JP5105221B2 - Micro bubble tester - Google Patents

Micro bubble tester Download PDF

Info

Publication number
JP5105221B2
JP5105221B2 JP2006301916A JP2006301916A JP5105221B2 JP 5105221 B2 JP5105221 B2 JP 5105221B2 JP 2006301916 A JP2006301916 A JP 2006301916A JP 2006301916 A JP2006301916 A JP 2006301916A JP 5105221 B2 JP5105221 B2 JP 5105221B2
Authority
JP
Japan
Prior art keywords
specimen
state
contact
rotating member
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006301916A
Other languages
Japanese (ja)
Other versions
JP2008116403A (en
Inventor
勝一 千田
美香 佐々木
誠一 座間
裕 長井
Original Assignee
東京マイクロデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京マイクロデバイス株式会社 filed Critical 東京マイクロデバイス株式会社
Priority to JP2006301916A priority Critical patent/JP5105221B2/en
Priority to PCT/JP2007/060273 priority patent/WO2007136013A1/en
Publication of JP2008116403A publication Critical patent/JP2008116403A/en
Application granted granted Critical
Publication of JP5105221B2 publication Critical patent/JP5105221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、新生児(胎児)における肺の成熟度を判断するためのマイクロバブルテストを自動で行うマイクロバブルテスターに関する。   The present invention relates to a microbubble tester that automatically performs a microbubble test for judging maturity of a lung in a newborn (fetus).

胎児の肺の成熟度は、母体の羊水または新生児の胃液に含まれる肺サーファクタントの量によって推測する。ここで肺サーファクタントとは、肺胞内で表面張力をコントロールし肺胞がつぶれるのを防ぐ物質であり、通常は在胎20週頃から生成され始め、胎児肺から羊水中へ移行する。在胎32〜36週頃に十分な量となる。ところが早産の場合、この肺サーファクタント量が不足している可能性がある。肺サーファクタントが不足していると、肺胞が徐々に潰れてしまうことで、胎児が呼吸窮迫症候群(RDS)を発症する可能性がある。前記呼吸窮迫症候群(RDS)への対策を講じるためにも、肺サーファクタント量を認識することが肝要である。   Fetal lung maturity is estimated by the amount of pulmonary surfactant contained in maternal amniotic fluid or neonatal gastric fluid. Here, the pulmonary surfactant is a substance that controls the surface tension in the alveoli and prevents the alveoli from collapsing. Usually, the lung surfactant begins to be produced around 20 weeks of gestation, and moves from the fetal lung to the amniotic fluid. It becomes a sufficient amount around the gestation 32 to 36 weeks. However, in the case of premature birth, there is a possibility that this lung surfactant amount is insufficient. Insufficient lung surfactant can cause the fetus to develop respiratory distress syndrome (RDS) by gradually collapsing the alveoli. In order to take measures against the respiratory distress syndrome (RDS), it is important to recognize the amount of pulmonary surfactant.

この肺サーファクタント量の認識のために、マイクロバブルテストが行われる。これは、母体の羊水もしくは新生児の胃液を起泡し、発生する所定範囲の径のマイクロバブルの数量を数えることで、胎児の肺の成熟度を判断するものである。   A microbubble test is performed to recognize this lung surfactant amount. This is to determine the maturity of the fetal lung by foaming the mother's amniotic fluid or the gastric juice of the newborn and counting the number of microbubbles with a diameter within a predetermined range.

従来のマイクロバブルテストにおいては、例えば、バスツールピペットで泡を手作業によって作成し、カバーグラス上にとった起泡後の検体を、顕微鏡で5視野分観察し、直径15μm以下の泡の数を数え、各視野における平均値を算出するものであった(例えば、特許文献1参照)。   In the conventional microbubble test, for example, bubbles are manually created with a bath stool pipette, and the foamed specimen taken on the cover glass is observed for five visual fields with a microscope, and the number of bubbles having a diameter of 15 μm or less is observed. And the average value in each field of view was calculated (see, for example, Patent Document 1).

これは具体的には、検体40μlをカバーグラスにとり、このカバーグラス上の検体を、バスツールピペットで泡立てる。次にこのカバーグラスを表裏反転させ、窪み穴状のホールを設けたホールグラスに乗せ、4分間静置する。これを、顕微鏡で一視野当り1mmずつ、五視野分観察する。一視野あたりで確認できる直径15μm以下の泡の数をカウントし、五視野の観察によるカウント数の平均値を算出するというものである。
特開2002−114135号公報
Specifically, 40 μl of a sample is taken on a cover glass, and the sample on the cover glass is bubbled with a bath stool pipette. Next, this cover glass is turned upside down and placed on a hole glass provided with a hollow hole, and left to stand for 4 minutes. This is observed with a microscope for 5 fields, 1 mm 2 per field. The number of bubbles having a diameter of 15 μm or less that can be confirmed per field of view is counted, and the average value of the number of counts by observation of five fields of view is calculated.
JP 2002-114135 A

しかしながら、このような手作業によるマイクロバブルテストでは、起泡作業に習熟が必要であり、またマイクロバブルのカウント精度にも問題が生じうることから、検者間で検査結果に個人差が生じることがあった。また、検査作業に時間がかかり、検査に手間やコストがかかるものであった。   However, in such a manual microbubble test, it is necessary to master foaming work, and there may be a problem with the accuracy of counting microbubbles. was there. Further, the inspection work takes time, and the inspection takes time and cost.

そこで本願においては、マイクロバブルテストの起泡作業やカウント精度による検者間での個人差が生じることがなく、また、検査作業の時間或いは手間やコストの負担を軽減しうるマイクロバブルテスターを提供することを課題とする。   Therefore, the present application provides a microbubble tester that does not cause individual differences among examiners due to the foaming work of the microbubble test and the counting accuracy, and can reduce the time, labor, and cost of the inspection work. The task is to do.

上記課題を解決するため、本発明では下記(1)ないし(7)の手段を講じている。   In order to solve the above problems, the present invention takes the following means (1) to (7).

(1)すなわち、本発明のマイクロバブルテスターは、生体液を主成分とした検体Oを起泡して検体Oのマイクロバブルの発生状況を検知するマイクロバブルテスターであって、検体Oへの接触端子11を検体Oに接触させたまま回転させることで検体Oを起泡させる起泡手段1と、起泡させた検体Oを透視蓋22で閉蓋する閉蓋機構23と、透視蓋22を外側から検視して、閉蓋された検体Oに含まれる泡の数を認識する泡認識手段3とを具備することを特徴とする。   (1) In other words, the microbubble tester of the present invention is a microbubble tester that detects the occurrence of microbubbles in the specimen O by bubbling the specimen O containing biological fluid as a main component. The foaming means 1 for foaming the specimen O by rotating the terminal 11 while being in contact with the specimen O, the lid closing mechanism 23 for closing the foamed specimen O with the fluoroscopic lid 22, and the fluoroscopic lid 22 are provided. It is characterized by comprising bubble recognition means 3 for recognizing the number of bubbles contained in the closed sample O as viewed from the outside.

(2)また前記マイクロバブルテスターにおいて、閉蓋機構23が、透視蓋22を、検体Oの液面に対して斜めに接触する斜接触状態S5で接触させ、この斜接触状態S5から、検体Oの液面に対して平行に対向接触する対向接触状態S6とすることが好ましい。   (2) Further, in the microbubble tester, the lid closing mechanism 23 brings the fluoroscopic lid 22 into contact with the liquid surface of the specimen O in an oblique contact state S5, and from the oblique contact state S5, the specimen O It is preferable to be in the facing contact state S6 that faces the liquid surface in parallel.

(3)また前記いずれかのマイクロバブルテスターにおいて、
起泡手段1が、接触端子11を下方先端に設けた回転部材11Hと、
この回転部材11Hを昇降させることで、接触端子11を、検体Oと離接させた離間状態S1ないし接触状態S2とする昇降機構12と、
前記接触状態S2において回転部材11Hを(回転軸L周りに)回転させる回転機構13と、
前記接触状態S2において検体Oの周囲を囲うことで検体Oの飛散を防止する飛散防止カバー14と、
前記離間状態S1において飛散防止カバー14を回転部材11Hに係止させる係止機構15とを備えてなり、
前記離間状態S1において、係止機構15が係止状態S4となって、飛散防止カバー14が昇降する回転部材11Hに吊り上げられ、
前記接触状態S2において、係止機構15が係止解除状態S3となって、飛散防止カバー14が検体O及び接触端子11を環囲する位置へ載置され、
この接触状態S2において、回転部材11Hが回転機構13によって回転して検体Oを起泡し、載置された飛散防止カバー14が検体Oの飛散を防止することが好ましい。
(3) In any of the above microbubble testers,
The foaming means 1 includes a rotating member 11H provided with a contact terminal 11 at the lower end;
An elevating mechanism 12 that moves the rotating member 11H up and down to place the contact terminal 11 in a separated state S1 or a contact state S2 separated from the specimen O;
A rotating mechanism 13 for rotating the rotating member 11H (around the rotation axis L) in the contact state S2,
A scattering prevention cover 14 for preventing scattering of the specimen O by surrounding the circumference of the specimen O in the contact state S2,
A locking mechanism 15 for locking the anti-scattering cover 14 to the rotating member 11H in the separation state S1,
In the separation state S1, the locking mechanism 15 is in the locking state S4, and the scattering prevention cover 14 is lifted by the rotating member 11H that moves up and down,
In the contact state S2, the locking mechanism 15 is in the unlocked state S3, and the scattering prevention cover 14 is placed at a position surrounding the sample O and the contact terminal 11,
In this contact state S2, it is preferable that the rotating member 11H is rotated by the rotating mechanism 13 to foam the sample O, and the placed scattering prevention cover 14 prevents the sample O from scattering.

このようなものであれば、回転部材11Hの昇降と共に、飛散防止カバー14を容易にセットし、或いはセット位置から容易に取り除くことができる。飛散防止カバー14のセットや取り除きを別途行う必要がないため、簡易な機構或いは簡易な手順で飛散防止しうる。   With such a configuration, the scattering prevention cover 14 can be easily set or removed from the set position as the rotating member 11H is raised and lowered. Since there is no need to separately set or remove the scattering prevention cover 14, scattering can be prevented with a simple mechanism or simple procedure.

また、セット後において、飛散防止カバーが係止解除状態S3となるため、回転部材11Hと共に回転することなく、検体Oの飛散を確実に防止しうる。   In addition, since the scattering prevention cover is in the unlocked state S3 after the setting, the specimen O can be reliably prevented from scattering without rotating together with the rotating member 11H.

さらに、離間状態S1において飛散防止カバー14が回転部材11Hに係止して一体的になるため、起泡後の、検体Oと接触した回転部材及び飛散防止カバーをまとめて容易に取り外し廃棄することができる。   Further, since the scattering prevention cover 14 is locked and integrated with the rotating member 11H in the separated state S1, the rotating member and the scattering preventing cover that have contacted the sample O after foaming can be easily removed and discarded together. Can do.

(4)また、前記マイクロバブルテスターにおいて、係止機構15が、飛散防止カバーの内側へ均一形状で突出した係止片15aと、回転部材11Hの周囲へ軸対称に張り出した被係止片15bとからなり、回転部材11Hの昇降時に係止片15aが被係止片15bに係止して、飛散防止カバーが回転部材の周囲均等位置にて係止状態S4となると共に、回転部材11Hの下降時に前記周囲均等位置のまま係止解除状態S3に移行することが好ましい。   (4) Further, in the microbubble tester, the locking mechanism 15 includes a locking piece 15a protruding in a uniform shape to the inside of the anti-scattering cover, and a locked piece 15b protruding axially symmetrically around the rotating member 11H. When the rotating member 11H is raised and lowered, the locking piece 15a is locked to the locked piece 15b, and the scattering prevention cover is locked at a uniform position around the rotating member S4. When descending, it is preferable to shift to the unlocked state S3 while maintaining the uniform peripheral position.

このようなものであれば、飛散防止カバー14のセット位置を適正なものに保つことができ、回転中の回転部材11Hと飛散防止カバー14との接触を確実に防止しうる。   If it is such, the set position of the scattering prevention cover 14 can be maintained at an appropriate position, and contact between the rotating rotating member 11H and the scattering prevention cover 14 can be reliably prevented.

具体的には、係止片と係止片それぞれの係止面(孔空き円板の同心孔およびワッシャーの各周端面)をそれぞれ傾斜面とし、互いに対応するテーパー状に形成すれば、吊り上げたときに飛散防止カバー14の回転部材11Hへの芯合わせを自動的に行うことができ、飛散防止カバー14のセット位置を適正なものに保つ。   Specifically, the latching piece and the latching surface of the latching piece (the concentric holes of the perforated disc and the peripheral end surfaces of the washers) are respectively inclined surfaces and are lifted if they are formed in tapered shapes corresponding to each other. Sometimes, the anti-scattering cover 14 can be automatically centered on the rotating member 11H, and the set position of the anti-scattering cover 14 is kept appropriate.

(5)また前記いずれかのマイクロバブルテスターにおいて、回転部材11Hが、回転機構13の回転モーター軸13Lの先端たる軸端に同軸上に磁着して取り外し可能に固定され、前記回転モーター軸13Lに固定された状態で回転モーター軸13Lと同軸回転することが好ましい。   (5) In any one of the above microbubble testers, the rotating member 11H is coaxially magnetically attached to the shaft end, which is the tip of the rotating motor shaft 13L of the rotating mechanism 13, and is detachably fixed. It is preferable to rotate coaxially with the rotary motor shaft 13L while being fixed to the rotary motor shaft.

このようなものであれば、回転部材11Hを回転モーター13Mへ容易に着脱することができ、測定時の回転部材11Hの取り付け作業や、起泡後に検体Oが付着した回転部材の取り除き作業が容易に行える。   If it is such, the rotating member 11H can be easily attached to and detached from the rotating motor 13M, and the attaching operation of the rotating member 11H at the time of measurement and the removing operation of the rotating member to which the sample O adheres after foaming are easy. Can be done.

(6)また前記いずれかのマイクロバブルテスターにおいて、回転部材11Hが、回転軸L周りに回転するものであり、この回転軸Lは鉛直方向に対して所定の傾斜角度θで傾斜してなることが好ましい。回転軸Lが傾斜することで、鉛直方向を向いた回転軸Lと比べ、検体Oを効率的に起泡することができる。   (6) In any one of the above microbubble testers, the rotating member 11H rotates about the rotation axis L, and the rotation axis L is inclined at a predetermined inclination angle θ with respect to the vertical direction. Is preferred. By tilting the rotation axis L, the sample O can be efficiently bubbled as compared to the rotation axis L oriented in the vertical direction.

(7)また前記いずれかのマイクロバブルテスターにおいて、泡認識手段3が、検体Oの複数の深度断面において泡数を認識することが好ましい。微小な大きさのマイクロバブル、特に羊水のマイクロバブルは必要以上に偏平変形することがないため、複数の深度にて泡数をカウントすることで誤認を防ぎ、確実にカウントすることができる。   (7) In any one of the microbubble testers, it is preferable that the bubble recognition unit 3 recognizes the number of bubbles in a plurality of depth cross sections of the specimen O. Since microbubbles of minute size, particularly amniotic fluid microbubbles, do not deform more flat than necessary, counting mistakes can be prevented by counting the number of bubbles at a plurality of depths, and can be counted reliably.

具体的には、複数の深度断面として、検体Oの側周囲を覆うスペーサー24の厚さ方向を少なくとも4等分した、検体Oの液内の3つ以上の断面で泡数をそれぞれ認識及びカウントし、各断面の泡数を平均した値を表示手段33の画面に出力表示することが好ましい(例えば図14)。   Specifically, as a plurality of depth cross sections, the number of bubbles is recognized and counted in three or more cross sections in the liquid of the specimen O obtained by dividing the thickness direction of the spacer 24 covering the side periphery of the specimen O into at least four equal parts. Then, it is preferable to output and display a value obtained by averaging the number of bubbles in each cross section on the screen of the display means 33 (for example, FIG. 14).

なお前記マイクロバブルテスターにおいて、起泡手段1は、先端に接触端子11を有した回転部材11Hを備えてなり、この回転部材11Hの接触端子11を、昇降機構12によって昇降させ、任意の接触長さ又は任意の接触圧をもって検体Oに接触させるものであること、またこの接触状態S2のまま鉛直方向又は鉛直方向から傾斜した回転軸L周りに回転させるものであることが好ましい。   In the microbubble tester, the foaming means 1 includes a rotating member 11H having a contact terminal 11 at the tip, and the contact terminal 11 of the rotating member 11H is moved up and down by an elevating mechanism 12 so as to have an arbitrary contact length. In addition, it is preferable to contact the specimen O with an arbitrary contact pressure, and to rotate around the rotation axis L inclined from the vertical direction or the vertical direction in the contact state S2.

また前記マイクロバブルテスターにおいて、回転部材11Hが、複数本の接触端子11たるブラシ毛を有した回転ブラシであり、回転部ブラシが回転した状態で少なくともいずれか複数本の接触端子11同士の間隔が、接触端子11の先端に向かって拡がってなることが好ましい。   Further, in the microbubble tester, the rotating member 11H is a rotating brush having brush hairs as a plurality of contact terminals 11, and at least any one of the plurality of contact terminals 11 is spaced apart when the rotating part brush is rotated. It is preferable that the contact terminal 11 expands toward the tip.

また前記マイクロバブルテスターにおいて、泡認識手段3が、検体Oの撮像を認識する撮像手段31と、検体O及び撮像手段31との間に介設される透視蓋22と、撮像手段31によって認識された撮像に含まれる所定範囲の径の泡の数を解析する解析部32とを備えてなることが好ましい。   In the microbubble tester, the bubble recognition unit 3 is recognized by the imaging unit 31 that recognizes the imaging of the sample O, the fluoroscopic lid 22 interposed between the sample O and the imaging unit 31, and the imaging unit 31. It is preferable to include an analysis unit 32 that analyzes the number of bubbles having a diameter within a predetermined range included in the captured image.

なお前記マイクロバブルテスターにおいて、泡認識手段3は、例えば顕微鏡等のように、拡大レンズを備えてなるものであってもよい。   In the microbubble tester, the bubble recognition means 3 may be provided with a magnifying lens such as a microscope.

本願では、上記手段を採用することにより、検査結果にマイクロバブルテストの起泡作業やカウント精度による検者間での個人差が生じることがなく、また、検査作業の時間、手間やコストを低減しうるマイクロバブルテスターを提供することができる。   In the present application, by adopting the above-mentioned means, there is no individual difference between the examiners due to the microbubble test foaming work and the counting accuracy, and the inspection work time, labor and cost are reduced. A possible microbubble tester can be provided.

本発明の実施の形態について図面を参照して詳細に説明する。図1ないし図15は、本発明の実施例1のマイクロバブルテスターを示し、図16ないし図19は、実施例2のマイクロバブルテスターを示す。   Embodiments of the present invention will be described in detail with reference to the drawings. 1 to 15 show a microbubble tester according to a first embodiment of the present invention, and FIGS. 16 to 19 show a microbubble tester according to the second embodiment.

具体的には図1及び図2が、本発明の実施例1のマイクロバブルテスターの離間状態における全体構成を示す概観図であり、それぞれ側面図及び正面図である。
図3及び図4は実施例1の回転機構13について、回転部材11H及び回転モーター軸13Lの概観図及びその分解説明図を示す。
Specifically, FIG. 1 and FIG. 2 are schematic views showing the overall configuration of the microbubble tester according to the first embodiment of the present invention in the separated state, and are a side view and a front view, respectively.
3 and 4 show an overview of the rotating member 11H and the rotating motor shaft 13L and an exploded explanatory view of the rotating mechanism 13 of the first embodiment.

図5ないし図7は、実施例1の昇降機構12の作動状況について、それぞれ昇降ユニット12Yが上方位置ないし下端位置にあるときの側面視説明図である。各図の状態を詳述するに、図5では、接触端子11が離間状態S1、かつ係止機構15が係止状態S4にある。また図6では、接触端子11が離間状態S1、かつ係止機構15が係止状態S4から係止解除状態S3に移る過程の状態にある。そして図7では、接触端子11が接触状態S2、かつ係止機構15が係止解除状態S3にある。   FIG. 5 thru | or 7 is a side view explanatory drawing when the raising / lowering unit 12Y exists in an upper position or a lower end position about the operating condition of the raising / lowering mechanism 12 of Example 1, respectively. The state of each figure will be described in detail. In FIG. 5, the contact terminal 11 is in the separated state S1, and the locking mechanism 15 is in the locked state S4. In FIG. 6, the contact terminal 11 is in the separation state S1, and the locking mechanism 15 is in the process of moving from the locking state S4 to the locking release state S3. In FIG. 7, the contact terminal 11 is in the contact state S2, and the locking mechanism 15 is in the unlocking state S3.

図8ないし図15は、実施例1の閉蓋機構23を示す説明図であり、このうち図8が蓋保持アーム23Hの斜視概観図である。また図9ないし図11は、実施例1の閉蓋機構23の作動状況について、それぞれ昇降ユニット12Yが上端位置ないし下端位置にあるときの側面視説明図である。各図の状態を詳述するに、図9は閉蓋前の状態、図10は閉蓋中の斜接触状態(空気の逃げている状態)、図11は閉蓋後の対向接触状態を、それぞれ側面視にて示すものである。また図12及び図13は、それぞれ図9及び図11の状態における載置板21の側面視説明図であり、さらに図14は図13(図11の状態)のうち検体Oを示す側面視拡大説明図である。また図15は図13(図11の状態)の載置板21及び透視蓋23を示す平面視説明図である。   8 to 15 are explanatory views showing the lid closing mechanism 23 according to the first embodiment, and FIG. 8 is a perspective overview of the lid holding arm 23H. FIGS. 9 to 11 are explanatory views in side view when the elevating unit 12Y is in the upper end position or the lower end position, respectively, regarding the operating state of the lid closing mechanism 23 of the first embodiment. FIG. 9 shows the state before closing, FIG. 10 shows the oblique contact state during closing (air escape state), FIG. 11 shows the facing contact state after closing, Each is shown in side view. FIGS. 12 and 13 are side view explanatory views of the mounting plate 21 in the state of FIGS. 9 and 11, respectively, and FIG. 14 is an enlarged side view of the sample O in FIG. 13 (state of FIG. 11). It is explanatory drawing. FIG. 15 is an explanatory plan view showing the placement plate 21 and the see-through lid 23 of FIG. 13 (state of FIG. 11).

そして、図16が実施例2のマイクロバブルテスターのカバー押さえ板17の構成を示す斜視説明図である。   FIG. 16 is a perspective explanatory view showing the configuration of the cover presser plate 17 of the microbubble tester of the second embodiment.

図17ないし図19は、実施例2の昇降機構12の作動状況について、それぞれ昇降ユニット12Yが上端位置ないし下端位置にあるときの側面視説明図である。具体的には、図17では、接触端子11が離間状態S1、かつ係止機構15が係止状態S4にある。また図18では、接触端子11が離間状態S1、かつ係止機構15が係止状態S4から係止解除状態S3に移る過程の状態にある。そして図19では、接触端子11が接触状態S2、かつ係止機構15が係止解除状態S3にある。   FIGS. 17 to 19 are explanatory views in side view when the elevating unit 12Y is in the upper end position or the lower end position with respect to the operating state of the elevating mechanism 12 of the second embodiment. Specifically, in FIG. 17, the contact terminal 11 is in the separated state S1, and the locking mechanism 15 is in the locked state S4. Further, in FIG. 18, the contact terminal 11 is in the separation state S1, and the locking mechanism 15 is in the process of moving from the locking state S4 to the locking release state S3. In FIG. 19, the contact terminal 11 is in the contact state S2, and the locking mechanism 15 is in the unlocking state S3.

<本発明のマイクロバブルテスターの全体構成(図1)>
本発明のマイクロバブルテスターは、生体液を主成分とした検体Oを起泡して検体Oのマイクロバブルの発生状況を検知するものである。そして図1に示すように、起泡位置P1にて検体Oへの接触端子11を検体Oに接触させたまま回転させることで検体Oを起泡させる起泡手段と、閉蓋位置にて起泡させた検体Oを透視蓋22で閉蓋する閉蓋機構23と、泡認識位置P2にて透視蓋22を外側から検視して、閉蓋された検体Oに含まれる泡の数を認識する泡認識手段3と、そして検体Oを載置して各位置へ運搬する載置運搬手段2とを具備する。以下、実施例における各構成につき詳述する。
<Overall Configuration of Microbubble Tester of the Present Invention (FIG. 1)>
The microbubble tester of the present invention detects the occurrence of microbubbles in the specimen O by foaming the specimen O containing biological fluid as a main component. Then, as shown in FIG. 1, the foaming means for foaming the specimen O by rotating the contact terminal 11 to the specimen O in contact with the specimen O at the foaming position P1, and the foaming position at the closed position. A lid closing mechanism 23 for closing the bubbled specimen O with the fluoroscopic lid 22, and the fluoroscopic lid 22 is inspected from the outside at the bubble recognition position P2 to recognize the number of bubbles contained in the closed specimen O. It comprises a bubble recognition means 3 and a placement transport means 2 for placing the specimen O and transporting it to each position. Hereafter, each structure in an Example is explained in full detail.

(検体O)
本発明に言う検体Oは、起泡させた状態を観察することで状態を認識しうるものをいい、肺サーファクタントの量を測量する肺サーファクタント用のマイクロバブルテスターにおいては、主に母体の羊水または新生児の胃液である。実施例においては前記肺サーファクタント用のマイクロバブルテスターの検体Oとして、母体の羊水を示す。
〔起泡手段1〕
(Sample O)
Specimen O referred to in the present invention refers to one that can recognize the state by observing the foamed state, and in the microbubble tester for pulmonary surfactant that measures the amount of pulmonary surfactant, It is the gastric juice of a newborn. In the examples, maternal amniotic fluid is shown as specimen O of the microbubble tester for lung surfactant.
[Foaming means 1]

起泡手段1は、検体Oと接触しうる接触端子11を有してなり、この接触端子11が検体Oに接触し、接触端子11と検体Oの相対位置を可変させることで検体Oを起泡させる手段である。起泡には種々の形態を採用することができるが、具体的には例えば、先端に接触端子11を有した回転部材11Hを備えてなり、検体Oに接触した接触端子11を回転させる。また、この回転部材11Hの接触端子11を、任意の接触長さ又は任意の接触圧をもって検体Oに接触させ、鉛直方向又は鉛直方向から傾斜した回転軸L周りに回転左右いずれか一方向又は両方向に回転させることで検体Oを起泡させるものである。   The foaming means 1 has a contact terminal 11 that can come into contact with the specimen O. The contact terminal 11 comes into contact with the specimen O, and the relative position between the contact terminal 11 and the specimen O is changed to raise the specimen O. Means for foaming. Various forms can be adopted for foaming. Specifically, for example, the rotating member 11H having the contact terminal 11 at the tip is provided, and the contact terminal 11 in contact with the specimen O is rotated. Further, the contact terminal 11 of the rotating member 11H is brought into contact with the specimen O with an arbitrary contact length or an arbitrary contact pressure, and is rotated around the rotation axis L inclined from the vertical direction or the vertical direction in either one or both directions. The sample O is caused to foam by rotating it to the right.

実施例1の起泡手段1は具体的には、下方先端に設けた接触端子11を下端位置にて回転させうる回転機構13と、接触端子11を、検体Oと離間ないし接触させる上下端位置間(すなわち、検体O上方に離れた上端位置ないし検体Oに接触端子11が接触する下端位置の間の上下位置間)で移動させる昇降機構12と、下端位置にある回転部材11H及び検体Oの周囲を覆う飛散防止カバー14と、飛散防止カバー14及び接触端子11を係止させる係止機構15とを備えてなる。   Specifically, the foaming means 1 according to the first embodiment has a rotation mechanism 13 that can rotate the contact terminal 11 provided at the lower tip at the lower end position, and upper and lower end positions at which the contact terminal 11 is separated from or brought into contact with the specimen O. A lifting mechanism 12 that is moved between the upper end position away from above the specimen O or the upper and lower positions between the lower end positions where the contact terminal 11 contacts the specimen O, and the rotating member 11H and the specimen O at the lower end position. The scattering prevention cover 14 which covers the circumference | surroundings, and the latching mechanism 15 which latches the scattering prevention cover 14 and the contact terminal 11 are provided.

(回転部材11H)
回転部材11Hは、回転軸Lを中心軸として伸び、回転機構13の回転モーターによって回転する円柱型の棒体からなる。具体的には例えば、直径4mmの円筒型のシャフトからなり、複数本の接触端子11たるブラシ毛を下方先端に有する。
(Rotating member 11H)
The rotating member 11 </ b> H is a cylindrical rod that extends around the rotation axis L and is rotated by a rotation motor of the rotation mechanism 13. Specifically, for example, it is composed of a cylindrical shaft having a diameter of 4 mm, and has a plurality of brush bristles as contact terminals 11 at the lower end.

実施例1においては、回転部材11Hの上方基端面が、連結ビス16Sによって、回転モーター軸13Lと磁着して同軸回転する短円柱状の連結機構16に螺合固定される(図3、4)。また回転部材11Hの外周には複数本の接触端子11が固定される。この回転部材11Hは、下端位置にて、静止状態の回転部材11Hの先端の接触端子11の少なくとも一部が検体Oと接触した状態となる。   In the first embodiment, the upper base end surface of the rotating member 11H is screwed and fixed to the short columnar connecting mechanism 16 that is magnetically attached to the rotating motor shaft 13L and rotates coaxially with the connecting screw 16S (FIGS. 3 and 4). ). A plurality of contact terminals 11 are fixed to the outer periphery of the rotating member 11H. The rotating member 11H is in a state where at least a part of the contact terminal 11 at the tip of the stationary rotating member 11H is in contact with the sample O at the lower end position.

(接触端子11)
接触端子11は、細い線状のワイヤーブラシからなる。具体的には、直径0.1mmのワイヤが、回転部材11Hの先端付近の外周に沿って0.1mmの等間隔で軸先端方向を向いて固設される。回転部材11Hから先側に突出する接触端子11の開放長さは15mmである。
(Contact terminal 11)
The contact terminal 11 consists of a thin linear wire brush. Specifically, a wire having a diameter of 0.1 mm is fixed in the axial direction at an equal interval of 0.1 mm along the outer periphery near the tip of the rotating member 11H. The open length of the contact terminal 11 protruding forward from the rotating member 11H is 15 mm.

回転部材11Hが静止した静止状態において、接触端子11の各本はいずれも回転軸L方向と平行な方向を向き、少なくともいずれか複数本の接触端子11同士の間隔は、接触端子11の基端(固定端)から先端(開放端)のいずれの位置にわたっても略等間隔である。   In the stationary state where the rotating member 11H is stationary, each of the contact terminals 11 faces a direction parallel to the rotation axis L direction, and at least the interval between the plurality of contact terminals 11 is the base end of the contact terminal 11 The distance from the (fixed end) to the front end (open end) is substantially equal.

一方、回転部材11Hが回転した回転状態において、少なくともいずれか複数本の接触端子11同士の間隔は、接触端子11の基端(固定端)から先端(開放端)へ向かうにしたがって拡がってなる。   On the other hand, in the rotation state in which the rotating member 11H is rotated, the interval between at least one of the plurality of contact terminals 11 increases from the proximal end (fixed end) to the distal end (open end) of the contact terminals 11.

実施例の接触端子11は、平行に並べた複数のブラシ毛の一端をテープで固着してブラシテープ11Tとして束ね、このブラシテープ11Tを、円柱状の回転部材11Hの下方先端に巻回固着して形成している。このブラシテープ11Tが回転部材11Hの周面に段付き固定されることで周囲に膨出する。このためブラシテープ11Tは、ブラシテープ11Tよりも上部にて回転部材11Hに挿通された、係止片15aたるワッシャーの抜け止め機能、或いは、同じく回転部材11Hに挿通された、被係止片15bを有する飛散防止カバーの抜け止め機能を果たす(図3)。   In the contact terminal 11 of the embodiment, one end of a plurality of brush bristles arranged in parallel is fixed with a tape and bundled as a brush tape 11T, and this brush tape 11T is wound and fixed to a lower end of a cylindrical rotating member 11H. Formed. The brush tape 11T bulges out by being fixed to the peripheral surface of the rotating member 11H with a step. For this reason, the brush tape 11T has a function of preventing the washer as a locking piece 15a inserted in the rotating member 11H above the brush tape 11T, or a locked piece 15b that is also inserted in the rotating member 11H. The anti-separation function of the anti-scattering cover having a function is achieved (FIG. 3).

(回転軸L)
回転軸Lは、軸下方側が、側面視にて1度ないし10度、好ましくは2度〜5度の範囲の微小な傾斜角度θだけ鉛直方向に対して前方に傾いている。なお正面視にて鉛直方向である。これにより、水平面の液面の法線に対して(すなわち鉛直方向に対して)微小な傾斜角度θだけ回転ブラシが傾いて接触することとなる。具体的に言えば、接触端子11の低い側は、飛散防止カバー14と載置板21の接触面を周回する一方、高い側は、悲惨防止カバーの内壁に沿って周回する。これによって接触端子11の先端は、回転軸Lの平面視投射軸を長軸とする楕円軌道を描く。具体的には例えば、内径15mmの円上に接触端子11を配置し、回転軸Lの傾斜を鉛直方向に対して3度だけとしたとき、接触端子11の先端は、長径15.02mm、短径15mmの楕円軌道を描く。これにより、ブラシ上昇時には検体Oを掻き上げ、下降時すなわち検体Oの液中に戻るときに検体Oを剪断することとなり、また検体Oの攪拌を効率的に行うものとなる。
(Rotating axis L)
The rotation axis L is inclined forward with respect to the vertical direction by a minute inclination angle θ in the range of 1 to 10 degrees, preferably 2 to 5 degrees in a side view. In addition, it is a vertical direction in front view. As a result, the rotating brush is brought into contact with the normal line of the liquid level on the horizontal plane (that is, with respect to the vertical direction) with a small inclination angle θ. More specifically, the lower side of the contact terminal 11 circulates around the contact surface between the anti-scattering cover 14 and the mounting plate 21, while the higher side circulates along the inner wall of the anti-disaster cover. As a result, the tip of the contact terminal 11 draws an elliptical trajectory having the major axis of the plane-view projection axis of the rotation axis L. Specifically, for example, when the contact terminal 11 is arranged on a circle having an inner diameter of 15 mm and the inclination of the rotation axis L is set to 3 degrees with respect to the vertical direction, the tip of the contact terminal 11 has a major diameter of 15.02 mm and a short length. Draw an elliptical orbit with a diameter of 15 mm. Thus, the specimen O is scraped up when the brush is raised, and the specimen O is sheared when it is lowered, that is, when it returns to the liquid of the specimen O, and the specimen O is efficiently stirred.

(昇降機構12)
昇降機構12は、前記回転部材11Hを、検体Oの上方に離れた上端位置ないし検体Oのに接触端子が接触する下端位置の間、すなわち上下端位置間で昇降させる。具体的には、気泡位置P1に垂直方向に設置された昇降ポール12Pと、昇降ポール12Pに挿通されてこれに沿って上下に昇降運転するように制御される箱型の昇降ユニット12Yとを具備してなる(図1、2)。そしてこの昇降ユニット12Yには、箱型の正面前方から下方に向かって回転機構13が連結機構16によって着脱可能に固定され、箱型の底面から下方に向かってカバー押さえ板7が押さえ板固定アーム17Hによって固定され、そして箱型の閉蓋位置に近い側(実施例では正面視右側)の一側面から下方に向かって蓋保持アーム23Hが固定される(図1、2)。これら回転機構13、カバー押さえ板7、及び蓋保持アーム23Hは、昇降ユニット12Yと共に昇降する(図5ないし図7)。
(Elevating mechanism 12)
The elevating mechanism 12 elevates and lowers the rotating member 11H between the upper end position above the specimen O or the lower end position where the contact terminal contacts the specimen O, that is, between the upper and lower end positions. Specifically, it includes an elevating pole 12P vertically installed at the bubble position P1, and a box-type elevating unit 12Y inserted through the elevating pole 12P and controlled to move up and down along the elevating pole 12P. (Figs. 1 and 2). A rotating mechanism 13 is detachably fixed to the elevating unit 12Y from the front side of the box-shaped front by a connecting mechanism 16, and a cover pressing plate 7 is pressed downward from the bottom of the box-shaped arm. The lid holding arm 23H is fixed downward from one side of the side close to the box-type lid closing position (right side in the front view in the embodiment) (FIGS. 1 and 2). The rotating mechanism 13, the cover pressing plate 7, and the lid holding arm 23H move up and down together with the lifting unit 12Y (FIGS. 5 to 7).

これによって、接触端子11を検体Oと離接させ、離間状態S1ないし接触状態S2とする。また、カバー押さえ板7を接地した飛散防止カバー14と離接させ、離間状態S1ないし接触状態S2とする。また、蓋保持アーム23Hの傾斜板23Ht上に保持した透視蓋22を板保持具25H上の載置板21と離接させ、離間状態S1ないし接触状態S2とし、さらに斜接触状態S5から対向接触状態S6とする。   As a result, the contact terminal 11 is moved away from and in contact with the specimen O, so that the separated state S1 or the contact state S2. Further, the cover presser plate 7 is brought into contact with the scattering prevention cover 14 that is grounded to be in the separated state S1 or the contact state S2. Further, the see-through lid 22 held on the inclined plate 23Ht of the lid holding arm 23H is brought into and out of contact with the mounting plate 21 on the plate holder 25H to be in the separated state S1 to the contact state S2, and further in the opposed contact from the oblique contact state S5. Let it be state S6.

この昇降機構12によって、回転部材11Hが起泡可能な状態である接触状態S2にセットされる。この起泡可能な状態たる接触状態S2においては、接触端子11たる複数の接触端子11の少なくとも一部(実施例では全数の先端)が検体Oと接触する。   By this elevating mechanism 12, the rotating member 11H is set to a contact state S2 in a state where foaming is possible. In the contact state S2, which is a state where foaming is possible, at least a part (a total number of tips in the embodiment) of the plurality of contact terminals 11 serving as the contact terminals 11 is in contact with the specimen O.

好ましい回転位置たる回転部材11Hの下端位置(ブラシのセット高さ)は、静止状態において複数本ある接触端子11の全ての先端部が、載置板21たるガラスの表面と接触する高さである。たとえば載置板21の側方に配したセンサによって位置決めを行う。このセンサは、載置板21上面と接触端子11の空隙の有無を側面からの視認光によって判断する非接触視認センサであってもよく、接触端子11と載置板21の接触による圧力を検知する圧力センサであってもよい。このほか、接触端子11と載置板21を導電体からなるものとしておき、接触端子11と載置板21の接触による導電量を検知する導電センサなど、種々のセンサを使用することができる。   The lower end position (brush set height) of the rotating member 11H, which is a preferable rotational position, is a height at which all the tip portions of the contact terminals 11 in contact with the surface of the glass serving as the mounting plate 21 in a stationary state. . For example, positioning is performed by a sensor arranged on the side of the mounting plate 21. This sensor may be a non-contact visual sensor that determines the presence or absence of a gap between the upper surface of the mounting plate 21 and the contact terminal 11 by visible light from the side surface, and detects the pressure due to the contact between the contact terminal 11 and the mounting plate 21 It may be a pressure sensor. In addition, the contact terminal 11 and the mounting plate 21 are made of a conductor, and various sensors such as a conductive sensor that detects the amount of conduction due to the contact between the contact terminal 11 and the mounting plate 21 can be used.

液量130μlの場合、回転部材11Hの下端位置(ブラシのセット高さ)は、プラスマイナス1mm以内の誤差であることが好ましい。   When the liquid amount is 130 μl, the lower end position (brush set height) of the rotating member 11H is preferably an error within plus or minus 1 mm.

(回転機構13)
回転機構13は、接触端子11が検体Oと接触した前記接触状態S2において、回転部材11Hを回転軸L周りに回転させる機構である。具体的には回転モーター13Lと回転部材11Hとが、回転軸Lで同軸上に固定される。より具体的には、図3、4に示すように、モーター軸の先端と回転部材11Hの上方先端(基端)とが嵌合構造および嵌合構造内当接部での磁着によって取り外し可能に固定される。回転モーター軸13Lの下方先端には、連結磁性体16Mとして、角柱又は円柱状の磁石が固定される。また、回転部材11Hの上方基端には、角筒又は円筒状の連結穴16Hを同軸上に設けて、この連結穴16H内に連結磁性体16Mが嵌入するようにしており、これと共に、連結穴16Hの穴底に、磁着体からなる金属板を埋設している。この金属板は、実施例では円柱状の連結機構16と回転部材11Hとを連結する連結ビス16Sの皿状の頭部からなる。この連結ビス16Sの皿状の頭部が連結磁性体16Mの先端面と当接し、磁着して着脱可能に同軸固定される(図3、4)。
(Rotating mechanism 13)
The rotation mechanism 13 is a mechanism that rotates the rotation member 11H around the rotation axis L in the contact state S2 in which the contact terminal 11 is in contact with the specimen O. Specifically, the rotary motor 13L and the rotary member 11H are fixed coaxially with the rotary shaft L. More specifically, as shown in FIGS. 3 and 4, the distal end of the motor shaft and the upper distal end (base end) of the rotating member 11H can be removed by magnetic attachment at the fitting structure and the contact portion in the fitting structure. Fixed to. A prismatic or columnar magnet is fixed to the lower end of the rotary motor shaft 13L as the connecting magnetic body 16M. In addition, a rectangular tube or cylindrical connecting hole 16H is provided coaxially at the upper base end of the rotating member 11H, and the connecting magnetic body 16M is inserted into the connecting hole 16H. A metal plate made of a magnetized body is embedded in the hole bottom of the hole 16H. In the embodiment, the metal plate is composed of a dish-shaped head of a connecting screw 16S that connects the columnar connecting mechanism 16 and the rotating member 11H. The dish-shaped head of the connecting screw 16S comes into contact with the distal end surface of the connecting magnetic body 16M, and is magnetically attached and detachably coaxially fixed (FIGS. 3 and 4).

この連結ビス16Sが、細棒状の回転部材11Hの上方基端面から螺入する際、回転部材11Hには予め、飛散防止カバー14の係止片15aたる孔空き板と、被係止片15bたるワッシャーとが通してある。そして図3に示すように、被係止片15bたるワッシャーが、回転部材11Hの下端側で膨出したブラシテープ11Tの段付き部上に係止し、そして係止片15aたる孔空き板が、被係止片15bたるワッシャーと、下方傾斜側面にて当接して係止する(図3)。   When the connecting screw 16S is screwed from the upper base end surface of the thin rod-shaped rotating member 11H, the rotating member 11H is previously provided with a perforated plate as the locking piece 15a of the anti-scattering cover 14 and the locked piece 15b. There is a washer. And as shown in FIG. 3, the washer which is the to-be-latched piece 15b latches on the stepped part of the brush tape 11T bulging on the lower end side of the rotating member 11H, and the perforated plate which is the latching piece 15a Then, it is brought into contact with the washer as the latched piece 15b on the downward inclined side surface and locked (FIG. 3).

(飛散防止カバー14)
飛散防止カバー14は、接触状態S2において、下端位置にある回転部材11H及び検体Oの周囲を環囲するように載置されることで、起泡時の検体Oの飛散を防止するものである。
(Spattering prevention cover 14)
The anti-scattering cover 14 is placed so as to surround the periphery of the rotating member 11H and the sample O at the lower end position in the contact state S2, thereby preventing the sample O from scattering at the time of foaming. .

具体的には例えば、回転部材11H及び検体Oを囲いうる大きさの円筒体の上端に天井板を設けた、倒立容器状のカバーからなる。円筒体は特に起泡状態の様子を確認すべく、例えば内径15mmの光透過性部材(すなわち透明部材)が使用される。飛散防止カバー14は、昇降機構12によって起泡時に載置板21に接触して下面すべてが当接した位置まで降りる(図6、図7)。飛散防止カバー14が前記位置まで降りた接触状態S2において、カバー下縁辺が載置板21と密着した状態で、回転部材11Hが回転する(図7)。   Specifically, for example, it is composed of an inverted container-like cover in which a ceiling plate is provided at the upper end of a cylindrical body that can enclose the rotating member 11H and the specimen O. In order to confirm the state of foaming in particular, for example, a light transmissive member having an inner diameter of 15 mm (that is, a transparent member) is used. The anti-scattering cover 14 is brought down to a position where the lower surface comes into contact with the mounting plate 21 by the elevating mechanism 12 when foaming and the entire lower surface comes into contact (FIGS. 6 and 7). In the contact state S2 where the anti-scattering cover 14 is lowered to the above position, the rotating member 11H rotates with the lower edge of the cover in close contact with the mounting plate 21 (FIG. 7).

(係止機構15)
係止機構15は、接触端子11が検体Oと離間した離間状態S1において、飛散防止カバー14及び接触端子11を係止させる。具体的には係止機構15は、接触端子11が検体Oと接触した接触状態S2において係止解除状態S3となる(図7)と共に、接触端子11が検体Oと離間した離間状態S2において、飛散防止カバー14を回転部材11Hに係止させた係止状態S4となる。すなわち下端位置から上端位置へ向かうときに係止機構15が係止状態S4となり、飛散防止カバー14が吊り上げられる(図5)。また、飛散防止カバー14が接地する位置(図6)から下端位置(図7)までの下端位置付近にて、係止解除状態S3となる。
(Locking mechanism 15)
The locking mechanism 15 locks the scattering prevention cover 14 and the contact terminal 11 in the separated state S1 where the contact terminal 11 is separated from the specimen O. Specifically, the locking mechanism 15 is in the unlocked state S3 in the contact state S2 in which the contact terminal 11 is in contact with the sample O (FIG. 7), and in the separated state S2 in which the contact terminal 11 is separated from the sample O, It will be in the latching state S4 which latched the scattering prevention cover 14 to the rotating member 11H. That is, when moving from the lower end position to the upper end position, the locking mechanism 15 enters the locking state S4, and the scattering prevention cover 14 is lifted (FIG. 5). Moreover, it will be in the latch release state S3 in the vicinity of the lower end position from the position (FIG. 6) where the anti-scattering cover 14 contacts the ground to the lower end position (FIG. 7).

実施例において、係止機構15は、筒状の飛散防止カバーの筒軸側に突出した係止片15aと、回転部材11Hの回転軸から周囲へ張り出した被係止片15bとからなる。   In the embodiment, the locking mechanism 15 includes a locking piece 15a that protrudes toward the cylinder shaft side of the cylindrical scattering prevention cover, and a locked piece 15b that protrudes to the periphery from the rotation shaft of the rotating member 11H.

係止片15aは例えば、円筒体の飛散防止カバー14の一端を蓋状に覆った円板に同心孔を形成した孔空き円板からなるものとすることができる。被係止片15bは例えば、回転部材11Hに挿通したワッシャーからなるものとすることができる(図4)。   The locking piece 15a can be made of, for example, a perforated disk in which concentric holes are formed in a disk that covers one end of a cylindrical scattering prevention cover 14 in a lid shape. The locked piece 15b can be made of, for example, a washer inserted through the rotating member 11H (FIG. 4).

このように、筒状の飛散防止カバー14が回転部材11Hの周囲を囲うように係止することで、起泡後の回転部材Hの取り外し時、或いは閉蓋工程中の昇降ユニット12Yの昇降時において、検体Oが飛散したり手指等に付着することがない。使用後、検体の付着した回転部材11Hや飛散防止カバー14は廃棄する必要があるところ、検体Oの飛散や付着を防止することで、この廃棄作業を、不要な感染を防止しつつ衛生的に行うことができる。   In this way, the cylindrical scattering prevention cover 14 is locked so as to surround the rotating member 11H, so that the rotating member H after foaming is removed or when the lifting unit 12Y is lifted or lowered during the closing process. In this case, the specimen O is not scattered or attached to fingers or the like. After use, the rotating member 11H and the scattering prevention cover 14 to which the sample is attached need to be discarded. By preventing the sample O from scattering and adhering, this disposal operation can be performed in a sanitary manner while preventing unnecessary infection. It can be carried out.

ここで係止片と係止片それぞれの係止面(孔空き円板の同心孔およびワッシャーの各周端面)をそれぞれ傾斜面とし、互いに対応するテーパー状に形成すれば、吊り上げたときに飛散防止カバー14の回転部材11Hへの芯合わせを自動的に行うことができ、飛散防止カバー14のセット位置を適正なものに保つ。飛散防止カバー14のセット位置を適正なものに保つことで、回転中の回転部材11Hと飛散防止カバー14との接触を確実に防止しうる。   If the locking surfaces of the locking pieces and the locking pieces (the concentric holes of the perforated disk and the peripheral end surfaces of the washers) are inclined surfaces and are formed in tapered shapes corresponding to each other, they are scattered when lifted. The centering of the prevention cover 14 to the rotating member 11H can be automatically performed, and the set position of the scattering prevention cover 14 is kept at an appropriate one. By keeping the set position of the scattering prevention cover 14 at an appropriate position, contact between the rotating rotating member 11H and the scattering prevention cover 14 can be reliably prevented.

なお回転部材11Hの回転時には回転軸Lがぶれるため、飛散防止カバー14のセット位置がずれると回転中の回転部材11Hと飛散防止カバーとが接触しやすい。この接触によって、機械的起泡作業による正確な起泡度の測定が妨げられたり、飛散防止カバー14が浮き上がり機能しなくなったりする。   Since the rotation axis L is shaken when the rotating member 11H is rotated, the rotating rotating member 11H and the scattering prevention cover are likely to come into contact with each other if the set position of the scattering prevention cover 14 is shifted. This contact hinders accurate measurement of the degree of foaming by the mechanical foaming operation, or the scattering prevention cover 14 is lifted and cannot function.

(カバー押さえ板17)
実施例1のカバー押さえ板17は、先端が弾性部材たる板バネ部となった下部折曲弾性板からなり、図2、図5等に示すように、この板バネ部が下方傾斜した状態で、押さえ板固定アーム17Hを介して昇降ユニット12Yに固定される。この板バネ部は、昇降ユニット12Yが上端位置にあるとき、飛散防止カバー14の上方へ離間した状態となっている(図5)。
(Cover holding plate 17)
The cover pressing plate 17 according to the first embodiment is composed of a lower bent elastic plate whose tip is a leaf spring portion that is an elastic member. As shown in FIGS. 2 and 5, the leaf spring portion is inclined downward. , And is fixed to the elevating unit 12Y via the pressing plate fixing arm 17H. This leaf spring portion is in a state of being separated upward from the scattering prevention cover 14 when the elevating unit 12Y is at the upper end position (FIG. 5).

また昇降ユニット12Yが上端位置から下端位置へ下降動作するとき、昇降ユニット12Yに固定された押さえ板固定アーム17H及びカバー押さえ板17が昇降ユニット12Yと共に降下する。飛散防止カバー14が接地した後も下降動作が続くことで、飛散防止カバー14の回転部材11Hに対する相対位置が上方へずれる。これにより、カバー押さえ板17は、飛散防止カバーの上面と接触した接触状態となる(例えば、図6ないし図7の状態)。この接触状態において、板バネ部は上方から飛散防止カバー14を弾性付勢し、飛散防止カバーの位置が変わらないように強固に位置固定する。   When the elevating unit 12Y moves downward from the upper end position to the lower end position, the holding plate fixing arm 17H and the cover holding plate 17 fixed to the elevating unit 12Y are lowered together with the elevating unit 12Y. Since the descending operation continues even after the scattering prevention cover 14 is grounded, the relative position of the scattering prevention cover 14 with respect to the rotating member 11H is shifted upward. As a result, the cover pressing plate 17 comes into contact with the upper surface of the scattering prevention cover (for example, the state shown in FIGS. 6 to 7). In this contact state, the leaf spring portion elastically biases the anti-scattering cover 14 from above and firmly fixes the position of the anti-scattering cover so that the position of the anti-scattering cover does not change.

実施例2のカバー押さえ板17は、図16に示すような中央孔及び先端切欠きを有した平板からなる。この平板は弾性板であり、中央孔に昇降機構12の昇降ポール12Pが貫通し、この中央孔よりも先端寄りの上面部が、昇降可能な押さえ板固定アーム17Hによって相対角度自在にヒンジ固定されると共に、基端辺が固定部にヒンジ固定される(図17参照)。   The cover pressing plate 17 according to the second embodiment is a flat plate having a central hole and a notch at the end as shown in FIG. This flat plate is an elastic plate, and an elevating pole 12P of the elevating mechanism 12 passes through the central hole, and the upper surface portion closer to the tip than the central hole is hinged and fixed at a relative angle by a presser plate fixing arm 17H that can be moved up and down. At the same time, the base end side is hinged to the fixing portion (see FIG. 17).

実施例2の昇降ユニット12Yの昇降に伴い、昇降ユニット12Yに固定された押さえ板固定アーム17Hが昇降する。実施例2のカバー押さえ板17は、基端辺が固定部に、先端寄り上面部が押さえ板固定アーム17Hにそれぞれヒンジ固定されている。このため、押さえ板固定アーム17Hの昇降に伴い、カバー押さえ板17の基端辺が固定部に固定されたまま、カバー押さえ板17の先端辺が昇降する(図17ないし図19)。   As the elevating unit 12Y according to the second embodiment moves up and down, the holding plate fixing arm 17H fixed to the elevating unit 12Y moves up and down. In the cover pressing plate 17 of the second embodiment, the base end side is fixed to the fixing portion, and the upper surface portion near the tip is hinged to the pressing plate fixing arm 17H. For this reason, as the presser plate fixing arm 17H moves up and down, the distal end side of the cover presser plate 17 moves up and down while the base end side of the cover presser plate 17 is fixed to the fixing portion (FIGS. 17 to 19).

実施例2のカバー押さえ板17の先端辺付近は、中央に切欠きを有することで、実施例1と同様、板バネ部となっている。この板バネ部は、昇降ユニット12Yが上端位置にあるとき、飛散防止カバー14の上方へ離間した状態となっている(図17、18)。また昇降ユニット12Yが上端位置から下端位置へ下降動作するとき、昇降ユニット12Yに固定された押さえ板固定アーム17Hが昇降ユニット12Yと共に降下し、押さえ板固定アーム17Hに先端寄り位置でヒンジ固定されたカバー押さえ板17が、基端を支点として下方へ回転し、下方へ傾斜した状態となる。飛散防止カバー14が接地した後も下降動作が続くことで、飛散防止カバー14の回転部材11Hに対する相対位置が上方へずれる(図18)。こののち、カバー押さえ板17は、飛散防止カバーの上面と接触した接触状態となる(図19)。このカバー押さえ板17の飛散防止カバー14への接触状態において、板バネ部は上方から飛散防止カバー14を弾性付勢し、飛散防止カバーの位置が変わらないように強固に位置固定する。
〔載置運搬手段2〕
The vicinity of the front end side of the cover pressing plate 17 of the second embodiment is a leaf spring portion as in the first embodiment by having a notch in the center. This leaf spring portion is in a state of being separated upward from the scattering prevention cover 14 when the elevating unit 12Y is in the upper end position (FIGS. 17 and 18). When the lifting unit 12Y is lowered from the upper end position to the lower end position, the holding plate fixing arm 17H fixed to the lifting unit 12Y is lowered together with the lifting unit 12Y and is hinged to the holding plate fixing arm 17H at a position near the tip. The cover pressing plate 17 rotates downward with the base end as a fulcrum and is inclined downward. Since the descending operation continues even after the scattering prevention cover 14 is grounded, the relative position of the scattering prevention cover 14 with respect to the rotating member 11H is shifted upward (FIG. 18). After that, the cover pressing plate 17 comes into contact with the upper surface of the anti-scattering cover (FIG. 19). In the contact state of the cover holding plate 17 with the scattering prevention cover 14, the leaf spring portion elastically biases the scattering prevention cover 14 from above and firmly fixes the position of the scattering prevention cover so that the position of the scattering prevention cover does not change.
[Loading and transporting means 2]

(載置板21)
載置板21は、検体Oをその上に載置する板であり、例えばガラス板が使用される。検体Oが載置された載置板21は、起泡手段1によって起泡位置P1で検体Oが起泡された後、搬送手段25によって泡認識位置P2へ搬送され、透視蓋22たる透視蓋22たるスライドグラスを重ねた状態で泡認識手段3によって泡認識される。
(Mounting plate 21)
The placement plate 21 is a plate on which the specimen O is placed, and for example, a glass plate is used. The mounting plate 21 on which the specimen O is placed is transported to the foam recognition position P2 by the transport means 25 after the specimen O is foamed by the foaming means 1 at the foaming position P1, and the fluoroscopic lid 22 is the fluoroscopic lid 22. Bubble recognition is performed by the bubble recognition means 3 in a state where 22 slide glasses are stacked.

(スペーサー24)
載置板21の上面には、検体Oを載置する載置箇所を覆うようにして所定厚さのスペーサー24が配設される。スペーサー24は、後述する透視蓋22が載置板21を覆ったときに、透視蓋22が起泡された検体Oと接触して外方に拡がったり溢れ出たりするのを防ぐべく、載置板21の上面側に所定高さのスペースを確保するものである(図12、13)。実施例のスペーサー24として、所定厚さとして厚さ0.2mmのプラスチックテープを、載置板21の検体O載置箇所を囲う平面視四方枠状に貼付している(図15)。
(Spacer 24)
A spacer 24 having a predetermined thickness is disposed on the upper surface of the mounting plate 21 so as to cover the mounting portion where the specimen O is mounted. The spacer 24 is placed in order to prevent the see-through lid 22 from expanding and overflowing outwardly when the see-through lid 22 covers the placement plate 21 and comes into contact with the foamed specimen O. A space having a predetermined height is secured on the upper surface side of the plate 21 (FIGS. 12 and 13). As the spacer 24 of the embodiment, a plastic tape having a predetermined thickness of 0.2 mm is stuck in a four-sided frame shape in plan view surrounding the specimen O placement portion of the placement board 21 (FIG. 15).

スペーサー24による、載置された検体Oの厚さを確保するための所定厚さは0.1mmないし0.5mm程度であることが好ましい。これは、透視蓋22たるスライドグラスを被せたときに検体Oが起泡されたまま平面方向に広がり、載置板21上に液層が確保されることで、泡認識のための視野範囲を広く確保できる厚さである。また、液層が厚すぎて透光量が減り、泡認識が困難になってしまうことのない厚さである。   The predetermined thickness for securing the thickness of the placed specimen O by the spacer 24 is preferably about 0.1 mm to 0.5 mm. This is because the specimen O is foamed and spreads in a plane direction when a slide glass as the fluoroscopic lid 22 is put on, and a liquid layer is secured on the mounting plate 21, so that the visual field range for foam recognition is increased. The thickness can be secured widely. Further, the thickness is such that the liquid layer is too thick to reduce the amount of transmitted light and make bubble recognition difficult.

(閉蓋機構23)
閉蓋機構23は、透視蓋22を、検体Oの液面に斜接触状態S5で接触させてこの斜接触状態S5から傾斜角度を徐々に小さくする対向接触状態S6とするものである。これは、蓋保持アーム23Hが、先端に平行に設けた一対の傾斜板23Ht上に透視蓋22を載置保持したまま、下方の載置板21へ向かって下降して閉蓋することによって達成される(図9ないし図11)。
(Cover mechanism 23)
The lid closing mechanism 23 is configured to bring the fluoroscopic lid 22 into contact with the liquid surface of the specimen O in the oblique contact state S5, and to the opposite contact state S6 in which the inclination angle is gradually reduced from the oblique contact state S5. This is achieved by the lid holding arm 23H descending toward the lower mounting plate 21 and closing the lid while holding the fluoroscopic lid 22 on the pair of inclined plates 23Ht provided parallel to the tip. (FIGS. 9 to 11).

斜接触状態S5から接触することで、検体Oの上部を閉蓋するときに透視蓋22と検体Oの間の空気を逃がすことができる(図10)。   By contacting from the oblique contact state S5, air between the fluoroscopic lid 22 and the specimen O can be released when the upper part of the specimen O is closed (FIG. 10).

なお斜接触状態S5とは、検体Oの液面に対して傾斜させたまま接触する状態であり、対向接触状態S6とは、検体Oの液面に対して平行に対向接触する状態である。   The oblique contact state S5 is a state in contact with the liquid surface of the specimen O while being tilted, and the opposing contact state S6 is a state in which the liquid contact surface of the specimen O is opposed to the liquid surface in parallel.

(蓋保持アーム23H)
蓋保持アーム23Hは具体的には、図8に示すように、透視蓋22の両端付近を、微小に傾斜した一対の傾斜板23Htで保持し、透視蓋22の両端辺の外側を各立設板23Heで囲うものとしている。また蓋保持アーム23Hは昇降機構12の昇降ユニット12Yに連結固定され、昇降機構12の昇降動作と共に昇降することで透視蓋22を載置板24上に載置するものとしている。
(Lid holding arm 23H)
Specifically, as shown in FIG. 8, the lid holding arm 23H holds the vicinity of both ends of the fluoroscopic lid 22 with a pair of minutely inclined plates 23Ht, and the outer sides of both ends of the fluoroscopic lid 22 are provided upright. It is assumed that it is surrounded by a plate 23He. The lid holding arm 23 </ b> H is connected and fixed to the lifting unit 12 </ b> Y of the lifting mechanism 12, and the transparent lid 22 is mounted on the mounting plate 24 by moving up and down with the lifting and lowering operation of the lifting mechanism 12.

(透視蓋22)
透視蓋22は、透光性泡認識手段3の撮像光が透過しうるだけの透光性を有する。撮像手段31による撮像焦点を透視蓋22の表面に定めることで、ピントのずれを無くし、撮像を鮮明化するものである。この透視蓋22は、検体O及び撮像手段31との間に介設され、泡認識手段3の撮像光を透過させる。
(Transparent lid 22)
The see-through lid 22 has translucency that allows the imaging light of the translucent bubble recognition means 3 to pass therethrough. By defining the imaging focus of the imaging means 31 on the surface of the fluoroscopic lid 22, the focus is eliminated and the imaging is sharpened. The fluoroscopic lid 22 is interposed between the specimen O and the imaging unit 31 and transmits the imaging light of the bubble recognition unit 3.

実施例では、泡認識手段3による泡認識時に、載置板21の上方に、透視蓋22として比較的厚さに富んだスライドグラスを被せるものとしている(図13)。これは、顕微鏡等の撮像手段31による検視の際に、焦点位置としての平面を得るためのものである。すなわち、透視蓋22として薄い蓋板を使用すると、板面に微小なひずみが生じ、透視蓋22の面を基準位置としてオフセットした場合、泡認識において誤差が生じる場合がある。これに対して板面が平面に保たれ、不要なたわみの生じない十分な厚さの板体(例えば、スライドグラス)を使用すれば、透視蓋22の上面或いは下面を泡認識の基準位置としたときに、基準位置から所定距離だけ先の位置を認識する場合に、誤差の生じ難い均一的な認識位置となる。   In the embodiment, during the bubble recognition by the bubble recognition means 3, a slide glass having a relatively large thickness is placed on the placement plate 21 as a transparent lid 22 (FIG. 13). This is for obtaining a plane as a focal position at the time of visual inspection by the imaging means 31 such as a microscope. That is, when a thin cover plate is used as the fluoroscopic lid 22, a minute distortion occurs on the plate surface, and when the plane of the fluoroscopic lid 22 is offset as a reference position, an error may occur in bubble recognition. On the other hand, if a plate body (for example, a slide glass) having a sufficient thickness that keeps the plate surface flat and does not cause unnecessary deflection is used, the upper surface or the lower surface of the fluoroscopic lid 22 is set as a reference position for bubble recognition. In this case, when a position ahead by a predetermined distance from the reference position is recognized, it becomes a uniform recognition position that hardly causes an error.

透視蓋22は、像拡大機能として、透視蓋22の上方から透視蓋22を介して透視蓋22下にある検体Oをみたとき、可視像たる検体Oの液面像を拡大する機能を備えたものであってもよい。また、整光機能として、平行に走る多数の突条やスリットによる一方向又は二方向フィルターによって、透視蓋22下方から透視蓋22を介して上方へ透過する光の方向を整える機能を備えたものでもよい(いずれも図示せず)。   The fluoroscopic lid 22 has a function of enlarging the liquid level image of the specimen O, which is a visible image, when the specimen O under the fluoroscopic lid 22 is viewed from above the fluoroscopic lid 22 as an image magnification function. It may be. In addition, as a dimming function, there is a function for adjusting the direction of light transmitted from the lower side of the fluoroscopic lid 22 to the upper side through the fluoroscopic lid 22 by a one-way or two-way filter with a large number of ridges and slits running in parallel. (Neither shown).

(搬送手段25)
搬送手段25は、少なくとも起泡位置P1及び泡認識位置P2の相互間で、検体Oを載置した載置板21を搬送する。
(Conveying means 25)
The transport means 25 transports the placement plate 21 on which the sample O is placed at least between the foaming position P1 and the foam recognition position P2.

気泡位置P1は、少なくとも起泡手段1による気泡を行う位置であり、図2の正面視左側である。この気泡位置P1に取り出し口41を設けており、気泡手段1のメンテナンスや以上動作時の対応を容易にしている。泡認識位置P2は、泡認識手段3による泡認識を行う位置であり、図2の正面視左側である。容積の嵩張る泡認識手段3の収容スペースを確保し、気泡位置P1とずれた静止位置で泡認識することで高い泡認識精度を確保している。   The bubble position P1 is a position where at least bubbles are generated by the foaming means 1, and is the left side of the front view of FIG. A takeout port 41 is provided at the bubble position P1 to facilitate the maintenance of the bubble means 1 and the handling during the above operation. The bubble recognition position P2 is a position where the bubble recognition unit 3 performs bubble recognition, and is the left side of the front view of FIG. A high space recognition accuracy is ensured by securing an accommodation space for the bulky bubble recognition means 3 and recognizing the bubble at a stationary position shifted from the bubble position P1.

実施例の搬送手段25は、ステッピングモーターによって正面視左右方向へ走る搬送レール25Rと、この搬送レール25R上を移動可能な載置板保持具25Hと、ステッピングモーターによって搬送レール25Rの正面視一端及び多端の間を移動させる搬送駆動機構25Mとを具備する。前記搬送レール25Rの正面視左端が起泡位置P1であり、正面視右端が泡認識位置P2である(図2)。搬送駆動機構25Mは、起泡位置P1を原点としてそこから正面視左側への移動量をパルス数で制御する。
〔認識手段〕
The transport means 25 of the embodiment includes a transport rail 25R that runs in the left-right direction when viewed from the front by a stepping motor, a mounting plate holder 25H that can move on the transport rail 25R, one end of the transport rail 25R when viewed from the front by the stepping motor, and And a transport driving mechanism 25M that moves between multiple ends. The left end of the transport rail 25R in front view is the foaming position P1, and the right end in front view is the foam recognition position P2 (FIG. 2). The transport drive mechanism 25M controls the amount of movement from the foaming position P1 to the left side when viewed from the front by the number of pulses.
[Recognition means]

(泡認識手段3)
泡認識手段3は、検体Oの複数の深度断面(例えば図14のA、B、Cで示すような、スペーサー24を厚さ方向に等分した各断面)において泡数を認識し、各断面の認識泡数を平均することで、起泡させた検体Oに含まれる泡の数、動向、大きさを識別する。図14で示すような複数の断面で視認することで、泡状にならない不純物の誤認識の割合を防ぎ、マイクロバブルの含有率をより精度よく把握することができる。
(Bubble recognition means 3)
The bubble recognizing means 3 recognizes the number of bubbles in a plurality of depth cross sections of the specimen O (for example, cross sections obtained by equally dividing the spacer 24 in the thickness direction as shown by A, B, and C in FIG. 14). The number, trend, and size of bubbles contained in the foamed specimen O are identified by averaging the number of recognized bubbles. By visually recognizing in a plurality of cross-sections as shown in FIG. 14, it is possible to prevent a misrecognition ratio of impurities that do not become foamed and to grasp the microbubble content rate more accurately.

具体的には泡認識手段3は、検体Oの液面上方から見た撮像を認識する撮像手段31と、検体O及び撮像手段31との間に介設される透視蓋22と、撮像手段31によって認識された撮像に含まれる所定範囲の径の泡の数を解析する解析部32とを備えてなる。また、この泡認識手段3は、拡大レンズ(顕微鏡)を備えてなることが好ましい。   Specifically, the bubble recognizing unit 3 includes an imaging unit 31 that recognizes imaging of the specimen O viewed from above the liquid surface, a fluoroscopic lid 22 interposed between the specimen O and the imaging unit 31, and the imaging unit 31. And an analysis unit 32 for analyzing the number of bubbles having a diameter within a predetermined range included in the imaging recognized by the above. The bubble recognition means 3 is preferably provided with a magnifying lens (microscope).

(撮像手段31)
撮像手段31は、検体Oの液面上方から見た撮像を認識する手段である。具体的には、CCDカメラ、顕微鏡、ルーペレンズ、反射鏡等の拡大鏡を含む、肉眼可視像の光学式撮像手段と、感熱センサ、音波センサ、赤外線センサを含む、肉眼不可視像或いは非光学式の撮像手段との両方が含まれる。
(Imaging means 31)
The imaging unit 31 is a unit that recognizes imaging viewed from above the liquid surface of the specimen O. Specifically, an optical imaging means for a visible visible image including a magnifier such as a CCD camera, a microscope, a loupe lens, and a reflecting mirror, and an invisible or non-visible image including a thermal sensor, a sound wave sensor, and an infrared sensor. Both optical imaging means are included.

(解析部32)
解析部32は、撮像手段31によって認識された撮像に含まれる所定範囲の径の泡の数を画像解析する。解析された画像、及び解析結果たる泡の大きさ毎の分布は、表示手段33によって、図6に示すような所定の表示画面にて患者名、患者ID及び診断医名と共に表示される。
〔その他〕
(Analysis unit 32)
The analysis unit 32 performs image analysis on the number of bubbles having a diameter within a predetermined range included in the imaging recognized by the imaging unit 31. The analyzed image and the distribution for each bubble size as the analysis result are displayed by the display means 33 together with the patient name, patient ID, and diagnosis doctor name on a predetermined display screen as shown in FIG.
[Others]

(ケーシング4)
ケーシング4は、起泡手段1、飛散防止カバー14、載置板21、泡認識手段3、撮像手段31、搬送手段25といった各構成部品を覆う。ケーシング4には、検体Oを収納及び取り出す取り出し口41が、気泡位置P1及び閉蓋位置を含む大きさで備えられる。
(Casing 4)
The casing 4 covers each component such as the foaming means 1, the scattering prevention cover 14, the mounting plate 21, the foam recognition means 3, the imaging means 31, and the transport means 25. The casing 4 is provided with an outlet 41 for storing and taking out the specimen O in a size including the bubble position P1 and the closed position.

その他各部の具体的な構成は、上述した実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other specific configurations of the respective parts are not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

(マイクロバブルテスト方法)
検体Oは、下記の工程を経たマイクロバブルテスト方法によって起泡及び泡数検出され、マイクロバブルテストが達成される。このマイクロバブルテスト方法は任意の機器或いは手作業によって行うことができるが、例えば、上記本発明のマイクロバブルテスターのような、機械的気泡手段を含むマイクロバブルテスターを用いて行うことが好ましい。
(Micro bubble test method)
The specimen O is foamed and the number of bubbles is detected by a microbubble test method that has undergone the following steps, and the microbubble test is achieved. This microbubble test method can be carried out by any device or manually, but it is preferably carried out using a microbubble tester including mechanical bubble means such as the above-described microbubble tester of the present invention.

(1)先ず、載置板21たるカバーガラスを、装置の起泡位置P1或いは起泡位置P1へ機械誘導される適宜位置へセットした後、セットした載置板21上面のうち、スペーサー24で囲われた中央部へ、検体Oを滴下する(図12、図15参照)。検体Oの滴下は、装置内に配備した自動滴下手段によるものでもよく、或いはピペット等を用いた手動滴下によるものでもよい。また載置板21のセットと滴下の順は前記と逆でもよく、検体O滴下の完了した載置板21を、滴下状態のまま装置の起泡位置P1或いは起泡位置P1へ機械誘導される位置へセットするものとしても良い。セット及び検体O滴下後の状態を図1、図2及び図5に示す。   (1) First, after setting the cover glass as the mounting plate 21 to a foaming position P1 of the apparatus or an appropriate position mechanically guided to the foaming position P1, the spacer 24 on the upper surface of the set mounting plate 21 is used. The specimen O is dropped onto the enclosed central part (see FIGS. 12 and 15). The sample O may be dropped by an automatic dropping means provided in the apparatus or by manual dropping using a pipette or the like. In addition, the order of setting and dropping of the mounting plate 21 may be reversed, and the mounting plate 21 on which the sample O has been dropped is mechanically guided to the foaming position P1 or the foaming position P1 of the apparatus while being dropped. It is good also as what sets to a position. The state after setting and dropping of the specimen O is shown in FIGS.

(2)次に、載置板21の上方へ、円筒状の飛散防止カバー14を昇降機構12の降下運転によって、飛散防止カバー14が載置板21に対して接触状態S2となるよようにセットする(図6)。このとき、飛散防止カバー14の一部が接地して接触状態S2となった後も引き続き昇降機構12の降下運転を続けることで、回転部材11Hに対する飛散防止カバー14の相対位置が上方にずれる。これにより、係止機構15が係止状態S4から係止解除状態S3となると共に、カバー押さえ板17が飛散防止カバー14の上面を押さえて飛散防止カバー14を位置固定した状態となる。   (2) Next, the scattering prevention cover 14 is brought into the contact state S <b> 2 with the placement plate 21 by the lowering operation of the lifting mechanism 12 above the placement plate 21 by the descent operation of the lifting mechanism 12. Set (Figure 6). At this time, the relative position of the anti-scattering cover 14 with respect to the rotating member 11H is shifted upward by continuing the descending operation of the elevating mechanism 12 even after a part of the anti-scattering cover 14 comes into contact with the contact state S2. As a result, the locking mechanism 15 changes from the locked state S4 to the unlocked state S3, and the cover pressing plate 17 presses the upper surface of the scattering prevention cover 14 and the scattering prevention cover 14 is fixed in position.

なお手動で飛散防止カバー14を載置板21たるガラス上に載置してセットするものでも良い。   Alternatively, the scattering prevention cover 14 may be manually placed on the glass serving as the placement plate 21 and set.

(3)続けて、昇降機構12をさらに降下運転させて、接触端子11の少なくともいずれかが検体Oと接触する接触状態S2となるまでセットする(図7)。   (3) Subsequently, the elevating mechanism 12 is further lowered and set until at least one of the contact terminals 11 is in contact state S2 in contact with the specimen O (FIG. 7).

(4)次に、回転機構13によって、接触端子11たる回転ブラシを検体Oと先端接触させたまま回転させ、検体Oを気泡する。この回転状態において、接触端子11の先端部は、その間隔が広がりながら検体Oの内外を高速で回転移動する。このようにして検体Oに多くのマイクロバブルが発生する。   (4) Next, the rotating mechanism 13 rotates the rotating brush as the contact terminal 11 while keeping the tip O in contact with the sample O, and bubbles the sample O. In this rotating state, the tip of the contact terminal 11 rotates at a high speed inside and outside the specimen O while the interval increases. In this way, many micro bubbles are generated in the specimen O.

(5)起泡後、昇降機構12の上昇運転によって、載置板21上から飛散防止カバー14を上方へ取り除く。検体Oの付着した飛散防止カバー及び回転部材11Hは、回転モーター軸13Mと連結した連結機構16の磁着連結を解除することで一体的に撤去及び廃棄する。   (5) After foaming, the scattering prevention cover 14 is removed upward from the mounting plate 21 by the raising operation of the elevating mechanism 12. The anti-scattering cover and the rotating member 11H to which the specimen O adheres are removed and discarded integrally by releasing the magnetic connection of the connecting mechanism 16 connected to the rotating motor shaft 13M.

(6)次に搬送手段25によって、載置板21を、起泡手段1を行う起泡位置P1から、閉蓋動作を行う閉蓋位置へ搬送する。   (6) Next, the transporting means 25 transports the mounting plate 21 from the foaming position P1 where the foaming means 1 is performed to the closing position where the lid closing operation is performed.

(7)次に昇降機構12によって、蓋保持アーム23Hで傾斜保持した透視蓋22を、載置板21と離間した離間状態S1から、載置板21上へ接触する接触状態S2とする。このとき、斜接触状態S5から順に対向接触状態S6とすることで載置板21と透視蓋22との間の空気が一方向に逃げて余分な空気を含まない状態で閉蓋される。このような閉蓋によって気泡状態が確保されたままとなる。
(8)次に搬送手段25によって、載置板21を、閉蓋動作を行う閉蓋位置から泡認識位置P2へ搬送する。載置板21が泡認識位置P2へ搬送されたとき、顕微鏡の下方に予め固設された透視蓋22たるスライドグラスの下方直下へ載置板21がセットされ、載置板21の検体O上に透視蓋22たるスライドグラスが乗せられた状態となる。
(7) Next, the see-through lid 22 tilted and held by the lid holding arm 23 </ b> H is changed from the separated state S <b> 1 separated from the placement plate 21 to the contact state S <b> 2 in contact with the placement plate 21 by the lifting mechanism 12. At this time, the air between the mounting plate 21 and the fluoroscopic lid 22 escapes in one direction and is closed in a state that does not include excess air by setting the counter contact state S6 in order from the oblique contact state S5. Such a closed lid keeps the bubble state secured.
(8) Next, the carrying means 25 conveys the mounting plate 21 from the closing position where the closing operation is performed to the bubble recognition position P2. When the mounting plate 21 is transported to the bubble recognition position P2, the mounting plate 21 is set immediately below the slide glass as the fluoroscopic lid 22 fixed in advance below the microscope, and the sample O on the mounting plate 21 is placed on the specimen O. In this state, a slide glass serving as the fluoroscopic lid 22 is put on.

(9)次に、撮像部たる顕微鏡でピント調整をし、起泡後の検体Oの画像を取得する。   (9) Next, focus adjustment is performed with a microscope as an imaging unit, and an image of the sample O after foaming is acquired.

(10)次に、撮像部で取得した画像を、解析部32によって解析し、画像に含まれる所定範囲の径の泡の数を自動的にカウントし、カウント数および解析画像を表示手段(図示せず)によって表示部へ表示する。   (10) Next, the image acquired by the imaging unit is analyzed by the analysis unit 32, the number of bubbles having a diameter within a predetermined range included in the image is automatically counted, and the count number and the analysis image are displayed on the display means (FIG. Display on the display unit.

(11)次に、載置板21を、搬送駆動機構25Mによって取り出し口41まで搬送し、検体Oを取り出し可能な状態とする。この後、取り出し口41から起泡後の検体を取り出す。このとき検体は閉蓋されているため手指等に検体Oが付着し難いものとなっている。   (11) Next, the mounting plate 21 is transported to the extraction port 41 by the transport driving mechanism 25M, so that the specimen O can be taken out. Thereafter, the foamed sample is taken out from the take-out port 41. At this time, since the specimen is closed, it is difficult for the specimen O to adhere to fingers and the like.

(泡の立て方について)
回転部材11Hたる回転ブラシはディスポーサブルで使用する。これらは回転モーター13Mの一つの構成として備えられた、回路を制御するマイコンで設定される。
(About how to make bubbles)
The rotating brush as the rotating member 11H is used in a disposable manner. These are set by a microcomputer provided as one component of the rotary motor 13M for controlling the circuit.

前記回転モーター13Mによる回転手段の回転開始とともに、ブラシ先端部が遠心力により広がり、検体Oを剪断および撹拌しながら起泡する。ここで、回転手段の回転軸Lを、鉛直方向に対して1度〜10度、好ましくは2度〜5度の角度で傾斜させて配置させていることで、検体Oを掻き上げる効果が得られ、起泡効率が上がる。   As the rotation means starts rotating by the rotating motor 13M, the tip of the brush spreads by centrifugal force, and the specimen O is bubbled while being sheared and stirred. Here, the rotation axis L of the rotating means is arranged so as to be inclined at an angle of 1 degree to 10 degrees, preferably 2 degrees to 5 degrees with respect to the vertical direction, thereby obtaining an effect of scooping up the specimen O. Foaming efficiency increases.

なお本実施例では、起泡時にブラシを押しつける必要はなく、前述のブラシが広がった状態で検体Oに触れる程度の高さであれば起泡可能である。   In this embodiment, it is not necessary to press the brush when foaming, and foaming is possible if the height of the brush is high enough to touch the specimen O.

起泡後、透視蓋22たるスライドグラスを重ねる。泡を残した状態を保つ為、載置板21と透視蓋22たる透視蓋22たるスライドグラスとの間に0.2mmのスペーサー24を設けてある。これにより、泡をつぶすことなく顕微鏡下で平面視認画像が得られることとなる。   After foaming, a slide glass as the fluoroscopic lid 22 is stacked. In order to maintain the state in which bubbles remain, a spacer 24 of 0.2 mm is provided between the mounting plate 21 and the slide glass which is the fluoroscopic lid 22 which is the fluoroscopic lid 22. Thereby, a planar view image is obtained under a microscope without crushing bubbles.

本発明の実施例1のマイクロバブルテスターの離間状態における全体構成を示す側面図である。It is a side view which shows the whole structure in the separation state of the micro bubble tester of Example 1 of this invention. 実施例1のマイクロバブルテスターの離間状態における全体構成を示す正面図である。It is a front view which shows the whole structure in the separation state of the micro bubble tester of Example 1. FIG. 実施例1の回転部材11H及び回転モーター軸11Mを示す概観図である。It is a general-view figure which shows the rotating member 11H and the rotating motor shaft 11M of Example 1. FIG. 図3に示す実施例1の回転部材11H及び回転モーター軸11Mの分解説明図である。FIG. 4 is an exploded explanatory view of the rotating member 11H and the rotating motor shaft 11M of the first embodiment shown in FIG. 実施例1のマイクロバブルテスターの昇降機構の作動状況であって、離間状態かつ係止状態S4を示す側面視説明図である。It is an operation state of the raising / lowering mechanism of the micro bubble tester of Example 1, Comprising: It is side view explanatory drawing which shows a separation state and latching state S4. 実施例1のマイクロバブルテスターの昇降機構の作動状況であって、離間状態かつ係止状態S4から係止解除状態に移る過程を示す側面視説明図である。It is operation | movement condition of the raising / lowering mechanism of the micro bubble tester of Example 1, Comprising: It is side view explanatory drawing which shows the process which transfers to a latching state from the separation state and latching state S4. 実施例1のマイクロバブルテスターの昇降機構の作動状況であって、接触状態かつ係止解除状態を示す側面視説明図である。It is operation | movement condition of the raising / lowering mechanism of the micro bubble tester of Example 1, Comprising: It is side view explanatory drawing which shows a contact state and a latch release state. 実施例1のマイクロバブルテスターの蓋保持アーム23Hを示す斜視説明図である。It is a perspective explanatory view showing lid holding arm 23H of the microbubble tester of Example 1. 実施例1のマイクロバブルテスターの閉蓋機構23の作動状況であって、閉蓋前の状態を示す斜視説明図である。FIG. 6 is a perspective explanatory view showing an operation state of the lid closing mechanism 23 of the microbubble tester according to the first embodiment and showing a state before the lid is closed. 実施例1のマイクロバブルテスターの閉蓋機構23の作動状況であって、斜接触状態を示す側面視説明図である。FIG. 6 is a side view explanatory view showing an operation state of the lid closing mechanism 23 of the microbubble tester according to the first embodiment and showing an oblique contact state. 実施例1のマイクロバブルテスターの閉蓋機構23の作動状況であって、対向接触状態を示す側面視説明図である。FIG. 5 is a side view explanatory view showing an operation state of the lid closing mechanism 23 of the microbubble tester according to the first embodiment and showing a facing contact state. 実施例1のマイクロバブルテスターの閉蓋前の状態における載置板21を示す側面視説明図である。It is side view explanatory drawing which shows the mounting board 21 in the state before the lid closure of the microbubble tester of Example 1. FIG. 実施例1のマイクロバブルテスターの閉蓋後の対向接触状態における載置板21及び透視蓋23を示す側面視説明図である。It is side view explanatory drawing which shows the mounting board 21 and the see-through lid 23 in the opposing contact state after the closure of the microbubble tester of Example 1. 図13に示す閉蓋後の対向接触状態における検体の状態を示す側面視拡大説明図である。It is side surface expansion explanatory drawing which shows the state of the sample in the opposing contact state after the lid closing shown in FIG. 実施例1のマイクロバブルテスターの対向接触状態における載置板21及び透視蓋23を示す平面視説明図である。FIG. 3 is an explanatory plan view showing the mounting plate 21 and the see-through lid 23 in a facing contact state of the microbubble tester according to the first embodiment. 実施例2のマイクロバブルテスターのカバー押さえ板17及びその周辺構成を示す斜視説明図である。It is a perspective explanatory view which shows the cover presser plate 17 of the micro bubble tester of Example 2, and its periphery structure. 実施例2のマイクロバブルテスターの昇降機構の作動状況であって、離間状態かつ係止状態S4を示す側面視説明図である。It is an operation state of the raising / lowering mechanism of the micro bubble tester of Example 2, Comprising: It is side view explanatory drawing which shows a separation state and latching state S4. 実施例2のマイクロバブルテスターの昇降機構の作動状況であって、離間状態かつ係止状態S4から係止解除状態に移る過程を示す側面視説明図である。It is operation | movement condition of the raising / lowering mechanism of the micro bubble tester of Example 2, Comprising: It is side view explanatory drawing which shows the process which moves to a latching state from the separation state and the latching state S4. 実施例2のマイクロバブルテスターの昇降機構の作動状況であって、接触状態かつ係止解除状態を示す側面視説明図である。It is operation | movement condition of the raising / lowering mechanism of the micro bubble tester of Example 2, Comprising: It is side view explanatory drawing which shows a contact state and a latch release state.

符号の説明Explanation of symbols

1 起泡手段
11 接触端子(ブラシ毛)
11H 回転部材
11T ブラシテープ
12 昇降機構
12P 昇降ポール
12Y 昇降ユニット
13 回転機構
13L 回転モーター軸
14 飛散防止カバー
15 係止機構
15a 係止片(孔開き板)
15b 被係止片(ワッシャー)
16 連結機構
16M 連結磁性体
16H 連結穴
16S 連結ビス
17 カバー押さえ板
17H 押さえ板固定アーム
2 載置運搬手段
21 載置板
22 透視蓋(スライドグラス)
23 閉蓋機構
23H 蓋保持アーム
23Ht 傾斜板
23 閉蓋機構
24 スペーサー(プラスチックテープ)
25 搬送手段
25R 搬送レール
25H 板保持具
25M 搬送駆動機構
3 泡認識手段
31 撮像手段
32 解析部
4 ケーシング
41 取り出し口
L 回転軸
θ 傾斜角度
O 検体
P1 起泡位置
P2 泡認識位置
S1 離間状態
S2 接触状態
S3 係止解除状態
S4 係止状態S4
S5 斜接触状態
S6 対向接触状態
1 Foaming means 11 Contact terminal (brush hair)
11H Rotating member 11T Brush tape 12 Elevating mechanism 12P Elevating pole 12Y Elevating unit 13 Rotating mechanism 13L Rotating motor shaft 14 Anti-scatter cover 15 Engaging mechanism 15a Engaging piece (perforated plate)
15b Locked piece (washer)
16 Connection mechanism 16M Connection magnetic body 16H Connection hole 16S Connection screw 17 Cover pressing plate 17H Holding plate fixing arm 2 Mounting conveyance means 21 Mounting plate 22 Transparent lid (slide glass)
23 Closing mechanism 23H Lid holding arm 23Ht Inclined plate 23 Closing mechanism 24 Spacer (plastic tape)
25 Conveying means 25R Conveying rail 25H Plate holder 25M Conveying drive mechanism 3 Foam recognition means 31 Imaging means 32 Analyzing section 4 Casing 41 Extraction port L Rotating axis θ Inclination angle O Sample P1 Foaming position P2 Foam recognition position S1 Separation state S2 Contact State S3 Unlocking state S4 Locking state S4
S5 Oblique contact state S6 Opposite contact state

Claims (6)

生体液を主成分とした検体Oを起泡して検体Oのマイクロバブルの発生状況を検知するマイクロバブルテスターであって、検体Oへの接触端子11を検体Oに接触させたまま回転させることで検体Oを起泡させる起泡手段1と、起泡させた検体Oを透視蓋22で閉蓋する閉蓋機構23と、透視蓋22を外側から検視して、起泡された検体Oに含まれる泡の数を認識する泡認識手段3とを具備し、閉蓋機構23が、透視蓋22を、検体Oの液面に対して斜めに接触する斜接触状態S5で接触させ、この斜接触状態S5から、検体Oの液面に対して平行に対向接触する対向接触状態S6とするマイクロバブルテスター。 A microbubble tester for foaming a specimen O containing biological fluid as a main component and detecting the occurrence of microbubbles in the specimen O, wherein the contact terminal 11 to the specimen O is rotated while being in contact with the specimen O. The foaming means 1 for foaming the sample O, the lid closing mechanism 23 for closing the foamed sample O with the fluoroscopic lid 22, and the fluoroscopic lid 22 are inspected from the outside, and the foamed sample O is formed. A bubble recognizing means 3 for recognizing the number of contained bubbles, and the lid closing mechanism 23 brings the fluoroscopic lid 22 into contact with the liquid surface of the sample O in an oblique contact state S5 in an oblique contact state. A microbubble tester in the contact state S6 that faces the liquid surface of the specimen O in parallel from the contact state S5 . 生体液を主成分とした検体Oを起泡して検体Oのマイクロバブルの発生状況を検知するマイクロバブルテスターであって、検体Oへの接触端子11を検体Oに接触させたまま回転させることで検体Oを起泡させる起泡手段1と、起泡させた検体Oを透視蓋22で閉蓋する閉蓋機構23と、透視蓋22を外側から検視して、起泡された検体Oに含まれる泡の数を認識する泡認識手段3とを具備し、  A microbubble tester for foaming a specimen O containing biological fluid as a main component and detecting the occurrence of microbubbles in the specimen O, wherein the contact terminal 11 to the specimen O is rotated while being in contact with the specimen O. The foaming means 1 for foaming the sample O, the lid closing mechanism 23 for closing the foamed sample O with the fluoroscopic lid 22, and the fluoroscopic lid 22 are inspected from the outside, and the foamed sample O is formed. Comprising bubble recognition means 3 for recognizing the number of bubbles contained,
起泡手段1が、接触端子11を下方先端に設けた回転部材11Hと、The foaming means 1 includes a rotating member 11H provided with a contact terminal 11 at the lower end;
この回転部材11Hを昇降させることで、接触端子11を、検体Oと離接させた離間状態S1ないし接触状態S2とする昇降機構12と、An elevating mechanism 12 that moves the rotating member 11H up and down to place the contact terminal 11 in a separated state S1 or a contact state S2 separated from the specimen O;
前記接触状態S2において回転部材11Hを回転させる回転機構13と、A rotating mechanism 13 for rotating the rotating member 11H in the contact state S2,
前記接触状態S2において検体Oの周囲を囲うことで検体Oの飛散を防止する飛散防止カバー14と、A scattering prevention cover 14 for preventing scattering of the specimen O by surrounding the circumference of the specimen O in the contact state S2,
前記離間状態S1において飛散防止カバー14を回転部材11Hに係止させる係止機構15とを備えてなり、A locking mechanism 15 for locking the anti-scattering cover 14 to the rotating member 11H in the separation state S1,
前記離間状態S1において、係止機構15が係止状態S4となって、飛散防止カバー14が昇降する回転部材11Hに吊り上げられ、In the separation state S1, the locking mechanism 15 is in the locking state S4, and the scattering prevention cover 14 is lifted by the rotating member 11H that moves up and down,
前記接触状態S2において、係止機構15が係止解除状態S3となって、飛散防止カバー14が検体O及び接触端子11を環囲する位置へ載置され、In the contact state S2, the locking mechanism 15 is in the unlocked state S3, and the scattering prevention cover 14 is placed at a position surrounding the sample O and the contact terminal 11,
この接触状態S2において、回転部材11Hが回転機構13によって回転して検体Oを起泡し、載置された飛散防止カバー14が検体Oの飛散を防止するマイクロバブルテスター。A micro bubble tester in which the rotating member 11H is rotated by the rotating mechanism 13 to cause the sample O to foam in this contact state S2, and the placed anti-scattering cover 14 prevents the sample O from scattering.
係止機構15が、飛散防止カバー14の内側へ均一形状で突出した係止片15aと、回転部材11Hの周囲へ軸対称に張り出した被係止片15bとからなり、回転部材11Hの昇降によって係止片15aが被係止片15bに係止し、飛散防止カバー14が回転部材11Hの周囲均等位置にて係止状態S4となると共に、回転部材11Hの下降によって前記周囲均等位置のまま係止解除状態S3に移行する請求項2記載のマイクロバブルテスター。 The locking mechanism 15 includes a locking piece 15a that protrudes in a uniform shape toward the inner side of the anti-scattering cover 14, and a locked piece 15b that projects axially symmetrically around the rotating member 11H. The locking piece 15a is locked to the locked piece 15b, and the anti-scattering cover 14 is in the locking state S4 at the uniform peripheral position of the rotating member 11H, and the rotating peripheral member 11H is lowered and remains in the uniform peripheral position. The microbubble tester according to claim 2 , wherein the microbubble tester shifts to the stop release state S3 . 回転部材11Hが、回転モーター軸13Lの先端に磁着して取り外し可能に固定され、前記回転モーター軸13Lに固定された状態で回転モーター軸13Lと同軸回転する請求項2または3記載のマイクロバブルテスター。 The microbubble according to claim 2 or 3, wherein the rotating member 11H is magnetically attached to the tip of the rotating motor shaft 13L and is detachably fixed, and rotates coaxially with the rotating motor shaft 13L while being fixed to the rotating motor shaft 13L. tester. 回転部材11Hが、回転軸L周りに回転するものであり、この回転軸Lは鉛直方向に対して所定の傾斜角度θで傾斜してなる請求項2、3または4のいずれか記載のマイクロバブルテスター。 5. The microbubble according to claim 2, wherein the rotating member 11 </ b> H rotates about a rotation axis L, and the rotation axis L is inclined at a predetermined inclination angle θ with respect to the vertical direction. tester. 泡認識手段3が、検体Oの複数の深度断面において泡数を認識する請求項1、2、3、4または5のいずれか記載のマイクロバブルテスター。
Bubbles recognition means 3, microbubbles tester according to any one of a plurality of recognizing the number of bubbles in the depth sectional claims 1, 2, 3, 4 or 5 of the analyte O.
JP2006301916A 2006-05-20 2006-11-07 Micro bubble tester Expired - Fee Related JP5105221B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006301916A JP5105221B2 (en) 2006-11-07 2006-11-07 Micro bubble tester
PCT/JP2007/060273 WO2007136013A1 (en) 2006-05-20 2007-05-18 Bubble generation device and microbubble tester with the bubble generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301916A JP5105221B2 (en) 2006-11-07 2006-11-07 Micro bubble tester

Publications (2)

Publication Number Publication Date
JP2008116403A JP2008116403A (en) 2008-05-22
JP5105221B2 true JP5105221B2 (en) 2012-12-26

Family

ID=39502441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301916A Expired - Fee Related JP5105221B2 (en) 2006-05-20 2006-11-07 Micro bubble tester

Country Status (1)

Country Link
JP (1) JP5105221B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130673Y2 (en) * 1980-12-05 1986-09-08
JPH076666Y2 (en) * 1988-06-07 1995-02-15 昭和電線電纜株式会社 Pre-molded stress cone insertion position measuring gauge
JP2001000246A (en) * 1999-06-24 2001-01-09 Leben Co Ltd Rotary brush making oscillatory rotational motion

Also Published As

Publication number Publication date
JP2008116403A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP7258973B2 (en) AUTOMATED BIOLOGICAL SPECIMEN PREPARATION SYSTEM AND METHOD
US7968832B2 (en) Analyzer and use thereof
AU646305B2 (en) Collection and display device
US3814522A (en) Specimen tube for microscopic examination
JP2021182013A (en) System, apparatus and method for verifying completeness of sample
TW201741664A (en) Testing equipment with magnifying function
US9091671B2 (en) Liquid suction device
JP2005506537A (en) General-purpose microscope slide cassette
JP4584259B2 (en) Cassettes and procedures for managing and holding tissue specimens during processing, embedding and microtome procedures
JP3103308B2 (en) Test tube for measuring erythrocyte sedimentation velocity
JPH09101303A (en) Erythrocyte-sedimentation-velocity measuring method
JPH08502347A (en) Aspiration device for liquid sample and its components, and slide assembly for use therewith
JPS59501347A (en) micro container
JP5105221B2 (en) Micro bubble tester
JP2017151002A (en) Automatic analyzer
JP2008286719A (en) Sampling cell, sampling device, and measurement device
CN210834687U (en) Multifunctional analysis instrument
JP2003270240A (en) Method and apparatus for measurement of sedimentation velocity of liquid sample
WO2007136013A1 (en) Bubble generation device and microbubble tester with the bubble generation device
US20040025935A1 (en) Test tube insert
CN110542686A (en) Multifunctional analysis instrument
WO1983000386A1 (en) Container for small quantities of liquids
JP6500371B2 (en) Tangible component analysis device and tangible component analysis method
JP6868750B2 (en) Microscope device
CN115485603A (en) Portable imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees