周波熱処理装置を用いて、被加工物20としてのリング体に焼入れを行う場合について説明する。
図1、図2に示すように、上記高周波誘導加熱処理装置10を用いて、円周面(外周面)21を有するリング体20を回転させて円周面21に形成された被加熱局部22に高周波誘導加熱処理を行う。リング体20は、一例として鋼製の歯車で、精密円筒加工された円環体で成っており、円周面21の上半部を一周する断面形状が半円状の凹部である被加熱局部22を有している。
Next, the case where the ring body as the workpiece 20 is quenched using the high-frequency heat treatment apparatus according to the embodiment of the present invention will be described.
As shown in FIG. 1 and FIG. 2, a heated local portion 22 formed on the circumferential surface 21 by rotating a ring body 20 having a circumferential surface (outer circumferential surface) 21 using the high-frequency induction heat treatment apparatus 10. High frequency induction heat treatment is performed. The ring body 20 is a steel gear as an example, and is formed of an annular body that is precision-cylindrically processed. The heated body is a concave portion having a semicircular sectional shape that goes around the upper half of the circumferential surface 21. 22.

高周波熱処理装置10は、被加工物駆動手段11として、リング体回転手段を備えている。リング体回転手段11は、昇降手段(図示しない)及び回転駆動手段(図示しない)により昇降自在な回転軸11Aと、回転軸11Aに設けられた円形の回転テーブル12と、回転テーブル12の上面の外周部に設けられた内径チャック手段13a〜13hと、を具備してなる。   The high-frequency heat treatment apparatus 10 includes ring body rotating means as the workpiece driving means 11. The ring body rotating means 11 includes a rotary shaft 11A that can be moved up and down by a lifting means (not shown) and a rotation driving means (not shown), a circular rotary table 12 provided on the rotary shaft 11A, and an upper surface of the rotary table 12. And inner diameter chuck means 13a to 13h provided on the outer peripheral portion.

上記リング体回転手段は、高周波誘導加熱時には、回転軸11Aを上昇させリング体20を高所に位置させて回転軸11Aを回転させ、また高周波誘導加熱を終了すると、回転軸11Aを回転させたままで回転軸11Aを上昇させリング体20を低所の冷却位置に位置させるように構成されている。   When the high frequency induction heating is performed, the ring body rotating means raises the rotary shaft 11A and positions the ring body 20 at a high position to rotate the rotary shaft 11A. When the high frequency induction heating is completed, the ring body rotating means rotates the rotary shaft 11A. The rotary shaft 11A is lifted up to position the ring body 20 at a low cooling position.

高周波熱処理装置10は、上述したリング体回転手段11の両側に誘導加熱コイル15を支持し移動する誘導加熱コイル支持移動手段14を備えている。この誘導加熱コイル支持移動手段14は、可動テーブル装置14A,14Bからなる。可動テーブル装置14A,14Bは、直動ガイド14aを有する基台14bと、直動ガイド14aに係合する可動スタンド14cと、可動スタンド14cに支持されるテーブル14dと、基台14bと可動スタンド14cとの間に設けられ可動スタンド14cを往復動させる往復動手段(図示しない)と、を具備してなる。可動テーブル装置14A,14Bは、可動スタンド14cを例えば0.2mm単位で位置決め駆動することができる。   The high-frequency heat treatment apparatus 10 includes induction heating coil support moving means 14 that supports and moves the induction heating coil 15 on both sides of the ring body rotating means 11 described above. The induction heating coil support moving means 14 includes movable table devices 14A and 14B. The movable table devices 14A and 14B include a base 14b having a linear motion guide 14a, a movable stand 14c engaged with the linear motion guide 14a, a table 14d supported by the movable stand 14c, a base 14b and a movable stand 14c. And reciprocating means (not shown) for reciprocating the movable stand 14c. The movable table devices 14A and 14B can position and drive the movable stand 14c in units of 0.2 mm, for example.

テーブル14d上には、誘導加熱コイルとして、円弧状の誘導加熱コイル15と、焼入れ用冷却液をリング体20の円周面21の被加熱局部22に噴射する複数の噴射ノズル16aを有する円弧状の噴射管16とを備えている。   On the table 14d, as an induction heating coil, an arcuate induction heating coil 15 and an arcuate shape having a plurality of injection nozzles 16a for injecting quenching coolant onto the heated local portion 22 of the circumferential surface 21 of the ring body 20 are provided. The injection pipe 16 is provided.

誘導加熱コイル15は、図示しない高周波電源と接続されていると共に、誘導加熱コイル15の内部に冷却水を通流させるコイル用冷却液循環装置(図示しない)と接続されている。   The induction heating coil 15 is connected to a high-frequency power source (not shown) and is connected to a coil coolant circulation device (not shown) that allows cooling water to flow through the induction heating coil 15.

噴射管16は、リング体20の円周面21の被加熱局部22に対して高周波誘導加熱を行い、例えば被加熱局部22が全周にわたり凡そ1000℃の温度に達して一定時間経過後に、回転軸11Aが回転したまま下降してリング体20が対向した低所位置に来ると、噴射ノズル16aから被加熱局部22に向けて勢いよく焼入れ用冷却液を噴射するようになっている。これにより、被加熱局部22の表面焼入れが行われる。   The injection tube 16 performs high-frequency induction heating on the heated local portion 22 on the circumferential surface 21 of the ring body 20. For example, the heated local portion 22 reaches a temperature of about 1000 ° C. over the entire circumference and rotates after a certain time has passed. When the shaft 11 </ b> A descends while rotating and comes to a low position where the ring body 20 faces, the quenching coolant is ejected vigorously from the injection nozzle 16 a toward the heated portion 22. Thereby, surface hardening of the to-be-heated local part 22 is performed.

高周波熱処理装置10は、リング体20を内径チャック手段13a〜13d、13e〜13hによりチャックさせるとき、またはチャック解除させるときには、可動スタンド14cを移動してテーブル15dをリング体20から離れた位置(待機位置)に位置させ、リング体20に対して誘導加熱コイル15と噴射管16とが干渉しないように構成されている。   When the ring body 20 is chucked by the inner diameter chuck means 13a to 13d and 13e to 13h, or the chuck is released, the high frequency heat treatment apparatus 10 moves the movable stand 14c and moves the table 15d away from the ring body 20 (standby). The induction heating coil 15 and the injection pipe 16 are configured not to interfere with the ring body 20.

高周波熱処理装置10は、内径チャック手段13a〜13d、13e〜13hによりチャックされるリング体20に対して高周波誘導加熱を行う時には、両側の可動スタンド14cをリング体20に接近移動させて、誘導加熱コイル15をリング体20の円周面21の被加熱局部22に侵入させ、例えば、2mmのギャップを保持する近接状態に位置させる。   When performing high frequency induction heating on the ring body 20 chucked by the inner diameter chuck means 13a to 13d and 13e to 13h, the high frequency heat treatment apparatus 10 moves the movable stands 14c on both sides closer to the ring body 20 to perform induction heating. The coil 15 is inserted into the heated local portion 22 of the circumferential surface 21 of the ring body 20 and is positioned in a proximity state that holds a gap of 2 mm, for example.

誘導加熱コイル15の下側の噴射管16,16は、リング体20が下降した時の該リング体20に近接した位置に設けられている。   The lower injection tubes 16 and 16 of the induction heating coil 15 are provided at positions close to the ring body 20 when the ring body 20 is lowered.

図2において、符号30は高周波熱処理装置10の全ての駆動手段を制御する制御部である。この制御部30は、回転軸11Aの昇降と回転の動作、内径チャック手段13a〜13dのチャックやチャック解除の動作、図示しない高周波電源から誘導加熱コイル15への高周波通電と遮電、可動テーブル装置14A,14Bの移動、コイル用冷却液循環装置への指令、及び焼入れ用冷却液の噴射や噴射停止等の諸々の制御を行う。   In FIG. 2, reference numeral 30 denotes a control unit that controls all driving means of the high-frequency heat treatment apparatus 10. The controller 30 moves the rotating shaft 11A up and down, rotates the chuck of the inner diameter chuck means 13a to 13d and releases the chuck, performs high-frequency energization and electric shielding from the high-frequency power source (not shown) to the induction heating coil 15, and a movable table device. Various controls such as the movement of 14A and 14B, the command to the coil coolant circulation device, and the injection and stop of quenching coolant are performed.

誘導加熱コイル15には、高周波発振器からの電力が供給される。その周波数は被加工物20の抵抗率や高周波の侵入深さである表皮厚み等を考慮した周波波数や被加工物20の大きさを考慮した電力が適宜に選択される。本発明における高周波発振器の周波数はkHz以上の周波数である。誘導加熱コイル15をリング体20の円周面21の被加熱局部22に位置させて高周波誘導加熱を行うと、被加熱局部22は所定温度に熱せられる。この温度が1000℃とした場合、高周波誘導加熱を行っている箇所の上側では300℃前後に熱せられ、下側では100℃前後に熱せられる。被加熱局部22から離れた位置では次第に高温度に昇温していき、リング体20の全体が300℃前後に熱せられると、リング体20の外径が、被加工物の熱膨張率にもよるが例えば4mm程大きく膨張する。   The induction heating coil 15 is supplied with power from a high frequency oscillator. As the frequency, the frequency wave number considering the resistivity of the workpiece 20 and the skin thickness, which is the penetration depth of the high frequency, and the power considering the size of the workpiece 20 are appropriately selected. The frequency of the high-frequency oscillator in the present invention is a frequency of kHz or more. When the induction heating coil 15 is positioned on the heated portion 22 of the circumferential surface 21 of the ring body 20 and high frequency induction heating is performed, the heated portion 22 is heated to a predetermined temperature. When this temperature is 1000 ° C., the upper side of the portion where high-frequency induction heating is performed is heated to about 300 ° C., and the lower side is heated to about 100 ° C. When the temperature of the ring body 20 is gradually raised to a high temperature at a position away from the heated portion 22 and the entire ring body 20 is heated to about 300 ° C., the outer diameter of the ring body 20 is also increased in the coefficient of thermal expansion of the workpiece. However, it expands by about 4 mm, for example.

この場合、誘導加熱コイル15を、膨張するリング体20に対して後退させないでいると、誘導加熱コイル15とリング体20とが干渉してしまうことになり、誘導加熱コイル15が損傷してしまうことになる。   In this case, if the induction heating coil 15 is not retracted with respect to the ring body 20 that expands, the induction heating coil 15 and the ring body 20 interfere with each other, and the induction heating coil 15 is damaged. It will be.

高周波誘導加熱を開始する前に誘導加熱コイル15と被加熱局部22とのギャップを適正な間隔、例えば上記寸法の2mmに保つように誘導加熱コイル15の位置を制御する。そして、高周波誘導加熱を開始したら終了するまでの間、リング体20が熱膨張しても、これに同調させて、誘導加熱コイル15も後退させるようにするために、熱膨張変位測定手段40が付設されている。   Before starting the high frequency induction heating, the position of the induction heating coil 15 is controlled so that the gap between the induction heating coil 15 and the heated local portion 22 is kept at an appropriate interval, for example, 2 mm of the above dimensions. Then, until the ring body 20 is thermally expanded from the start to the end of the high-frequency induction heating, the thermal expansion displacement measuring means 40 is synchronized with this so that the induction heating coil 15 is also retracted. It is attached.

図3を参照して熱膨張変位測定手段40の一例を説明する。
熱膨張変位測定手段40は、距離センサ41と、ボールスプライン42と、接触子43としての耐熱性のボールベアリングと、付勢手段として例えば圧縮コイルばね44を具備してなる。距離センサ41としては、接触式距離センサを用いることができる。
An example of the thermal expansion displacement measuring means 40 will be described with reference to FIG.
The thermal expansion displacement measuring means 40 includes a distance sensor 41, a ball spline 42, a heat-resistant ball bearing as a contact 43, and a compression coil spring 44 as an urging means. As the distance sensor 41, a contact type distance sensor can be used.

距離センサ41は、プレート45上にブラケット46により支持されている。ボールスプライン42において、プレート45上のボックスブラケット47によりボールスプライン本体42aが支持され、ボールスプライン軸42bが移動可能とされている。ボールスプライン軸42bの後端が接触式距離センサ41の変位検出軸41aの先端に接続されている。   The distance sensor 41 is supported on the plate 45 by a bracket 46. In the ball spline 42, the ball spline body 42a is supported by the box bracket 47 on the plate 45, and the ball spline shaft 42b is movable. The rear end of the ball spline shaft 42 b is connected to the tip of the displacement detection shaft 41 a of the contact type distance sensor 41.

ボールベアリング43は、例えば、SUS304のようなステンレス鋼からなる玉軸受を採用できる。ボールベアリング43は、ボールスプライン軸42bの先端側に取り付けたフォークブラケット48のフォーク部間に位置して、フォークブラケット48のフォーク部に設けた軸孔とベアリング内輪に頭部付きシャフト49を通し、頭部付きシャフト49のねじ部にナット50を締め付けることにより、ボールスプライン軸42bの先端側に回転自在に取り付けられている。   As the ball bearing 43, for example, a ball bearing made of stainless steel such as SUS304 can be adopted. The ball bearing 43 is positioned between the fork portions of the fork bracket 48 attached to the tip side of the ball spline shaft 42b, and the shaft 49 with a head is passed through the shaft hole provided in the fork portion of the fork bracket 48 and the bearing inner ring, A nut 50 is fastened to the threaded portion of the head-equipped shaft 49, so that the ball spline shaft 42b is rotatably attached to the tip end side.

圧縮コイルばね44は、ボックスブラケット47とフォークブラケット48との間に位置してボールスプライン軸42bの外側に取り巻いて取り付けられている。なお、ボックスブラケット47は、図示していないが、水冷されるようにしてもよい。熱伝導を遮断して接触子43と変位量検出部とを連結する連結部として、ボックスブラケット47を水冷する構成以外に、遮熱材よりなる連結部を用いても良い。距離センサ41は、変位検出軸41aを押し込まれる方向に変位検出量を大きくなるように検出する。   The compression coil spring 44 is positioned between the box bracket 47 and the fork bracket 48 and is attached to the outside of the ball spline shaft 42b. The box bracket 47 is not shown, but may be water cooled. In addition to the configuration in which the box bracket 47 is water-cooled, a connecting portion made of a heat shielding material may be used as a connecting portion that blocks the heat conduction and connects the contactor 43 and the displacement detection unit. The distance sensor 41 detects the displacement detection amount so as to increase in the direction in which the displacement detection shaft 41a is pushed.

上記構成の熱膨張変位測定手段40は、例えば、基台51上に設けたエアシリンダ装置52によりリング体20の所定位置に配置される。高周波熱処理装置10は、熱膨張変位測定手段40とエアシリンダ装置52等を隠蔽するカバー53と、焼入れ用冷却液回収タンク54とを備えていてもよい。   The thermal expansion displacement measuring means 40 having the above configuration is disposed at a predetermined position of the ring body 20 by an air cylinder device 52 provided on the base 51, for example. The induction heat treatment apparatus 10 may include a cover 53 that conceals the thermal expansion displacement measuring means 40, the air cylinder device 52, and the like, and a quenching coolant recovery tank 54.

制御部30は、リング体20のチャック前及びチャック解除時には、エアシリンダ装置52を縮小状態に制御する。これにより、エアシリンダ装置52が縮小作動して熱膨張変位測定手段40の全体が待機位置に位置して、耐熱性接触子であるボールベアリング43がリング体20から大きく離隔した待機位置に位置する。   The control unit 30 controls the air cylinder device 52 to be in a contracted state before the ring body 20 is chucked and when the chuck is released. As a result, the air cylinder device 52 is contracted and the entire thermal expansion displacement measuring means 40 is positioned at the standby position, and the ball bearing 43, which is a heat-resistant contactor, is positioned at the standby position far away from the ring body 20. .

制御部30は、高周波熱処理装置10のリング体回転手段がリング体20をチャックした後高周波誘導加熱を開始する前に、エアシリンダ装置52を伸張状態に制御する。これにより、エアシリンダ装置52が伸張作動して熱膨張変位測定手段40の全体を前進移動し、ボールベアリング43がリング体20に接触し、圧縮コイルばね44が圧縮されその蓄勢復帰力によりボールベアリング43がリング体20に付勢状態に接触する。   The control unit 30 controls the air cylinder device 52 to be in an extended state before the high frequency induction heating is started after the ring body rotating means of the high frequency heat treatment apparatus 10 chucks the ring body 20. As a result, the air cylinder device 52 extends to move the entire thermal expansion displacement measuring means 40 forward, the ball bearing 43 comes into contact with the ring body 20, the compression coil spring 44 is compressed, and the accumulated return force causes the ball The bearing 43 contacts the ring body 20 in a biased state.

距離センサ41は、変位検出軸41aを押し込む方向に変位検出量が大きくなるように変位量を検出する構成であるので、ボールベアリング43がリング体20に接触すると、変位検出軸41aが押し込まれて変位量を検出し検出信号を出力する。   Since the distance sensor 41 is configured to detect the displacement amount so that the displacement detection amount increases in the direction in which the displacement detection shaft 41a is pushed, when the ball bearing 43 contacts the ring body 20, the displacement detection shaft 41a is pushed. The amount of displacement is detected and a detection signal is output.

制御部30は、ボールベアリング43が待機位置から移動してリング体20に接触して停止したときに1回目のラッチ信号を演算手段60へ出力し、その後一定時間(例えば数秒)経過する毎に2回目以降のラッチ信号を演算手段60へ出力するようになっている。   The control unit 30 outputs the first latch signal to the computing means 60 when the ball bearing 43 moves from the standby position and stops when it comes into contact with the ring body 20, and thereafter, every time a certain time (for example, several seconds) elapses. The second and subsequent latch signals are output to the arithmetic means 60.

演算手段60は、距離センサ41からの変位量検出信号を常時入力するようになっている。制御部30から1回目〜数回目のラッチ信号の入力毎に、各変位量検出信号をラッチしてメモリに記憶し、それらの平均値を算出して基準値としてメモリに記憶する。それ以降のラッチ信号の入力がある毎に、各変位量検出信号をラッチして変動値としてメモリに記憶する。この変動値から基準値を差し引いて差値を算出し、差値に対応した信号を随時に制御部30に出力するようになっている。   The computing means 60 is always input with a displacement amount detection signal from the distance sensor 41. Each time the first to several latch signals are input from the control unit 30, each displacement amount detection signal is latched and stored in the memory, and an average value thereof is calculated and stored in the memory as a reference value. Each time a latch signal is input thereafter, each displacement amount detection signal is latched and stored in the memory as a variation value. A difference value is calculated by subtracting a reference value from the fluctuation value, and a signal corresponding to the difference value is output to the control unit 30 as needed.

制御部30は、演算手段60から差値に対応した信号が入力され、差値の増減を算出する。差値が例えば0.2mm以上増加したときは、その増加寸法分だけ可動スタンド14cを駆動して誘導加熱コイル15をリング体20から離間する方向にシフト移動させる。これにより、高周波誘導加熱を行っている間も、誘導加熱コイル15により加熱される被加熱局部22の位置測定を正確に行って、リング体20が熱膨張しても、誘導加熱コイル15をリング体20の熱膨張に同調してシフト移動させてギャップを一定に保つことができるようになっている。   The control unit 30 receives a signal corresponding to the difference value from the calculation means 60 and calculates an increase / decrease in the difference value. For example, when the difference value is increased by 0.2 mm or more, the movable stand 14c is driven by the increased dimension, and the induction heating coil 15 is shifted in a direction away from the ring body 20. Thereby, even during high frequency induction heating, even if the position of the heated local portion 22 heated by the induction heating coil 15 is accurately measured and the ring body 20 is thermally expanded, the induction heating coil 15 is made to ring. The gap can be kept constant by shifting in synchronization with the thermal expansion of the body 20.

制御部30における制御指令のフローチャートを参照して、リング体20の焼き入れ手順を説明する。図4は、図1の高周波熱処理装置における制御部からの制御指令の一例を示すフローチャートである。   With reference to the flowchart of the control command in the control part 30, the quenching procedure of the ring body 20 is demonstrated. FIG. 4 is a flowchart showing an example of a control command from the control unit in the high-frequency heat treatment apparatus of FIG.

(ステップS11、S12)
例えば、クレーンあるいはホイスト等で搬送してきたリング体20をリング体回転手段に載置しチャックして回転する。
(Steps S11 and S12)
For example, the ring body 20 conveyed by a crane or a hoist is placed on the ring body rotating means, chucked and rotated.

(ステップS13)
次に、可動テーブル装置14A,14Bをリング体20に接近移動して、誘導加熱コイル15をリング体20の被加熱局部22に近接し、誘導加熱コイル15と被加熱局部22とのギャップを例えば2mmになるようにし、続いて、コイル用冷却液循環装置(図示しない)を稼動してコイル用冷却液を誘導加熱コイル15の内部に通流させて高周波電源装置(図示しない)により誘導加熱コイル15へ高周波電流を給電開始する。
(Step S13)
Next, the movable table devices 14A and 14B are moved closer to the ring body 20, the induction heating coil 15 is brought close to the heated local portion 22 of the ring body 20, and the gap between the induction heating coil 15 and the heated local portion 22 is set, for example, Then, the coil cooling liquid circulation device (not shown) is operated to cause the coil cooling liquid to flow inside the induction heating coil 15 and the induction heating coil is driven by the high frequency power supply device (not shown). 15 starts feeding high-frequency current to 15.

(ステップS14)
次に、超耐熱性のボールベアリング43をリング体20に接触させる。ボールベアリング43は外輪をリング体20との摩擦により連れ回り回転するので、ボールベアリング43がリング体20の円周面(外周面)21を傷つけることはない。
(Step S14)
Next, the super heat resistant ball bearing 43 is brought into contact with the ring body 20. Since the ball bearing 43 rotates along with the outer ring due to friction with the ring body 20, the ball bearing 43 does not damage the circumferential surface (outer peripheral surface) 21 of the ring body 20.

(ステップS15、S16)
次に、演算手段60に対して数秒、例えば2秒間経過する毎にラッチ信号を出力し、距離センサ41からの変位量検出信号を演算手段60を経由して入力して検出値をメモリにストアすることを例えば5回繰り返す。
(Steps S15 and S16)
Next, a latch signal is output every several seconds, for example, 2 seconds, and the displacement amount detection signal from the distance sensor 41 is input via the calculation unit 60 and the detected value is stored in the memory. Repeat for five times, for example.

(ステップS17)
前記ストアした検出値の平均値を算出し該平均値を基準値としてメモリに記憶する。
(Step S17)
An average value of the stored detection values is calculated, and the average value is stored in a memory as a reference value.

(ステップS18)
引き続いて、例えば2秒間経過する毎にラッチ信号を出力し、接触式距離センサ41からの変位量検出信号を演算手段60を経由して入力して検出値をメモリにストアし、前記基準値との差値を算出する。
(Step S18)
Subsequently, for example, a latch signal is output every 2 seconds, a displacement amount detection signal from the contact-type distance sensor 41 is input via the calculation means 60, and the detection value is stored in the memory. The difference value is calculated.

(ステップS19)
差値が前回の差値よりも0.2mm以上大きく変化したか否かを判断する。
(Step S19)
It is determined whether or not the difference value has changed by 0.2 mm or more from the previous difference value.

(ステップS20)
0.2mm以上大きく変化した時は、当該差値に対応するように可動テーブル装置14A,14Bをリング体20から離隔する方向に微小にステップ移動して誘導加熱コイル15を後退させる。
(Step S20)
When the change is greater than 0.2 mm, the induction heating coil 15 is moved backward by slightly moving the movable table devices 14A and 14B in a direction away from the ring body 20 so as to correspond to the difference value.

これにより、リング体20が熱膨張して被加熱局部22が誘導加熱コイル15に接近する方向に変位しても、被加熱局部22の変位に同調して誘導加熱コイル15が変位寸法にほぼ等しく後退して被加熱局部22と誘導加熱コイル15とのギャップが引き続いて約2mmに保持される。   Thereby, even if the ring body 20 is thermally expanded and the heated portion 22 is displaced in a direction approaching the induction heating coil 15, the induction heating coil 15 is substantially equal to the displacement dimension in synchronization with the displacement of the heated portion 22. The gap between the heated portion 22 and the induction heating coil 15 continues to be maintained at about 2 mm.

回転しているリング体20は、誘導加熱コイル15による高周波誘電加熱の位置を絶えず変化させ数回回転している中に次第に温度上昇していき、被加熱局部22から離れた位置で、例えば300℃に達する。ボールベアリング43はリング体20から熱伝達する熱をボールスプライン軸42bに伝達するが放熱が行われ、ボックスブラケット47のところでも放熱される。したがって、距離センサ41に伝わる熱の温度は、距離センサ41の耐熱温度の例えば80℃よりも大幅に下回るので、距離センサ41が熱破壊されることがない。   The rotating ring body 20 continuously changes the position of the high frequency dielectric heating by the induction heating coil 15 and gradually rises in temperature while rotating several times, and at a position away from the heated local portion 22, for example, 300 Reach ℃. The ball bearing 43 transmits the heat transferred from the ring body 20 to the ball spline shaft 42 b, but the heat is dissipated and is also dissipated at the box bracket 47. Therefore, since the temperature of the heat transmitted to the distance sensor 41 is significantly lower than the heat resistance temperature of the distance sensor 41, for example, 80 ° C., the distance sensor 41 is not thermally destroyed.

(ステップS21)
このような、被加熱局部22の変位に同調して誘導加熱コイル15が変位寸法にほぼ等しい後退を、リング体20が所定の熱処理温度(例えば、1000℃)になるまで反復する。リング体20が所定の熱処理温度になると、誘導加熱コイル15による加熱とリング体20の放熱とが平衡するように、誘導加熱コイル15への通電量が制御される。
(Step S21)
In this manner, the induction heating coil 15 retreats approximately equal to the displacement dimension in synchronization with the displacement of the heated portion 22 until the ring body 20 reaches a predetermined heat treatment temperature (for example, 1000 ° C.). When the ring body 20 reaches a predetermined heat treatment temperature, the energization amount to the induction heating coil 15 is controlled so that the heating by the induction heating coil 15 and the heat radiation of the ring body 20 are balanced.

(ステップS22〜S24)
リング体20の全周が所定の熱処理温度になり、例えば5秒間経過すると、可動テーブル装置14A,14Bを待機位置に移動すると共に、エアシリンダ装置52を縮小作動して、誘導加熱コイル15とボールベアリング43とを、リング体20から大きく離隔させる。
(Steps S22 to S24)
When the entire circumference of the ring body 20 reaches a predetermined heat treatment temperature and, for example, 5 seconds elapses, the movable table devices 14A and 14B are moved to the standby position, and the air cylinder device 52 is contracted to reduce the induction heating coil 15 and the ball. The bearing 43 is greatly separated from the ring body 20.

(ステップS25〜S27)
次に、回転軸11Aを引続いて回転したままで下降してリング体20を焼入れ位置に位置させて、噴射管16の噴射ノズルから焼入れ用冷却液を1000℃に加熱された被加熱局部22に5分間噴射して急冷し焼入れを行う。
(Steps S25 to S27)
Next, the rotating shaft 11A continues to rotate and descends to place the ring body 20 at the quenching position, and the quenching coolant 22 is heated to 1000 ° C. from the spray nozzle of the spray pipe 16. Inject for 5 minutes to quench and quench.

(ステップS28、S29)
その後、焼入れ用冷却液の噴射を停止し、回転軸11Aを回転停止して上昇させ、リング体20を上昇位置でチャック解除する。以上で、リング体20の焼入れを完了する。
(Steps S28 and S29)
Thereafter, the injection of the quenching coolant is stopped, the rotation shaft 11A is stopped and raised, and the ring body 20 is released from the chuck at the raised position. Thus, quenching of the ring body 20 is completed.

この実施の形態によれば、リング体20を回転テーブルに同心状態を保って載置して回転させ、次いで、誘導加熱コイル15を待機位置から接近移動して被加熱局部22に近接し、熱膨張変位測定手段の接触式距離センサ41を待機位置から接近移動してリング体20の円周面21の高周波誘導加熱が行われる部分の近傍に当接する。   According to this embodiment, the ring body 20 is placed and rotated on the rotary table while maintaining the concentric state, and then the induction heating coil 15 is moved closer from the standby position to be close to the heated local portion 22, The contact-type distance sensor 41 of the expansion displacement measuring means is moved closer from the standby position and comes into contact with the vicinity of the portion of the circumferential surface 21 of the ring body 20 where high-frequency induction heating is performed.

次に、誘導加熱コイル15に高周波誘導電流を給電して高周波誘導加熱を行うと共に、熱膨張変位測定手段により、リング体20の円周面21の熱膨張による変位を常時検出する。   Next, high-frequency induction heating is performed by feeding a high-frequency induction current to the induction heating coil 15, and the displacement due to the thermal expansion of the circumferential surface 21 of the ring body 20 is always detected by the thermal expansion displacement measuring means.

次いで、この検出した変位に応じて前記円弧状の誘導加熱コイル15をリング体20から離隔する方向に随時移動し、誘導加熱コイル15とリング体20の被加熱処理局部22とのギャップを高周波誘導加熱の開始時から終了時まで略一定に保ちつつ高周波誘導加熱を行う。   Next, the arc-shaped induction heating coil 15 is moved in a direction away from the ring body 20 in accordance with the detected displacement, and the gap between the induction heating coil 15 and the heated processing local portion 22 of the ring body 20 is high-frequency induction. High-frequency induction heating is performed while being kept substantially constant from the start to the end of heating.

この場合、熱膨張変位測定手段40は、耐熱性接触子43と距離センサ41とを有し、かつ、この距離センサ41の耐熱温度以下の熱伝導となるように耐熱性接触子43と距離センサ41の変位検出軸41aとが連結された構成であるので、耐熱温度が低い距離センサ41が正常に機能することが保障される。   In this case, the thermal expansion displacement measuring means 40 includes a heat-resistant contact 43 and a distance sensor 41, and the heat-resistant contact 43 and the distance sensor so that the heat conduction is not higher than the heat-resistant temperature of the distance sensor 41. Since the displacement detection shaft 41a of 41 is connected, it is guaranteed that the distance sensor 41 having a low heat-resistant temperature functions normally.

これにより、高周波誘導加熱を行っている間中、リング体20の誘導加熱コイル15により加熱される被加熱局部22の熱膨張変位の測定を正確に行うことができる。このため、リング体20の温度が上昇するにつれて、誘導加熱コイル15をギャップを一定に保つように正確に後退させることができる。   Thereby, while performing high frequency induction heating, the measurement of the thermal expansion displacement of the to-be-heated local part 22 heated with the induction heating coil 15 of the ring body 20 can be performed correctly. For this reason, as the temperature of the ring body 20 rises, the induction heating coil 15 can be accurately retracted so as to keep the gap constant.

上記実施の形態では、演算手段60と制御部30とは別途に設けているが、制御部30が演算手段60を兼ねてもよい。   In the embodiment described above, the calculation unit 60 and the control unit 30 are provided separately, but the control unit 30 may also serve as the calculation unit 60.

以下、実施例に基づいて、本発明をさらに詳細に説明する。
被加工物20として鉄鋼製の直径が1200mm、厚みが80mmの旋回輪インナーレースの焼入れ熱処理を行った。旋回輪インナーレース20は、精密円筒加工された円環体であり、円周面21の上半部を一周する断面形状が半円状の凹部である被加熱局部22を有している。円弧状(角度120°)の誘導加熱コイル15を2組とし、熱膨張変位測定手段40を一つ配置した高周波熱処理装置10を用いた。
Hereinafter, the present invention will be described in more detail based on examples.
The workpiece 20 was subjected to quenching heat treatment of a turning inner race having a diameter of 1200 mm and a thickness of 80 mm made of steel. The inner race 20 of the turning wheel is an annular body processed with precision cylinders, and has a heated local portion 22 that is a concave portion having a semicircular cross-sectional shape that goes around the upper half of the circumferential surface 21. The high-frequency heat treatment apparatus 10 in which two sets of arc-shaped (angle 120 °) induction heating coils 15 and one thermal expansion displacement measuring means 40 are arranged was used.

熱膨張変位測定手段40において、距離センサ41は、接触式距離センサ(キーエンス製、AT3−010)を使用し、耐熱性接触子43として、SUS304からなる玉軸受(ミスミ製、型番SUB6201ZZ)を使用し、ボールスプライン42としては、THK製のLT16A+144Lを使用した。この接触式距離センサ41は、変位検出軸41aを押し込まれる方向に変位検出量が大きくなるように検出される。接触式距離センサの測定上限、つまり、耐熱温度は80℃である。   In the thermal expansion displacement measuring means 40, the distance sensor 41 uses a contact-type distance sensor (manufactured by Keyence, AT3-010), and uses a ball bearing made of SUS304 (made by MISUMI, model number SUB6201ZZ) as the heat-resistant contact 43. As the ball spline 42, THK LT16A + 144L was used. The contact type distance sensor 41 is detected so that the displacement detection amount increases in the direction in which the displacement detection shaft 41a is pushed. The upper limit of measurement of the contact-type distance sensor, that is, the heat-resistant temperature is 80 ° C.

2組の誘導加熱コイル15のそれぞれには、周波数が9.8kHzで300kWの電力を印加し、1000℃まで加熱した後、直ちに高周波電力の印加を停止して、冷却することで焼き入れ処理を行った。1000℃までの加熱時間は約20秒であった。   Each of the two sets of induction heating coils 15 is applied with 300 kW of power at a frequency of 9.8 kHz, heated to 1000 ° C., immediately stopped applying high frequency power, and then cooled to quench. went. The heating time to 1000 ° C. was about 20 seconds.

上記加熱処理中、接触式距離センサの変位が0.2mm毎に誘導加熱コイル15の位置制御を行い、誘導加熱コイル15と被加工物の被加熱局部22とのギャップを常に2mmとなるように制御することができた。また、加熱中の接触式距離センサの部位の温度は80℃以下とすることができた。   During the above heat treatment, the position of the induction heating coil 15 is controlled every 0.2 mm of the displacement of the contact distance sensor so that the gap between the induction heating coil 15 and the heated portion 22 of the workpiece is always 2 mm. Could be controlled. Moreover, the temperature of the part of the contact-type distance sensor during heating could be 80 degrees C or less.

これにより、高周波誘導加熱を行っている間中、円弧状誘導加熱コイル15により加熱される大口径リング体20の被加熱局部22の熱膨張変位の測定を、正確に行うことができ、被加熱局部22の全周に対して約20秒間という短時間に高周波誘導加熱をムラなく行うことができた。   This makes it possible to accurately measure the thermal expansion displacement of the heated local portion 22 of the large-diameter ring body 20 heated by the arc-shaped induction heating coil 15 during high-frequency induction heating. High-frequency induction heating could be performed uniformly over a short period of about 20 seconds over the entire circumference of the local portion 22.

本発明は、上記した実施形態に限られるものではなく、その趣旨と技術思想の範囲を逸脱しない範囲でさらに種々の変形が可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit and scope of the technical idea.

本発明の実施形態に係る高周波熱処理装置の概略平面図である。It is a schematic plan view of the high frequency heat processing apparatus which concerns on embodiment of this invention. 図1のY−Y方向に沿って切断した状態の、被加工物と熱膨張変位測定手段との配置を示す部分側断面図である。It is a partial sectional side view which shows arrangement | positioning of a to-be-processed object and a thermal expansion displacement measuring means in the state cut | disconnected along the YY direction of FIG. 図1に示す熱膨張変位測定手段の一部側断面図である。It is a partial sectional side view of the thermal expansion displacement measuring means shown in FIG. 図1の高周波熱処理装置における制御部からの制御指令の一例を示すフローチャートである。It is a flowchart which shows an example of the control command from the control part in the high frequency heat processing apparatus of FIG.

符号の説明Explanation of symbols

10:高周波熱処理装置
11:被加工物駆動手段(リング体回転手段)
11A:回転軸
12:回転テーブル
13a〜13d:手動操作式の内径チャック手段
13e〜13h:エアシリンダ駆動式の内径チャック手段
14:誘導加熱コイル支持移動手段
14A,14B:可動テーブル装置
14a:直動ガイド
14b:基台
14c:可動スタンド
14d:テーブル
15:円弧状誘導加熱コイル
16:噴射管
16a:噴射ノズル
20:大口径リング体
21:円周面
22:被加熱局部
30:制御部
40:熱膨張変位測定手段
41:距離センサ(接触式距離センサ)
41a:変位検出軸
42:ボールスプライン
42a:ボールスプライン本体
42b:ボールスプライン軸
43:耐熱性接触子(ボールベアリング)
44:付勢手段(コイルばね)
45:プレート
46:ブラケット
47:ボックスブラケット
48:フォークブラケット
49:シャフト
50:ナット
51:基台
52:エアシリンダ装置
53:カバー
54:焼入れ用冷却液回収タンク
60:演算手段
10: High-frequency heat treatment device 11: Workpiece drive means (ring body rotating means)
11A: Rotating shaft 12: Rotary table 13a-13d: Manually operated inner diameter chuck means 13e-13h: Air cylinder driven inner diameter chuck means 14: Induction heating coil support moving means 14A, 14B: Movable table device 14a: Linear motion Guide 14b: Base 14c: Movable stand 14d: Table 15: Arc-shaped induction heating coil 16: Injection tube 16a: Injection nozzle 20: Large-diameter ring body 21: Circumferential surface 22: Heated local part 30: Control part 40: Heat Expansion displacement measuring means 41: Distance sensor (contact distance sensor)
41a: Displacement detection shaft 42: Ball spline 42a: Ball spline body 42b: Ball spline shaft 43: Heat resistant contact (ball bearing)
44: Energizing means (coil spring)
45: Plate 46: Bracket 47: Box bracket 48: Fork bracket 49: Shaft 50: Nut 51: Base 52: Air cylinder device 53: Cover 54: Quenching coolant recovery tank 60: Calculation means

Claims (5)

被加工物を駆動する被加工物駆動手段と、被加工物の被加熱局部を誘導加熱する誘導加熱コイルと、上記誘導加熱コイルを支持し移動する誘導加熱コイル支持移動手段と、被加工物の熱膨張変位を測定する熱膨張変位測定手段と、を備え、
上記熱膨張変位測定手段は、上記誘導加熱コイルとは離隔した位置で上記被加工物に対向配置され、上記被加工物の被加熱局部の近傍に当接する接触子と距離センサと、該距離センサが耐熱温度以下の熱伝導となるように上記接触子と上記距離センサの変位検出軸とを連結する軸と、を有し、
上記誘導加熱コイル支持移動手段は、上記距離センサにより測定された熱膨張変位に応じて、上記誘導加熱コイルを上記被加工物から離隔する方向に移動させることを特徴とする、高周波熱処理装置。
A workpiece driving means for driving the workpiece; an induction heating coil for induction heating of a heated local portion of the workpiece; an induction heating coil support moving means for supporting and moving the induction heating coil; Thermal expansion displacement measuring means for measuring thermal expansion displacement,
The thermal expansion displacement measuring means is disposed opposite to the workpiece at a position separated from the induction heating coil, a contact that contacts the vicinity of the heated local portion of the workpiece , a distance sensor , and the distance A shaft that connects the contact and the displacement detection shaft of the distance sensor so that the sensor has a heat conduction temperature lower than the heat resistance ,
The induction heating coil support moving means moves the induction heating coil in a direction away from the workpiece in accordance with thermal expansion displacement measured by the distance sensor .
前記接触子と前記変位検出軸とを連結する軸の外側には、前記接触子を付勢する付勢手段が取り付けられていることを特徴とする、請求項1に記載の高周波熱処理装置。 2. The high frequency heat treatment apparatus according to claim 1 , wherein a biasing means for biasing the contact is attached to an outside of a shaft connecting the contact and the displacement detection shaft . 前記接触子が耐熱性ベアリングからなることを特徴とする、請求項1又は2に記載の高周波熱処理装置。   The high frequency heat treatment apparatus according to claim 1, wherein the contact is made of a heat resistant bearing. さらに、演算手段を備え、この演算手段は、高周波誘導加熱を行う前に前記距離センサの接触子が被加工物に接触し前記付勢手段が一定の長さに圧縮されたときに前記距離センサの検出信号を入力して基準値とするように構成されていることを特徴とする、請求項1又は2に記載の高周波熱処理装置。   Further, a calculation means is provided, and the calculation means is configured to detect the distance sensor when the contact of the distance sensor comes into contact with the workpiece before the high-frequency induction heating is performed and the biasing means is compressed to a certain length. The high frequency heat treatment apparatus according to claim 1, wherein the detection signal is input as a reference value. 前記被加工物は外周に円周面を有し、該被加工物の前記被加熱局部が円周面を一周するように設けられ、The workpiece has a circumferential surface on the outer periphery, and the heated local portion of the workpiece is provided so as to go around the circumferential surface;
該被加熱局部を、前記被加工物駆動手段で回転駆動して円弧状の前記誘導加熱コイルにより誘導加熱する、請求項1乃至4の何れかに記載の高周波熱処理装置。The high frequency heat treatment apparatus according to any one of claims 1 to 4, wherein the heated portion is rotationally driven by the workpiece driving means and induction heated by the arc-shaped induction heating coil.
JP2007040032A 2007-02-20 2007-02-20 Induction heat treatment equipment Active JP5105228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040032A JP5105228B2 (en) 2007-02-20 2007-02-20 Induction heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040032A JP5105228B2 (en) 2007-02-20 2007-02-20 Induction heat treatment equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011146840A Division JP5565635B2 (en) 2011-06-30 2011-06-30 Induction heat treatment apparatus and method

Publications (3)

Publication Number Publication Date
JP2008202099A JP2008202099A (en) 2008-09-04
JP2008202099A5 JP2008202099A5 (en) 2011-08-18
JP5105228B2 true JP5105228B2 (en) 2012-12-26

Family

ID=39779895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040032A Active JP5105228B2 (en) 2007-02-20 2007-02-20 Induction heat treatment equipment

Country Status (1)

Country Link
JP (1) JP5105228B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273373B2 (en) 2011-03-15 2016-03-01 Neturen Co., Ltd. Heating apparatus, heat treatment apparatus, and heating method
JP5810564B2 (en) * 2011-03-15 2015-11-11 高周波熱錬株式会社 Heating apparatus, heat treatment apparatus and heating method
JP5810407B2 (en) * 2011-04-07 2015-11-11 高周波熱錬株式会社 Induction heating apparatus and induction heating method
JP5810406B2 (en) * 2011-04-07 2015-11-11 高周波熱錬株式会社 Induction heating apparatus and induction heating method
JP5810408B2 (en) * 2011-04-07 2015-11-11 高周波熱錬株式会社 Induction heating apparatus and induction heating method
WO2012137960A1 (en) * 2011-04-07 2012-10-11 高周波熱錬株式会社 Induction heating device, induction heating equipment, induction heating method, and heat treatment method
CN102888496B (en) * 2012-10-21 2014-11-05 十堰恒进科技有限公司 Induction quenching device with double-layer transformer
ES2657993T3 (en) * 2013-05-14 2018-03-07 Thermatool Corp. Induction coil with dynamically variable coil geometry
CN103451403A (en) * 2013-08-27 2013-12-18 镇江索达联轴器有限公司 Gear tempering correction device
DE102014102288A1 (en) * 2014-02-21 2015-08-27 Thyssenkrupp Ag System, manufacturing plant and process
JP6120192B1 (en) * 2016-07-25 2017-04-26 Tsk株式会社 Electromagnetic induction heating device and light alloy wheel manufacturing method
CN115247227B (en) * 2022-07-18 2024-01-23 江苏士美机电装备有限公司 Automobile spare and accessory part processing device with waste heat recycling function
CN116113088B (en) * 2023-02-27 2024-05-14 深圳市深科达智能装备股份有限公司 Induction coil module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111219Y2 (en) * 1980-10-31 1986-04-09
JPH0116757Y2 (en) * 1985-07-05 1989-05-17
JPS6217123A (en) * 1985-07-13 1987-01-26 Meidensha Electric Mfg Co Ltd High frequency automatic quenching apparatus

Also Published As

Publication number Publication date
JP2008202099A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP5105228B2 (en) Induction heat treatment equipment
JP5565635B2 (en) Induction heat treatment apparatus and method
JP5146800B2 (en) Induction heat treatment equipment
WO2012137960A1 (en) Induction heating device, induction heating equipment, induction heating method, and heat treatment method
JP2009203498A (en) High frequency-induction heating method, heating apparatus and bearing
JP4539164B2 (en) Straightening and quenching equipment
CN108193025A (en) A kind of process for quenching without soft band revolution splicing sleeve circle
JP5882036B2 (en) How to make a threaded spindle with a large bearing seat
JP5810564B2 (en) Heating apparatus, heat treatment apparatus and heating method
JP6570405B2 (en) Induction hardening device for crankshaft
JP5553440B2 (en) Heat treatment method and heat treatment apparatus
KR101494133B1 (en) Flaring device using daul forming pin
CN103572035A (en) Annular workpiece quenching method and quenching apparatus used in the method
JP5179203B2 (en) Heat treatment equipment for cylindrical metal members
CN113201630A (en) Double-liquid quenching process and quenching device
JP5810407B2 (en) Induction heating apparatus and induction heating method
JP4170529B2 (en) Centering mechanism and fitting device for bearing member
JP2014080640A (en) Heat treatment apparatus and heat treatment method
WO2014069149A1 (en) Heat treatment method and method for manufacturing machine part
JP2012122091A (en) Press quenching device
JP2004169133A (en) High-frequency induction hardening device for constant velocity universal joint
CN104254623A (en) Method and arrangement for progressive surface hardening
JP5810408B2 (en) Induction heating apparatus and induction heating method
CN207031505U (en) A kind of high-temperature alloy steel self-plugging rivet nail set local annealing device
JP6403960B2 (en) Heat treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Ref document number: 5105228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250