JP5105166B2 - Method for producing polyether - Google Patents

Method for producing polyether Download PDF

Info

Publication number
JP5105166B2
JP5105166B2 JP2007327277A JP2007327277A JP5105166B2 JP 5105166 B2 JP5105166 B2 JP 5105166B2 JP 2007327277 A JP2007327277 A JP 2007327277A JP 2007327277 A JP2007327277 A JP 2007327277A JP 5105166 B2 JP5105166 B2 JP 5105166B2
Authority
JP
Japan
Prior art keywords
gly
polyether
compound
formula
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007327277A
Other languages
Japanese (ja)
Other versions
JP2009149728A (en
Inventor
州一 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Noguchi Inst
Original Assignee
Asahi Kasei Corp
Noguchi Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Noguchi Inst filed Critical Asahi Kasei Corp
Priority to JP2007327277A priority Critical patent/JP5105166B2/en
Publication of JP2009149728A publication Critical patent/JP2009149728A/en
Application granted granted Critical
Publication of JP5105166B2 publication Critical patent/JP5105166B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、側鎖にペンダント状カルボキシメチル基を導入したポリエーテル、これを用いた薬物送達用担体及び薬物複合体に関する。また、医薬化合物を標的部位に到達させるためのポリエーテルの製造方法に関する。   The present invention relates to a polyether having pendant carboxymethyl groups introduced in the side chain, a drug delivery carrier and a drug complex using the polyether. Moreover, it is related with the manufacturing method of the polyether for making a pharmaceutical compound reach | attain a target site.

例えば抗腫瘍薬等の薬物(医薬化合物)は、静脈内投与や経口投与などの投与経路により全身的に投与されると、特定の腫瘍部位に移行して癌細胞の増殖を阻害ないし抑制することにより治療効果を発揮する。しかしながら、全身投与された抗腫瘍薬は、血中から肝臓、脾臓、骨髄といった網内系臓器に取り込まれる、あるいは腎臓を介し尿中に排泄されるために血中濃度が低下し、腫瘍部位への移行が十分に行われない、また場合によっては毒性発現する場合がある。
また、通常の抗腫瘍薬を単独で全身投与した場合には、腫瘍部位への移行選択性(腫瘍選択性)が低いために、抗腫瘍薬が全身の様々な細胞・組織・臓器に満遍なく分布してしまい、正常な細胞や組織に対しても細胞毒として作用し、嘔吐、発熱、あるいは脱毛などの副作用を極めて高率に発生させるという問題が指摘されている。そこで、抗腫瘍薬を効率的かつ選択的に腫瘍部位に移行させる技術の開発、更には到達した腫瘍部位からの制御された薬物放出を行う技術が求められてきた。
このような技術の一つとして、例えば、多糖の様な水溶性高分子に抗腫瘍薬を結合させて、抗腫瘍薬の血中からの消失を遅延させ、かつ、癌組織への指向性を高める方法が提案されている。例えば、種々の多糖に対してアドリアマイシンを結合させた複合体が開示されている例がある(特許文献1)。また、カルボキシメチルデキストランを含む種々の多糖誘導体にアンスラサイクリン系抗腫瘍薬を結合させた錯体が開示されている例もある(非特許文献1)。さらに、カルボキシアルキルデキストランポリアルコールに対してペプチドを介して薬物を結合させた複合体が開示されている例がある(特許文献2)。これらの天然由来の多糖は水酸基等の官能基を有し薬物担持能力に優れるものの、天然物であることから均一な品質のものを容易に得られないといった問題点がある。
一方、合成高分子を薬物送達用担体として用いた例としては、ヒドロキシプロピルメタクリレート(HPMA)にリンカーを介し血管新生阻害薬(TNP−470)を結合させた例が報告されている(非特許文献2)。また、ポリエチレングリコール(PEG)にパクリタキセルを結合させた複合体が開示されている例がある(非特許文献3)。これらの合成高分子は生体内で分解されないという特徴があるものの、血漿増量剤などとして生体に投与されるなど、安全性の面ではハードルが低い。
米国特許第5,688,931号公報 特開2002-30002号公報 Biol. Pharm. Bull., 24, 535-543(2001) Nature Medicine, 10, 255-261(2004) J. Med. Chem., 39, 424-431(1996)
For example, drugs (pharmaceutical compounds) such as antitumor drugs, when administered systemically by intravenous or oral administration routes, migrate to a specific tumor site and inhibit or suppress the growth of cancer cells. To exert a therapeutic effect. However, systemically administered antitumor drugs are taken from the blood into the reticulo-organs such as the liver, spleen, and bone marrow, or are excreted in the urine via the kidneys, resulting in a decrease in the blood concentration, leading to the tumor site. May not be sufficiently transferred, and in some cases, toxicity may develop.
In addition, when normal anti-tumor drugs are administered systemically alone, the anti-tumor drugs are evenly distributed to various cells, tissues, and organs throughout the body due to low migration selectivity to the tumor site (tumor selectivity). Therefore, it has been pointed out that it also acts as a cytotoxin on normal cells and tissues and causes side effects such as vomiting, fever, and hair loss at a very high rate. Therefore, development of a technique for efficiently and selectively transferring an antitumor drug to a tumor site, and a technique for performing controlled drug release from the reached tumor site have been demanded.
As one of such technologies, for example, an antitumor drug is bound to a water-soluble polymer such as a polysaccharide, the disappearance of the antitumor drug from the blood is delayed, and the directivity to cancer tissue is increased. A way to increase it has been proposed. For example, there is an example in which a complex in which adriamycin is bound to various polysaccharides is disclosed (Patent Document 1). There is also an example in which a complex in which an anthracycline antitumor drug is bound to various polysaccharide derivatives including carboxymethyldextran is disclosed (Non-patent Document 1). Furthermore, there is an example in which a complex in which a drug is bound to a carboxyalkyldextran polyalcohol via a peptide is disclosed (Patent Document 2). Although these naturally-derived polysaccharides have a functional group such as a hydroxyl group and are excellent in drug carrying ability, there is a problem that uniform quality cannot be easily obtained because they are natural products.
On the other hand, as an example using a synthetic polymer as a drug delivery carrier, an example in which an angiogenesis inhibitor (TNP-470) is bound to hydroxypropyl methacrylate (HPMA) via a linker has been reported (Non-Patent Document). 2). In addition, there is an example in which a complex in which paclitaxel is bound to polyethylene glycol (PEG) is disclosed (Non-patent Document 3). Although these synthetic polymers are characterized in that they are not decomposed in vivo, they have low hurdles in terms of safety, such as being administered to a living body as a plasma expander.
US Patent No. 5,688,931 JP 2002-30002 JP Biol. Pharm. Bull., 24, 535-543 (2001) Nature Medicine, 10, 255-261 (2004) J. Med. Chem., 39, 424-431 (1996)

従来のポリエチレングリコールは、薬物の担持能力及び薬物送達などの面で十分満足できるものではなかった。従って、薬物の担持能力に優れ、しかも薬物を標的部位に移行させることのできるポリエーテルによる薬物送達用担体、及びこの担体を用いた薬物複合体を提供すること及びこのようなポリエーテルの簡易な製造方法を提供することが望まれている。   Conventional polyethylene glycol has not been sufficiently satisfactory in terms of drug carrying capacity and drug delivery. Accordingly, it is possible to provide a drug delivery carrier using a polyether that has excellent drug carrying ability and can transfer the drug to a target site, and a drug complex using this carrier, and to simplify the use of such a polyether. It would be desirable to provide a manufacturing method.

本発明は上記課題に鑑み鋭意研究した結果、ペンダント状にカルボキシメチル基を導入した特定の構造単位からなるポリエーテルを薬物送達用の担体として用いることで本課題を解決することに成功した。すなわち、本発明は以下の構成からなる。
(1)式(I)および式(II)で表される化合物を共重合して得られる、式(III)および式(IV)で表される繰り返し単位を有するポリエーテル。

Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
(式中、Rは−ORまたは−NHRで示される基を表し、RおよびRは水素、無機塩基あるいは有機塩基またはC〜C15の炭化水素を含む基、または薬理作用を有する基を表す。ここで同一の共重合体内でR1、RまたはRは同一であっても異なっていてもよい。各構造単位のモル比は、(III)/((III)+(IV))=0.001〜0.5であり、構造単位(III)および(IV)のモル%はそれぞれ(III)=0.1〜99.9および(IV)=0.1〜99.9である。ここで、式(III)および式(IV)を構造単位として含むポリエーテルは、ポリエチレングリコール(PEG)換算重量平均分子量が1,000〜100,000である。)
(2)下式(V)および式(VI)を構造単位として含むポリエーテルに対し、薬理作用を有する基を、薬理作用を有する基自身が有するアミノ基を介して、あるいは、アミノ基を有するリンカーを介して結合させることにより得られる式(VII)を含みかつ(V)、(VI)を構造単位として含む前記(1)に記載のポリエーテル。
Figure 0005105166
Figure 0005105166
Figure 0005105166
(式中、Rは水素、無機塩基あるいは有機塩基を示し、NH−Rは自身が有するアミノ基を介し、あるいは自身が結合したリンカーが有するアミノ基を介し結合した薬理作用を有する基を示す。各構造単位のモル比は、(VII)/((V)+(VI)+(VII))=0.001〜0.5である。各構造単位(V)、(VI)および(VII)のモル%はそれぞれ(V)=0〜99.9、(VI)=0.1〜99.8および(VII)=0.1〜99.8である。ここで、式(V)、(VI)および式(VII)を構造単位として含むポリエーテルは、PEG換算重量平均分子量が1,000〜100,000である。)
(3)ポリエチレングリコール(PEG)換算重量平均分子量/PEG換算数平均分子量(Mw/Mn)が1.1〜2.7である前記(1)または(2)に記載のポリエーテル。
(4)薬理作用を有する基がリンカーと結合した基である前記(1)〜(3)のいずれかに記載のポリエーテル。
(5)リンカーがアミノ酸もしくはペプチドである前記(1)〜(4)のいずれかに記載のポリエーテル。
(6)リンカーがGly,Ala,Leu,Ile,Pheで示されるアミノ酸から選択または組み合わせて用いられる前記(1)〜(5)のいずれかに記載のポリエーテル。
(7)リンカーがGly−Gly,Ala−GLy,Gly−Ala,Leu−Gly,Gly−Leu,Ile−Gly,Gly−Ile,Phe−Gly,Gly−Phe,Gly−Gly−Gly,Gly−Phe−Gly,Phe−Gly−Gly,Gly−Gly−Phe,Gly−Gly−Phe−Glyから選択される前記(1)〜(6)のいずれかに記載のポリエーテル。
(8)薬理作用を有する基が分子中に官能基としてアミノ基、またはカルボキシル基、または水酸基を有する前記(1)〜(7)のいずれかに記載のポリエーテル。
(9)薬理作用を有する基が抗悪性腫瘍薬、抗炎症薬、抗リウマチ薬、酵素阻害薬または核酸である前記(1)〜(8)のいずれかに記載のポリエーテル。
(10)抗悪性腫瘍薬がアルキル化薬、代謝拮抗薬、抗腫瘍性抗生物質、微小管阻害薬、ホルモン類似薬、白金製剤、トポイソメラーゼ阻害薬、生物製剤(サイトカイン)、分子標的治療薬、非特異的免疫賦活薬およびその誘導体から選択される前記(9)に記載のポリエーテル。
(11)アルキル化薬がシクロフォスファミドなどのマスタード薬、ニムスチンなどのニトロソウレア類およびその誘導体から選択される前記(10)に記載のポリエーテル。
(12)代謝拮抗薬が葉酸代謝拮抗薬であるメトトレキセート、ピリミジン代謝拮抗薬である5−フルオロウラシル、プリン代謝拮抗薬の6−MPおよびその誘導体から選択される前記(10)に記載のポリエーテル。
(13)抗腫瘍性抗生物質がアンスラサイクリン系のドキソルビシン、ダウノルビシン、マイトマイシンCおよびそれらの誘導体から選択される前記(10)に記載のポリエーテル。
(14)微小管阻害薬がタキサン系のパクリタキセル、ドセタキセルおよびその誘導体から選択される前記(10)に記載のポリエーテル。
(15)ホルモン類似薬がタモキシフェンおよびその誘導体から選択される前記(10)に記載のポリエーテル。
(16)白金製剤がシスプラチン、カルボプラチン、オキサリプラチンおよびその誘導体から選択される前記(10)に記載のポリエーテル。
(17)トポイソメラーゼ阻害薬がトポイソメラーゼI阻害薬のイリノテカン、ノギテカンおよびその誘導体から選択される前記(10)に記載のポリエーテル。
(18)生物製剤がインターフェロンおよびその誘導体から選択される前記(10)に記載のポリエーテル。
(19)分子標的治療薬がイマチニブ、ゲフィチニブ、リツキシマブおよびその誘導体から選択される前記(10)に記載のポリエーテル。
(20)抗炎症薬が副腎皮質ステロイド薬、非ステロイド性抗炎症薬およびその誘導体から選択される前記(9)に記載のポリエーテル。
(21)副腎皮質ステロイド薬がヒドロコルチゾン、コルチゾン、プレドニゾロン、メチルプレドニゾロン、デキサメタゾン、ベタメタゾンおよびその誘導体から選択される前記(20)に記載のポリエーテル。
(22)非ステロイド性抗炎症薬がサリチル酸系のアスピリン、アントラニル系のメフェナム酸、プロピオン酸系のイブプロフェン、ロキソプロフェン、アリール酢酸系のジクロフェナク、インドメタシンおよびその誘導体から選択される前記(20)に記載のポリエーテル。
(23)抗リウマチ薬が免疫調節薬、免疫抑制薬、生物学的製剤およびその誘導体から選択される前記(9)に記載のポリエーテル。
(24)免疫調節薬が金チオリンゴ酸ナトリウム、ペニシラミン、ロベンザリットおよびその誘導体から選択される前記(23)に記載のポリエーテル。
(25)免疫抑制薬がミゾリビン、メトトレキサート、レフルノミド、タクロリムスおよびその誘導体から選択される前記(23)に記載のポリエーテル。
(26)生物学的製剤がインフリキシマブ、エタネルセプトおよびその誘導体から選択される前記(23)に記載のポリエーテル。
(27)酵素阻害薬がファスジルおよびその誘導体から選択される前記(9)に記載のポリエーテル。
(28)前記(1)〜(27)のいずれかに記載のポリエーテルを含む製剤。
(29)前記(1)におけるRが水素又は無機塩基、または有機塩基であるポリエーテルを用いた生体内組織への薬物、遺伝子、あるいは生体内イメージング用造影剤に対する送達用担体。
(30)前記(1)におけるRが水素又は無機塩基、または有機塩基であるポリエーテルを用いた薬剤、ペプチド、核酸または蛋白を担持あるいは固定化するための担体。
(31)前記(1)〜(27)のいずれかに記載のポリエーテルを架橋してなる構造体を疾患部位に投与することによる治療方法。
(32)薬物送達製剤の製造における前記(1)〜(27)のいずれかに記載のポリエーテルの使用。
(33)式(I)および式(II)で表される化合物をランダム共重合して、式(III)および式(IV)で表される繰り返し単位を有するポリエーテルを製造する方法。
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
(式中、Rは−ORまたは−NHRで示される基を表し、RおよびRは水素、無機塩基あるいは有機塩基またはC〜C15の炭化水素を含む基、または−NHRは薬理作用を有する基を表す。ここで同一の共重合体内でR1、RまたはRは同一であっても異なっていてもよい。各構造単位のモル比は、(III)/((III)+(IV))=0.001〜0.5であり、構造単位(III)および(IV)のモル%はそれぞれ(III)=0.1〜99.9および(IV)=0.1〜99.9である。ここで、式(III)および式(IV)を構造単位として含むポリエーテルは、ポリエチレングリコール(PEG)換算重量平均分子量が1,000〜100,000である。)
(34)重合に用いる触媒が塩基およびルイス酸から選択される前記(33)に記載のポリエーテルを製造する方法。
(35)重合に用いる触媒が水酸化カリウム、水酸化ナトリウム、水酸化セシウムやナトリウムメトキシド、ナトリウムエトキシド、ナトリムプロポキシド、ナトリウムt−ブトキシド、カリウムプロポキシド、カリウムt−ブトキシド、カリウム−t−2−メチル−2−ブトシキドおよび三フッ化ホウ素エーテル錯体、トリアルキルアルミニウム、トリエチルアルミニウム、トリフェニルアルミニウム、トリブチルアルミニウムから選択され、単独もしくは混合して使用される前記(33)に記載のポリエーテルを製造する方法。
(36)前記(1)〜(27)のいずれかに記載のポリエーテルを静脈内より生体内に投与することによる治療方法。
(37)前記(1)〜(27)のいずれかに記載のポリエーテルを疾患部位に投与することによる治療方法。 As a result of intensive studies in view of the above problems, the present invention succeeded in solving this problem by using, as a carrier for drug delivery, a polyether comprising a specific structural unit having a carboxymethyl group introduced in a pendant form. That is, the present invention has the following configuration.
(1) A polyether having repeating units represented by formula (III) and formula (IV), obtained by copolymerizing the compounds represented by formula (I) and formula (II).
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
(In the formula, R 1 represents a group represented by —OR 2 or —NHR 3 , and R 2 and R 3 represent hydrogen, an inorganic base, an organic base, a group containing a C 1 to C 15 hydrocarbon, or a pharmacological action. Wherein R 1 , R 2 or R 3 may be the same or different in the same copolymer, and the molar ratio of each structural unit is (III) / ((III) + (IV)) = 0.001 to 0.5, and the molar percentages of the structural units (III) and (IV) are (III) = 0.1 to 99.9 and (IV) = 0.1, respectively. Here, the polyether containing formula (III) and formula (IV) as structural units has a weight average molecular weight in terms of polyethylene glycol (PEG) of 1,000 to 100,000.)
(2) A polyether having the following formula (V) and formula (VI) as a structural unit, having a pharmacological group via an amino group of the pharmacological group itself or having an amino group The polyether according to the above (1), which contains the formula (VII) obtained by bonding via a linker and contains (V) and (VI) as structural units.
Figure 0005105166
Figure 0005105166
Figure 0005105166
(Wherein R 4 represents hydrogen, an inorganic base or an organic base, and NH—R 5 represents a group having a pharmacological action bonded via an amino group possessed by itself or via an amino group possessed by a linker bound thereto. The molar ratio of each structural unit is (VII) / ((V) + (VI) + (VII)) = 0.001 to 0.5 Each structural unit (V), (VI) and ( The mole percentages of VII) are (V) = 0 to 99.9, (VI) = 0.1 to 99.8 and (VII) = 0.1 to 99.8, respectively, wherein the formula (V) , (VI) and a polyether containing formula (VII) as structural units have a weight average molecular weight in terms of PEG of 1,000 to 100,000.)
(3) Polyether as described in said (1) or (2) whose polyethylene glycol (PEG) conversion weight average molecular weight / PEG conversion number average molecular weight (Mw / Mn) is 1.1-2.7.
(4) The polyether according to any one of (1) to (3), wherein the group having a pharmacological action is a group bonded to a linker.
(5) The polyether according to any one of (1) to (4), wherein the linker is an amino acid or a peptide.
(6) The polyether according to any one of (1) to (5), wherein the linker is selected or used in combination from amino acids represented by Gly, Ala, Leu, Ile, and Phe.
(7) Linker is Gly-Gly, Ala-GLy, Gly-Ala, Leu-Gly, Gly-Leu, Ile-Gly, Gly-Ile, Phe-Gly, Gly-Phe, Gly-Gly-Gly, Gly-Phe -Polyether in any one of said (1)-(6) selected from Gly, Phe-Gly-Gly, Gly-Gly-Phe, Gly-Gly-Phe-Gly.
(8) The polyether according to any one of (1) to (7), wherein the group having a pharmacological action has an amino group, a carboxyl group, or a hydroxyl group as a functional group in the molecule.
(9) The polyether according to any one of (1) to (8), wherein the group having a pharmacological action is an antineoplastic agent, an anti-inflammatory agent, an anti-rheumatic agent, an enzyme inhibitor or a nucleic acid.
(10) Antineoplastic drugs are alkylating drugs, antimetabolites, antitumor antibiotics, microtubule inhibitors, hormone analogs, platinum preparations, topoisomerase inhibitors, biologics (cytokines), molecular targeted therapeutics, non The polyether according to (9), which is selected from a specific immunostimulant and a derivative thereof.
(11) The polyether according to (10), wherein the alkylating drug is selected from mustard drugs such as cyclophosphamide, nitrosoureas such as nimustine, and derivatives thereof.
(12) The polyether according to (10), wherein the antimetabolite is selected from methotrexate, which is an antifolate, 5-fluorouracil, which is a pyrimidine antimetabolite, 6-MP, an antipurine antimetabolite, and derivatives thereof.
(13) The polyether according to (10), wherein the antitumor antibiotic is selected from anthracycline doxorubicin, daunorubicin, mitomycin C and derivatives thereof.
(14) The polyether according to (10), wherein the microtubule inhibitor is selected from taxane-based paclitaxel, docetaxel and derivatives thereof.
(15) The polyether according to (10), wherein the hormone analog is selected from tamoxifen and derivatives thereof.
(16) The polyether according to (10), wherein the platinum preparation is selected from cisplatin, carboplatin, oxaliplatin and derivatives thereof.
(17) The polyether according to the above (10), wherein the topoisomerase inhibitor is selected from the topoisomerase I inhibitor irinotecan, nogitane and derivatives thereof.
(18) The polyether according to (10), wherein the biologic is selected from interferon and derivatives thereof.
(19) The polyether according to the above (10), wherein the molecular target therapeutic agent is selected from imatinib, gefitinib, rituximab and derivatives thereof.
(20) The polyether according to (9) above, wherein the anti-inflammatory drug is selected from corticosteroids, non-steroidal anti-inflammatory drugs and derivatives thereof.
(21) The polyether according to (20), wherein the corticosteroid is selected from hydrocortisone, cortisone, prednisolone, methylprednisolone, dexamethasone, betamethasone and derivatives thereof.
(22) The non-steroidal anti-inflammatory drug is selected from salicylic acid aspirin, anthranilic mefenamic acid, propionic acid ibuprofen, loxoprofen, arylacetic acid diclofenac, indomethacin and derivatives thereof Polyether.
(23) The polyether according to (9), wherein the anti-rheumatic drug is selected from immunomodulators, immunosuppressants, biological preparations and derivatives thereof.
(24) The polyether according to the above (23), wherein the immunomodulator is selected from gold sodium thiomalate, penicillamine, lobenzalit and derivatives thereof.
(25) The polyether according to (23), wherein the immunosuppressive drug is selected from mizoribine, methotrexate, leflunomide, tacrolimus and derivatives thereof.
(26) The polyether according to the above (23), wherein the biologic is selected from infliximab, etanercept and derivatives thereof.
(27) The polyether according to (9), wherein the enzyme inhibitor is selected from fasudil and derivatives thereof.
(28) A preparation comprising the polyether according to any one of (1) to (27).
(29) A carrier for delivery to a drug, gene, or in vivo imaging contrast agent for in vivo tissue using a polyether in which R 2 in (1) is hydrogen, an inorganic base, or an organic base.
(30) A carrier for supporting or immobilizing a drug, peptide, nucleic acid or protein using a polyether in which R 2 in (1) is hydrogen, an inorganic base, or an organic base.
(31) A treatment method comprising administering a structure obtained by crosslinking the polyether according to any one of (1) to (27) to a disease site.
(32) Use of the polyether according to any one of (1) to (27) in the production of a drug delivery preparation.
(33) A method for producing a polyether having repeating units represented by formula (III) and formula (IV) by random copolymerization of compounds represented by formula (I) and formula (II).
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
(Wherein R 1 represents a group represented by —OR 2 or —NHR 3 , R 2 and R 3 represent hydrogen, an inorganic base or an organic base, a group containing a C 1 to C 15 hydrocarbon, or —NHR; 3 represents a group having a pharmacological action, wherein R 1 , R 2 or R 3 may be the same or different in the same copolymer, and the molar ratio of each structural unit is (III) / ((III) + (IV)) = 0.001 to 0.5, and the molar percentages of the structural units (III) and (IV) are (III) = 0.1-99.9 and (IV) = Here, the polyether containing formula (III) and formula (IV) as a structural unit has a weight average molecular weight in terms of polyethylene glycol (PEG) of 1,000 to 100,000. .)
(34) The method for producing a polyether according to the above (33), wherein the catalyst used for the polymerization is selected from a base and a Lewis acid.
(35) The catalyst used for polymerization is potassium hydroxide, sodium hydroxide, cesium hydroxide, sodium methoxide, sodium ethoxide, sodium propoxide, sodium t-butoxide, potassium propoxide, potassium t-butoxide, potassium-t- The polyether according to (33), which is selected from 2-methyl-2-butoxide and boron trifluoride ether complex, trialkylaluminum, triethylaluminum, triphenylaluminum, tributylaluminum, and used alone or in combination. How to manufacture.
(36) A method of treatment by administering the polyether according to any one of (1) to (27) into a living body from intravenously.
(37) A method of treatment by administering the polyether according to any one of (1) to (27) to a disease site.

(1)本発明のポリエーテルは、側鎖に任意の数のカルボキシル基がペンダント状に導入されたポリエーテルであって、従来のポリエチレングリコール(以下、PEGということがある)の場合のようにポリマーの主鎖両端にのみ薬物が担持されるのでなく、ポリマーの側鎖にも化合物や薬物が容易に結合され得る。その結果、化合物や薬物の導入量を制御することが可能となり、結果として高導入量あるいは高薬物含量の複合体あるいは製剤が調製可能となる。製剤として生体に投与する場合には、総投与量を減じることが可能となり投与時間の減少、投与液量の減少等、患者に対する負荷が減少する。
(2)本発明のポリエーテルは、ペンダント状側鎖カルボキシル基を有するためにアミド結合を利用する事により高収率で容易に薬物担持が可能となる。
(3)本発明のポリエーテルは、ペンダント状側鎖カルボキシル基を無機塩あるいは有機塩に変換することで、水に対する溶解性がより高くなり、例えば難水溶性化合物の可溶化に優れる。特に注射剤用の薬物送達用担体として有用である。
(4)本発明のポリエーテルは特に、薬物送達用担体として用いる場合は、生体に対する安全性が高い。これは、側鎖に導入された適度な量のカルボキシル基による負電荷のために、肝臓、脾臓、骨髄といった代謝臓器、副作用発現臓器への分布が軽減され、臓器障害や細胞毒性を引き起こす可能性が低減されると考えられるからである。従って、本発明のポリエーテルを医療用として用いた場合、生体との相互作用が極めて少なく安全な材料といえる。
(5)本発明のポリエーテルは特に、薬物送達用担体として用いられた場合は、担持した薬物を標的とする腫瘍臓器あるいは炎症臓器に選択的に集積させることが可能となる。
(1) The polyether of the present invention is a polyether in which an arbitrary number of carboxyl groups are introduced in a pendant manner in the side chain, as in the case of conventional polyethylene glycol (hereinafter sometimes referred to as PEG). Not only the drug is supported on both ends of the main chain of the polymer, but also compounds and drugs can be easily bonded to the side chain of the polymer. As a result, the amount of compound or drug introduced can be controlled, and as a result, a complex or preparation having a high introduction amount or high drug content can be prepared. In the case of administration to a living body as a preparation, the total dose can be reduced, and the burden on the patient, such as a decrease in administration time and a decrease in the administration liquid volume, is reduced.
(2) Since the polyether of the present invention has a pendant side chain carboxyl group, it is possible to easily carry a drug in a high yield by utilizing an amide bond.
(3) The polyether of the present invention has a higher solubility in water by converting the pendant side chain carboxyl group into an inorganic salt or an organic salt, and is excellent in, for example, solubilization of poorly water-soluble compounds. It is particularly useful as a drug delivery carrier for injections.
(4) The polyether of the present invention is highly safe for living bodies, particularly when used as a drug delivery carrier. This is due to the negative charge due to a moderate amount of carboxyl groups introduced into the side chain, which may reduce the distribution to metabolic organs such as liver, spleen, and bone marrow, and side effect organs, causing organ damage and cytotoxicity. It is because it is thought that is reduced. Therefore, when the polyether of the present invention is used for medical purposes, it can be said to be a safe material with very little interaction with a living body.
(5) Especially when the polyether of the present invention is used as a drug delivery carrier, it is possible to selectively accumulate the loaded drug in a target tumor organ or inflammatory organ.

本発明のポリエーテルは、ランダム共重合ポリエーテルからなり、下記式(III)及び(IV)で表される構造単位を含む。本発明のポリエーテルの分子量は、PEG換算重量平均分子量で1,000〜200,000である。前記の重量平均分子量が1,000未満になるとポリエーテルは極めて水に溶けやすいが体内からの排泄速度も極めて大きい、200,000を越えるとポリエーテルは水に溶けるものの粘度が上昇するからである。薬物送達用担体としての生体への安全性を考慮するとポリエーテルの重量平均分子量は1,000〜150,000が好ましく、1,000〜100,000がより好ましい。さらに、血中滞留性向上と腎排泄の容易さから判断すれば1,000〜70,000が好ましい。生体中の血漿アルブミンの分子量(約67,000)よりも低い場合、ポリエーテルの体外への排泄が迅速に進行するためである。従って、特に、体外への排泄が制御されながら生体への安全性も高い10,000〜70,000程度の分子量であることがより好ましい。また、生体内に投与した場合の血中滞留性をより向上させるためには、30,000〜70,000が更に好ましい。   The polyether of the present invention comprises a random copolymer polyether and contains structural units represented by the following formulas (III) and (IV). The molecular weight of the polyether of the present invention is 1,000 to 200,000 in terms of weight average molecular weight in terms of PEG. If the weight average molecular weight is less than 1,000, the polyether is very soluble in water, but the excretion rate from the body is also extremely high. If it exceeds 200,000, the polyether is soluble in water, but the viscosity increases. . Considering safety to the living body as a drug delivery carrier, the weight average molecular weight of the polyether is preferably 1,000 to 150,000, more preferably 1,000 to 100,000. Furthermore, if it judges from the retentivity improvement in blood and the ease of renal excretion, 1,000-70,000 are preferable. This is because when the molecular weight of plasma albumin in the living body is lower than the molecular weight (about 67,000), the excretion of the polyether outside the body proceeds rapidly. Therefore, in particular, it is more preferable that the molecular weight is about 10,000 to 70,000 with high safety to the living body while the excretion outside the body is controlled. Further, in order to further improve the blood retention when administered in vivo, 30,000 to 70,000 is more preferable.

ここでPEG換算重量平均分子量とは、GPCにより分子量の測定を実施した場合において、PEGを標準試料(TSKstandard POLY(ETHYLENE OXIDE)、TOSOH(株)製)とし、その重量平均分子量に換算して得られた分子量をいう。PEGは水溶性溶媒及び有機溶媒にも可溶なため、親水性重合体及び疎水性重合体の分子量測定の際に分子量標準物質として用いる。   Here, the PEG-converted weight average molecular weight is obtained by converting PEG into a standard sample (TSK standard POLY (ETHYLENE OXIDE), manufactured by TOSOH Co., Ltd.) when the molecular weight is measured by GPC. Refers to the obtained molecular weight. Since PEG is soluble in water-soluble solvents and organic solvents, it is used as a molecular weight standard substance when measuring the molecular weight of hydrophilic polymers and hydrophobic polymers.

本発明のポリエーテルは、同一分子中における親水性部分と疎水性部分をランダムに分散させるためにランダム共重合により製造されることを特徴としている。本発明のポリエーテルを、ブロック共重合により製造すると、界面活性剤として作用するポリエーテルが生成される可能性があり、そのようなポリエーテルを生体内に投与した場合溶血作用を発現する可能性があり、生体にとって悪影響を及ぼす危険性があるからである。   The polyether of the present invention is characterized by being produced by random copolymerization in order to randomly disperse the hydrophilic portion and the hydrophobic portion in the same molecule. When the polyether of the present invention is produced by block copolymerization, a polyether acting as a surfactant may be generated, and when such a polyether is administered in vivo, a hemolytic action may be exhibited. This is because there is a risk of adversely affecting the living body.

Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166

本発明のポリエーテルの各構造単位のモル比は、(III)/((III)+(IV))=0.001〜0.5であり、構造単位(III)及び(IV)のモル%はそれぞれ(III)=0.1〜99.9及び(IV)=0.1〜99.9である。   The molar ratio of each structural unit of the polyether of the present invention is (III) / ((III) + (IV)) = 0.001 to 0.5, and the mol% of the structural units (III) and (IV). Are (III) = 0.1-99.9 and (IV) = 0.1-99.9, respectively.

本発明の薬物複合体ならびに薬物送達用担体における重量平均分子量/数平均分子量(Mw/Mn)で表示する分子量分布としては、目的とする薬理効果を十分に発揮するために薬物複合体ならびに薬物送達用担体の品質の均一性が重要であることから、上記の分子量分布が1.2〜2.7であることが望ましい。該薬物複合体ならびに該薬物送達用担体に関し品質確保のためには1.2〜2.2であることが好ましく、1.1〜1.8であることがより好ましく、さらに1.0〜1.5であることがなお一層好ましい。   The molecular weight distribution represented by the weight average molecular weight / number average molecular weight (Mw / Mn) in the drug conjugate and drug delivery carrier of the present invention is the drug conjugate and drug delivery in order to sufficiently exhibit the intended pharmacological effect. Since the uniformity of the quality of the carrier is important, the molecular weight distribution is preferably 1.2 to 2.7. In order to ensure the quality of the drug complex and the drug delivery carrier, it is preferably 1.2 to 2.2, more preferably 1.1 to 1.8, and further 1.0 to 1 Still more preferably, .5.

一般式(III)、(IV)式中、Rは−ORまたは−NHRで示される基を表し、R及びRは水素、ナトリウムなどの無機塩基あるいは有機塩基またはC〜C15の炭化水素を含む基、または薬理作用を有する基を表す。ここで、同一の共重合体内でR1、RまたはRは同一であっても異なっていてもよい。 In the general formulas (III) and (IV), R 1 represents a group represented by —OR 2 or —NHR 3 , and R 2 and R 3 are each an inorganic or organic base such as hydrogen or sodium, or C 1 -C It represents a group containing 15 hydrocarbons or a group having a pharmacological action. Here, R 1 , R 2 or R 3 may be the same or different in the same copolymer.

一般式(III)の例として、一般式(V)及び(VII)が挙げられ、これら一般式(III)、(V)、(VII)で表されるポリエーテルを製造するためのモノマー原料の例としては、エチレンオキサイド及びグリシドールの水酸基を有機置換基で置換したグリシジルエーテル誘導体(一般式(VIII))、アミノ酸またはペプチドを導入したグリシジルエーテル誘導体(一般式(IX))等を挙げることができる。   Examples of the general formula (III) include the general formulas (V) and (VII). The monomer raw materials for producing the polyethers represented by the general formulas (III), (V), and (VII) Examples include glycidyl ether derivatives (general formula (VIII)) in which the hydroxyl groups of ethylene oxide and glycidol are substituted with organic substituents, and glycidyl ether derivatives (general formula (IX)) into which amino acids or peptides are introduced. .

Figure 0005105166
(式中、Rは水素、ナトリウム等の無機塩基あるいは有機塩基を示す。)
Figure 0005105166
(式中、Rは自身が有するアミノ基を介し、あるいは自身が結合したリンカーが有するアミノ基を介し結合した薬理作用を有する基を示す。

Figure 0005105166
(式中、RはC〜C15の炭化水素を含む基を表し、同一の共重合体においてRは同一であっても異なっていてもよい。)
Figure 0005105166
(式中、RはC〜C20の脂肪族炭化水素を有する基、又はC〜C20の芳香族炭化水素誘導体を有する基を示し、同一の共重合体内でRは同一であっても異なっていても良い。)
Figure 0005105166
(Wherein R 4 represents an inorganic base or an organic base such as hydrogen or sodium)
Figure 0005105166
(In the formula, R 5 represents a group having a pharmacological action bonded via an amino group contained in itself or via an amino group contained in a linker bonded thereto.

Figure 0005105166
(Wherein R 6 represents a group containing a C 1 to C 15 hydrocarbon, and R 6 in the same copolymer may be the same or different.)
Figure 0005105166
(Wherein R 7 represents a group having a C 1 to C 20 aliphatic hydrocarbon or a group having a C 6 to C 20 aromatic hydrocarbon derivative, and R 7 is the same in the same copolymer) It may or may not be.)

ここで一般式(VIII)で表されるグリシジルエーテル誘導体は例えば下記に示すようなスキームに従い製造することができるが、以下の方法に限定されるわけではない。例えば一般式(VIII)におけるRがCの場合については、ヒドロキシ酢酸とエピクロロヒドリンを出発原料として2,3-epoxypropyl epoxypropoxyacetateを得る合成例について1960年に開示されている(特許文献3)。また一般式(VIII)におけるRがエチル基の場合については、グリシドールを原料とする合成例が報告されている(非特許文献4)。本発明においては、下記に示すようなスキームに従い製造した。すなわちアリルアルコール(A)を原料とし水素化ナトリウム等の塩基の存在下、クロロ酢酸を反応させその後酸性条件下にて有機溶媒にて抽出することでカルボキシメチル基導入体(B)を得、ジシクロヘキシルカルボジイミド等の縮合剤存在下でアルコールを反応させることでエステル体(C)を得る。その後、3−クロロ過安息香酸、過酢酸等の酸化剤によりオレフィン部分の酸化反応を行い目的とする上述一般式(VIII)で示されるグリシジルエーテル誘導体(D)を得る。
米国 2925426号公報 油化学,36,874-881 (1987)
Here, the glycidyl ether derivative represented by the general formula (VIII) can be produced, for example, according to the following scheme, but is not limited to the following method. For example, when R 6 in the general formula (VIII) is C 3, a synthesis example for obtaining 2,3-epoxypropyl epoxypropoxyacetate using hydroxyacetic acid and epichlorohydrin as starting materials is disclosed in 1960 (Patent Document 3). ). Also in the case R 6 is an ethyl group in the general formula (VIII), Synthesis Example of glycidol as a raw material has been reported (Non-Patent Document 4). In this invention, it manufactured according to the scheme as shown below. That is, allyl alcohol (A) as a raw material is reacted with chloroacetic acid in the presence of a base such as sodium hydride, and then extracted with an organic solvent under acidic conditions to obtain a carboxymethyl group-introduced product (B) and dicyclohexyl. An ester (C) is obtained by reacting an alcohol in the presence of a condensing agent such as carbodiimide. Thereafter, the olefin moiety is oxidized with an oxidizing agent such as 3-chloroperbenzoic acid or peracetic acid to obtain the intended glycidyl ether derivative (D) represented by the above general formula (VIII).
US 2925426 Petrochemistry, 36, 874-881 (1987)

Figure 0005105166
Figure 0005105166

例えば、グリシジルエーテル誘導体としては、Rとしてメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、t−ブチル、ペンチル、ヘキシル、ヘプチル、オクチル等の脂肪族炭化水素、あるいはフェニル、p−ニトロフェニル、ベンジル、p−メトキシベンジル等の芳香族炭化水素及び誘導体、グリシジル、さらには窒素原子で結合した無水コハク酸を挙げることができる。これらのRに関してはエポキシの開環重合が終了した後、酸処理、塩基処理、水素添加などの通常の有機合成で用いる脱保護の条件により除去することでカルボン酸を形成することが可能である。あるいはRとして、例えばp−ニトロフェニル、無水コハク酸等のペプチド合成で用いられる活性エステルと呼ばれる基を導入した場合には、カルボン酸を経由することなくRに対してアミノ基を有する化合物を直接反応させることでアミド結合(ペプチド結合)を形成させることも可能である。 For example, as the glycidyl ether derivative, R 6 is an aliphatic hydrocarbon such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, octyl, or phenyl, p- Aromatic hydrocarbons and derivatives such as nitrophenyl, benzyl, p-methoxybenzyl, glycidyl, and succinic anhydride bonded by a nitrogen atom can be mentioned. With regard to these R 6 , after the ring-opening polymerization of the epoxy is completed, it is possible to form a carboxylic acid by removing it under the deprotection conditions used in usual organic synthesis such as acid treatment, base treatment, hydrogenation and the like. is there. Alternatively, as R 6 , for example, when a group called an active ester used in peptide synthesis such as p-nitrophenyl or succinic anhydride is introduced, a compound having an amino group with respect to R 6 without passing through a carboxylic acid It is also possible to form an amide bond (peptide bond) by directly reacting.

また、下式(IX)で示される様にグリシジルエーテル誘導体としてアミノ酸またはペプチドを導入したモノマー原料もまた本発明のモノマー原料である。   A monomer raw material into which an amino acid or peptide is introduced as a glycidyl ether derivative as shown by the following formula (IX) is also a monomer raw material of the present invention.

Figure 0005105166

(式中、RはC〜C20の脂肪族炭化水素を有する基、C〜C20の芳香族炭化水素誘導体を有する基を示し、同一の共重合体内でRは同一であっても異なっていても良い。)
Figure 0005105166

(In the formula, R 7 represents a group having a C 1 to C 20 aliphatic hydrocarbon and a group having a C 6 to C 20 aromatic hydrocarbon derivative, and R 7 was the same in the same copolymer. Or different.)

ここで一般式(IX)で表されるグリシジルエーテル誘導体は下記に示すようなスキームに従い製造することができる。例えば上述のカルボキシメチル基導入体(B)を原料として用い、ジシクロヘキシルカルボジイミド等の縮合剤存在下でアミン類を反応させることでアミド体(E)を得る。その後3−クロロ過安息香酸等の酸化剤によりオレフィン部分の酸化反応を行い目的とする上述一般式(IX)で示されるグリシジルエーテル誘導体(F)を得る。   Here, the glycidyl ether derivative represented by the general formula (IX) can be produced according to the following scheme. For example, the above carboxymethyl group-introduced product (B) is used as a raw material, and an amide compound (E) is obtained by reacting amines in the presence of a condensing agent such as dicyclohexylcarbodiimide. Thereafter, the olefin moiety is oxidized with an oxidizing agent such as 3-chloroperbenzoic acid to obtain the desired glycidyl ether derivative (F) represented by the general formula (IX).

Figure 0005105166
Figure 0005105166

例えば上述のアミン類としては必要に応じて側鎖及びカルボキシル基が保護されたアミノ酸、ペプチド、あるいはベータアラニン等のアミノカルボン酸などが挙げられる。ここで式(IX)の具体例としては下式(X)で示される様なグリシンベンジルエステルが導入されてなるグリシジルエーテル誘導体を挙げることが出来る。   For example, as the above-mentioned amines, aminocarboxylic acids such as amino acids, peptides, and beta-alanine whose side chains and carboxyl groups are protected as necessary may be mentioned. Here, specific examples of the formula (IX) include glycidyl ether derivatives into which glycine benzyl ester represented by the following formula (X) is introduced.

Figure 0005105166
Figure 0005105166

本発明のポリエーテルの製造における最大の特徴は、モノマーとしてカルボキシメチル基が導入されているものを用いるため、一段階の重合工程でポリマーに直接カルボキシル基が導入されることである。更に、カルボキシメチル基導入量をエチレンオキサイドに対するモノマー使用量の調節によって制御可能であることも特徴である。
このように、カルボキシル基を有するモノマーを用いてランダム重合して得られた本発明のポリエーテルは、従来技術であるPEGに比べ様々な点において優れている。すなわち、本発明のポリエーテルは、側鎖に反応性の高いカルボキシメチル基が導入されていることから、水溶解性、水和能力、保水能力及び官能基導入能力に優れる。また、導入量が制御された側鎖カルボキシル基を有効に用いることにより、薬物等を結合させて所望の薬物含有量からなる薬物複合体を得ることが可能となる。より具体的には、アルゴン雰囲気下、THF、トルエン等の溶媒中、あるいは場合によってはDMFやDMSO等を用い水−有機溶媒の混合系、あるいは水溶液中においてペプチド合成で使用される縮合剤等の存在下で本発明のポリエーテルのカルボキシメチル基に対して薬物、ペプチド、生体イメージング用造影剤、核酸及び蛋白を結合させることが可能である。
The greatest feature in the production of the polyether of the present invention is that a carboxymethyl group is introduced as a monomer, so that a carboxyl group is directly introduced into the polymer in a one-step polymerization process. Furthermore, it is also characterized in that the amount of carboxymethyl group introduced can be controlled by adjusting the amount of monomer used with respect to ethylene oxide.
Thus, the polyether of the present invention obtained by random polymerization using a monomer having a carboxyl group is superior in various respects as compared with PEG which is a conventional technique. That is, since the highly reactive carboxymethyl group is introduced into the side chain, the polyether of the present invention is excellent in water solubility, hydration ability, water retention ability, and functional group introduction ability. Further, by effectively using a side chain carboxyl group whose introduction amount is controlled, it becomes possible to bind a drug or the like to obtain a drug complex having a desired drug content. More specifically, in an argon atmosphere, a solvent such as THF or toluene, or in some cases, a water-organic solvent mixed system using DMF or DMSO, or a condensing agent used in peptide synthesis in an aqueous solution. In the presence, it is possible to bind a drug, peptide, biological imaging contrast agent, nucleic acid and protein to the carboxymethyl group of the polyether of the present invention.

このようにして得られる機能基導入ポリエーテルは、薬物送達医薬や蛋白精製用担体など医療行為のために用いられる医療用材料として非常に優れている。また、カルボキメチル基が特に活性エステルに変換された場合は縮合剤の存在無しにアルゴン雰囲気下、THF、エーテル、DMF、DMSO、トルエン等の有機溶媒中、あるいは含水有機溶媒中、あるいは場合によってはPBS等の緩衝液中あるいは水溶液中において薬剤、ペプチド、核酸及び蛋白を結合させることが可能である。このような機能基導入ポリエーテルは、薬物送達医薬や蛋白精製用担体など医療行為のために用いられる医療用材料として優れている。   The functional group-introduced polyether thus obtained is very excellent as a medical material used for medical practice such as a drug delivery medicine and a protein purification carrier. In addition, when a carboxymethyl group is converted into an active ester, in the presence of a condensing agent, in an argon atmosphere, in an organic solvent such as THF, ether, DMF, DMSO, or toluene, or in a water-containing organic solvent, or in some cases Drugs, peptides, nucleic acids and proteins can be bound in a buffer solution such as PBS or in an aqueous solution. Such functional group-introduced polyethers are excellent as medical materials used for medical practice such as drug delivery drugs and protein purification carriers.

従来技術として、PEGは、医薬用途として広く用いられているが、両末端だけにしか官能基導入に使える水酸基が存在しないために薬物担持能力が極めて低く、薬物送達のための担体としては適切でない。また、薬物の血中滞留性を向上させて標的臓器への薬物送達を試みた場合、PEGの分子量を増加させて腎排泄を妨げなければならない問題が生じる。例えば、PEG分子量が6万であるとき薬剤が500とすればPEGの一分子には両端の水酸基に2分子の薬物しか導入されないため薬剤の導入量は重量%では1.6%となる。更に例えばPEG分子量4万にカンプトテシンを導入したプロドラッグ製剤PROTHECANにおいて薬物含量は1.7%(w/w)となることが報告されている(非特許文献5)。
TRENDS in Biotechnology, 24(1), 39-47 (2006)
As a conventional technique, PEG is widely used for pharmaceutical use, but since there is no hydroxyl group that can be used for introducing a functional group only at both ends, the drug-carrying ability is extremely low and it is not suitable as a carrier for drug delivery. . In addition, when attempting to deliver a drug to a target organ by improving the retention of the drug in the blood, there arises a problem that the molecular weight of PEG must be increased to prevent renal excretion. For example, when the PEG molecular weight is 60,000 and the drug is 500, only two molecules of drug are introduced into the hydroxyl groups at both ends in one molecule of PEG, so the amount of drug introduced is 1.6% in weight%. Furthermore, for example, in the prodrug formulation PROTHECAN in which camptothecin is introduced with a PEG molecular weight of 40,000, it has been reported that the drug content is 1.7% (w / w) (Non-patent Document 5).
TRENDS in Biotechnology, 24 (1), 39-47 (2006)

これらの場合、例えば患者にPEGを担体として用い製剤化した薬物を投与しようとすると、必要薬剤量の60倍のPEG製剤を投与する必要があり、患者にとって薬剤投与時の負荷が極めて大きい。これに対し、本発明のポリエーテルは、側鎖にカルボキシル基を多数導入することが可能であるために薬物の導入量を自由に増加させることができ、例えば複合体に対する薬剤導入量を10%以上とすることも可能である。従って、本発明の薬物複合体の総投与量を従来のPEG複合体投与量に比べて大幅に減らすことができ、患者に対する投与時の負荷を大幅に軽減することが可能となる。   In these cases, for example, when trying to administer a drug formulated using PEG as a carrier to a patient, it is necessary to administer a PEG preparation 60 times the required drug amount, and the burden on the patient during drug administration is extremely large. On the other hand, since the polyether of the present invention can introduce a large number of carboxyl groups into the side chain, the amount of drug introduced can be increased freely. For example, the amount of drug introduced to the complex can be increased by 10%. The above is also possible. Therefore, the total dose of the drug conjugate of the present invention can be greatly reduced as compared with the conventional PEG conjugate dose, and the burden upon administration to the patient can be greatly reduced.

本発明のポリエーテルの組成については、反応に用いる原料の種類、原料の重量、重合開始剤の種類、重合開始剤の添加量、反応溶媒の有無、反応溶媒の選択、反応温度、反応時間、原料濃度、重合開始剤濃度、反応雰囲気、反応圧力、撹拌状態、撹拌速度等の調整により、種々の組成比を有するポリエーテルが製造される。例えばトルエン、ヘキサン、ヘプタン、2−メトキシエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等の反応溶媒中または無溶媒で、エチレンオキサイドと共に種々のグリシジルエーテル類を、例えば三フッ化ホウ素エーテル錯体、トリアルキルアルミニウム、トリエチルアルミニウム、トリフェニルアルミニウムやトリブチルアルミニウムなどのルイス酸等の金属重合開始剤あるいは水酸化カリウム、水酸化ナトリウム、水酸化セシウムやナトリウムメトキシド、ナトリウムエトキシド、ナトリムプロポキシド、ナトリウムt−ブトキシド、カリウムプロポキシド、カリウムt−ブトキシド、カリウム−t−2−メチル−2−ブトシキド等などの重合開始剤を単独あるいは混合して使用し、氷冷、室温下または必要に応じて加熱下にて常圧もしくは加圧下で開環重合させることにより得られる。   About the composition of the polyether of the present invention, the type of raw material used in the reaction, the weight of the raw material, the type of polymerization initiator, the addition amount of the polymerization initiator, the presence or absence of a reaction solvent, the selection of the reaction solvent, the reaction temperature, the reaction time, Polyethers having various composition ratios are produced by adjusting the raw material concentration, the polymerization initiator concentration, the reaction atmosphere, the reaction pressure, the stirring state, the stirring speed, and the like. For example, various glycidyl ethers together with ethylene oxide in a reaction solvent such as toluene, hexane, heptane, 2-methoxyethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or without solvent, for example, boron trifluoride ether complex, Metal polymerization initiators such as alkylaluminum, triethylaluminum, Lewis acid such as triphenylaluminum and tributylaluminum, or potassium hydroxide, sodium hydroxide, cesium hydroxide, sodium methoxide, sodium ethoxide, sodium propoxide, sodium t- A polymerization initiator such as butoxide, potassium propoxide, potassium t-butoxide, potassium-t-2-methyl-2-butoxide and the like is used alone or in combination, Cold, can be obtained by ring-opening polymerization under normal pressure or elevated pressure under heating, if room temperature or required.

重合後に塩酸、硫酸等の酸、あるいは水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の塩基、あるいはパラジウムカーボン等の触媒存在下における水素添加等の操作により、目的とするカルボン酸を生成させることができる。あるいは活性エステル型の場合は重合後の酸、塩基、水素添加処理の必要が無く、そのまま薬剤、ペプチド、核酸及び蛋白を結合させることが可能である。   After polymerization, an acid such as hydrochloric acid or sulfuric acid, a base such as sodium hydroxide, potassium hydroxide or calcium hydroxide, or an operation such as hydrogenation in the presence of a catalyst such as palladium carbon may be used to produce the target carboxylic acid. Can do. Alternatively, in the case of an active ester type, there is no need for post-polymerization acid, base and hydrogenation treatment, and it is possible to bind a drug, peptide, nucleic acid and protein as they are.

本発明におけるポリエーテルの重量平均分子量は、前述のとおり、安全性の面から生体内からの体外への排泄が容易な分子量の大きさであることが重要であるが、例えば、GPC分析におけるPEG換算重量平均分子量が1,000〜100,000を達成するには、必要に応じて例えば、出発原料の精製、反応後に高分子量分画または低分子量分画の分別除去を行ってもよい。例えば、分子量分画の具体的方法は、サイズエクスクルージョンクロマトグラフィー(SEC)、GPC等のクロマトグラフィー、UFモジュール等を含む限外ろ過、超遠心分離法、エーテル、エタノールなどの有機溶媒等を用いた沈殿分画等の種々の手法により行うことができる。   As described above, the weight average molecular weight of the polyether in the present invention is important to be a molecular weight that can be easily excreted from the living body to the body from the viewpoint of safety. For example, PEG in GPC analysis In order to achieve the converted weight average molecular weight of 1,000 to 100,000, for example, the starting material may be purified and the high molecular weight fraction or the low molecular weight fraction may be separated and removed after the reaction, if necessary. For example, specific methods for molecular weight fractionation include size exclusion chromatography (SEC), chromatography such as GPC, ultrafiltration including UF module, ultracentrifugation, organic solvents such as ether and ethanol, etc. It can be carried out by various techniques such as precipitation fraction used.

以上のとおり、本発明のポリエーテルを、例えば薬物複合体及び薬物送達用担体として用いる場合には、最適な分子量を選択し、かつ側鎖カルボキシメチル基を使用目的に応じて最適な量だけ導入することが可能である。   As described above, when the polyether of the present invention is used as, for example, a drug complex and a drug delivery carrier, an optimal molecular weight is selected, and a side chain carboxymethyl group is introduced in an optimal amount according to the purpose of use. Is possible.

本発明に含まれる薬物複合体は、薬物送達用担体に直接又はリンカーを介して薬物(医薬化合物)が結合している。すなわち、本発明のポリエーテルの構造単位を表す一般式(I)においてR、R、Rが薬理作用を有する基(リンカーに結合した薬理作用を有する基も含む)である場合がこれに相当する。薬物としては、カルボキシル基又は当該リンカーに反応し得る官能基を有する医薬化合物であれば特に制限されないが、例えば金属原子、アミノ基、カルボキシル基、ヒドロキシ基、メルカプト基、カルボキサミド基、ウレタン基等を有する医薬化合物が好ましい。このうちでもアミノ基を有する医薬化合物は、リンカーの有無にかかわらず容易に本発明のポリエーテルに結合させることができる。また、このようなアミノ基を有さない医薬化合物については、リンカーによって官能基を導入することにより担体と結合可能となる。例えば、パクリタキセル、デキサメタゾン、カンプトテシン等は薬物中に存在する水酸基をリンカーによってアミノ基に変換することにより、本発明のポリエーテルに容易に結合することが可能となる。 In the drug complex included in the present invention, a drug (pharmaceutical compound) is bound to a drug delivery carrier directly or via a linker. That is, in the general formula (I) representing the structural unit of the polyether of the present invention, R 2 , R 3 and R 5 are groups having a pharmacological action (including a group having a pharmacological action bonded to a linker). It corresponds to. The drug is not particularly limited as long as it is a pharmaceutical compound having a carboxyl group or a functional group capable of reacting with the linker. For example, a metal atom, amino group, carboxyl group, hydroxy group, mercapto group, carboxamide group, urethane group, etc. Pharmaceutical compounds having are preferred. Among these, a pharmaceutical compound having an amino group can be easily bonded to the polyether of the present invention with or without a linker. Moreover, about such a pharmaceutical compound which does not have an amino group, it becomes possible to couple | bond with a support | carrier by introduce | transducing a functional group with a linker. For example, paclitaxel, dexamethasone, camptothecin and the like can be easily bonded to the polyether of the present invention by converting a hydroxyl group present in a drug into an amino group by a linker.

該医薬化合物としては、抗悪性腫瘍薬、抗炎症薬、抗リウマチ薬、酵素阻害剤または核酸等が挙げられる。   Examples of the pharmaceutical compound include antineoplastic drugs, anti-inflammatory drugs, anti-rheumatic drugs, enzyme inhibitors or nucleic acids.

抗悪性腫瘍薬としては、アルキル化薬、代謝拮抗薬、抗腫瘍性抗生物質、微小管阻害薬、ホルモン類似薬、白金製剤、トポイソメラーゼ阻害薬、生物製剤(サイトカイン)、分子標的治療薬、非特異的免疫賦活薬及びその誘導体が挙げられる。ここでアルキル化薬としてはシクロフォスファミドなどのマスタード薬、ニムスチン等のニトロソウレア類などが挙げられる。代謝拮抗薬としては葉酸代謝拮抗薬のメトトレキサート、ピリミジン代謝拮抗薬の5−FU、プリン代謝拮抗薬の6−MPなどが挙げられる。抗腫瘍性抗生物質としてはアントラサイクリン系のドキソルビシン、ダウノルビシンに加えその他として、マイトマイシンCなどが挙げられる。微小管阻害薬としてパクリタキセル、ドセタキセルなどが挙げられる。ホルモン類似薬としてタモキシフェンなどが挙げられる。白金製剤としてシスプラチン、カルボプラチン、オキサリプラチンなどが挙げられる。トポイソメラーゼ阻害薬として、トポイソメラーゼI阻害薬のイリノテカン、ノギテカン、エトポシドなどが挙げられる。生物製剤としてはインターフェロンなどが挙げられる。分子標的治療薬としてはイマチニブ、ゲフィチニブ、リツキシマブなどが挙げられる。   Antineoplastic agents include alkylating drugs, antimetabolites, antitumor antibiotics, microtubule inhibitors, hormone analogs, platinum preparations, topoisomerase inhibitors, biologics (cytokines), molecular targeted therapeutics, non-specific Specific immunostimulants and derivatives thereof. Examples of the alkylating drug include mustard drugs such as cyclophosphamide and nitrosoureas such as nimustine. Antimetabolites include folate antimetabolite methotrexate, pyrimidine antimetabolite 5-FU, and purine antimetabolite 6-MP. Antitumor antibiotics include anthracycline doxorubicin and daunorubicin, as well as mitomycin C. Examples of microtubule inhibitors include paclitaxel and docetaxel. Examples of hormone analogs include tamoxifen. Examples of platinum preparations include cisplatin, carboplatin, and oxaliplatin. Examples of topoisomerase inhibitors include topoisomerase I inhibitors irinotecan, nogitecan, etoposide and the like. Examples of biologics include interferon. Examples of molecular targeted therapeutic agents include imatinib, gefitinib, rituximab and the like.

抗炎症薬としては、副腎皮質ステロイド、非ステロイド性抗炎症薬が挙げられる。副腎皮質ステロイドとしてヒドロコルチゾン、コルチゾン、プレドニゾロン、メチルプレドニゾロン、デキサメタゾン、ベタメタゾンなどが挙げられる。非ステロイド性抗炎症薬としてサリチル酸系のアスピリン、アントラニル系のメフェナム酸、プロピオン酸系のイブプロフェン、ロキソプロフェン、アリール酢酸系のジクロフェナク、インドメタシンなどが挙げられる。またこれら非ステロイド性抗炎症薬の分類にはCOX選択性による分類もある。   Anti-inflammatory drugs include corticosteroids and non-steroidal anti-inflammatory drugs. Examples of corticosteroids include hydrocortisone, cortisone, prednisolone, methylprednisolone, dexamethasone, betamethasone and the like. Non-steroidal anti-inflammatory drugs include salicylic acid-based aspirin, anthranilic mefenamic acid, propionic acid-based ibuprofen, loxoprofen, arylacetic acid-based diclofenac, and indomethacin. In addition, these nonsteroidal anti-inflammatory drugs are classified according to COX selectivity.

抗リウマチ薬としては、免疫調節薬、免疫抑制薬、生物学的製剤などが挙げられる。免疫調節薬として金チオリンゴ酸ナトリウム、ペニシラミン、ロベンザリットなどが挙げられる。免疫抑制薬としてミゾリビン、メトトレキサート、レフルノミド、タクロリムスなどが挙げられる。生物学的製剤としてインフリキシマブ、エタネルセプトなどが挙げられる。   Anti-rheumatic drugs include immunomodulators, immunosuppressants, biologics and the like. Examples of immunomodulators include sodium gold thiomalate, penicillamine, and lobenzalit. Examples of immunosuppressants include mizoribine, methotrexate, leflunomide, tacrolimus and the like. Biologics include infliximab, etanercept and the like.

該薬物送達用担体と薬物とを結合させて本発明の薬物複合体を製造するには、例えばこれらを錯体形成配位結合、エステル結合、チオエステル結合、酸アミド結合、酸無水物形成などの手段で結合させることにより製造される。例えば、錯体形成反応の場合には、通常、水溶液中で反応させればよい。エステル結合形成反応の場合には、種々のカルボジイミド類などの脱水縮合剤存在下に行い、その際必要に応じてジメチルアミノピリジンなどの活性剤を加えるとよい。また、酸アミド結合形成反応の場合には、種々カルボジイミド類等、脱水縮合剤の存在下に行えばよい。   In order to bind the drug delivery carrier and the drug to produce the drug complex of the present invention, for example, a means for forming a complex forming coordination bond, an ester bond, a thioester bond, an acid amide bond, an acid anhydride, etc. It is manufactured by bonding with. For example, in the case of a complex formation reaction, the reaction may usually be performed in an aqueous solution. In the case of an ester bond forming reaction, the reaction is carried out in the presence of a dehydrating condensing agent such as various carbodiimides, and an activator such as dimethylaminopyridine may be added as necessary. In the case of an acid amide bond forming reaction, the reaction may be performed in the presence of a dehydrating condensing agent such as various carbodiimides.

本発明では、該薬物送達用担体と薬物とを結合させるためにリンカーを介して結合させる場合がある。本発明のリンカーとしては、担体との距離を調整する、いわゆるスペーサも含まれる。リンカーとしては、例えば、1個のアミノ酸、ペプチド結合した2〜4個のアミノ酸等が挙げられる。より具体的には、1個のアミノ酸の残基(アミノ酸のアミノ基及びカルボキシル基からそれぞれ1個の水素原子及び1個の水酸基を除いた残基を意味する)、又はペプチド結合した2ないし4個のアミノ酸からなるオリゴペプチドの残基(N末端のアミノ基及びC末端のカルボキシル基からそれぞれ1個の水素原子及び1個の水酸基を除いた残基を意味する)の形態を有している。好ましいリンカーは1アミノ酸残基または、2〜4個のアミノ酸からなるオリゴペプチドの残基である。このようなアミノ酸の立体障害の違いにより担体に結合した薬物の遊離速度を調整することが可能となる。   In the present invention, the drug delivery carrier and the drug may be bound via a linker in some cases. The linker of the present invention includes a so-called spacer that adjusts the distance from the carrier. Examples of the linker include 1 amino acid, 2 to 4 amino acids with peptide bonds, and the like. More specifically, a residue of one amino acid (meaning a residue obtained by removing one hydrogen atom and one hydroxyl group from the amino group and carboxyl group of an amino acid, respectively), or peptide-bonded 2 to 4 Residue of oligopeptide consisting of one amino acid (meaning a residue obtained by removing one hydrogen atom and one hydroxyl group from the N-terminal amino group and the C-terminal carboxyl group, respectively) . Preferred linkers are 1 amino acid residue or oligopeptide residue consisting of 2 to 4 amino acids. Such a difference in steric hindrance of amino acids makes it possible to adjust the release rate of the drug bound to the carrier.

リンカーを構成するアミノ酸の種類は特に限定されないが、例えば、L−又はD−アミノ酸、好ましくはL−アミノ酸を用いることができ、α−アミノ酸のほか、β−アラニン、ε−アミノカプロン酸、γ−アミノ酪酸などを用いてもよい。このようなα−アミノ酸以外のアミノ酸は、薬物送達用担体に近接した位置に配置されることが好ましい。介在基の結合方向は特に限定されないが、一般的には、カルボキシアルキルポリエーテルのカルボキシル基に介在基のN末端を酸アミド結合によって結合し、医薬化合物のアミノ基もしくは水酸基に介在基のC末端を結合することができる。また、例えば、ペプチドリンカーの構成単位としてリジン残基を含めておき、リジン残基のα−アミノ基及びε−アミノ基をそれぞれ他のアミノ酸のカルボキシル基と酸アミド結合させると、ペプチドリンカーの両末端がN末端になるので、医薬化合物のカルボキシル基を結合することが可能になる。さらに、リンカー中に1個又は2個以上のジアミン化合物又はジカルボン酸化合物の残基(例えばエチレンジアミンなどのジアミンの残基やコハク酸などのジカルボン酸の残基)を構成単位として含めておき、それぞれ両末端がN末端の介在基及び両末端がC末端のリンカーを利用してもよい。   The type of amino acid constituting the linker is not particularly limited. For example, L- or D-amino acid, preferably L-amino acid can be used. In addition to α-amino acid, β-alanine, ε-aminocaproic acid, γ- Aminobutyric acid or the like may be used. Such amino acids other than α-amino acids are preferably arranged at positions close to the drug delivery carrier. The binding direction of the intervening group is not particularly limited, but generally, the N-terminus of the intervening group is bound to the carboxyl group of the carboxyalkyl polyether by an acid amide bond, and the C-terminus of the intervening group is bound to the amino group or hydroxyl group of the pharmaceutical compound. Can be combined. In addition, for example, if a lysine residue is included as a structural unit of a peptide linker and an α-amino group and an ε-amino group of the lysine residue are bonded to a carboxyl group of another amino acid, respectively, an acid amide bond, Since the terminal is the N terminal, it becomes possible to bond the carboxyl group of the pharmaceutical compound. Furthermore, one or two or more diamine compounds or dicarboxylic acid residues (for example, diamine residues such as ethylenediamine or dicarboxylic acid residues such as succinic acid) are included as structural units in the linker, An intervening group having N terminals at both ends and a linker having C ends at both ends may be used.

リンカーのアミノ酸配列は特に限定されないが、ジペプチド構造を含むリンカーを用いると、ペプチダーゼが豊富であると考えられる腫瘍部位や炎症部位で加水分解が促進され、当該部位において医薬化合物が高濃度に遊離する。上記ジペプチドを含むリンカーと医薬化合物とが結合して形成される部分構造は本発明の薬物複合体の部分構造である。医薬化合物の残基として、例えば、濃度依存型の抗腫瘍薬(例えば、ドキソルビシン)などを用いる場合には、ジペプチド残基を部分ペプチド配列として含むリンカーを用いることが特に好ましい。また、医薬化合物の残基として、一定の濃度以上で作用時間の持続を必要とする時間依存型の抗腫瘍薬(例えば、パクリタキセル)を用いる場合にも、上記のリンカーを用いることによって高い抗腫瘍効果を達成できる場合がある。一般的には、上記のリンカーに限定されることなく、抗腫瘍薬の作用機作、体内動態や毒性発現の特徴、体内での抗腫瘍薬の遊離性などの観点から好ましいリンカーを選択する必要がある。   The amino acid sequence of the linker is not particularly limited, but when a linker containing a dipeptide structure is used, hydrolysis is promoted at a tumor site or an inflammation site considered to be rich in peptidases, and a pharmaceutical compound is released at a high concentration at that site. . The partial structure formed by combining a linker containing the dipeptide and a pharmaceutical compound is the partial structure of the drug complex of the present invention. For example, when a concentration-dependent antitumor drug (for example, doxorubicin) is used as a residue of a pharmaceutical compound, it is particularly preferable to use a linker containing a dipeptide residue as a partial peptide sequence. In addition, when using a time-dependent antitumor drug (for example, paclitaxel) that requires a duration of action at a certain concentration or higher as a residue of a pharmaceutical compound, a high antitumor can be obtained by using the above linker. The effect may be achieved. In general, the linker is not limited to the above-mentioned linkers, and it is necessary to select a preferable linker from the viewpoint of the mechanism of action of antitumor drugs, pharmacokinetics and characteristics of toxicity, release of antitumor drugs in the body, etc. There is.

リンカーのアミノ酸配列としては、具体的には、Gly,Ala,Leu,Ile,Phe,Gly−Gly,Ala−GLy,Gly−Ala,Leu−Gly,Gly−Leu,Ile−Gly,Gly−Ile,Phe−Gly,Gly−Phe,Gly−Gly−Gly,Gly−Phe−Gly,Phe−Gly−Gly,Gly−Gly−Phe,Gly−Gly−Phe−Glyから選択される配列が望ましい。   Specific examples of the amino acid sequence of the linker include Gly, Ala, Leu, Ile, Phe, Gly-Gly, Ala-GLy, Gly-Ala, Leu-Gly, Gly-Leu, Ile-Gly, Gly-Ile, A sequence selected from Phe-Gly, Gly-Phe, Gly-Gly-Gly, Gly-Phe-Gly, Phe-Gly-Gly, Gly-Gly-Phe, and Gly-Gly-Phe-Gly is desirable.

リンカーを介して結合する薬物複合体に関しては、本発明のポリエーテルのカルボキシル基に対して、医薬化合物の残基と結合させたリンカーを結合することにより本発明の薬物複合体を製造することができる。リンカーと本発明のポリエーテルのカルボキシル基との結合は、一般的には、リンカーのN末端アミノ基と本発明のポリエーテルのカルボキシル基とを酸アミド結合により結合させることにより形成できる。もっとも、リンカーと本発明のポリエーテルのカルボキシル基との結合は上記のものに限定されることはなく、他の化学結合や1又は2以上のリンカーを利用した結合であってもよい。例えば、リンカーのC末端カルボキシル基と本発明のポリエーテルのカルボキシル基とにより酸無水物を形成させてもよく、また、エチレンジアミン等のジアミン化合物をリンカーとして用いてそれぞれのカルボキシル基をジアミンの各アミノ基に酸アミド結合させてもよい。リンカーのN末端アミノ基と本発明のポリエーテルのカルボキシル基とを酸アミド結合により結合させる場合には、ペプチド類の合成に用いる通常の脱水縮合剤、例えば、N,N′−ジシクロヘキシルカルボジイミド(DCC)のようなN,N′−ジシクロアルキルカルボジイミド類、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDAPC)等のカルボジイミド誘導体のほか、1−エトキシカルボニル−2−エトキシ−1,2−ジヒドロキシキノリン(EEDQ)などを用いることができる。また、活性エステル法や酸ハライド法などにより反応を行ってもよい。また本発明のポリエーテルで活性エステル型の場合は脱水縮合剤を用いる必要はない。   Regarding a drug conjugate that binds via a linker, the drug conjugate of the present invention can be produced by linking a linker that is bonded to a residue of a pharmaceutical compound to the carboxyl group of the polyether of the present invention. it can. The bond between the linker and the carboxyl group of the polyether of the present invention can be generally formed by bonding the N-terminal amino group of the linker and the carboxyl group of the polyether of the present invention by an acid amide bond. But the coupling | bonding of the linker and the carboxyl group of the polyether of this invention is not limited to the above thing, The other chemical bond and the coupling | bonding using 1 or 2 or more linkers may be sufficient. For example, an acid anhydride may be formed by the C-terminal carboxyl group of the linker and the carboxyl group of the polyether of the present invention, and a diamine compound such as ethylenediamine may be used as a linker to convert each carboxyl group to each amino acid of the diamine. An acid amide bond may be bonded to the group. When the N-terminal amino group of the linker and the carboxyl group of the polyether of the present invention are bonded by an acid amide bond, a conventional dehydration condensing agent used for the synthesis of peptides, for example, N, N'-dicyclohexylcarbodiimide (DCC) ), N, N′-dicycloalkylcarbodiimides, carbodiimide derivatives such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDAPC), 1-ethoxycarbonyl-2-ethoxy-1, 2-dihydroxyquinoline (EEDQ) or the like can be used. Moreover, you may react by the active ester method, the acid halide method, etc. In the case of the active ester type of the polyether of the present invention, it is not necessary to use a dehydrating condensing agent.

薬理作用を有する基の具体例について以下に示す。
下記式(X)で表される薬剤化合物に対して、リンカーとしてグリシン(H2N−CH2−COOH)を用いてこれらを結合すると下記式(Y)で示されるアミノ基を有する化合物となる。これを薬理活性を有する基としてポリエーテルに結合して用いることができる。
Specific examples of the group having a pharmacological action are shown below.
When a drug compound represented by the following formula (X) is bonded with glycine (H 2 N—CH 2 —COOH) as a linker, a compound having an amino group represented by the following formula (Y) is obtained. . This can be used by bonding to a polyether as a group having pharmacological activity.

Figure 0005105166

(X)
Figure 0005105166


(Y)
Figure 0005105166

(X)
Figure 0005105166


(Y)

また、下記式で示される化合物は、薬理活性を有する基自身がイミノ基を有しており、該イミノ基を介してポリエーテルに結合される。   Further, in the compound represented by the following formula, the group having pharmacological activity itself has an imino group, and is bonded to the polyether via the imino group.

Figure 0005105166
Figure 0005105166


さらに、上記薬剤にグリシンをリンカーとして結合させた下記式で示される化合物を薬理作用を示す基として用いることもできる。   Furthermore, a compound represented by the following formula in which glycine is bound to the above drug as a linker can also be used as a group exhibiting pharmacological action.

Figure 0005105166
Figure 0005105166

本発明のポリエーテルに導入する医薬化合物残基の量は、特に限定されないが、医薬化合物残基の物理化学的性質、並びに本発明の薬物複合体の体内動態、薬効、及び毒性などの観点から適宜選択すべきである。一般的には、0.1〜40重量%、好ましくは1〜20重量%、さらに好ましくは2〜20重量%、特に好ましくは3〜15重量%程度の範囲を選択することができる。ポリエーテルに導入された医薬化合物残基の割合は、例えば、紫外吸光分析、蛍光光度分析、吸光度分析などにより容易に決定することが可能である。   The amount of the pharmaceutical compound residue to be introduced into the polyether of the present invention is not particularly limited, but from the viewpoints of the physicochemical properties of the pharmaceutical compound residue and the pharmacokinetics, efficacy and toxicity of the drug complex of the present invention. It should be selected as appropriate. In general, a range of about 0.1 to 40% by weight, preferably 1 to 20% by weight, more preferably 2 to 20% by weight, and particularly preferably about 3 to 15% by weight can be selected. The ratio of the pharmaceutical compound residue introduced into the polyether can be easily determined by, for example, ultraviolet absorption analysis, fluorescence analysis, absorbance analysis, or the like.

本発明の薬物複合体は、医薬化合物が有する官能基(例えば、抗腫瘍剤又は抗炎症剤などの医薬化合物の有する官能基)を利用して高分子修飾することが可能であり、高分子修飾により所望の標的臓器に医薬化合物を送達することができる。従って、医薬化合物の有する所望の医薬活性を腫瘍部位や炎症部位などの局所において特異的に発現させることができる。さらに側鎖に導入された適当量のカルボキシル基による負電荷のために、代謝・副作用(毒性)発現臓器である肝臓・脾臓・骨髄への分布が減少し医薬化合物の副作用(毒性)発現が軽減されるので、医薬化合物自体の有する毒性を低減することできるという特徴を有する。
本発明のポリエーテルは極めて優れた血中滞留性及び腫瘍・炎症部位への集積性を有するので薬物送達用の担体として有用であり、本ポリエーテルからなる担体と薬物を結合させた薬物複合体は非常に有効に標的臓器に送達され、薬物の作用を発揮させることができる。また、薬物担体は、従来のPEGとは構造的に異なり側鎖に多数のカルボキシル基を有するため、医薬化合物の担持能力に優れている。さらに、本発明の薬物複合体は、水に対する溶解性が特に向上していることから、難水溶性薬物等における注射剤として用いる場合に特に有用である。特に本発明の薬物複合体は、PEGを薬物送達用担体として用いた場合に比べて、1モル当たりの医薬化合物の担持能力が特に優れているため、投与される患者にとっての負担が少なくてすむ。
The drug conjugate of the present invention can be polymer-modified using a functional group of a pharmaceutical compound (for example, a functional group of a pharmaceutical compound such as an antitumor agent or anti-inflammatory agent). Can deliver a pharmaceutical compound to a desired target organ. Therefore, the desired pharmaceutical activity of the pharmaceutical compound can be specifically expressed locally such as a tumor site or an inflammatory site. Furthermore, due to the negative charge due to the appropriate amount of carboxyl group introduced into the side chain, the distribution to the liver, spleen, and bone marrow, which are metabolic / side effect (toxicity) organs, is reduced and the side effect (toxicity) expression of the pharmaceutical compound is reduced. Therefore, it has the characteristic that the toxicity which a pharmaceutical compound itself has can be reduced.
The polyether of the present invention is very useful as a carrier for drug delivery because it has extremely excellent blood retention and accumulation at a tumor / inflammatory site, and is a drug complex in which a carrier comprising this polyether and a drug are bound. Can be delivered to the target organ very effectively and exert the action of the drug. In addition, since the drug carrier is structurally different from conventional PEG and has a large number of carboxyl groups in the side chain, it has an excellent ability to carry a pharmaceutical compound. Furthermore, since the drug complex of the present invention has particularly improved solubility in water, it is particularly useful when used as an injection in a poorly water-soluble drug or the like. In particular, the drug conjugate of the present invention has a particularly excellent ability to carry a pharmaceutical compound per mole compared to the case where PEG is used as a drug delivery carrier, so that the burden on the administered patient can be reduced. .

本発明の薬物複合体を含む医薬は、通常、凍結乾燥品などの形態でバイアル等に充填することができ、用時溶解型の注射用又は点滴用製剤等の非経口投与用製剤として臨床に提供されるが、本発明の医薬の製剤形態は上記態様に限定されることはない。上記製剤の製造には、例えば、溶解補助剤、pH調整剤、安定化剤など当業界で利用可能な製剤用添加物を用いることができる。   The medicament containing the drug conjugate of the present invention can be filled into a vial or the like in the form of a freeze-dried product or the like, and clinically used as a parenteral preparation such as a dissolution preparation for injection or infusion preparation. Although provided, the pharmaceutical dosage form of the present invention is not limited to the above embodiment. For the preparation of the above preparation, for example, additives for preparation available in the art such as a solubilizer, pH adjuster, stabilizer and the like can be used.

本発明の医薬の投与量は特に限定されないが、通常は、医薬化合物残基を構成する医薬化合物の投与量、本発明の薬物複合体中に導入された医薬化合物の残基の量、患者の状態や疾患の種類などを勘案して決定すべきである。例えば、カンプトテシンが約5重量%程度の割合で導入された本発明の薬物複合体を非経口投与する場合には、一般に一日あたり体表面積1mにつき約0.1〜100mg程度、好ましくは約1〜30mgの範囲で一回投与し、3〜4週毎に繰り返すことが好ましい。 The dosage of the pharmaceutical agent of the present invention is not particularly limited. Usually, however, the dosage of the pharmaceutical compound constituting the pharmaceutical compound residue, the amount of the pharmaceutical compound residue introduced into the drug complex of the present invention, The decision should be made taking into account the condition and type of disease. For example, when the drug conjugate of the present invention into which camptothecin is introduced at a rate of about 5% by weight is administered parenterally, it is generally about 0.1 to 100 mg, preferably about 0.1 to 1 m 2 of body surface area per day. It is preferable to administer once in the range of 1 to 30 mg and repeat every 3 to 4 weeks.

本発明は、前記薬物複合体を静脈内より生体内に、また疾患部位に投与することにより
治療する方法に関する。さらに、該薬物複合体であるポリエーテルを架橋してなる構造体
を疾患部位に投与することにより治療する方法にも関する。
The present invention relates to a method for treating a drug complex by administering it into a living body from a vein or at a disease site. Furthermore, the present invention also relates to a method for treating a diseased site by administering a structure obtained by crosslinking the polyether, which is a drug complex, to a disease site.

以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例
に限定されることはない。
また本実施例におけるGPCの条件は、以下のとおりである。
カラム:G4000PWXL(東ソー社製)
移動相:20%アセトニトリルin 50mM塩化リチウム
流速:0.8ml/min
カラム温度:40℃
ポンプ:L−6200(日立製作所製)
検出器:L−3300(RI:示差屈折計、日立製作所製)
化合物の分子量及び分子量分布を算出するための検量線は、スタンダードポリエチレンオキサイド(TOSOH製、重量平均分子量が2.4×10,5.00×10,1
・ 7×10,14.0×10)を用いて作成した。
以下の実施例中、共重合体(番号)は単に化合物(同番号)と記載することがある。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.
The conditions for GPC in this example are as follows.
Column: G4000PWXL (manufactured by Tosoh Corporation)
Mobile phase: 20% acetonitrile in 50 mM lithium chloride Flow rate: 0.8 ml / min
Column temperature: 40 ° C
Pump: L-6200 (manufactured by Hitachi, Ltd.)
Detector: L-3300 (RI: differential refractometer, manufactured by Hitachi, Ltd.)
The calibration curve for calculating the molecular weight and molecular weight distribution of the compound is standard polyethylene oxide (made by TOSOH, weight average molecular weight 2.4 × 10 4 , 5.00 × 10 4 , 1
・ 7 × 10 4 , 14.0 × 10 4 )
In the following examples, the copolymer (number) may be simply referred to as a compound (same number).

[実施例1]
水素化ナトリウム(13.2g)のテトラヒドロフラン(300ml)懸濁液に氷冷下、アリルアルコール(20.4ml)のTHF溶液(THF200ml)を添加し30分間攪拌した。その後ブロモ酢酸(34.7g)のテトラヒドロフラン(150ml)溶液を90分間に渡り滴下した。反応液を室温下5日間攪拌した。溶媒を減圧下留去し、水を加え酢酸エチルで洗浄した。その後5N塩酸でpHを2に調製し水相を酢酸エチルで抽出した。有機層を硫酸マグネシウムで乾燥し粗精製物(1)26.7gを得た。
この粗精製物(1)(15g)を塩化メチレン200mlに溶解し、エタノール(11.4ml)、N−メチルモルホリン(NMM;14.2ml)及びジメチルアミノピリジン(DMAP;1.5g)を添加し、氷冷後水溶性カルボジイミド(EDC;24.2g)の塩化メチレン溶液を30分間に渡り滴下した。この反応液を室温下2日間攪拌した。反応液を飽和重曹水溶液、次いで飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し粗精製物26.3gを得た。シリカゲルクロマトグラフィー(メルク社製シリカゲル60,240g,ヘキサン/エーテル5:1)により精製し表記化合物(2)(11.2g)を得た。
化合物(2)(11.0g)を塩化メチレン150mlに溶解し、氷冷下、3−クロロ過安息香酸(MCPBA;15.9g)の塩化メチレン溶液を90分間に渡り滴下した。室温で2日間攪拌し、2N水酸化ナトリウム水溶液、次いで飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去し粗精製物(19.3g)を得た。シリカゲルクロマトグラフィー(メルク社製シリカゲル60,140g,ヘキサン/エーテル2:1)により精製し表記化合物(3)(11.1g)を得た。
[Example 1]
A solution of allyl alcohol (20.4 ml) in THF (THF 200 ml) was added to a suspension of sodium hydride (13.2 g) in tetrahydrofuran (300 ml) under ice cooling, and the mixture was stirred for 30 minutes. Thereafter, a solution of bromoacetic acid (34.7 g) in tetrahydrofuran (150 ml) was added dropwise over 90 minutes. The reaction was stirred at room temperature for 5 days. The solvent was distilled off under reduced pressure, water was added and the mixture was washed with ethyl acetate. Thereafter, the pH was adjusted to 2 with 5N hydrochloric acid and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate to obtain 26.7 g of a crude product (1).
This crude product (1) (15 g) was dissolved in 200 ml of methylene chloride, and ethanol (11.4 ml), N-methylmorpholine (NMM; 14.2 ml) and dimethylaminopyridine (DMAP; 1.5 g) were added. After cooling with ice, a methylene chloride solution of water-soluble carbodiimide (EDC; 24.2 g) was added dropwise over 30 minutes. The reaction was stirred at room temperature for 2 days. The reaction solution was washed with a saturated aqueous sodium bicarbonate solution and then with a saturated saline solution and dried over magnesium sulfate to obtain 26.3 g of a crude product. Purification by silica gel chromatography (silica gel 60, 240 g, hexane / ether 5: 1 from Merck) gave the title compound (2) (11.2 g).
Compound (2) (11.0 g) was dissolved in 150 ml of methylene chloride, and a solution of 3-chloroperbenzoic acid (MCPBA; 15.9 g) in methylene chloride was added dropwise over 90 minutes under ice cooling. The mixture was stirred at room temperature for 2 days, washed with 2N aqueous sodium hydroxide solution and then with saturated brine, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product (19.3 g). Purification by silica gel chromatography (silica gel 60, 140 g, hexane / ether 2: 1, manufactured by Merck) gave the title compound (3) (11.1 g).

Figure 0005105166
Figure 0005105166

表記化合物(3)に関する化合物分析データを下記に示す。NMRの基準は3−トリメチルシリルプロピオン酸−2,2,3,3−d4ナトリウム塩を使用した。
測定条件:H−NMR(400MHz、日本電子製JNM−LA400)、13C−NMR(150MHz、BrukerBiospin製Advance600)、GC/MS (HP製 HP5973)
H−NMR(CDCl):δ1.29(3H,t,J=7.2Hz),2.64(1H,dd,J=5.1,2.7Hz),2.82(1H,dd,J=5.1,4.2Hz),3.21(1H,m),3.50(1H,dd,J=11.6,6.0Hz),3.91(1H,dd,J=11.6,2.8Hz),4.14(1H,d,J=16.4Hz),4.19(1H,d,J=16.4Hz),4.23(2H,q,J=7.2Hz)
13C−NMR(CDCl):δ14.2,44.1,50.6,61.0,68.5,72.1,170.2
MS:m/z 161[M+H]
The compound analysis data regarding the title compound (3) is shown below. As the NMR standard, 3-trimethylsilylpropionic acid-2,2,3,3-d4 sodium salt was used.
Measurement conditions: 1 H-NMR (400 MHz, JEOL JNM-LA400), 13 C-NMR (150 MHz, Bruker Biospin Advance 600), GC / MS (HP HP9773)
1 H-NMR (CDCl 3 ): δ 1.29 (3H, t, J = 7.2 Hz), 2.64 (1H, dd, J = 5.1, 2.7 Hz), 2.82 (1H, dd , J = 5.1, 4.2 Hz), 3.21 (1H, m), 3.50 (1H, dd, J = 11.6, 6.0 Hz), 3.91 (1H, dd, J = 11.6, 2.8 Hz), 4.14 (1H, d, J = 16.4 Hz), 4.19 (1H, d, J = 16.4 Hz), 4.23 (2H, q, J = 7) .2Hz)
13 C-NMR (CDCl 3 ): δ 14.2, 44.1, 50.6, 61.0, 68.5, 72.1, 170.2
MS: m / z 161 [M + H] +

[実施例2]
実施例1の粗成生物(1)(11.6g)を塩化メチレン200mlに溶解し、イソプロパノール(15.3ml)、N−メチルモルホリン(11.0ml)及びジメチルアミノピリジン(1.2g)を添加し、氷冷後水溶性カルボジイミド(18.6g)の塩化メチレン溶液を30分間に渡り滴下した。この反応液を室温下2日間攪拌した。反応液を飽和重曹水溶液、次いで飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し粗精製物22.5gを得た。このものをシリカゲルクロマトグラフィー(メルク社製シリカゲル60,240g,ヘキサン/エーテル5:1)により表記化合物(4)(9.7g)を得た。
化合物(4)(7.9g)を塩化メチレン150mlに溶解し、氷冷下、3−クロロ過安息香酸(16.1g)の塩化メチレン溶液を90分間に渡り滴下した。室温で2日間攪拌し、2N水酸化ナトリウム水溶液、次いで飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去し粗精製物(14.5g)を得た。シリカゲルクロマトグラフィー(メルク社製シリカゲル60,150g,ヘキサン/エーテル2:1)により精製し表記化合物(5)(9.2g)を得た。

Figure 0005105166
[Example 2]
The crude product (1) of Example 1 (11.6 g) was dissolved in 200 ml of methylene chloride, and isopropanol (15.3 ml), N-methylmorpholine (11.0 ml) and dimethylaminopyridine (1.2 g) were added. After cooling with ice, a methylene chloride solution of water-soluble carbodiimide (18.6 g) was added dropwise over 30 minutes. The reaction was stirred at room temperature for 2 days. The reaction solution was washed with a saturated aqueous sodium bicarbonate solution and then with a saturated saline solution and dried over magnesium sulfate to obtain 22.5 g of a crude product. The title compound (4) (9.7 g) was obtained by silica gel chromatography (silica gel 60, 240 g, hexane / ether 5: 1) from Merck.
Compound (4) (7.9 g) was dissolved in 150 ml of methylene chloride, and a methylene chloride solution of 3-chloroperbenzoic acid (16.1 g) was added dropwise over 90 minutes under ice cooling. The mixture was stirred at room temperature for 2 days, washed with 2N aqueous sodium hydroxide solution and then with saturated brine, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product (14.5 g). Purification by silica gel chromatography (silica gel 60, 150 g, hexane / ether 2: 1, manufactured by Merck) gave the title compound (5) (9.2 g).
Figure 0005105166

表記化合物(5)に関する化合物分析データを下記に示す。
測定条件:H−NMR(400MHz、日本電子製JNM−LA400)、13C−NMR(150MHz、BrukerBiospin製Advance600)、GC/MS (HP製 HP5973)
H−NMR(CDCl):δ1.27(6H,t,J=6.3Hz),2.63(1H,dd,J=4.9,2.7Hz),2.81(1H,dd,J=4.9,4.3Hz),3.21(1H,m),3.50(1H,dd,J=11.6,6.0Hz),3.90(1H,dd,J=11.6,2.9Hz),4.10(1H,d,J=16.4Hz),4.15(1H,d,J=16.4Hz),5.10(1H,m)
13C−NMR(CDCl):δ21.8,44.1,50.6,68.6,72.1,169.7
MS:m/z 175[M+H]
The compound analysis data regarding the title compound (5) is shown below.
Measurement conditions: 1 H-NMR (400 MHz, JEOL JNM-LA400), 13 C-NMR (150 MHz, Bruker Biospin Advance 600), GC / MS (HP HP9773)
1 H-NMR (CDCl 3 ): δ 1.27 (6H, t, J = 6.3 Hz), 2.63 (1H, dd, J = 4.9, 2.7 Hz), 2.81 (1H, dd) , J = 4.9, 4.3 Hz), 3.21 (1H, m), 3.50 (1H, dd, J = 11.6, 6.0 Hz), 3.90 (1H, dd, J = 11.6, 2.9 Hz), 4.10 (1 H, d, J = 16.4 Hz), 4.15 (1 H, d, J = 16.4 Hz), 5.10 (1 H, m)
13 C-NMR (CDCl 3 ): δ 21.8, 44.1, 50.6, 68.6, 72.1, 169.7
MS: m / z 175 [M + H] +

[実施例3]
水素化ナトリウム(10.5g)のテトラヒドロフラン懸濁液(200ml)に氷冷下、アリルアルコール(16.3ml)のTHF溶液(THF200ml)を添加し30分間攪拌した。その後ブロモ酢酸(27.8g)のテトラヒドロフラン溶液(150ml)を60分間に渡り滴下した。反応液を室温下3日間攪拌した。溶媒を減圧下留去し、水を加え酢酸エチルで洗浄した。その後5N塩酸でpHを2に調製し水相を酢酸エチルで抽出した。有機層を硫酸マグネシウムで乾燥し粗成生物(6)22.1gを得た。
この粗成生物(6)(22g)を塩化メチレン150mlに溶解し、ベンジルアルコール(21.6ml)、N−メチルモルホリン(20.9ml)及びジメチルアミノピリジン(1.1g)を添加し、氷冷後水溶性カルボジイミド(35.3g)の塩化メチレン溶液を60分間に渡り滴下した。この反応液を室温下2日間攪拌した。反応液を飽和重曹水溶液、次いで飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し粗精製物66.0gを得た。シリカゲルクロマトグラフィー(メルク社製シリカゲル60,240g,ヘキサン/エーテル5:1)により精製し表記化合物(7)(31.5g)を得た。
化合物(7)(31.5g)を塩化メチレン200mlに溶解し、氷冷下、3−クロロ過安息香酸(28.9g)の塩化メチレン溶液を90分間に渡り滴下した。室温で2日間攪拌し、2N水酸化ナトリウム水溶液、次いで飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去し粗精製物(38.4g)を得た。シリカゲルクロマトグラフィー(メルク社製シリカゲル60,150g,ヘキサン/エーテル2:1)により精製し表記化合物(8)(30.0g)を得た。
[Example 3]
A solution of allyl alcohol (16.3 ml) in THF (THF 200 ml) was added to a tetrahydrofuran suspension (200 ml) of sodium hydride (10.5 g) under ice cooling, and the mixture was stirred for 30 minutes. Thereafter, a tetrahydrofuran solution (150 ml) of bromoacetic acid (27.8 g) was added dropwise over 60 minutes. The reaction solution was stirred at room temperature for 3 days. The solvent was distilled off under reduced pressure, water was added and the mixture was washed with ethyl acetate. Thereafter, the pH was adjusted to 2 with 5N hydrochloric acid and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate to obtain 22.1 g of a crude product (6).
This crude product (6) (22 g) was dissolved in 150 ml of methylene chloride, benzyl alcohol (21.6 ml), N-methylmorpholine (20.9 ml) and dimethylaminopyridine (1.1 g) were added, and the mixture was ice-cooled. Thereafter, a methylene chloride solution of water-soluble carbodiimide (35.3 g) was added dropwise over 60 minutes. The reaction was stirred at room temperature for 2 days. The reaction solution was washed with a saturated aqueous sodium bicarbonate solution and then with a saturated saline solution and dried over magnesium sulfate to obtain 66.0 g of a crude product. Purification by silica gel chromatography (silica gel 60, 240 g, hexane / ether 5: 1 from Merck) gave the title compound (7) (31.5 g).
Compound (7) (31.5 g) was dissolved in 200 ml of methylene chloride, and a solution of 3-chloroperbenzoic acid (28.9 g) in methylene chloride was added dropwise over 90 minutes under ice cooling. The mixture was stirred at room temperature for 2 days, washed with 2N aqueous sodium hydroxide solution and then with saturated brine, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product (38.4 g). Purification by silica gel chromatography (silica gel 60, 150 g, hexane / ether 2: 1 from Merck) gave the title compound (8) (30.0 g).

Figure 0005105166
Figure 0005105166

表記化合物(8)に関する化合物分析データを下記に示す。
測定条件:H−NMR(400MHz、日本電子製JNM−LA400)、13C−NMR(150MHz、BrukerBiospin製Advance600)、GC/MS (HP製 HP5973)
H−NMR(CDCl):2.62(1H,dd,J=4.9,2.7Hz),2.79(1H,dd,J=4.9,4.4Hz),3.20(1H,m),3.49(1H,dd,J=11.6,6.0Hz),3.91(1H,dd,J=11.6,2.8Hz),4.18(1H,d,J=16.6Hz),4.24(1H,d,J=16.6Hz),5.20(2H,s),7.31−7.39(5H)
13C−NMR(CDCl):δ44.0,50.6,66.6,68.4,72.1,128.4−128.6,135.3,170.0
MS:m/z 223[M+H]
The compound analysis data regarding the title compound (8) is shown below.
Measurement conditions: 1 H-NMR (400 MHz, JEOL JNM-LA400), 13 C-NMR (150 MHz, Bruker Biospin Advance 600), GC / MS (HP HP9773)
1 H-NMR (CDCl 3 ): 2.62 (1H, dd, J = 4.9, 2.7 Hz), 2.79 (1H, dd, J = 4.9, 4.4 Hz), 3.20 (1H, m), 3.49 (1H, dd, J = 11.6, 6.0 Hz), 3.91 (1H, dd, J = 11.6, 2.8 Hz), 4.18 (1H, d, J = 16.6 Hz), 4.24 (1H, d, J = 16.6 Hz), 5.20 (2H, s), 7.31-7.39 (5H)
13 C-NMR (CDCl 3 ): δ 44.0, 50.6, 66.6, 68.4, 72.1, 128.4-128.6, 135.3, 170.0
MS: m / z 223 [M + H] +

[実施例4]
実施例3と同様な条件下で、純度60%の水素化ナトリウム(22.0g)のテトラヒドロフラン懸濁液に氷冷下、アリルアルコール(20.4ml)を添加し30分間攪拌した。その後ブロモ酢酸(34.7g)のテトラヒドロフラン溶液を60分間に渡り滴下した。反応液を室温下3日間攪拌した。溶媒を減圧下留去し、水を加え酢酸エチルで洗浄した。その後5N塩酸でpHを2に調製し水相を酢酸エチルで抽出した。有機層を硫酸マグネシウムで乾燥し粗精製物(9)26.4gを得た。
この粗精製物(9)(3.0g)を塩化メチレン50mlに溶解し、グリシン・ベンジルエステル・p−トルエンスルホン酸塩(11.4g)及びジメチルアミノピリジン(317mg)及びN−メチルモルホリン(3.7ml)を添加し、氷冷後水溶性カルボジイミド(4.0g)の塩化メチレン溶液を60分間に渡り滴下した。この反応液を室温下2日間攪拌した。反応液を飽和重曹水溶液、次いで飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し粗精製物6.8gを得た。シリカゲルクロマトグラフィー(メルク社製シリカゲル60,140g,塩化メチレン/アセトニトリル=90:10)により精製し表記化合物(10)(6.2g)を得た。
化合物(10)(6.1g)を塩化メチレン100mlに溶解し、氷冷下、3−クロロ過安息香酸(4.6g)の塩化メチレン溶液を90分間に渡り滴下した。室温で2日間攪拌し、2N水酸化ナトリウム水溶液、次いで飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去し粗精製物(8.6g)を得た。シリカゲルクロマトグラフィー(メルク社製シリカゲル60,140g,塩化メチレン/アセトニトリル=90:10)により精製し、再度化合物をシリカゲルクロマトグラフィー(メルク社製シリカゲル60,120g,塩化メチレン/アセトニトリル=80:20)により精製し表記化合物(11)(5.5g)を得た。
[Example 4]
Under the same conditions as in Example 3, allyl alcohol (20.4 ml) was added to a suspension of 60% pure sodium hydride (22.0 g) in tetrahydrofuran under ice-cooling and stirred for 30 minutes. Thereafter, a tetrahydrofuran solution of bromoacetic acid (34.7 g) was added dropwise over 60 minutes. The reaction solution was stirred at room temperature for 3 days. The solvent was distilled off under reduced pressure, water was added and the mixture was washed with ethyl acetate. Thereafter, the pH was adjusted to 2 with 5N hydrochloric acid and the aqueous phase was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate to obtain 26.4 g of a crude product (9).
This crude product (9) (3.0 g) was dissolved in 50 ml of methylene chloride, and glycine / benzyl ester / p-toluenesulfonate (11.4 g), dimethylaminopyridine (317 mg) and N-methylmorpholine (3 7 ml) was added, and after ice cooling, a methylene chloride solution of water-soluble carbodiimide (4.0 g) was added dropwise over 60 minutes. The reaction was stirred at room temperature for 2 days. The reaction solution was washed with a saturated aqueous sodium bicarbonate solution and then with a saturated saline solution and dried over magnesium sulfate to obtain 6.8 g of a crude product. Purification by silica gel chromatography (silica gel 60,140 g, methylene chloride / acetonitrile = 90: 10 manufactured by Merck) gave the title compound (10) (6.2 g).
Compound (10) (6.1 g) was dissolved in 100 ml of methylene chloride, and a solution of 3-chloroperbenzoic acid (4.6 g) in methylene chloride was added dropwise over 90 minutes under ice cooling. The mixture was stirred at room temperature for 2 days, washed with 2N aqueous sodium hydroxide solution and then with saturated brine, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product (8.6 g). The product was purified by silica gel chromatography (silica gel 60,140 g, methylene chloride / acetonitrile = 90: 10), and the compound was again purified by silica gel chromatography (silica gel 60,120 g, methylene chloride / acetonitrile = 80: 20). Purification gave the title compound (11) (5.5 g).

Figure 0005105166
Figure 0005105166

表記化合物(11)に関する化合物分析データを下記に示す。
測定条件:H−NMR(400MHz、日本電子製JNM−LA400;;600MHz Bruker Advance600 )、13C−NMR(100MHz、日本電子社製JNM−LA400)、GC/MS(サーモエレクトロン製 Voyager)
H−NMR(CDCl):2.67(1H,dd,J=2.7,4.9Hz),2.82(1H,t,J=4.3,4.9),3.18(1H,m),3.49(1H,dd,J=5.9,11.6Hz)、3.87(1H,dd,J=2.6,11.6Hz),4.04(1H,d,J=15.5Hz),4.10(1H,d,J=15.5Hz),4.11(1H,d,J=5.6,18.2Hz),4.16(1H,d,J=5.6,18.2Hz),5.19(2H,s),7.32−7.40(5H)
13C−NMR(CDCl):δ40.7,44.1,50.4,67.2,70.4,71.8,128.4−128.6,135.2,169.5,169.8
MS:m/z 280[M+H]
The compound analysis data regarding the title compound (11) are shown below.
Measurement conditions: 1 H-NMR (400 MHz, JEOL JNM-LA400 ;; 600 MHz Bruker Advance 600), 13 C-NMR (100 MHz, JEOL JNM-LA400), GC / MS (Thermo Electron Voyager)
1 H-NMR (CDCl 3 ): 2.67 (1H, dd, J = 2.7, 4.9 Hz), 2.82 (1H, t, J = 4.3, 4.9), 3.18 (1H, m), 3.49 (1H, dd, J = 5.9, 11.6 Hz), 3.87 (1H, dd, J = 2.6, 11.6 Hz), 4.04 (1H, d, J = 15.5 Hz), 4.10 (1H, d, J = 15.5 Hz), 4.11 (1H, d, J = 5.6, 18.2 Hz), 4.16 (1H, d , J = 5.6, 18.2 Hz), 5.19 (2H, s), 7.32-7.40 (5H)
13 C-NMR (CDCl 3 ): δ 40.7, 44.1, 50.4, 67.2, 70.4, 71.8, 128.4-128.6, 135.2, 169.5, 169 .8
MS: m / z 280 [M + H] +

[実施例5] 重合反応1
アルゴン雰囲気下、耐圧反応容器に実施例1で得られた化合物(3)10.6g、エチレンオキサイド70ml、カリウムt−ブトキシド1Mテトラヒドロフラン溶液1ml及びトリイソブチルアルミニウム1Mヘキサン溶液10ml、及び溶媒としてヘキサン300mlを加え、30℃で4.5時間反応を行った。反応終了後、反応生成物を回収し、減圧下で溶媒を除去することによって目的とするランダム共重合体(12)41gを白色固体として得た。得られた共重合体のPEG換算分子量をGPCにより測定した結果は、80,000であった。更に 1H−NMR分析によると、TSP(3−トリメチルシリルプロピオン酸−2,2,3,3−d4重水素化ナトリウム塩)を標準とする重水中での測定によるカルボン酸エチルエステルの導入率は、2.9mol%であった。
上記共重合体(12)10.2gを30mlジメチルスルホキシド(DMSO)に溶解し、1N−水酸化ナトリウム溶液30mlを加えて50℃で24時間撹拌した。反応終了後、米国スペクトラポア社製透析膜(Spectra/Por2、分子量分画12,000−14,000)を用い、精製水を外液とした2日間の透析を行った。次いで、ミリポア社製メンブランフィルター(DURAPORE、0.45μm)を用いたろ過後、凍結乾燥の工程を経て、白色非晶質の目的とするエチル基が脱保護されたランダム共重合体(13)9.4gを得た。下記式においてa,bは整数を表す。
[Example 5] Polymerization reaction 1
Under an argon atmosphere, 10.6 g of the compound (3) obtained in Example 1, 70 ml of ethylene oxide, 1 ml of potassium t-butoxide 1M tetrahydrofuran solution and 10 ml of triisobutylaluminum 1M hexane solution, and 300 ml of hexane as a solvent in a pressure resistant reactor. In addition, the reaction was performed at 30 ° C. for 4.5 hours. After completion of the reaction, the reaction product was recovered, and the solvent was removed under reduced pressure to obtain 41 g of the desired random copolymer (12) as a white solid. The result of measuring the PEG conversion molecular weight of the obtained copolymer by GPC was 80,000. Furthermore, according to 1 H-NMR analysis, the introduction rate of carboxylic acid ethyl ester measured in heavy water using TSP (3-trimethylsilylpropionic acid-2,2,3,3-d4 deuterated sodium salt) as a standard is It was 2.9 mol%.
10.2 g of the copolymer (12) was dissolved in 30 ml dimethyl sulfoxide (DMSO), 30 ml of 1N sodium hydroxide solution was added, and the mixture was stirred at 50 ° C. for 24 hours. After completion of the reaction, dialysis was performed for 2 days using purified water as an external solution using a dialysis membrane (Spectra / Por2, molecular weight fraction 12,000-14,000) manufactured by Spectrapore, USA. Next, after filtration using a membrane filter (DURAPORE, 0.45 μm) manufactured by Millipore Corporation, a random copolymer (13) 9 in which the white amorphous target ethyl group is deprotected through a freeze-drying step. .4 g was obtained. In the following formula, a and b represent integers.

Figure 0005105166
Figure 0005105166

1H−NMR分析より、エチル基が除去されたことを確認し、更にカルボキシメチル基の導入率は、モル比で2.7mol%であった。得られた共重合体のPEG換算分子量をGPCにより測定した結果は、89,000であり、Mw/Mn=2.7であった。GPC分析の結果を図1に示す。 From the 1 H-NMR analysis, it was confirmed that the ethyl group was removed, and the introduction rate of the carboxymethyl group was 2.7 mol% in molar ratio. The result of measuring the PEG conversion molecular weight of the obtained copolymer by GPC was 89,000, and Mw / Mn = 2.7. The result of GPC analysis is shown in FIG.

[実施例6] 重合反応2
アルゴン雰囲気下、耐圧反応容器に実施例3で得られた化合物(8)9.3g、エチレンオキサイド70ml、カリウム2−メチル−2−ブトキシド1Mテトラヒドロフラン溶液1.1ml及びトリイソブチルアルミニウム1Mヘキサン溶液11.1ml、及び溶媒としてヘキサン300mlを加え、25℃で5時間反応を行った。反応終了後、反応生成物を回収し、減圧下で溶媒を除去することにより、目的とするランダム共重合体(14)50gを白色固体として得た。得られた共重合体のPEG換算分子量をGPCにより測定した結果は、39,000であった。更に1H−NMR分析によるカルボン酸ベンジルエステルの導入率は、モル比で2.0mol%であった。
上記共重合体(14)20.1gを60mlDMSOに溶解し、1N−水酸化ナトリウム溶液60mlを加えて50℃で20時間撹拌した。反応終了後、米国スペクトラポア社製透析膜(Spectra/Por2、分子量分画12,000−14,000)を用い、精製水を外液とした2日間の透析を行った。次いで、ミリポア社製メンブランフィルター(DURAPORE、0.45μm)を用いたろ過後、凍結乾燥の工程を経て、白色非晶質の目的とするベンジル基が脱保護されたランダム共重合体(15)16.0gを得た。下記式においてc,dは整数を表す。
[Example 6] Polymerization reaction 2
Under an argon atmosphere, 9.3 g of the compound (8) obtained in Example 3 in a pressure-resistant reaction vessel, 70 ml of ethylene oxide, 1.1 ml of potassium 2-methyl-2-butoxide 1M tetrahydrofuran solution and triisobutylaluminum 1M hexane solution 11. 1 ml and 300 ml of hexane as a solvent were added and reacted at 25 ° C. for 5 hours. After completion of the reaction, the reaction product was collected and the solvent was removed under reduced pressure to obtain 50 g of the desired random copolymer (14) as a white solid. The result of measuring the PEG conversion molecular weight of the obtained copolymer by GPC was 39,000. Furthermore, the introduction ratio of carboxylic acid benzyl ester by 1 H-NMR analysis was 2.0 mol% in molar ratio.
20.1 g of the copolymer (14) was dissolved in 60 ml DMSO, 60 ml of 1N sodium hydroxide solution was added, and the mixture was stirred at 50 ° C. for 20 hours. After completion of the reaction, dialysis was performed for 2 days using purified water as an external solution using a dialysis membrane (Spectra / Por2, molecular weight fraction 12,000-14,000) manufactured by Spectrapore, USA. Next, after filtration using a membrane filter (DURAPORE, 0.45 μm) manufactured by Millipore, a random copolymer (15) 16 in which the target amorphous benzyl group is deprotected through a freeze-drying step. 0.0 g was obtained. In the following formula, c and d represent integers.

Figure 0005105166
Figure 0005105166

1H−NMR分析より、ベンジル基が除去されたことを確認し、更にカルボキシメチル基の導入率は、モル比で2.1mol%であった。得られた共重合体のPEG換算分子量をGPCにより測定した結果は、58,000であり、Mw/Mn=1.6であった。GPC分析の結果を図2に示す。 From 1 H-NMR analysis, it was confirmed that the benzyl group was removed, and the carboxymethyl group introduction rate was 2.1 mol% in terms of molar ratio. The result of measuring the PEG conversion molecular weight of the obtained copolymer by GPC was 58,000, and Mw / Mn = 1.6. The results of GPC analysis are shown in FIG.

[実施例7] 重合反応3
アルゴン雰囲気下、耐圧反応容器に実施例3で得られた化合物(8)9.3g、エチレンオキサイド70ml、カリウムt−ブトキシド1Mテトラヒドロフラン溶液1ml及びトリイソブチルアルミニウム1Mヘキサン溶液10ml、及び溶媒としてヘキサン300mlを加え、30℃で4.5時間反応を行った。反応終了後、反応生成物を回収し、減圧下で溶媒を除去することにより、目的とするランダム共重合体(16)50gを白色固体として得た。得られた共重合体のPEG換算分子量をGPCにより測定した結果は、35,000であった。更に1H−NMR分析によるカルボン酸ベンジルエステルの導入率は、モル比で2.1mol%であった。
上記共重合体(16)20.1gを60mlDMSOに溶解し、1N−水酸化ナトリウム溶液60mlを加えて50℃で20時間撹拌した。反応終了後、米国スペクトラポア社製透析膜(Spectra/Por2、分子量分画12,000−14,000)を用い、精製水を外液とした2日間の透析を行った。次いで、ミリポア社製メンブランフィルター(DURAPORE、0.45μm)を用いたろ過後、凍結乾燥の工程を経て、白色非晶質の目的とするベンジル基が脱保護されたランダム共重合体(17)16.9gを得た。下記式においてe,fは整数を表す。
[Example 7] Polymerization reaction 3
In an argon atmosphere, 9.3 g of the compound (8) obtained in Example 3, 70 ml of ethylene oxide, 1 ml of potassium tert-butoxide 1M tetrahydrofuran solution and 10 ml of triisobutylaluminum 1M hexane solution, and 300 ml of hexane as a solvent were placed in a pressure resistant reactor. In addition, the reaction was performed at 30 ° C. for 4.5 hours. After completion of the reaction, the reaction product was collected and the solvent was removed under reduced pressure to obtain 50 g of the desired random copolymer (16) as a white solid. The result of measuring the PEG conversion molecular weight of the obtained copolymer by GPC was 35,000. Furthermore, the introduction ratio of carboxylic acid benzyl ester by 1 H-NMR analysis was 2.1 mol% in molar ratio.
20.1 g of the copolymer (16) was dissolved in 60 ml DMSO, 60 ml of 1N sodium hydroxide solution was added, and the mixture was stirred at 50 ° C. for 20 hours. After completion of the reaction, dialysis was performed for 2 days using purified water as an external solution using a dialysis membrane (Spectra / Por2, molecular weight fraction 12,000-14,000) manufactured by Spectrapore, USA. Next, after filtration using a membrane filter (DURAPORE, 0.45 μm) manufactured by Millipore, a random copolymer (17) 16 in which the target amorphous benzyl group is deprotected through a freeze-drying step. .9 g was obtained. In the following formulae, e and f represent integers.

Figure 0005105166
Figure 0005105166

1H−NMR分析によりベンジル基が除去されたことを確認し、更にカルボキシメチル基の導入率は、モル比で2.1mol%であった。得られた共重合体のPEG換算分子量をGPCにより測定した結果は、54,000であり、Mw/Mn=1.7であった。GPC分析の結果を図3に示す。 It was confirmed by 1 H-NMR analysis that the benzyl group was removed, and the carboxymethyl group introduction rate was 2.1 mol% in terms of molar ratio. The result of measuring the molecular weight in terms of PEG of the obtained copolymer by GPC was 54,000, and Mw / Mn = 1.7. The results of GPC analysis are shown in FIG.

[実施例8] 毒性評価
上記実施例6中の化合物(15)に関し生理食塩水を投与溶媒として、更に生理食塩水を比較対照として、化合物(15)投与量1000mg/kg、500mg/kgについて、投与液量25ml/kgの条件で6週齢BALB/c雌性マウス(各群n=5、日本エスエルシー(株)から購入)の尾静脈より0日目、3日目、6日目の3回にわたり間歇投与を行った。その結果を図4に示す。
体重減少を指標として評価を実施した。実験開始日におけるマウスの体重を100%とした場合の体重変化を評価し、10%の体重減少が起きた場合に毒性有りと判断した。その結果、投与開始日以後の10%以上の体重減少は見られず、しかも体重に関し投与後25日目における有意な差は見られず、毒性無しと判断された。図中の各ポイントは各投与群における平均体重±標準偏差(SD)を示す。図中の上向き矢印は投与日(0日目、3日目、6日目)を示す。
[Example 8] Toxicity evaluation Regarding the compound (15) in Example 6 above, physiological saline was used as an administration solvent, and physiological saline was used as a comparative control, and the compound (15) was administered at 1000 mg / kg and 500 mg / kg. From the tail vein of 6-week-old BALB / c female mice (each group n = 5, purchased from Japan SLC Co., Ltd.) on the 0th, 3rd, and 6th days under the condition of a dose of 25 ml / kg Intermittent administration was performed over several times. The result is shown in FIG.
Evaluation was performed using weight loss as an index. The change in body weight when the weight of the mouse on the start day of the experiment was taken as 100% was evaluated, and it was judged that there was toxicity when a weight loss of 10% occurred. As a result, body weight loss of 10% or more after the administration start date was not observed, and no significant difference was observed on the 25th day after administration, and it was determined that there was no toxicity. Each point in the figure indicates the average body weight ± standard deviation (SD) in each administration group. The upward arrow in the figure indicates the day of administration (Day 0, Day 3, Day 6).

以下の実施例では次の略号を使用する。
DMF:N,N−ジメチルホルムアミド、Trt:トリフェニルメチル基(トリチル基)、Z:ベンジルオキシカルボニル基、Fmoc:9−フルオレニルメチルオキシカルボニル基、DMAP:N,N−ジメチルアミノピリジン、HBTU:2−(1−ベンゾトリアゾール−1−イル)−1,1,3,3−テトラメチルアミニウム ヘキサフルオロフォスフェート、DIPC:N,N’−ジイソプロピルカルボジイミド、tBuOK: Potassium t-butoxide,DMSO−d6:重水素化ジメチルスルホキシド
The following abbreviations are used in the following examples.
DMF: N, N-dimethylformamide, Trt: triphenylmethyl group (trityl group), Z: benzyloxycarbonyl group, Fmoc: 9-fluorenylmethyloxycarbonyl group, DMAP: N, N-dimethylaminopyridine, HBTU : 2- (1-benzotriazol-1-yl) -1,1,3,3-tetramethylaminium hexafluorophosphate, DIPC: N, N'-diisopropylcarbodiimide, tBuOK: Potassium t-butoxide, DMSO- d6: deuterated dimethyl sulfoxide

〔実施例9〕
(工程1)2’−Gly−paclitaxel塩酸塩(18)の製造
米国、ハウザー社製のパクリタキセルを原料として、パクリタキセルの2’位水酸基にアミノ酸リンカーを導入し2’−Gly−paclitaxel塩酸塩(18)を調製した。
生成物についてはH−NMR及びHRMS(high-resolution mass spectrometry)により構造確認した。すなわち、Fmoc−Gly(178mg、0.6mmol)及び、ジメチルアミノピリジン(73mg、0.6mmol)及びパクリタキセル(米国、HAUSER社製、427mg、0.5mmol)を塩化メチレン(20ml)に溶解した。次いで、N,N’−ジイソプロピルカルボジイミド(76mg、0.6mmol)を加え、室温で終夜撹拌した。反応溶媒を留去し、シリカゲルカラムクロマトグラフィー(シリカゲル:独国Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/アセトニトリル=70/30)で精製し、2’−Fmoc−Gly−パクリタキセル(489mg)を得た。
この化合物(420mg)をN,N−ジメチルホルムアミド(10ml)に溶解し、室温下ピペリジン(2ml)を加え、5分間撹拌し、溶媒を留去して、脱Fmoc化し、シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×50cm、溶離液:アセトニトリル/塩化メチレン=80/20)で精製し、標記化合物(18)(145mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ1.01(s,3H,Me−17)1.05(s,3H,Me−16)1.52(dd,1H,J=14.6,9.2Hz,H−14b)1.51(s,3H,Me−19)1.65(t,1H,J=11.6Hz,H−6b)1.81(dd,1H,J=15.5,9.6Hz,H−14a)1.86(s,3H,Me−18)2.11(s,3H,Ac−10)2.23(s,3H,Ac−4)2.32(m,1H,H−6a)3.58(d,1H,J=7.0Hz,H−3)3.96−4.07(m,3H,GlyCH2,H−20)4.10(dd,1H,J=6.7,10.7,H−7)4.63(s,1H,OH−1)4.90(brs,1H,OH−7)4.91(dd,1H,J=4.9Hz,H−5)5.43(d,1H,J=7.0,H−2)5.46(d,1H,J=8.2Hz,H−2’)5.58(t,1H,J=8.4Hz,H−3’)5.87(t,1H,J=8.6Hz,H−13)6.30(s,1H,H−10)7.19−8.00(aromatic,15H)8.40(brs,2H,GlyNH2)9.25(d,1H,J=8.6Hz,CONH−3’)
HRMS:m/z 911.3604
(M+H)+:C49H55O15N2としての計算値 911.3602
Example 9
(Step 1) Production of 2′-Gly-paclitaxel hydrochloride (18) Using paclitaxel manufactured by Hauser, USA as a raw material, an amino acid linker was introduced into the 2′-position hydroxyl group of paclitaxel, and 2′-Gly-paclitaxel hydrochloride (18 ) Was prepared.
The structure of the product was confirmed by 1 H-NMR and HRMS (high-resolution mass spectrometry). That is, Fmoc-Gly (178 mg, 0.6 mmol), dimethylaminopyridine (73 mg, 0.6 mmol), and paclitaxel (made by HAUSER, USA, 427 mg, 0.5 mmol) were dissolved in methylene chloride (20 ml). Then, N, N′-diisopropylcarbodiimide (76 mg, 0.6 mmol) was added and stirred at room temperature overnight. The reaction solvent was distilled off, and silica gel column chromatography (silica gel: Merck, Germany, Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 30 cm, eluent: methylene chloride / acetonitrile = 70 / 30) to obtain 2′-Fmoc-Gly-paclitaxel (489 mg).
This compound (420 mg) was dissolved in N, N-dimethylformamide (10 ml), piperidine (2 ml) was added at room temperature, the mixture was stirred for 5 minutes, the solvent was distilled off to remove Fmoc, and silica gel column chromatography (silica gel : Purified by Merck, Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 50 cm, eluent: acetonitrile / methylene chloride = 80/20), title compound (18) (145 mg) Got. The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 1.01 (s, 3H, Me-17) 1.05 (s, 3H, Me-16) 1.52 (dd, 1H, J = 14.6, 9. 2 Hz, H-14b) 1.51 (s, 3H, Me-19) 1.65 (t, 1H, J = 11.6 Hz, H-6b) 1.81 (dd, 1H, J = 15.5) 9.6 Hz, H-14a) 1.86 (s, 3H, Me-18) 2.11 (s, 3H, Ac-10) 2.23 (s, 3H, Ac-4) 2.32 (m, 1H, H-6a) 3.58 (d, 1H, J = 7.0 Hz, H-3) 3.96-4.07 (m, 3H, GlyCH2, H-20) 4.10 (dd, 1H, J = 6.7, 10.7, H-7) 4.63 (s, 1H, OH-1) 4.90 (brs, 1H, OH-7) 4.91 (dd, 1H, J = 4. 9 Hz, H-5) 5.43 (d, 1H, J = 7.0, H-2) 5.46 (d, 1H, J = 8.2 Hz, H-2 ′) 5.58 (t, 1H , J = 8.4 Hz, H-3 ′) 5.87 (t, 1H, J = 8.6 Hz, H-13) 6.30 (s, 1H, H-10) 7.19-8.00 ( aromatic, 15H) 8.40 (brs, 2H, GlyNH2) 9.25 (d, 1H, J = 8.6 Hz, CONH-3 ')
HRMS: m / z 911.3604
(M + H) +: Calculated value as C49H55O15N2 911.3602

(工程2)ポリエーテル−2’−Gly−パクリタキセル(19)の製造
実施例6で得た、共重合体(15)(100mg)をDMF5mlに溶解し、氷冷下、この溶液に本実施例(工程1)で得た、2’−Gly−パクリタキセル(18)(10mg)を溶解したDMF(0.5ml)及びHBTU(52mg)を溶解したDMF(0.5ml)を加え、室温で2時間撹拌した。この反応液を透析膜(分子量カットオフ12,000−14,000、米国、スペクトラム社製)を用い、精製水に対して4℃で2日間透析した。この内液をメンブランフィルター(0.45μm)にて濾過した後、凍結乾燥し、表記化合物(19)(102mg)を得た。本複合体の薬物の導入量は、254nmにおける紫外吸光度及び複合体の総重量から算出したところ、6.1%(重量%)であった。
(Step 2) Production of polyether-2′-Gly-paclitaxel (19) The copolymer (15) (100 mg) obtained in Example 6 was dissolved in 5 ml of DMF, and this solution was added to this solution under ice cooling. DMF (0.5 ml) in which 2′-Gly-paclitaxel (18) (10 mg) obtained in (Step 1) was dissolved and DMF (0.5 ml) in which HBTU (52 mg) was dissolved were added, and the mixture was stirred at room temperature for 2 hours. Stir. This reaction solution was dialyzed against purified water at 4 ° C. for 2 days using a dialysis membrane (molecular weight cut-off 12,000-14,000, manufactured by Spectrum, USA). The internal solution was filtered through a membrane filter (0.45 μm) and then freeze-dried to obtain the title compound (19) (102 mg). The amount of drug introduced into this complex was 6.1% (% by weight) as calculated from the ultraviolet absorbance at 254 nm and the total weight of the complex.

〔実施例10〕
(工程1)2’−Ala−パクリタキセル(20)の製造
Z−Ala(145mg、0.65mmol)及び、DMAP(79mg,0.65mmol)及びパクリタキセル(427mg、0.5mmol)を塩化メチレン(20ml)に溶解した。次いで、DIPC(82mg、0.65mmol)を加え室温で終夜撹拌した。反応溶媒を留去し、シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/アセトニトリル=70/30)で精製し、2’−Z−Ala−パクリタキセル(435mg)を得た。この化合物(400mg)をジオキサン(20ml)に溶解しパラジウム−炭素触媒(200mg)を加え、水素雰囲気下、4時間撹拌し、触媒を濾去した後、減圧下で溶媒を留去し、残査をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400mesh,カラム:2.0×30cm、溶離液:塩化メチレン/メタノール/アセトニトリル=95/5/5)で精製し、標記化合物(20)(220mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ1.01(s,3H,Me−17)1.03(s
,3H,Me−16)1.14(s,3H,Me−Ala)1.51(s,3H,Me−
19)1.61(dd,1H,J=15.6,9.2Hz,H−14b)1.64(t,
1H,J=12.8Hz,H−6b)1.81(s,3H,Me−18)1.88(dd
,1H,J=15.3, 9.5Hz,H−14a)2.11(s,3H,Ac−10)
2.27(s,3H,Ac−4)2.33(m,1H,H−6a)3.52(q,1H,
J=7.0Hz,H−Ala)3.60(d,1H,J=7.3Hz,H−3)4.02
(d,1H,J=15.0Hz,H−20)4.03(d,1H,J=15.0Hz,H
−20)4.12(ddd,1H,J=6.6,6.6,17.4Hz,H−7)4.6
6(s,1H,OH−1)4.91(d,1H,J=6.6,OH−7)4.92(dd
,1H,J=9.8Hz,H−5)5.35(d,1H,J=8.6,H−2’)5.4
3(d,1H,J=7.0Hz,H−2)5.64(t,1H,J=8.6Hz,H−3
’)5.87(t,1H,J=9.2Hz,H−13)6.30(s,1H,H−10)
7.20−8.00(aromatic,15H)9.17(d,1H,J=8.9Hz
,CONH−3’)
HRMS:m/z 925.3797
(M+H)+:C50H57O15N2としての計算値 925.3759
Example 10
(Step 1) Preparation of 2'-Ala-paclitaxel (20) Z-Ala (145 mg, 0.65 mmol), DMAP (79 mg, 0.65 mmol) and paclitaxel (427 mg, 0.5 mmol) in methylene chloride (20 ml) Dissolved in. Then DIPC (82 mg, 0.65 mmol) was added and stirred at room temperature overnight. The reaction solvent was distilled off, and silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 30 cm, eluent: methylene chloride / acetonitrile = 70/30 ) To obtain 2′-Z-Ala-paclitaxel (435 mg). This compound (400 mg) was dissolved in dioxane (20 ml), palladium-carbon catalyst (200 mg) was added, and the mixture was stirred under a hydrogen atmosphere for 4 hours. The catalyst was removed by filtration, and then the solvent was distilled off under reduced pressure. Is purified by silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400mesh, column: 2.0 × 30 cm, eluent: methylene chloride / methanol / acetonitrile = 95/5/5). The title compound (20) (220 mg) was obtained. The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 1.01 (s, 3H, Me-17) 1.03 (s
, 3H, Me-16) 1.14 (s, 3H, Me-Ala) 1.51 (s, 3H, Me-
19) 1.61 (dd, 1H, J = 15.6, 9.2 Hz, H-14b) 1.64 (t,
1H, J = 12.8 Hz, H-6b) 1.81 (s, 3H, Me-18) 1.88 (dd
, 1H, J = 15.3, 9.5 Hz, H-14a) 2.11 (s, 3H, Ac-10)
2.27 (s, 3H, Ac-4) 2.33 (m, 1H, H-6a) 3.52 (q, 1H,
J = 7.0 Hz, H-Ala) 3.60 (d, 1H, J = 7.3 Hz, H-3) 4.02
(D, 1H, J = 15.0 Hz, H-20) 4.03 (d, 1H, J = 15.0 Hz, H
-20) 4.12 (ddd, 1H, J = 6.6, 6.6, 17.4 Hz, H-7) 4.6
6 (s, 1H, OH-1) 4.91 (d, 1H, J = 6.6, OH-7) 4.92 (dd
, 1H, J = 9.8 Hz, H-5) 5.35 (d, 1H, J = 8.6, H-2 ′) 5.4
3 (d, 1H, J = 7.0 Hz, H-2) 5.64 (t, 1H, J = 8.6 Hz, H-3)
') 5.87 (t, 1H, J = 9.2 Hz, H-13) 6.30 (s, 1H, H-10)
7.20-8.00 (aromatic, 15H) 9.17 (d, 1H, J = 8.9 Hz)
, CONH-3 ')
HRMS: m / z 925.3797
(M + H) +: Calculated value as C50H57O15N2 925.3759

(工程2)ポリエーテル−2’−Ala−パクリタキセル(21)の製造
実施例6で得た、共重合体(15)(100mg)に対し、本実施例10(工程1)で得た、2’−Ala−パクリタキセル(20)(25mg)を用いた以外は実施例9(工程2)と同様に行い、標記化合物(21)(103mg)を得た。本複合体の薬物の導入量は、254nmにおける紫外吸光度及び複合体の総重量から算出したところ、3.7%(重量%)であった。
(Step 2) Production of polyether-2′-Ala-paclitaxel (21) The copolymer (15) (100 mg) obtained in Example 6 was obtained in Example 10 (Step 1). The title compound (21) (103 mg) was obtained in the same manner as in Example 9 (Step 2) except that '-Ala-paclitaxel (20) (25 mg) was used. The amount of drug introduced into this complex was 3.7% (% by weight) as calculated from the ultraviolet absorbance at 254 nm and the total weight of the complex.

〔実施例11〕
(工程1)2’−Leu−パクリタキセル(22)の製造
Z−Leu(172mg、0.65mmol)を用いた以外は実施例10(工程1)と同
様に行い2’−Z−Leu−パクリタキセル(450mg)を得た。この化合物(400mg)をジオキサン(20ml)に溶解しパラジウム−炭素触媒(200mg)を加え、水素雰囲気下、4時間撹拌し、触媒を濾去した後、減圧下溶媒を留去し、残査をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/メタノール/アセトニトリル=95/5/5)で精製し、標記化合物(22)(280mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ0.66(d,3H,Me−Leu)0.70(d,3H,Me−Leu)1.01(s,3H,Me−17)1.03(s,3H,Me−16)1.26(ddd,1H,J=6.4,8.5,13.4Hz,H−Leu)1.36(ddd,1H,J=5.8,7.6,13.4Hz,H−Leu)1.51(s,3H,Me−19)1.56(dd,1H,J=15.3,9.0Hz,H−14b)1.64(m,1H,H−6b)1.67(m,1H,H−Leu)1.79(s,3H,Me−18)1.84(dd,1H,J=15.3,9.5Hz,H−14a)2.10(s,3H,Ac−10)2.25(s,3H,Ac−4)2.33(ddd,1H,J=14.7,9.5,6.4Hz,H−6a)3.38(dd,1H,J=8.6,5.8Hz,H−Leu)3.59(d,1H,J=7.0Hz,H−3)4.01(d,1H,J=16.8Hz,H−20)4.03(d,1H,J=16.8Hz,H−20)4.12(ddd,1H,J=6.9,6.9,11.0Hz,H−7)4.64(s,1H,OH−1)4.90(d,1H,J=7.0,OH−7)4.92(d,1H,J=10.1Hz,H−5)5.34(d,1H,J=9.2,H−2’)5.42(d,1H,J=7.0Hz,H−2)5.62(t,1H,J=9.0Hz,H−3’)5.86(t,1H,J=9.2Hz,H−13)6.30(s,1H,H−10)7.20−8.00(aromatic,15H)9.16(d,1H,J=8.9Hz,CONH−3’)
HRMS:m/z 967.4321
(M+H)+:C53H63O15N2としての計算値 967.4228
Example 11
(Step 1) Production of 2′-Leu-paclitaxel (22) 2′-Z-Leu-paclitaxel (Step 1) was performed in the same manner as in Example 10 (Step 1) except that Z-Leu (172 mg, 0.65 mmol) was used. 450 mg) was obtained. This compound (400 mg) was dissolved in dioxane (20 ml), palladium-carbon catalyst (200 mg) was added, and the mixture was stirred under a hydrogen atmosphere for 4 hours. The catalyst was removed by filtration, and the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 30 cm, eluent: methylene chloride / methanol / acetonitrile = 95/5/5) The title compound (22) (280 mg) was obtained. The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 0.66 (d, 3H, Me-Leu) 0.70 (d, 3H, Me-Leu) 1.01 (s, 3H, Me-17) 1.03 ( s, 3H, Me-16) 1.26 (ddd, 1H, J = 6.4, 8.5, 13.4 Hz, H-Leu) 1.36 (ddd, 1H, J = 5.8, 7. 6, 13.4 Hz, H-Leu) 1.51 (s, 3H, Me-19) 1.56 (dd, 1H, J = 15.3, 9.0 Hz, H-14b) 1.64 (m, 1H, H-6b) 1.67 (m, 1H, H-Leu) 1.79 (s, 3H, Me-18) 1.84 (dd, 1H, J = 15.3, 9.5 Hz, H- 14a) 2.10 (s, 3H, Ac-10) 2.25 (s, 3H, Ac-4) 2.33 (ddd, 1H, J = 14.7, 9.5, 6.4H) z, H-6a) 3.38 (dd, 1H, J = 8.6, 5.8 Hz, H-Leu) 3.59 (d, 1H, J = 7.0 Hz, H-3) 4.01 ( d, 1H, J = 16.8 Hz, H-20) 4.03 (d, 1H, J = 16.8 Hz, H-20) 4.12 (ddd, 1H, J = 6.9, 6.9, 11.0 Hz, H-7) 4.64 (s, 1H, OH-1) 4.90 (d, 1H, J = 7.0, OH-7) 4.92 (d, 1H, J = 10. 1 Hz, H-5) 5.34 (d, 1H, J = 9.2, H-2 ′) 5.42 (d, 1H, J = 7.0 Hz, H-2) 5.62 (t, 1H , J = 9.0 Hz, H-3 ′) 5.86 (t, 1H, J = 9.2 Hz, H-13) 6.30 (s, 1H, H-10) 7.20-8.00 ( aromatic, 15H) 9.16 (d, 1H J = 8.9Hz, CONH-3 ')
HRMS: m / z 967.4321
(M + H) +: Calculated value as C53H63O15N2 967.4228

(工程2)
ポリエーテル−2’−Leu−パクリタキセル(23)の製造
実施例6で得た、共重合体(15)(100mg)に対し、本実施例11(工程1)で得た、2’−Leu−パクリタキセル(22)(25mg)を用いた以外は実施例9(工程2)と同様に行い、標記化合物(23)(97mg)を得た。本複合体の薬物の導入量は、254nmにおける紫外吸光度及び複合体の総重量から算出したところ、4.0%(重量%)であった。
(Process 2)
Production of polyether-2′-Leu-paclitaxel (23) 2′-Leu- obtained in Example 11 (Step 1) with respect to copolymer (15) (100 mg) obtained in Example 6 The title compound (23) (97 mg) was obtained in the same manner as in Example 9 (Step 2) except that paclitaxel (22) (25 mg) was used. The amount of drug introduced into this complex was 4.0% (% by weight) as calculated from the ultraviolet absorbance at 254 nm and the total weight of the complex.

〔実施例12〕
(工程1)2’−Ile−パクリタキセル(24)の製造
Fmoc−Ile(212mg,0.6mmol)及び、DMAP(73mg、0.6mmol)及びパクリタキセル(427mg、0.5mmol)を塩化メチレン(20ml)に溶解した。次いで、DIPC(76mg、0.6mmol)を加え室温で終夜撹拌した。反応溶媒を留去し、シリカゲルカラムクロマト・グラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:2.0×30cm、溶離液:塩化メチレン/アセトニトリル=70/30)で精製し、2’−Fmoc−Ile−パクリタキセル(553mg)を得た。この化合物(470mg)をDMF(10ml)に溶解し、室温下ピペリジン(2ml)を加え、5分間撹拌した後、減圧下溶媒を留去し、残査をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/メタノール/アセトニトリル=95/5/5)で精製し、標記化合物(24)(350mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ0.62(t,3H,J=7.5Hz,Me−Ile)0.81(d,3H,J=6.7Hz,Me−Ile)1.01(s,3H,Me−17)1.03(s,3H,Me−16)1.07(ddd,1H,J=14.4,7.3,4.9Hz,H−Ile)1.32(ddd,1H,J=13.4,7.6,4.6Hz,H−Ile)1.51(s,3H,Me−19)1.56(dd,1H,J=15.3,9.2Hz,H−14b)1.56−1.61(m,1H,H−Ile)1.64(dd,1H,J=13.7,3.1Hz,H−6b)1.79(s,3H,Me−18)1.87(dd,1H,J=15.3,9.8Hz,H−14a)2.10(s,3H,Ac−10)2.29(s,3H,Ac−4)2.33(ddd,1H,J=14.4,9.6,6.4Hz,H−6a)3.60(d,1H,J=7.3Hz,H−3)3.60−3.67(m,1H,H−Ile)4.02(d,1H,J=16.6Hz,H−20)4.03(d,1H,J=16.6Hz,H−20)4.12(ddd,1H,J=10.8,6.7,6.7Hz,H−7)4.64(s,1H,OH−1)4.90(d,1H,J=7.0,OH−7)4.92(d,1H,J=9.8Hz,H−5)5.37(d,1H,J=8.9Hz,H−2’)5.43(d,1H,J=7.3Hz,H−2)5.64(t,1H,J=8.7Hz,H−3’)5.85(dt,1H,J=0.9,9.2Hz,H−13)6.30(s,1H,H−10)7.20−8.00(aromatic,15H)9.15(d,1H,J=9.2Hz,CONH−3’)
HRMS:m/z 967.4234
(M+H)+:C53H63O15N2としての計算値 967.4228
Example 12
(Step 1) Preparation of 2′-Ile-paclitaxel (24) Fmoc-Ile (212 mg, 0.6 mmol), DMAP (73 mg, 0.6 mmol) and paclitaxel (427 mg, 0.5 mmol) in methylene chloride (20 ml) Dissolved in. Then, DIPC (76 mg, 0.6 mmol) was added and stirred overnight at room temperature. The reaction solvent was distilled off, and silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 2.0 × 30 cm, eluent: methylene chloride / acetonitrile = 70 / 30) to obtain 2′-Fmoc-Ile-paclitaxel (553 mg). This compound (470 mg) was dissolved in DMF (10 ml), piperidine (2 ml) was added at room temperature, and the mixture was stirred for 5 minutes. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel: Merck). Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 30 cm, eluent: methylene chloride / methanol / acetonitrile = 95/5/5) and purified by the title compound (24) (350 mg) Got. The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 0.62 (t, 3H, J = 7.5 Hz, Me-Ile) 0.81 (d, 3H, J = 6.7 Hz, Me-Ile) 1.01 ( s, 3H, Me-17) 1.03 (s, 3H, Me-16) 1.07 (ddd, 1H, J = 14.4, 7.3, 4.9 Hz, H-Ile) 1.32 ( ddd, 1H, J = 13.4, 7.6, 4.6 Hz, H-Ile) 1.51 (s, 3H, Me-19) 1.56 (dd, 1H, J = 15.3, 9 .. 2Hz, H-14b) 1.56-1.61 (m, 1H, H-Ile) 1.64 (dd, 1H, J = 13.7, 3.1 Hz, H-6b) 1.79 (s, 3H, Me-18) 1.87 (dd, 1H, J = 15.3, 9.8 Hz, H-14a) 2.10 (s, 3H, Ac-10) 2.29 (s, 3H, Ac-4) 2.33 (ddd, 1H, J = 14.4, 9.6, 6.4 Hz, H-6a) 3.60 (d, 1H, J = 7.3 Hz, H-3) 3.60-3.67 (m, 1H, H-Ile) 4.02 (d, 1H, J = 16.6 Hz, H-20) 4.03 (d, 1H, J = 16.6 Hz, H− 20) 4.12 (ddd, 1H, J = 10.8, 6.7, 6.7 Hz, H-7) 4.64 (s, 1H, OH-1) 4.90 (d, 1H, J = 7.0, OH-7) 4.92 (d, 1H, J = 9.8 Hz, H-5) 5.37 (d, 1H, J = 8.9 Hz, H-2 ′) 5.43 (d , 1H, J = 7.3 Hz, H-2) 5.64 (t, 1H, J = 8.7 Hz, H-3 ′) 5.85 (dt, 1H, J = 0.9, 9.2 Hz, H-13) 6.30 (s, 1H, H-10) 7.20-8.00 (aromatic, 15H) 9.15 (d, 1H, J = 9.2Hz, CONH-3 ')
HRMS: m / z 967.4234
(M + H) +: Calculated value as C53H63O15N2 967.4228

(工程2)ポリエーテル−2’−Ile−パクリタキセル(25)の製造
実施例6で得た、共重合体(15)(100mg)に対し、本実施例12(工程1)で得た、2’−Ile−パクリタキセル(24)(30mg)を用いた以外は実施例9(工程2)と同様に行い、標記化合物(25)(92mg)を得た。本複合体の薬物の導入量は、254nmにおける紫外吸光度及び複合体の総重量から算出したところ、2.5%(重量%)であった。
(Step 2) Production of polyether-2′-Ile-paclitaxel (25) The copolymer (15) (100 mg) obtained in Example 6 was obtained in Example 12 (Step 1). '-Ile-paclitaxel (24) (30 mg) was used in the same manner as in Example 9 (Step 2) to give the title compound (25) (92 mg). The amount of drug introduced into this complex was 2.5% (% by weight) as calculated from the ultraviolet absorbance at 254 nm and the total weight of the complex.

〔実施例13〕
(工程1)2’−Phe−Gly−パクリタキセル塩酸塩(26)の製造
Phe−Gly(ペプチド研究所製、1.1g、5mmol)を水(2ml)、2−プロパノール(2ml)及びジエチルアミン(1.5ml)の混合溶液に溶かし、この反応液にトリチルクロライド(1.8g、6.5mmol)を徐々に加え、1時間撹拌した。反応液に水を加え、生じた沈殿を水で洗浄した。次に、沈殿に酢酸5mlを加えて酸性にした後、溶媒を減圧下留去することによりTrt−Phe−Gly1.4gを得た。得られたTrt−Phe−Gly(604mg、1.3mmol)及び、DMAP(158mg、1.3mmol)及びパクリタキセル(853mg、1.0mmol)を塩化メチレン(20ml)に溶解した。次いで、DIPC(164mg、1.3mmol)を加え室温下終夜撹拌した。反応溶媒を留去し、シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/アセトニトリル=80/20)で精製し、2’−Trt−Phe−Gly−パクリタキセル(990mg)を得た。この化合物(800mg)を90%酢酸(10ml)で処理して脱N−トリチル化し、シリカゲルカラムクロマトグラフィー(シリカゲル:独国Merck社製Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/メタノール/アセトニトリル=95/5/5)で精製し、次に酢酸塩をイオン交換樹脂により塩酸塩へ変換して標記化合物(26)(450mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6);δ1.01(s,3H,Me−17)1.03(s,3H,Me−16)1.42(dd,1H,J=15.5,9.1Hz,H−14b)1.50(s,3H,Me−19)1.63(t,1H,J=12.2Hz,H−6b)1.75(dd,1H,J=12.3,9.5Hz,H−14a)1.81(s,3H,Me−18)2.12(s,3H,Ac−10)2.23(s,3H,Ac−4)2.29(ddd,1H,J=14.4,9.2,7.0Hz,H−6a)2.90(dd,1H,14.2,7.8Hz,PheCH2)3.08(dd,1H,14.4,5.2Hz,PheCH2)3.56(d,1H,J=7.0Hz,H−3)4.05−4.10(m,2H,H−7,PheCH)4.15(dd,1H,J=18.0,5.8Hz,Gly)4.61(brs,1H,OH−1)4.90(brs,1H,OH−7)4.90(d,1H,J=5.3Hz,H−5)5.38(d,1H,J=8.9Hz,H−2’) 5.41(d,1H,J=7.0Hz,H−2)5.53(t,1H,J=8.6Hz,H−3’)5.83(t,1H,J=8.8Hz,H−13)6.29(s,1H,H−10)7.16〜8.00(m,20H,aromatic)8.15(brs,2H,NH2)9.02(t,1H,J=5.8Hz,Gly−NH)9.29(d,1H,J=8.9Hz,CONH−3’)
HRMS:m/z 1058.4241
(M+H)+:C58H64O16N3としての計算値 1058.4287
Example 13
(Step 1) Production of 2′-Phe-Gly-paclitaxel hydrochloride (26) Phe-Gly (Peptide Institute, 1.1 g, 5 mmol) was added to water (2 ml), 2-propanol (2 ml) and diethylamine (1 0.5 ml), trityl chloride (1.8 g, 6.5 mmol) was gradually added to the reaction solution and stirred for 1 hour. Water was added to the reaction solution, and the resulting precipitate was washed with water. Next, 5 ml of acetic acid was added to the precipitate to make it acidic, and then the solvent was distilled off under reduced pressure to obtain 1.4 g of Trt-Phe-Gly. The obtained Trt-Phe-Gly (604 mg, 1.3 mmol), DMAP (158 mg, 1.3 mmol) and paclitaxel (853 mg, 1.0 mmol) were dissolved in methylene chloride (20 ml). Next, DIPC (164 mg, 1.3 mmol) was added and stirred overnight at room temperature. The reaction solvent was distilled off, and silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 30 cm, eluent: methylene chloride / acetonitrile = 80/20 ) To obtain 2′-Trt-Phe-Gly-paclitaxel (990 mg). This compound (800 mg) was treated with 90% acetic acid (10 ml) to be de-N-tritylated, and silica gel column chromatography (silica gel: Art No. 9385, Silica gel 60, 200-400 mesh, manufactured by Merck, Germany), column: 4.0 × 30 cm, eluent: methylene chloride / methanol / acetonitrile = 95/5/5), and then the acetate is converted to the hydrochloride with an ion exchange resin to give the title compound (26) (450 mg). Obtained. The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6); δ 1.01 (s, 3H, Me-17) 1.03 (s, 3H, Me-16) 1.42 (dd, 1H, J = 15.5, 9 .. 1 Hz, H-14b) 1.50 (s, 3H, Me-19) 1.63 (t, 1H, J = 12.2 Hz, H-6b) 1.75 (dd, 1H, J = 12.3) 9.5 Hz, H-14a) 1.81 (s, 3H, Me-18) 2.12 (s, 3H, Ac-10) 2.23 (s, 3H, Ac-4) 2.29 (ddd, 1H, J = 14.4, 9.2, 7.0 Hz, H-6a) 2.90 (dd, 1H, 14.2, 7.8 Hz, PheCH2) 3.08 (dd, 1H, 14.4 5.2 Hz, PheCH2) 3.56 (d, 1H, J = 7.0 Hz, H-3) 4.05-4.10 (m, 2H, H-7, PheCH ) 4.15 (dd, 1H, J = 18.0, 5.8 Hz, Gly) 4.61 (brs, 1H, OH-1) 4.90 (brs, 1H, OH-7) 4.90 (d , 1H, J = 5.3 Hz, H-5) 5.38 (d, 1H, J = 8.9 Hz, H-2 ′) 5.41 (d, 1H, J = 7.0 Hz, H-2) 5.53 (t, 1H, J = 8.6 Hz, H-3 ′) 5.83 (t, 1H, J = 8.8 Hz, H-13) 6.29 (s, 1H, H-10) 7 16 to 8.00 (m, 20H, aromatic) 8.15 (brs, 2H, NH2) 9.02 (t, 1H, J = 5.8 Hz, Gly-NH) 9.29 (d, 1H, J = 8.9Hz, CONH-3 ')
HRMS: m / z 1058.241
(M + H) +: Calculated value as C58H64O16N3 10588.4287

(工程2)
ポリエーテル−2’−Phe−Gly−パクリタキセル(27)の製造
実施例6で得た、共重合体(15)(100mg)に対し、本実施例13(工程1)で得た、2’−Phe−Gly−パクリタキセル(26)(30mg)を用いた以外は実施例9(工程2)と同様に行い、標記化合物(27)(95mg)を得た。本複合体の薬物の導入量は、254nmにおける紫外吸光度及び複合体の総重量から算出したところ、3.5%(重量%)であった。
(Process 2)
Production of polyether-2′-Phe-Gly-paclitaxel (27)
Except that the 2′-Phe-Gly-paclitaxel (26) (30 mg) obtained in Example 13 (Step 1) was used for the copolymer (15) (100 mg) obtained in Example 6. In the same manner as in Example 9 (Step 2), the title compound (27) (95 mg) was obtained. The amount of drug introduced into this complex was 3.5% (% by weight) as calculated from the ultraviolet absorbance at 254 nm and the total weight of the complex.

〔実施例14〕
Trt−Gly−Gly−Phe−Gly(28)の製造
(1)Phe−Gly−OBn(29)の合成
Phe−Gly・H2O(国産化学製、25g、104mmol)をパラトルニンスルホン酸1水和物(19.8g、104mmol)、ベンジルアルコール(25ml)及びトルエン(200ml)混合液に溶かし、Dean-Stark装置により5時間加熱環流する。反応後、溶媒を留去し、ジエチルエーテルを加えることで標記化合物であるPhe−Gly−OBn(29)のパラトルエンスルホン酸塩(34g)を得た。
(2)Trt−Gly−Gly(30)の合成
Gly−Gly(ペプチド研究所製、6.6g、50mmol)を精製水(20ml)、2−プロパノール(40ml)及びジエチルアミン(15ml)の混合溶液に溶かし、この反応液にトリチルクロライド(18.1g、65mmol)を徐々に加え、1時間撹拌する。反応液に精製水を加え、生じた沈殿を水で洗浄した。次に、沈澱に酢酸5mlを加えて酸性にした後、溶媒を減圧下で留去することにより標記化合物(30)13.3gを得た。
(3)Trt−Gly−Gly−Phe−Gly−OBn(31)の合成
乾燥DMF(10ml)に、Trt−Gly−Gly(30)(1.54g)、N−ヒドロキシコハク酸イミド(0.52g)及びDCC(0.93g)を加え、4℃で3時間反応した。反応溶液にPhe−Gly−OBn(29)のパラトルエンスルホン酸塩(2.0g)及びN−メチルモルホリン(0.41g)を溶かしたDMF溶液(DMF10ml)を加え、4℃で15時間反応する。沈殿物を除き、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:独国Merck社製 Art No.9365,Silica gel 60,200-400mesh,溶離液:クロロホルム/メタノール=20/1)で精製することにより、標記生成物(31)(1.6g)を得た。
(4)Trt−Gly−Gly−Phe−Gly(28)の合成
化合物(31)Trt−Gly−Gly−Phe−Gly−OBn(1.3g)をDMF(20ml)に溶かし、10%パラジウム−炭素(0.5g)及び1,4−シクロヘキサジエン(0.4g)を加え、室温下30分反応する。反応液をろ過し、触媒を除き、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9365,Silica gel60,200-400 mesh,溶離液:クロロホルム/メタノール=7/1)で精製することにより、標記化合物(28)(1.1g)を得た。
Anal.Calcd for: C34H34N4O5:C,70.57;H,5.92;N,9.68
Found: C,70.03;H,6.07;N,9.67
アミノ酸分析:Phe(1)1.00,Gly(3)2.91
加水分解条件:6NHCl、110℃、22hrs
Example 14
Preparation of Trt-Gly-Gly-Phe-Gly (28) (1) Synthesis of Phe-Gly-OBn (29) Phe-Gly.H2O (produced by Kokusan Chemical Co., Ltd., 25 g, 104 mmol) was hydrated with paratonin sulfonic acid The product (19.8 g, 104 mmol), benzyl alcohol (25 ml) and toluene (200 ml) are dissolved and heated to reflux with a Dean-Stark apparatus for 5 hours. After the reaction, the solvent was distilled off, and diethyl ether was added to obtain the paratoluenesulfonic acid salt (34 g) of Phe-Gly-OBn (29) as the title compound.
(2) Synthesis of Trt-Gly-Gly (30) Gly-Gly (Peptide Institute, 6.6 g, 50 mmol) was added to a mixed solution of purified water (20 ml), 2-propanol (40 ml) and diethylamine (15 ml). Dissolve, and gradually add trityl chloride (18.1 g, 65 mmol) to the reaction mixture and stir for 1 hour. Purified water was added to the reaction solution, and the resulting precipitate was washed with water. Next, 5 ml of acetic acid was added to the precipitate to make it acidic, and then the solvent was distilled off under reduced pressure to obtain 13.3 g of the title compound (30).
(3) Synthesis of Trt-Gly-Gly-Phe-Gly-OBn (31) To dry DMF (10 ml), Trt-Gly-Gly (30) (1.54 g), N-hydroxysuccinimide (0.52 g) ) And DCC (0.93 g) were added and reacted at 4 ° C. for 3 hours. To the reaction solution was added a DMF solution (DMF 10 ml) in which p-toluenesulfonate (2.0 g) of Phe-Gly-OBn (29) and N-methylmorpholine (0.41 g) were dissolved, and the mixture was reacted at 4 ° C. for 15 hours. . The precipitate was removed, the solvent was distilled off, and the residue was purified by silica gel column chromatography (silica gel: Merck, Germany, Art No. 9365, Silica gel 60, 200-400 mesh, eluent: chloroform / methanol = 20/1). Purification gave the title product (31) (1.6 g).
(4) Synthesis of Trt-Gly-Gly-Phe-Gly (28) Compound (31) Trt-Gly-Gly-Phe-Gly-OBn (1.3 g) was dissolved in DMF (20 ml) and 10% palladium-carbon (0.5 g) and 1,4-cyclohexadiene (0.4 g) are added and reacted at room temperature for 30 minutes. The reaction solution was filtered, the catalyst was removed, the solvent was distilled off, and the residue was subjected to silica gel column chromatography (silica gel: Merck Art No. 9365, Silica gel 60, 200-400 mesh, eluent: chloroform / methanol = 7 / The title compound (28) (1.1 g) was obtained by purification in 1).
Anal. Calcd for: C34H34N4O5: C, 70.57; H, 5.92; N, 9.68
Found: C, 70.03; H, 6.07; N, 9.67
Amino acid analysis: Phe (1) 1.00, Gly (3) 2.91
Hydrolysis conditions: 6N HCl, 110 ° C., 22 hrs

〔実施例15〕
2’−Gly−Gly−Phe−Gly−パクリタキセル塩酸塩(32)の製造
実施例14で得た(28)Trt−Gly−Gly−Phe−Gly(739mg、1.3mmol)及び、DMAP(158mg、1.3mmol)及びパクリタキセル(853mg、1.0mmol)を塩化メチレン(20ml)に溶解した。次いで、DIPC(164mg、1.3mmol)を加え室温下4時間撹拌した。反応溶媒を留去し、シリカゲルカラムクロマトグラフィー(シリカゲル:独国Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×50cm、溶離液:塩化メチレン/メタノール/アセトニトリル=95/5/30)で精製し、2’−Nα−Trt−Gly−Gly−Phe−Gly−パクリタキセル(33)(1250mg)を得た。
HRMS:m/z 1414.5763
(M+H)+:C81H84O18N5としての計算値 1414.5811
この化合物(33)(1100mg)を75%酢酸(10ml)で処理して脱N−トリチル化し、シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×50cm、溶離液:塩化メチレン/メタノール/アセトニトリル=85/15/5)で精製し、次に陰イオン交換樹脂により塩酸塩へ変換して表記化合物(32)(533mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ1.00(s,3H,Me−17)1.03(s,3H,Me−16)1.42(dd,1H,J=15.4,9.2Hz,H−14b)1.49(s,3H,Me−19)1.63(brt,1H,J=12.1Hz,H−6b)1.74(dd,1H,J=15.4, 9.2Hz,H−14a)1.80(s,3H,Me−18)2.11(s,3H,Ac−10)2.23(s,3H,Ac−4)2.30(m,1H,H6a)2.72(dd,1H,J=13.9,10.2Hz,PheCH2Hb)3.02(dd,1H,J=13.9,3.8Hz,PheCH2CHa)3.52(brs,2H,GlyCH2)3.56(d,1H,J=7.2Hz,H−3)3.66(dd,1H,16.9,5.4Hz,GlyCH2b)3.84(dd,1H,16.9,5.4Hz,GlyCH2a)4.01(dd,2H,J=14.5,8.4Hz,H−20a,H−20b)4.01(2H,GlyCH2)4.09(m,1H,H−7)4.55(ddd,1H,J=10.2,8.5,3.8Hz,PheCH2CH)4.61(s,1H,OH−1)4.89(dd,1H,J=8.9,1.3Hz,H−5)4.92(brs,1H,OH−7)5.41(d,1H,J=7.2,H−2)5.43(d,1H,J=6.3Hz,H−2’)5.51(t,1H,J=8.5Hz,H−3’)5.83(t,1H,J=9.2Hz,H−13)6.29(s,1H,H−10)7.10−8.00(aromatic,20H)8.33(d,1H,PheCONH)8.51(t,1H,J=5.5Hz,GlyCONH)8.69(t,1H,J=6.0Hz,GlyCONH)9.34(d,1H,J=8.5Hz,CONH−3’)
HRMS:m/z 1172.4711
(M+H)+:C62H70O18N5としての計算値 1172.4716
Anal.Calcd for: C62H69O18N5・HCl・2.5H2O:C,59.40;H,6.
03;N,5.59.
Found: C,59.55;H,6.04;N,5.60
Example 15
Preparation of 2′-Gly-Gly-Phe-Gly-paclitaxel hydrochloride (32) (28) Trt-Gly-Gly-Phe-Gly (739 mg, 1.3 mmol) obtained in Example 14 and DMAP (158 mg, 1.3 mmol) and paclitaxel (853 mg, 1.0 mmol) were dissolved in methylene chloride (20 ml). Next, DIPC (164 mg, 1.3 mmol) was added and stirred at room temperature for 4 hours. The reaction solvent was distilled off, silica gel column chromatography (silica gel: Merck, Germany, Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 50 cm, eluent: methylene chloride / methanol / acetonitrile. = 95/5/30) to obtain 2′-Nα-Trt-Gly-Gly-Phe-Gly-paclitaxel (33) (1250 mg).
HRMS: m / z 1414.5763
(M + H) +: Calculated value as C81H84O18N5 1414.5811
This compound (33) (1100 mg) was treated with 75% acetic acid (10 ml) for de-N-tritylation, and silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column : 4.0 × 50 cm, eluent: methylene chloride / methanol / acetonitrile = 85/15/5), and then converted to hydrochloride with anion exchange resin to give the title compound (32) (533 mg) It was. The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ1.00 (s, 3H, Me-17) 1.03 (s, 3H, Me-16) 1.42 (dd, 1H, J = 15.4,9. 2Hz, H-14b) 1.49 (s, 3H, Me-19) 1.63 (brt, 1H, J = 12.1 Hz, H-6b) 1.74 (dd, 1H, J = 15.4, 9.2 Hz, H-14a) 1.80 (s, 3H, Me-18) 2.11 (s, 3H, Ac-10) 2.23 (s, 3H, Ac-4) 2.30 (m, 1H, H6a) 2.72 (dd, 1H, J = 13.9, 10.2 Hz, PheCH2Hb) 3.02 (dd, 1H, J = 13.9, 3.8 Hz, PheCH2CHa) 3.52 (brs, 2H, GlyCH2) 3.56 (d, 1H, J = 7.2 Hz, H-3) 3.66 (dd, 1H, 1 .9, 5.4 Hz, GlyCH2b) 3.84 (dd, 1H, 16.9, 5.4 Hz, GlyCH2a) 4.01 (dd, 2H, J = 14.5, 8.4 Hz, H-20a, H -20b) 4.01 (2H, GlyCH2) 4.09 (m, 1H, H-7) 4.55 (ddd, 1H, J = 10.2, 8.5, 3.8 Hz, PheCH2CH) 4.61 (S, 1H, OH-1) 4.89 (dd, 1H, J = 8.9, 1.3 Hz, H-5) 4.92 (brs, 1H, OH-7) 5.41 (d, 1H , J = 7.2, H-2) 5.43 (d, 1H, J = 6.3 Hz, H-2 ′) 5.51 (t, 1H, J = 8.5 Hz, H-3 ′) 5 .83 (t, 1H, J = 9.2 Hz, H-13) 6.29 (s, 1H, H-10) 7.10-8.00 (aromatic, 20 ) 8.33 (d, 1H, PheCONH) 8.51 (t, 1H, J = 5.5 Hz, GlyCONH) 8.69 (t, 1H, J = 6.0 Hz, GlyCONH) 9.34 (d, 1H , J = 8.5 Hz, CONH-3 ′)
HRMS: m / z 1172.4711
(M + H) +: Calculated value as C62H70O18N5 1172.4716
Anal. Calcd for: C62H69O18N5.HCl.2.5H2O: C, 59.40; H, 6.
03; N, 5.59.
Found: C, 59.55; H, 6.04; N, 5.60

〔実施例16〕
ポリエーテル−2’−Gly−Gly−Phe−Gly−パクリタキセル(34)の製造
実施例6で得た、共重合体(15)(103mg)をDMF5mlに溶解し、この溶液に実施例15で得た、2’−Gly−Gly−Phe−Gly−パクリタキセル(32)(10.3mg)を溶解したDMF(0.5ml)及びHBTU(53mg)を溶解したDMF(0.5ml)を加え、室温で2時間撹拌した。この反応液を透析膜(分子量カットオフ12,000−14,000、米国、スペクトラム社製)を用い、精製水に対して4℃で2日間透析した。この内液をメンブランフィルター(0.45μm)にて濾過した後、凍結乾燥し、表記化合物(34)(113mg)を得た。本複合体の薬物の導入量は、254nmにおける紫外吸光度及び複合体の総重量から算出したところ、6.4%(重量%)であった。
Example 16
Preparation of polyether-2′-Gly-Gly-Phe-Gly-paclitaxel (34) Copolymer (15) (103 mg) obtained in Example 6 was dissolved in 5 ml of DMF, and this solution was obtained in Example 15. 2′-Gly-Gly-Phe-Gly-paclitaxel (32) (10.3 mg) dissolved in DMF (0.5 ml) and HBTU (53 mg) dissolved in DMF (0.5 ml) were added at room temperature. Stir for 2 hours. This reaction solution was dialyzed against purified water at 4 ° C. for 2 days using a dialysis membrane (molecular weight cut-off 12,000-14,000, manufactured by Spectrum, USA). The internal solution was filtered through a membrane filter (0.45 μm) and then freeze-dried to obtain the title compound (34) (113 mg). The amount of drug introduced into this complex was 6.4% (% by weight) as calculated from the ultraviolet absorbance at 254 nm and the total weight of the complex.

〔実施例17〕
20−Gly−カンプトテシン塩酸塩(35)の製造
(工程1)20−BOC−Gly−カンプトテシン(36)の製造
BOC−Gly(263mg、1.5mmol)及び、ジメチルアミノピリジン(122mg、1.0mmol)及び(S)−(+)−Camptothesin(東京化成製、174mg、0.5mmol)を塩化メチレン(20ml)に溶解した。次いで、DIPC(189mg、1.5mmol)を加え室温で3.5時間撹拌した。反応溶液を0.1N塩酸及び飽和食塩水で洗浄しその後、溶媒を減圧下で留去した。シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/アセトニトリル=70/30)で精製し、20−BOC−Gly−カンプトテシン(36)(315mg)を得た。
Example 17
Production of 20-Gly-camptothecin hydrochloride (35) (Step 1) Production of 20-BOC-Gly-camptothecin (36)
BOC-Gly (263 mg, 1.5 mmol), dimethylaminopyridine (122 mg, 1.0 mmol) and (S)-(+)-camptothesin (manufactured by Tokyo Chemical Industry, 174 mg, 0.5 mmol) in methylene chloride (20 ml) Dissolved. Next, DIPC (189 mg, 1.5 mmol) was added and stirred at room temperature for 3.5 hours. The reaction solution was washed with 0.1N hydrochloric acid and saturated brine, and then the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 30 cm, eluent: methylene chloride / acetonitrile = 70/30), 20− BOC-Gly-camptothecin (36) (315 mg) was obtained.

(工程2)20−Gly−カンプトテシン塩酸塩(35)の製造
化合物(36)(300mg)を塩化メチレン(5ml)に溶解し、室温下トリフルオロ酢酸(TFA;2ml)を加え、5分間撹拌し、ついで溶媒を留去した。脱BOC化した化合物をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×50cm、溶離液:アセトニトリル/メタノール/塩化メチレン=10/10/90)で精製し、その後陰イオン交換樹脂で処理することで、標記化合物(35)(214mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ0.97(s,3H)2.20(m,2H)4.08,4.34(dd,2H)5.32(s,2H)5.56(s,2H)7.32(s,1H)7.73(t,1H)7.88(t,1H)8.15(d,1H)8.17(d,1H)8.56(brs,2H)8.72(s,1H)
13C−NMR(DMSO−d6):7.53,30.18,38.6−40.2,50.10,66.29,77.42,95.51,118.78,127.63,127.82,128.45,128.66,129.49,130.43,131.58,144.72,145.97,147.77,152.13,156.39,166.77
(Step 2) Production of 20-Gly-camptothecin hydrochloride (35) Compound (36) (300 mg) was dissolved in methylene chloride (5 ml), trifluoroacetic acid (TFA; 2 ml) was added at room temperature, and the mixture was stirred for 5 minutes. Then, the solvent was distilled off. The de-BOC compound was subjected to silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 50 cm, eluent: acetonitrile / methanol / methylene chloride = 10 / 10/90) and then treated with an anion exchange resin to give the title compound (35) (214 mg). The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 0.97 (s, 3H) 2.20 (m, 2H) 4.08, 4.34 (dd, 2H) 5.32 (s, 2H) 5.56 ( s, 2H) 7.32 (s, 1H) 7.73 (t, 1H) 7.88 (t, 1H) 8.15 (d, 1H) 8.17 (d, 1H) 8.56 (brs, 2H) 8.72 (s, 1H)
13 C-NMR (DMSO-d6): 7.53, 30.18, 38.6-40.2, 50.10, 66.29, 77.42, 95.51, 118.78, 127.63, 127.82, 128.45, 128.66, 129.49, 130.43, 131.58, 144.72, 145.97, 147.77, 152.13, 156.39, 166.77

〔実施例18〕
ポリエーテル−20−Gly−カンプトテシン(37)の製造
実施例6で得た、共重合体(15)(103mg)DMF5mlに溶解し、この溶液に実施例17で得た、20−Gly−カンプトテシン塩酸塩(35)(20mg)を溶解したDMF(0.5ml)及びHBTU(108mg)を溶解したDMF(0.5ml)を加え、室温で2時間撹拌した。この反応液を透析膜(分子量カットオフ12,000−14,000、米国、スペクトラム社製)を用い、精製水に対して4℃で2日間透析した。この内液をメンブランフィルター(0.22μm)にて濾過した後、凍結乾燥し、表記化合物(37)(105mg)を得た。本複合体の薬物の導入量は、254nmにおける紫外吸光度及び複合体の総重量から算出したところ、3.5%(重量%)であった。
Example 18
Production of polyether-20-Gly-camptothecin (37) 20-Gly-camptothecin hydrochloride obtained in Example 17 was dissolved in 5 ml of copolymer (15) (103 mg) DMF obtained in Example 6. DMF (0.5 ml) in which salt (35) (20 mg) was dissolved and DMF (0.5 ml) in which HBTU (108 mg) was dissolved were added, and the mixture was stirred at room temperature for 2 hours. This reaction solution was dialyzed against purified water at 4 ° C. for 2 days using a dialysis membrane (molecular weight cut-off 12,000-14,000, manufactured by Spectrum, USA). The internal solution was filtered through a membrane filter (0.22 μm) and then lyophilized to obtain the title compound (37) (105 mg). The amount of drug introduced into this complex was 3.5% (% by weight) as calculated from the ultraviolet absorbance at 254 nm and the total weight of the complex.

〔実施例19〕
20−GlyGlyPheGly−カンプトテシン塩酸塩(38)の製造
(工程1)20−TrtGlyGlyPheGly−カンプトテシン(39)の製造
実施例14で得られた(28)Trt−GlyGlyPheGly(1736mg、3mmol)及び、ジメチルアミノピリジン(244mg、2mmol)及び(S)−(+)−Camptothesin(348mg、1mmol)を塩化メチレン(100ml)に溶解した。次いで、DIPC(378mg、3mmol)を加え室温で終夜撹拌した。反応溶液を0.1N塩酸及び飽和食塩水で洗浄しその後、溶媒を減圧下で留去した。シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/アセトニトリル=70/30)で精製し、20−TrtGlyGlyPheGly−カンプトテシン(39)(754mg)を得た。
Example 19
Preparation of 20-GlyGlyPheGly-camptothecin hydrochloride (38) (step 1) Preparation of 20-TrtGlyGlyPheGly-camptothecin (39) (28) Trt-GlyGlyPheGly (1736 mg, 3 mmol) obtained in Example 14 and dimethylaminopyridine (1736 mg) 244 mg, 2 mmol) and (S)-(+)-Campothesin (348 mg, 1 mmol) were dissolved in methylene chloride (100 ml). Then, DIPC (378 mg, 3 mmol) was added and stirred at room temperature overnight. The reaction solution was washed with 0.1N hydrochloric acid and saturated brine, and then the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 30 cm, eluent: methylene chloride / acetonitrile = 70/30), 20− TrtGlyGlyPheGly-camptothecin (39) (754 mg) was obtained.

(工程2)20−GlyGlyPheGly−カンプトテシン塩酸塩(38)の製造
化合物(39)(700mg)を75%酢酸(8ml)に溶解し、20分間撹拌後、溶媒を留去した。脱Trt化した化合物を陰イオン交換樹脂(バイオラッド社AG1−X8)により酢酸塩を塩酸塩に変換し、シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×50cm、溶離液:メタノール/塩化メチレン=15/85)で精製し、標記化合物(38)(535mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ0.93(t,3H)2.32(m,2H)2.77,3.06(dd,dd,2H)3.27(s,2H)3.61,3.76(d,d,2H)4.11,4.21(dd,dd,2H)4.55(m,1H)5.27(s,2H)5.51(s,2H)7.15(m,1H)7.19(s,1H)7.22(m,4H)7.71(t,1H)7.87(t,1H)8.12(d,1H)8.17(d,1H)8.23(brs,1H)8.31(d,1H)8.68(s,1H)8.68(brs,2H)
13C−NMR(DMSO−d6):7.52,30.42,37.43,40.41,41.64,42.21,50.08,53.96,66.28,76.27,95.20,118.87,126.20,127.59,127.80,128.01,128.39,128.79,129.06,129.50,130.37,131.49,137.82,145.11,145.87,147.72,152.12,156.41,167.00,168.35,168.84,171.68
(Step 2) Production of 20-GlyGlyPheGly-camptothecin hydrochloride (38) Compound (39) (700 mg) was dissolved in 75% acetic acid (8 ml), stirred for 20 minutes, and then the solvent was distilled off. The detrtrified compound was converted into hydrochloride with an anion exchange resin (Bio-Rad AG1-X8), and silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400). Purification with mesh, column: 4.0 × 50 cm, eluent: methanol / methylene chloride = 15/85) gave the title compound (38) (535 mg). The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 0.93 (t, 3H) 2.32 (m, 2H) 2.77, 3.06 (dd, dd, 2H) 3.27 (s, 2H) 61, 3.76 (d, d, 2H) 4.11, 4.21 (dd, dd, 2H) 4.55 (m, 1H) 5.27 (s, 2H) 5.51 (s, 2H) 7.15 (m, 1H) 7.19 (s, 1H) 7.22 (m, 4H) 7.71 (t, 1H) 7.87 (t, 1H) 8.12 (d, 1H) 17 (d, 1H) 8.23 (brs, 1H) 8.31 (d, 1H) 8.68 (s, 1H) 8.68 (brs, 2H)
13 C-NMR (DMSO-d6): 7.52, 30.42, 37.43, 40.41, 41.64, 42.21, 50.08, 53.96, 66.28, 76.27, 95.20, 118.87, 126.20, 127.59, 127.80, 128.01, 128.39, 128.79, 129.06, 129.50, 130.37, 131.49, 137. 82,145.11,145.87,147.72,152.12,156.41,167.00,168.35,168.84,171.68

〔実施例20〕
ポリエーテル−20−GlyGlyPheGly−カンプトテシン(40)の製造
実施例6で得た、共重合体(15)(100mg)をDMF(5ml)に溶解し、この溶液に実施例19で得た、20−GlyGlyPheGly−カンプトテシン塩酸塩(38)(20mg)をDMF(0.5ml)及びHBTU(100mg)を溶解したDMF(0.5ml)を加え、室温で2時間撹拌した。この反応液を透析膜(分子量カットオフ12,000−14,000、米国、スペクトラム社製)を用い、精製水に対して4℃で2日間透析した。この内液をメンブランフィルター(0.22μm)にて濾過した後、凍結乾燥し、表記化合物(40)(101mg)を得た。本複合体の薬物の導入量は、254nmにおける紫外吸光度及び複合体の総重量から算出したところ、4.5%(重量%)であった。
Example 20
Preparation of polyether-20-GlyGlyPheGly-camptothecin (40) Copolymer (15) (100 mg) obtained in Example 6 was dissolved in DMF (5 ml), and 20- GlyGlyPheGly-camptothecin hydrochloride (38) (20 mg) was added with DMF (0.5 ml) and DMF (0.5 ml) in which HBTU (100 mg) was dissolved, and the mixture was stirred at room temperature for 2 hours. This reaction solution was dialyzed against purified water at 4 ° C. for 2 days using a dialysis membrane (molecular weight cut-off 12,000-14,000, manufactured by Spectrum, USA). The internal solution was filtered through a membrane filter (0.22 μm) and then lyophilized to obtain the title compound (40) (101 mg). The amount of drug introduced into this complex was 4.5% (% by weight) as calculated from the ultraviolet absorbance at 254 nm and the total weight of the complex.

〔実施例21〕
21−Ala−デキサメタゾン塩酸塩(41)の製造
(工程1)21−BOC−Ala−デキサメタゾン(42)の製造
BOC−Ala(568mg、3mmol)及び、ジメチルアミノピリジン(244mg、2mmol)及びデキサメタゾン(392mg、1mmol)を乾燥塩化メチレン(30ml)に溶解した。次いで、DIPC(252mg、2mmol)を加え室温で0.5時間撹拌した。反応溶液を0.1N塩酸及び飽和食塩水で洗浄しその後、溶媒を減圧下留去した。シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/アセトニトリル=80/20)で精製し、21−BOC−Ala−デキサメタゾン(42)(553mg)を得た。
Example 21
Production of 21-Ala-dexamethasone hydrochloride (41) (Step 1) Production of 21-BOC-Ala-dexamethasone (42)
BOC-Ala (568 mg, 3 mmol), dimethylaminopyridine (244 mg, 2 mmol) and dexamethasone (392 mg, 1 mmol) were dissolved in dry methylene chloride (30 ml). Then, DIPC (252 mg, 2 mmol) was added and stirred at room temperature for 0.5 hour. The reaction solution was washed with 0.1N hydrochloric acid and saturated brine, and then the solvent was distilled off under reduced pressure. Purified by silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 30 cm, eluent: methylene chloride / acetonitrile = 80/20), 21- BOC-Ala-dexamethasone (42) (553 mg) was obtained.

(工程2)21−Ala−デキサメタゾン塩酸塩(41)の製造
化合物(42)(500mg)を塩化メチレン(10ml)に溶解し、室温下トリフルオロ酢酸(TFA;1ml)を加え2時間撹拌後に溶媒を留去した。脱BOC化した化合物をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×50cm、溶離液:アセトニトリル/メタノール/塩化メチレン=5/15/85)で精製し、その後陰イオン交換樹脂で処理することで、標記化合物(41)(412mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ0.80(d,3H)0.90(s,3H)1.09(s,1H)1.33−1.79(m,4H)1.49(s,3H)1.50(d,3H)2.08−2.91(m,6H)3.35(brs,1H)4.17(m,1H)4.24(q,1H)4.95(d,1H)5.20(d,1H)5.27(s,1H)5.53(d,1H)6.01(s,1H)6.23(dd,1H)7.33(d,1H)8.46(brs,1H)
13C−NMR(DMSO−d6):15.20,16.09,16.29,23.08,27.41,30.41,32.05,33.70,35.61,35.83,43.42,47.80,48.05,48.25,69.38,70.41,90.61,101.42,124.19,129.03,152.94,167.17,169.98,185.41,204.30
(Step 2) Preparation of 21-Ala-dexamethasone hydrochloride (41) Compound (42) (500 mg) was dissolved in methylene chloride (10 ml), trifluoroacetic acid (TFA; 1 ml) was added at room temperature, and the mixture was stirred for 2 hours. Was distilled off. The de-BOC compound was subjected to silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 50 cm, eluent: acetonitrile / methanol / methylene chloride = 5 / 15/85), and then treated with an anion exchange resin to give the title compound (41) (412 mg). The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 0.80 (d, 3H) 0.90 (s, 3H) 1.09 (s, 1H) 1.33-1.79 (m, 4H) 1.49 ( s, 3H) 1.50 (d, 3H) 2.08-2.91 (m, 6H) 3.35 (brs, 1H) 4.17 (m, 1H) 4.24 (q, 1H) 95 (d, 1H) 5.20 (d, 1H) 5.27 (s, 1H) 5.53 (d, 1H) 6.01 (s, 1H) 6.23 (dd, 1H) 7.33 ( d, 1H) 8.46 (brs, 1H)
13 C-NMR (DMSO-d6): 15.20, 16.09, 16.29, 23.08, 27.41, 30.41, 32.05, 33.70, 35.61, 35.83, 43.42, 47.80, 48.05, 48.25, 69.38, 70.41, 90.61, 101.42, 124.19, 129.03, 152.94, 167.17, 169. 98, 185.41, 204.30

〔実施例22〕
ポリエーテル−21−Ala−デキサメタゾン(43)の製造
実施例6で得た、共重合体(15)(100mg)をDMF(5ml)に溶解した。この溶液に実施例21で得た、21−Ala−デキサメタゾン塩酸塩(41)(20mg)を溶解したDMF(0.5ml)及びHBTU((100mg)を溶解したDMF(0.5ml)を加え、室温で2時間撹拌した。この反応液を透析膜(分子量カットオフ12,000−14,000、米国、スペクトラム社製)を用い、精製水に対して4℃で2日間透析した。この内液をメンブランフィルター(0.22μm)にて濾過した後、凍結乾燥し、表記化合物(43)(92mg)を得た。本複合体の薬物の導入量は、240nmにおける紫外吸光度及び複合体の総重量から算出したところ、3.5%(重量%)であった。
[Example 22]
Production of polyether-21-Ala-dexamethasone (43) The copolymer (15) (100 mg) obtained in Example 6 was dissolved in DMF (5 ml). To this solution was added DMF (0.5 ml) in which 21-Ala-dexamethasone hydrochloride (41) (20 mg) obtained in Example 21 was dissolved and DMF (0.5 ml) in which HBTU ((100 mg) was dissolved, The reaction solution was dialyzed for 2 days at 4 ° C. against purified water using a dialysis membrane (molecular weight cut-off 12,000-14,000, manufactured by Spectrum, USA). Was filtered through a membrane filter (0.22 μm) and lyophilized to obtain the title compound (43) (92 mg) .The amount of drug introduced into this complex was the UV absorbance at 240 nm and the total weight of the complex. From the above, it was 3.5% (% by weight).

〔実施例23〕21−Leu−デキサメタゾン塩酸塩(44)の製造
(工程1) 20−BOC−Leu−デキサメタゾン(45)の製造 BOC−Leu・H2O(747mg、3mmol)及び、ジメチルアミノピリジン(244mg、2mmol)及びデキサメタゾン(392mg、1mmol)を塩化メチレン(30ml)に溶解した。次いで、DIPC(252mg、2mmol)を加え室温で13時間撹拌した。反応溶液を0.1N塩酸及び飽和食塩水で洗浄しその後、溶媒を減圧下留去した。シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/アセトニトリル=80/20)で精製し、20−BOC−Leu−デキサメタゾン(45)(605mg)を得た。
Example 23 Production of 21-Leu-dexamethasone hydrochloride (44) (Step 1) Production of 20-BOC-Leu-dexamethasone (45) BOC-Leu · H 2 O (747 mg, 3 mmol) and dimethylaminopyridine (244 mg) 2 mmol) and dexamethasone (392 mg, 1 mmol) were dissolved in methylene chloride (30 ml). Then, DIPC (252 mg, 2 mmol) was added and stirred at room temperature for 13 hours. The reaction solution was washed with 0.1N hydrochloric acid and saturated brine, and then the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 30 cm, eluent: methylene chloride / acetonitrile = 80/20), 20− BOC-Leu-dexamethasone (45) (605 mg) was obtained.

(工程2)21−Leu−デキサメタゾン塩酸塩(44)の製造
化合物(45)(500mg)を塩化メチレン(5ml)に溶解し、室温下トリフルオロ酢酸(TFA;1ml)を加え、2時間撹拌後、溶媒を留去した。脱BOC化した化合物をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×50cm、溶離液:アセトニトリル/メタノール/塩化メチレン=5/15/85)で精製し、その後陰イオン交換樹脂で処理することで、標記化合物(44)(510mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ0.79(d,3H)0.88(d,3H)0.89(s、3H)0.92(d,3H)1.08(m,1H)1.34−1.81(m,6H)1.49(s,3H)1.86(m,1H)2.12−2.88(m,6H)3.35(s,2H)3.44(q,1H)4.16(m,1H)4.85(d,1H)5.02(d,1H)5.17(s,1H)5.47(d,1H)6.01(s,1H)6.23(dd,1H)7.31(d,1H)
13C−NMR(DMSO−d6):15.27,16.30,21.87,23.11,23.15,24.15,27.46,30.50,32.13,33.79,35.52,35.79,43.46,43.56,48.15,48.16,52.16,68.21,70.62,90.67,101.47,124.24,129.06,153.04,167.27,175.47,185.48,204.90
(Step 2) Production of 21-Leu-dexamethasone hydrochloride (44) Compound (45) (500 mg) was dissolved in methylene chloride (5 ml), trifluoroacetic acid (TFA; 1 ml) was added at room temperature, and the mixture was stirred for 2 hours. The solvent was distilled off. The de-BOC compound was subjected to silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 50 cm, eluent: acetonitrile / methanol / methylene chloride = 5 / 15/85), and then treated with an anion exchange resin to obtain the title compound (44) (510 mg). The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 0.79 (d, 3H) 0.88 (d, 3H) 0.89 (s, 3H) 0.92 (d, 3H) 1.08 (m, 1H) 1.34-1.81 (m, 6H) 1.49 (s, 3H) 1.86 (m, 1H) 2.1-2.88 (m, 6H) 3.35 (s, 2H) 44 (q, 1H) 4.16 (m, 1H) 4.85 (d, 1H) 5.02 (d, 1H) 5.17 (s, 1H) 5.47 (d, 1H) 6.01 ( s, 1H) 6.23 (dd, 1H) 7.31 (d, 1H)
13 C-NMR (DMSO-d6): 15.27, 16.30, 21.87, 23.11, 23.15, 24.15, 27.46, 30.50, 32.13, 33.79, 35.52, 35.79, 43.46, 43.56, 48.15, 48.16, 52.16, 68.21, 70.62, 90.67, 101.47, 124.24, 129. 06, 153.04, 167.27, 175.47, 185.48, 204.90

〔実施例24〕
ポリエーテル−21−Leu−デキサメタゾン(46)の製造
実施例6で得た、共重合体(15)(100mg)を水20mlに溶解し、氷冷下、この溶液にDMF5mlを加えた。この溶液に実施例23で得た、21−Leu−デキサメタゾン塩酸塩(44)(20mg)を溶解したDMF(0.5ml)及びHBTU(100mg)を溶解したDMF(0.5ml)を加え、室温で2時間撹拌した。この反応液を透析膜(分子量カットオフ12,000−14,000、米国、スペクトラム社製)を用い、精製水に対して4℃で2日間透析した。この内液をメンブランフィルター(0.22μm)にて濾過した後、凍結乾燥し、表記化合物(46)(97mg)を得た。本複合体の薬物の導入量は、240nmにおける紫外吸光度及び複合体の総重量から算出したところ、4.1%(重量%)であった。
Example 24
Production of polyether-21-Leu-dexamethasone (46) The copolymer (15) (100 mg) obtained in Example 6 was dissolved in 20 ml of water, and 5 ml of DMF was added to this solution under ice cooling. To this solution was added DMF (0.5 ml) in which 21-Leu-dexamethasone hydrochloride (44) (20 mg) obtained in Example 23 was dissolved and DMF (0.5 ml) in which HBTU (100 mg) was dissolved. For 2 hours. This reaction solution was dialyzed against purified water at 4 ° C. for 2 days using a dialysis membrane (molecular weight cut-off 12,000-14,000, manufactured by Spectrum, USA). The internal solution was filtered through a membrane filter (0.22 μm) and then lyophilized to obtain the title compound (46) (97 mg). The amount of drug introduced into this complex was 4.1% (% by weight) as calculated from the ultraviolet absorbance at 240 nm and the total weight of the complex.

〔実施例25〕
21−Ile−デキサメタゾン塩酸塩(47)の製造
(工程1)20−BOC−Ile−デキサメタゾン(48)の製造
BOC−Ile(1040mg、4.5mmol)及び、ジメチルアミノピリジン(366mg、3mmol)及びデキサメタゾン(588mg、1.5mmol)を塩化メチレン(30ml)に溶解した。次いで、DIPC(378mg、3mmol)を加え室温で14時間撹拌した。反応溶液を0.1N塩酸及び飽和食塩水で洗浄しその後、溶媒を減圧下留去した。シリカゲルカラムクロマトグラフィー(シリカゲル:独国Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×30cm、溶離液:塩化メチレン/アセトニトリル=80/20)で精製し、20−BOC−Ile−デキサメタゾン(48)(620mg)を得た。
Example 25
Production of 21-Ile-dexamethasone hydrochloride (47) (Step 1) Production of 20-BOC-Ile-dexamethasone (48)
BOC-Ile (1040 mg, 4.5 mmol), dimethylaminopyridine (366 mg, 3 mmol) and dexamethasone (588 mg, 1.5 mmol) were dissolved in methylene chloride (30 ml). Then, DIPC (378 mg, 3 mmol) was added and stirred at room temperature for 14 hours. The reaction solution was washed with 0.1N hydrochloric acid and saturated brine, and then the solvent was distilled off under reduced pressure. Purification by silica gel column chromatography (silica gel: Merck, Germany, Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 30 cm, eluent: methylene chloride / acetonitrile = 80/20), 20-BOC-Ile-dexamethasone (48) (620 mg) was obtained.

(工程2)21−Ile−デキサメタゾン塩酸塩(47)の製造
化合物(48)(600mg)を塩化メチレン(5ml)に溶解し、室温下トリフルオロ酢酸(TFA;1ml)を加え、2時間撹拌後、溶媒を留去した。脱BOC化した化合物をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:4.0×50cm、溶離液:アセトニトリル/メタノール/塩化メチレン=5/15/85)で精製し、その後陰イオン交換樹脂で処理することで、標記化合物(47)(584mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ0.80(d,3H)0.90(s,3H)0.93(t,3H)1.03(d,3H)1.08(m,1H)1.33−1.86(m,6H)1.49(s,3H)1.50(d,1H)2.13−2.91(m,6H)4.11(d,1H)4.16(m,1H)4.99(d,1H)5.17(d,1H)5.26(s,1H)5.55(d,1H)6.01(s,1H)6.23(dd,1H)7.34(d,1H)8.44(s,1H)
13C−NMR(DMSO−d6):11.69,13.69,15.21,16.21,23.09,25.02,27.44,30.45,32.08,33.72,35.81,35.61,36.34,43.44,48.08,48.22,56.15,69.54,70.41,90.72,101.46,124.19,129.00,152.96,167.18,168.66,185.41,204.40
(Step 2) Production of 21-Ile-dexamethasone hydrochloride (47) Compound (48) (600 mg) was dissolved in methylene chloride (5 ml), trifluoroacetic acid (TFA; 1 ml) was added at room temperature, and the mixture was stirred for 2 hours. The solvent was distilled off. The de-BOC compound was subjected to silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 4.0 × 50 cm, eluent: acetonitrile / methanol / methylene chloride = 5 / 15/85) and then treated with an anion exchange resin to obtain the title compound (47) (584 mg). The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 0.80 (d, 3H) 0.90 (s, 3H) 0.93 (t, 3H) 1.03 (d, 3H) 1.08 (m, 1H) 1.33-1.86 (m, 6H) 1.49 (s, 3H) 1.50 (d, 1H) 2.13-2.91 (m, 6H) 4.11 (d, 1H) 16 (m, 1H) 4.99 (d, 1H) 5.17 (d, 1H) 5.26 (s, 1H) 5.55 (d, 1H) 6.01 (s, 1H) 6.23 ( dd, 1H) 7.34 (d, 1H) 8.44 (s, 1H)
13 C-NMR (DMSO-d6): 11.69, 13.69, 15.21, 16.21, 23.09, 25.02, 27.44, 30.45, 32.08, 33.72, 35.81, 35.61, 36.34, 43.44, 48.08, 48.22, 56.15, 69.54, 70.41, 90.72, 101.46, 124.19, 129. 00, 152.96, 167.18, 168.66, 185.41, 204.40

〔実施例26〕
ポリエーテル−21−Ile−デキサメタゾン(49)の製造
実施例6で得た、共重合体(15)(102mg)をDMF5mlに溶解した。この溶液に実施例25で得た、21−Ile−デキサメタゾン塩酸塩(47)(20mg)を溶解したDMF(0.5ml)及びHBTU(100mg)を溶解したDMF(0.5ml)を加え、室温で2時間撹拌した。この反応液を透析膜(分子量カットオフ12,000−14,000、米国、スペクトラム社製)を用い、精製水に対して4℃で2日間透析した。この内液をメンブランフィルター(0.22μm)にて濾過した後、凍結乾燥し、表記化合物(49)(0.97g)を得た。本複合体の薬物の導入量は、240nmにおける紫外吸光度及び複合体の総重量から算出したところ、3.0%(重量%)であった。
Example 26
Preparation of polyether-21-Ile-dexamethasone (49) The copolymer (15) (102 mg) obtained in Example 6 was dissolved in 5 ml of DMF. To this solution, DMF (0.5 ml) in which 21-Ile-dexamethasone hydrochloride (47) (20 mg) obtained in Example 25 was dissolved and DMF (0.5 ml) in which HBTU (100 mg) was dissolved were added. For 2 hours. This reaction solution was dialyzed against purified water at 4 ° C. for 2 days using a dialysis membrane (molecular weight cut-off 12,000-14,000, manufactured by Spectrum, USA). The internal solution was filtered through a membrane filter (0.22 μm) and then lyophilized to obtain the title compound (49) (0.97 g). The amount of drug introduced into this complex was 3.0% (% by weight) as calculated from the ultraviolet absorbance at 240 nm and the total weight of the complex.

〔実施例27〕
Ala−ファスジル(50)の製造
(工程1)BOC−Ala−ファスジル(51)の製造
BOC−Ala(756mg、4mmol)及び、ジメチルアミノピリジン(122mg、1mmol)及び塩酸ファスジル水和物(673mg、2mmol)を乾燥塩化メチレン(30ml)に溶解した。次いで、WSCD・HCl(水溶性カルボジイミド、ペプチド研製、766mg、4mmol)を加え室温で終夜撹拌した。反応溶液を飽和重曹水及び飽和食塩水で洗浄しその後、溶媒を減圧下留去した。シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:2.0×30cm、溶離液:塩化メチレン/メタノール/アセトニトリル=95/5/5)で精製し、BOC−Ala−ファスジル(51)(713mg)を得た。
Example 27
Production of Ala-fasudil (50) (Step 1) Production of BOC-Ala-fasudil (51)
BOC-Ala (756 mg, 4 mmol), dimethylaminopyridine (122 mg, 1 mmol) and fasudil hydrochloride hydrate (673 mg, 2 mmol) were dissolved in dry methylene chloride (30 ml). Next, WSCD · HCl (water-soluble carbodiimide, Peptide Laboratories, 766 mg, 4 mmol) was added, and the mixture was stirred at room temperature overnight. The reaction solution was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, and then the solvent was evaporated under reduced pressure. Purification by silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 2.0 × 30 cm, eluent: methylene chloride / methanol / acetonitrile = 95/5/5) As a result, BOC-Ala-fasudil (51) (713 mg) was obtained.

(工程2)Ala−ファスジル(50)の製造
化合物(51)(650mg)に対し、室温下トリフルオロ酢酸(TFA、5ml)を加え10分後に溶媒を留去した。脱BOC化した化合物をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:2.0×30cm、溶離液:アセトニトリル/メタノール/塩化メチレン=85/15/5)で精製し、その後陰イオン交換樹脂で処理することで、標記化合物(50)(504mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ1.30(dd,2H)1.7−2.0(2H)3.2−3.8(8H)4.3(1H)7.9(1H)8.1(2H)8.3−8.4(2H)8.5(1H)8.7(1H)9.5(1H)
13C−NMR(DMSO−d6):16.4,16.7,27.6,29.5,44.4−48.9,117.0,126.6,128.8,130.6,132.3,132.6,133.5,133.9,144.8,153.5,169.4
(Step 2) Production of Ala-fasudil (50) To compound (51) (650 mg), trifluoroacetic acid (TFA, 5 ml) was added at room temperature, and the solvent was distilled off after 10 minutes. Silica gel column chromatography (Silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 2.0 × 30 cm, eluent: acetonitrile / methanol / methylene chloride = 85 / 15/5) and then treated with an anion exchange resin to obtain the title compound (50) (504 mg). The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 1.30 (dd, 2H) 1.7-2.0 (2H) 3.2-3.8 (8H) 4.3 (1H) 7.9 (1H) 8.1 (2H) 8.3-8.4 (2H) 8.5 (1H) 8.7 (1H) 9.5 (1H)
13 C-NMR (DMSO-d6): 16.4, 16.7, 27.6, 29.5, 44.4-48.9, 117.0, 126.6, 128.8, 130.6, 132.3, 132.6, 133.5, 133.9, 144.8, 153.5, 169.4

〔実施例28〕
ポリエーテル−Ala−ファスジル(52)の製造
実施例6で得た、共重合体(15)(104mg)をDMF5mlに溶解した。この溶液に実施例27で得た、Ala−ファスジル(50)(10mg)を溶解したDMF(0.5ml)及びHBTU(52mg)を溶解したDMF(0.5ml)を加え、室温で2時間撹拌した。この反応液を透析膜(分子量カットオフ12,000−14,000、米国、スペクトラム社製)を用い、精製水に対して4℃で2日間透析した。この内液をメンブランフィルター(0.45μm)にて濾過した後、凍結乾燥し、表記化合物(52)(110mg)を得た。本複合体の薬物の導入量は、270nmにおける紫外吸光度及び複合体の総重量から算出したところ、3.4%(重量%)であった。
Example 28
Production of polyether-Ala-fasudil (52) The copolymer (15) (104 mg) obtained in Example 6 was dissolved in 5 ml of DMF. To this solution were added DMF (0.5 ml) dissolved in Ala-fasudil (50) (10 mg) and DMF (0.5 ml) dissolved in HBTU (52 mg) obtained in Example 27, and the mixture was stirred at room temperature for 2 hours. did. This reaction solution was dialyzed against purified water at 4 ° C. for 2 days using a dialysis membrane (molecular weight cut-off 12,000-14,000, manufactured by Spectrum, USA). The internal solution was filtered through a membrane filter (0.45 μm) and then lyophilized to obtain the title compound (52) (110 mg). The amount of drug introduced into this complex was 3.4% (% by weight) as calculated from the ultraviolet absorbance at 270 nm and the total weight of the complex.

〔実施例29〕
Leu−ファスジル(53)の製造
(工程1)BOC−Leu−ファスジル(54)の製造
BOC−Leu・HO(997mg、4mmol)及び、ジメチルアミノピリジン(122mg、1mmol)及び塩酸ファスジル水和物(673mg、2mmol)を乾燥塩化メチレン(30ml)に溶解した。次いで、WSCD・HCl(水溶性カルボジイミド、ペプチド研製、766mg、4mmol)を加え室温で終夜撹拌した。反応溶液を飽和重曹水及び飽和食塩水で洗浄しその後、溶媒を減圧下留去した。シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:2.0×30cm、溶離液:塩化メチレン/メタノール/アセトニトリル=95/5/5)で精製し、BOC−Leu−ファスジル(54)(718mg)を得た。
Example 29
Production of Leu-Fasil (53) (Step 1) Production of BOC-Leu-Fasil (54)
BOC-Leu.H 2 O (997 mg, 4 mmol), dimethylaminopyridine (122 mg, 1 mmol) and fasudil hydrochloride hydrate (673 mg, 2 mmol) were dissolved in dry methylene chloride (30 ml). Next, WSCD · HCl (water-soluble carbodiimide, Peptide Laboratories, 766 mg, 4 mmol) was added, and the mixture was stirred at room temperature overnight. The reaction solution was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, and then the solvent was evaporated under reduced pressure. Purification by silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 2.0 × 30 cm, eluent: methylene chloride / methanol / acetonitrile = 95/5/5) To obtain BOC-Leu-fasudil (54) (718 mg).

(工程2)Leu−ファスジル(53)の製造
化合物(54)(650mg)に対し、室温下トリフルオロ酢酸(TFA、5ml)を加え10分後に溶媒を留去した。脱BOC化した化合物をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:2.0×30cm、溶離液:アセトニトリル/メタノール/塩化メチレン=85/15/5)で精製し、その後陰イオン交換樹脂で処理することで、標記化合物(53)(525mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータを下記に示す。
1H−NMR(DMSO−d6):δ0.9(6H)1.4−2.0(5H)3.2−3.8(8H)4.3(1H)7.9(1H)8.2(2H)8.3−8.4(2H)8.5(1H)8.7(1H)9.5(1H)
13C−NMR(DMSO−d6):21.0,21.2,23.1,23.4,27.8,29.4,40.0,45.9−48.6,117.1,126.7,128.8,130.6,132.5,132.7,133.5,133.9,144.6,153.4,169.1
(Step 2) Production of Leu-fasudil (53) To compound (54) (650 mg), trifluoroacetic acid (TFA, 5 ml) was added at room temperature, and the solvent was distilled off after 10 minutes. Silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 2.0 × 30 cm, eluent: acetonitrile / methanol / methylene chloride = 85 / 15/5) and then treated with an anion exchange resin to give the title compound (53) (525 mg). The NMR data in DMSO-d6 solvent using tetramethylsilane as a standard is shown below.
1 H-NMR (DMSO-d6): δ 0.9 (6H) 1.4-2.0 (5H) 3.2-3.8 (8H) 4.3 (1H) 7.9 (1H) 8. 2 (2H) 8.3-8.4 (2H) 8.5 (1H) 8.7 (1H) 9.5 (1H)
13 C-NMR (DMSO-d6): 21.0, 21.2, 23.1, 23.4, 27.8, 29.4, 40.0, 45.9-48.6, 117.1 126.7, 128.8, 130.6, 132.5, 132.7, 133.5, 133.9, 144.6, 153.4, 169.1

〔実施例30〕
ポリエーテル−Leu−ファスジル(55)の製造
実施例6で得た、共重合体(15)(101mg)をDMF5mlに溶解した。この溶液に実施例29で得たLeu−ファスジル(53)(10.6mg)を溶解したDMF(0.5ml)及びHBTU(52mg)を溶解したDMF(0.5ml)を加え、室温で2時間撹拌した。この反応液を透析膜(分子量カットオフ12,000−14,000、米国、スペクトラム社製)を用い、精製水に対して4℃で2日間透析した。この内液をメンブランフィルター(0.45μm)にて濾過した後、凍結乾燥し、表記化合物(55)(106mg)を得た。本複合体の薬物の導入量は、270nmにおける紫外吸光度及び複合体の総重量から算出したところ、3.4%(重量%)であった。
Example 30
Production of polyether-Leu-fasudil (55) The copolymer (15) (101 mg) obtained in Example 6 was dissolved in 5 ml of DMF. To this solution were added DMF (0.5 ml) in which Leu-Fasdil (53) (10.6 mg) obtained in Example 29 was dissolved and DMF (0.5 ml) in which HBTU (52 mg) was dissolved. Stir. This reaction solution was dialyzed against purified water at 4 ° C. for 2 days using a dialysis membrane (molecular weight cut-off 12,000-14,000, manufactured by Spectrum, USA). The internal solution was filtered through a membrane filter (0.45 μm) and then lyophilized to obtain the title compound (55) (106 mg). The amount of drug introduced into this complex was 3.4% (% by weight) as calculated from the ultraviolet absorbance at 270 nm and the total weight of the complex.

〔実施例31〕
Ile−ファスジル(56)の製造
(工程1)BOC−Leu−ファスジル(57)の製造
BOC−Ile(766mg、4mmol)及び、ジメチルアミノピリジン(122mg、1mmol)及び塩酸ファスジル水和物(673mg、2mmol)を乾燥塩化メチレン(30ml)に溶解した。次いで、WSCD・HCl(水溶性カルボジイミド、ペプチド研製、766mg、4mmol)を加え室温で終夜撹拌した。反応溶液を飽和重曹水及び飽和食塩水で洗浄しその後、溶媒を減圧下留去した。シリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:2.0×30cm、溶離液:塩化メチレン/アセトニトリル=70/30)で精製し、BOC−Leu−ファスジル(57)(826mg)を得た。
Example 31
Production of Ile-fasudil (56) (Step 1) Production of BOC-Leu-fasudil (57)
BOC-Ile (766 mg, 4 mmol), dimethylaminopyridine (122 mg, 1 mmol) and fasudil hydrochloride hydrate (673 mg, 2 mmol) were dissolved in dry methylene chloride (30 ml). Next, WSCD · HCl (water-soluble carbodiimide, Peptide Laboratories, 766 mg, 4 mmol) was added, and the mixture was stirred at room temperature overnight. The reaction solution was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, and then the solvent was evaporated under reduced pressure. Purification by silica gel column chromatography (silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 2.0 × 30 cm, eluent: methylene chloride / acetonitrile = 70/30), BOC- Leu-fasudil (57) (826 mg) was obtained.

(工程2)Ile−ファスジル(56)の製造
化合物(57)(800mg)に対し、室温下トリフルオロ酢酸(TFA、5ml)を加え10分後に溶媒を留去した。脱BOC化した化合物をシリカゲルカラムクロマトグラフィー(シリカゲル:Merck社製 Art No.9385,Silica gel 60,200-400 mesh,カラム:2.0×30cm、溶離液:アセトニトリル/メタノール/塩化メチレン=85/15/5)で精製し、その後陰イオン交換樹脂で処理することで、標記化合物(56)(763mg)を得た。テトラメチルシランを標準とするDMSO-d6溶媒におけるNMRデータ及び質量分析データを下記に示す。
1H−NMR(DMSO−d6):δ0.85(tt、3H)0.96(dd、3H)1.14(1H)1.46(1H)1.7−2.0(3H)3.2−3.8(8H)4.2(1H)7.9(1H)8.1(2H)8.3−8.4(2H)8.5(dd、1H)8.7(dd、1H)9.5(1H)
13C−NMR(DMSO−d6):11.2,14.8,22.9,27.5,29.7,35.7,35.9,44.4,45.9,46.2、46.7,47.1,47.3,49.2,53.8,117.1,126.6,128.8,130.6,132.4,132.6,133.5,133.9,144.6,153.4,168.2
MS:m/z 405[M+H]
(Step 2) Production of Ile-fasudil (56) To the compound (57) (800 mg), trifluoroacetic acid (TFA, 5 ml) was added at room temperature, and the solvent was distilled off after 10 minutes. Silica gel column chromatography (Silica gel: Merck Art No. 9385, Silica gel 60, 200-400 mesh, column: 2.0 × 30 cm, eluent: acetonitrile / methanol / methylene chloride = 85 / 15/5), and then treated with an anion exchange resin to obtain the title compound (56) (763 mg). The NMR data and mass spectrometry data in DMSO-d6 solvent with tetramethylsilane as the standard are shown below.
1 H-NMR (DMSO-d6): δ 0.85 (tt, 3H) 0.96 (dd, 3H) 1.14 (1H) 1.46 (1H) 1.7-2.0 (3H) 2-3.8 (8H) 4.2 (1H) 7.9 (1H) 8.1 (2H) 8.3-8.4 (2H) 8.5 (dd, 1H) 8.7 (dd, 1H) 9.5 (1H)
13 C-NMR (DMSO-d6): 11.2, 14.8, 22.9, 27.5, 29.7, 35.7, 35.9, 44.4, 45.9, 46.2, 46.7, 47.1, 47.3, 49.2, 53.8, 117.1, 126.6, 128.8, 130.6, 132.4, 132.6, 133.5, 133. 9, 144.6, 153.4, 168.2
MS: m / z 405 [M + H] +

〔実施例32〕
ポリエーテル−Ile−ファスジル(58)の製造
実施例6で得た、共重合体(15)(101mg)をDMF5mlに溶解した。この溶液に実施例29で得たIle−ファスジル(56)(10.6mg)を溶解したDMF(0.5ml)及びHBTU(52mg)を溶解したDMF(0.5ml)を加え、室温で2時間撹拌した。この反応液を透析膜(分子量カットオフ12,000−14,000、米国、スペクトラム社製)を用い、精製水に対して4℃で2日間透析した。この内液をメンブランフィルター(0.45μm)にて濾過した後、凍結乾燥し、表記化合物(58)(109mg)を得た。本複合体の薬物の導入量は、270nmにおける紫外吸光度及び複合体の総重量から算出したところ、3.7%(重量%)であった。
[Example 32]
Preparation of polyether-Ile-fasudil (58) The copolymer (15) (101 mg) obtained in Example 6 was dissolved in 5 ml of DMF. To this solution were added DMF (0.5 ml) in which Ile-fasudil (56) (10.6 mg) obtained in Example 29 was dissolved and DMF (0.5 ml) in which HBTU (52 mg) was dissolved. Stir. This reaction solution was dialyzed against purified water at 4 ° C. for 2 days using a dialysis membrane (molecular weight cut-off 12,000-14,000, manufactured by Spectrum, USA). The internal solution was filtered through a membrane filter (0.45 μm) and then freeze-dried to obtain the title compound (58) (109 mg). The amount of drug introduced into this complex was 3.7% (% by weight) as calculated from the ultraviolet absorbance at 270 nm and the total weight of the complex.

〔実施例33〕
化合物(19)、(21)、(23)、(25)、(27)及び(34)の生理食塩水に対する溶解度
化合物(19)、(21)、(23)、(25)、(27)及び(34)をそれぞれ10mg量り取り、0.1mlの生理食塩水に加えたところ、加えた化合物はそれぞれ完全に溶解した。パクリタキセル換算では、化合物(19)は6.1mg/ml(生理食塩水)の溶解度であった。同様に(21)は3.7mg/ml(生理食塩水)の溶解度、(23)は4.0mg/ml(生理食塩水)の溶解度、(25)は2.5mg/ml(生理食塩水)の溶解度、(27)は3.5mg/ml(生理食塩水)の溶解度、(34)は6.4mg/ml(生理食塩水)の溶解度であった。
更に、パクリタキセル(米国、HAUSER社製)1mgは、10mlの生理食塩水に溶解しなかった。
Example 33
Solubility of compounds (19), (21), (23), (25), (27) and (34) in physiological saline Compounds (19), (21), (23), (25) and (27) 10 mg each of (34) and (34) were weighed and added to 0.1 ml of physiological saline, and the added compounds were completely dissolved. In terms of paclitaxel, compound (19) had a solubility of 6.1 mg / ml (saline). Similarly, (21) is 3.7 mg / ml (saline), (23) is 4.0 mg / ml (saline), and (25) is 2.5 mg / ml (saline). (27) was 3.5 mg / ml (saline) and (34) was 6.4 mg / ml (saline).
Furthermore, 1 mg of paclitaxel (manufactured by HAUSER, USA) did not dissolve in 10 ml of physiological saline.

〔実施例34〕
マウス及びヒト血漿中における化合物(19)、(21)、(23)及び(25)からのパクリタキセル遊離評価実験
実施例9で得た化合物(19)、実施例10で得た化合物(21)、実施例11で得た化合物(23)及び実施例12で得た化合物(25)をそれぞれ生理食塩水に溶解し、パクリタキセルに換算した濃度が125μg/mlとなるよう調製した。これらの溶液20μlをマウス及びヒト血漿200μlにそれぞれ添加し、37℃における薬物複合体からのパクリタキセル遊離量を測定した。薬学雑誌,114,351−355(1994)記載の方法に従い、血漿中からのパクリタキセル回収を行い、HPLCにより、化合物(19)、(21)、(23)及び(25)から血漿中に遊離したパクリタキセル量を評価した。
図5及び図6には、パクリタキセル遊離の経時変化を示した。その結果、薬物複合体からのパクリタキセルの遊離速度はマウス及びヒト血漿で同じ傾向が見られた。その順序は、遊離速度の大きい順に化合物(19)>(21)>(23)>(25)であり、これはリンカーであるアミノ酸の立体障害の大きさと相関が見られた。
Example 34
Paclitaxel release evaluation experiment from compounds (19), (21), (23) and (25) in mouse and human plasma Compound (19) obtained in Example 9, Compound (21) obtained in Example 10 The compound (23) obtained in Example 11 and the compound (25) obtained in Example 12 were each dissolved in physiological saline and prepared so that the concentration in terms of paclitaxel was 125 μg / ml. 20 μl of these solutions were added to 200 μl of mouse and human plasma, respectively, and the amount of paclitaxel released from the drug complex at 37 ° C. was measured. In accordance with the method described in Pharmaceutical Journal, 114, 351-355 (1994), paclitaxel was collected from plasma and released from plasma from compounds (19), (21), (23) and (25) by HPLC. The amount of paclitaxel was evaluated.
FIG. 5 and FIG. 6 show changes with time in the release of paclitaxel. As a result, the release rate of paclitaxel from the drug complex showed the same tendency in mouse and human plasma. The order was compound (19)>(21)>(23)> (25) in descending order of release rate, and this was correlated with the size of the steric hindrance of the amino acid that is the linker.

〔実施例35〕
抗腫瘍効果の評価実験(1)
Colon26腫瘍細胞4%懸濁液を、Balb/C系の雌性マウス(6週齢)の側腹部皮下に移植し、被検化合物として実施例9で得た化合物(19)、実施例10で得た化合物(21)、実施例11で得た化合物(23)、実施例12で得た化合物(25)を生理食塩水に溶解した被検液、及びパクリタキセルをエタノール−クレモホールEL(米国、シグマ社製)−生理食塩水に溶解した被検液を、一群5匹として尾静脈内に投与した。投与量はパクリタキセル換算で50mg/kgとした。無処置群は、一群9匹とした。細胞移植後2日目に、第1回被検液を投与し、その後7日毎に、被検液を尾静脈内に合計4回投与した。マウスの腫瘍体積を測定することにより、抗腫瘍効果を判定した。無処置群及び被検液投与群の平均腫瘍体積の経時変化を示した。腫瘍体積Vは、腫瘍を外部から計測し、長径a(mm)及び短径b(mm)とするとき、下式(XI)により求めた。
Example 35
Antitumor effect evaluation experiment (1)
Colon 26 tumor cell 4% suspension was transplanted subcutaneously into the flank of a Balb / C female mouse (6 weeks old), and the compound (19) obtained in Example 9 and obtained in Example 10 were used as test compounds. The compound (21), the compound (23) obtained in Example 11, the test solution obtained by dissolving the compound (25) obtained in Example 12 in physiological saline, and paclitaxel were mixed with ethanol-Cremophor EL (Sigma, USA). (Manufactured)-The test solution dissolved in physiological saline was administered into the tail vein as 5 mice per group. The dose was 50 mg / kg in terms of paclitaxel. The untreated group was 9 per group. On the second day after cell transplantation, the first test solution was administered, and then every 7 days, the test solution was administered into the tail vein four times in total. Antitumor effects were determined by measuring the tumor volume of mice. The time-dependent change of the average tumor volume of the untreated group and the test liquid administration group was shown. The tumor volume V was determined by the following formula (XI) when the tumor was measured from the outside and the major axis was a (mm) and the minor axis was b (mm).

Figure 0005105166
Figure 0005105166

被検液投与後の、腫瘍体積の経時変化は、図7に示される通りであった。本発明による薬物複合体(19)及び(21)の50mg/kg投与群の抗腫瘍効果は、パクリタキセルの50mg/kg投与群の抗腫瘍効果と比較して、有意に優れていた。抗腫瘍効果の強さは[化合物(19)及び(21)>(23)>(25)及びパクリタキセル]の順序であった。   The change over time in tumor volume after administration of the test solution was as shown in FIG. The antitumor effect of the drug conjugates (19) and (21) according to the present invention in the 50 mg / kg administration group was significantly superior to the antitumor effect of paclitaxel in the 50 mg / kg administration group. The strength of the antitumor effect was in the order of [compounds (19) and (21)> (23)> (25) and paclitaxel].

〔実施例36〕
抗腫瘍効果の評価実験(2)
Colon26腫瘍細胞4%懸濁液を、Balb/C系の雌性マウス(6週齢)の側腹部皮下に移植し、被検化合物として実施例16で得た化合物(34)を生理食塩水に溶解した被検液、及び対照としてパクリタキセルをエタノール−クレモホールEL(米国、シグマ社製)−生理食塩水に溶解した被検液を一群3匹として尾静脈内に投与した。投与量はパクリタキセル換算で50mg/kgとした。無処置群は、一群5匹とした。腫瘍細胞移植後2日目に、第1回被検液を投与し、その後4日毎に計7回、被検液を尾静脈内に投与した。マウスの腫瘍体積を測定し比較することにより、抗腫瘍効果を判定した。腫瘍体積Vは、腫瘍を外部から計測し、長径a(mm)及び短径b(mm)とするとき、実施例35における式(XI)により求めた。無処置群及び被検液投与群の平均腫瘍体積の経時変化を示した。
被検液投与後の、腫瘍体積の経時変化は、図8に示される通りであった。本発明による薬物複合体(34)の50mg/kg投与群の抗腫瘍効果は、パクリタキセルの50mg/kg投与群の抗腫瘍効果と比較して、有意に優れていた。
Example 36
Antitumor effect evaluation experiment (2)
Colon 26 tumor cell 4% suspension was transplanted subcutaneously into the flank of a Balb / C female mouse (6 weeks old), and the compound (34) obtained in Example 16 as a test compound was dissolved in physiological saline. The test solution prepared by dissolving paclitaxel in ethanol-Cremophor EL (manufactured by Sigma, USA) -physiological saline as a control was administered into the tail vein as a group of 3 mice. The dose was 50 mg / kg in terms of paclitaxel. There were 5 untreated groups per group. On the second day after tumor cell transplantation, the first test solution was administered, and then the test solution was administered into the tail vein seven times in total every four days. Antitumor effects were determined by measuring and comparing tumor volumes in mice. The tumor volume V was determined by the formula (XI) in Example 35 when the tumor was measured from the outside and made the major axis a (mm) and the minor axis b (mm). The time-dependent change of the average tumor volume of the untreated group and the test liquid administration group was shown.
The change over time in tumor volume after administration of the test solution was as shown in FIG. The antitumor effect of the drug conjugate (34) administration group of the present invention in the 50 mg / kg administration group was significantly superior to the antitumor effect of paclitaxel in the 50 mg / kg administration group.

〔実施例37〕
化合物(37)、(40)、(43)、(46)、(49)、(52)、(55)及び(58)の生理食塩水に対する溶解度評価
化合物(37)、(40)、(43)、(46)、(49)、(52)、(55)及び(58)をそれぞれ10mg量り取り、0.1mlの生理食塩水に加えた、加えた化合物はそれぞれ完全に溶解した。カンプトテシン換算で化合物(37)は3.5mg/ml(生理食塩水)の溶解度であった。同様に化合物(40)はカンプトテシン換算で4.5mg/ml(生理食塩水)の溶解度、化合物(43)はデキサメタゾン換算で3.5mg/ml(生理食塩水)の溶解度、化合物(46)は同様にデキサメタゾン換算で4.1mg/ml(生理食塩水)の溶解度、化合物(49)は同様にデキサメタゾン換算で3.0mg/ml(生理食塩水)の溶解度であった。更に化合物(52)はファスジル換算で3.4mg/ml(生理食塩水)の溶解度、化合物(55)はファスジル換算で3.4mg/ml(生理食塩水)の溶解度、また化合物(58)はファスジル換算で3.7mg/ml(生理食塩水)の溶解度であった。
Example 37
Solubility evaluation of compound (37), (40), (43), (46), (49), (52), (55) and (58) in physiological saline Compound (37), (40), (43 ), (46), (49), (52), (55) and (58) were weighed 10 mg each and added to 0.1 ml of physiological saline, and the added compounds were completely dissolved. Compound (37) had a solubility of 3.5 mg / ml (saline) in terms of camptothecin. Similarly, compound (40) has a solubility of 4.5 mg / ml (saline) in terms of camptothecin, compound (43) has a solubility of 3.5 mg / ml (saline) in terms of dexamethasone, and compound (46) has the same. In addition, the solubility of 4.1 mg / ml (physiological saline) in terms of dexamethasone and the compound (49) similarly had a solubility of 3.0 mg / ml (physiological saline) in terms of dexamethasone. Further, compound (52) has a solubility of 3.4 mg / ml (saline) in terms of fasudil, compound (55) has a solubility of 3.4 mg / ml (saline) in terms of fasudil, and compound (58) has fasudil. It was a solubility of 3.7 mg / ml (saline) in terms of conversion.

〔実施例38〕
マウス血漿中における、化合物(43)、(46)及び(49)からのデキサメタゾン遊離評価実験
実施例22で得た化合物(43)、実施例24で得た化合物(46)及び実施例26で得た化合物(49)をそれぞれ生理食塩水に溶解し、デキサメタゾン換算で80μg/mlとなるよう調製した。これらの溶液50μlをマウス血漿250μlにそれぞれ添加し、37℃におけるそれぞれの薬物複合体からのデキサメタゾン遊離量を測定した。血漿中のデキサメタゾン回収並びに定量は次のようにして行った。すなわち、血漿サンプル250μlに対し、250μlリン酸緩衝液(pH7.4)を加え、さらに内部標準として酢酸ヒドロコルチゾンを含むアセトニトリル−メタノール溶液(CH3CN/MeOH=4/1、酢酸ヒドロコルチゾン濃度=10ng/ml)を3ml加えた後遠心し、(3000rpm、10分、4℃)得られた上清700μlに、蒸留水700μlを加え、メンブランフィルター(0.4μm)にてろ過した後、HPLCにて定量した。
図9にマウス血漿中からのデキサメタゾン遊離の経時変化を示した。薬物複合体からのデキサメタゾンの遊離速度の順序は、遊離速度の大きい順に化合物(43)>(46)>(49)であり、これはリンカーであるアミノ酸の立体障害の大きさと相関が見られた。
<HPLCの条件>
カラム:Asahipak HIKARISIL C18(4.6×150mm) 流速:1.0ml/min
カラム温度:25℃
検出波長:240nm
移動相:Linear gradient
0min:20%アセトニトリル水溶液(20%CH3CN/H2O)
20min:50%アセトニトリル水溶液(50%CH3CN/H2O)
Example 38
Dexamethasone release evaluation experiment from compounds (43), (46) and (49) in mouse plasma Compound (43) obtained in Example 22, compound (46) obtained in Example 24 and obtained in Example 26 Compound (49) was dissolved in physiological saline to prepare 80 μg / ml in terms of dexamethasone. 50 μl of these solutions were added to 250 μl of mouse plasma, respectively, and the amount of dexamethasone released from each drug complex at 37 ° C. was measured. Dexamethasone in plasma was collected and quantified as follows. That is, 250 μl of phosphate buffer (pH 7.4) was added to 250 μl of a plasma sample, and acetonitrile-methanol solution (CH 3 CN / MeOH = 4/1, hydrocortisone acetate concentration = 10 ng / concentration) containing hydrocortisone acetate as an internal standard. (3 ml), centrifuged (3000 rpm, 10 minutes, 4 ° C.), 700 μl of distilled water was added to 700 μl of the obtained supernatant, filtered through a membrane filter (0.4 μm), and then quantified by HPLC. did.
FIG. 9 shows the time course of dexamethasone release from mouse plasma. The order of the release rate of dexamethasone from the drug conjugate was compound (43)>(46)> (49) in the descending order of release rate, which was correlated with the steric hindrance magnitude of the linker amino acid. .
<HPLC conditions>
Column: Asahipak HIKARISIL C18 (4.6 x 150mm) Flow rate: 1.0ml / min
Column temperature: 25 ° C
Detection wavelength: 240 nm
Mobile phase: Linear gradient
0min: 20% acetonitrile aqueous solution (20% CH 3 CN / H 2 O)
20min: 50% acetonitrile aqueous solution (50% CH 3 CN / H 2 O)

本発明のポリエーテルは、生体組織適合性及び体液適合性に優れるため、これを医療用材料として用いた場合には、材料全体の高い安全性が実現される。特に、本発明のポリエーテルは、生体との相互作用が極めて少なく、生体組織に認識されにくいために肝臓、脾臓、骨髄といった代謝臓器、副作用発現臓器に分布することが少なく、臓器障害や細胞毒性を引き起こす可能性が低減され、標的とする臓器に集積することが可能となる。
また、該ポリエーテルにアミノ酸やペプチドなどのリンカーを介して薬理活性を有する化合物を結合させて薬物複合体として用いた場合、これを生体内に投与した際に、生体組織に認識されずに薬物を標的組織に送達することが可能になる。薬物複合体は、薬物遊離速度の制御が可能であり、しかも結合前の薬物に比べ生理食塩水に対する溶解性が極めて向上し、溶解補助剤無しでの静脈内投与を可能とする。
Since the polyether of the present invention is excellent in biotissue compatibility and body fluid compatibility, when this is used as a medical material, high safety of the entire material is realized. In particular, the polyether of the present invention has very little interaction with a living body and is difficult to be recognized by living tissues, so it is rarely distributed in metabolic organs such as liver, spleen, and bone marrow, and side effect organs, resulting in organ damage and cytotoxicity. Can be accumulated in the target organ.
In addition, when a compound having a pharmacological activity is bound to the polyether via a linker such as an amino acid or a peptide and used as a drug complex, the drug is not recognized by the living tissue when it is administered in vivo. Can be delivered to the target tissue. The drug complex can control the drug release rate, and has extremely improved solubility in physiological saline compared to the drug before binding, and enables intravenous administration without a solubilizing agent.

実施例5の本発明の化合物(13)のGPCによる溶出曲線を示す図である。6 is a graph showing an elution curve by GPC of the compound (13) of the present invention in Example 5. FIG. 実施例6の本発明の化合物(15)のGPCによる溶出曲線を示す図である。6 is a graph showing an elution curve by GPC of the compound (15) of the present invention in Example 6. FIG. 実施例7の本発明の化合物(17)のGPCによる溶出曲線を示す図である。It is a figure which shows the elution curve by GPC of the compound (17) of this invention of Example 7. 実施例8の本発明の化合物(15)における毒性評価のグラフである。4 is a graph showing toxicity evaluation of the compound (15) of the present invention in Example 8. 実施例34の本発明の化合物(19)、(21)、(23)及び(25)のマウス血漿中薬物遊離のグラフである。2 is a graph of drug release in mouse plasma of compounds (19), (21), (23) and (25) of Example 34 of the present invention. 実施例34の本発明の化合物(19)、(21)、(23)及び(25)のヒト血漿中薬物遊離のグラフである。2 is a graph of drug release in human plasma of compounds (19), (21), (23) and (25) of the present invention of Example 34. 実施例9の本発明の化合物(19)、実施例10の本発明の化合物(21)、実施例11の本発明の化合物(23)、実施例12の本発明の化合物(25)のColon26に対する抗腫瘍効果を表すグラフである。The compound (19) of the present invention of Example 9, the compound (21) of the present invention of Example 10, the compound (23) of the present invention of Example 11, and the compound (25) of the present invention of Example 12 against Colon 26 It is a graph showing an anti-tumor effect. 実施例16の本発明の化合物(34)のColon26に対する抗腫瘍効果を表すグラフである。2 is a graph showing the antitumor effect of the compound (34) of the present invention of Example 16 on Colon 26. FIG. 実施例22の本発明の化合物(43)、実施例24の本発明の化合物(46)、実施例26の本発明の化合物(49)のマウス血漿中薬物遊離のグラフである。3 is a graph of drug release in mouse plasma of the compound (43) of the present invention of Example 22, the compound (46) of the present invention of Example 24, and the compound (49) of the present invention of Example 26.

Claims (24)

式(I)および式(II)で表される化合物を共重合して得られる、式(III)および式(IV)で表される繰り返し単位からなるポリエーテルであって、かつ式(A)で表される繰り返し単位を有さないポリエーテル。
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
(式中、R1は−OR2または−NHR3で示される基を表し、R2およびR3は水素、無機塩基あるいは有機塩基またはC1〜C15の炭化水素を含む基、またはアミノ酸もしくはペプチドであるリンカーが結合した薬理作用を有する化合物を表す。ここで同一の共重合体内でR1、R2またはR3は同一であっても異なっていてもよいが、同一の共重合体内では少なくとも1以上の、アミノ酸もしくはペプチドであるリンカーが結合した薬理作用を有する化合物が含まれるものとする。各構造単位のモル比は、(III)/((III)+(IV))=0.001〜0.5であり、構造単位(III)および(IV)のモル%はそれぞれ(III)=0.1〜99.9および(IV)=0.1〜99.9である。ここで、式(III)および式(IV)を構造単位として含むポリエーテルは、ポリエチレングリコール(PEG)換算重量平均分子量が1,000〜100,000である。)
A polyether comprising a repeating unit represented by the formula (III) and the formula (IV) obtained by copolymerizing the compounds represented by the formula (I) and the formula (II), and having the formula (A) The polyether which does not have a repeating unit represented by these.
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
(Wherein R 1 represents a group represented by —OR 2 or —NHR 3 , R 2 and R 3 represent hydrogen, an inorganic base or an organic base, a group containing a C 1 to C 15 hydrocarbon, an amino acid or Represents a compound having a pharmacological action to which a linker which is a peptide is bonded, wherein R 1 , R 2 or R 3 may be the same or different in the same copolymer, but in the same copolymer, A compound having a pharmacological action to which a linker, which is an amino acid or a peptide, is bonded is included, and the molar ratio of each structural unit is (III) / ((III) + (IV)) = 0. The molar percentages of the structural units (III) and (IV) are (III) = 0.1 to 99.9 and (IV) = 0.1 to 99.9, respectively. Formula (III) and Formula (IV) Polyethers containing as a structural unit include polyethylene glycol (PEG) equivalent weight average molecular weight of 1,000 to 100,000.)
ポリエチレングリコール(PEG)換算重量平均分子量/PEG換算数平均分子量(Mw/Mn)が1.1〜2.7である請求項1に記載のポリエーテル。 The polyether according to claim 1, wherein the polyethylene glycol (PEG) equivalent weight average molecular weight / PEG equivalent number average molecular weight (Mw / Mn) is 1.1 to 2.7. リンカーがGly,Ala,Leu,Ile,Pheで示されるアミノ酸から選択または組み合わせて用いられる請求項1または2に記載のポリエーテル。 The polyether according to claim 1 or 2, wherein the linker is selected or used in combination from amino acids represented by Gly, Ala, Leu, Ile, and Phe. リンカーがGly−Gly,Ala−GLy,Gly−Ala,Leu−Gly,Gly−Leu,Ile−Gly,Gly−Ile,Phe−Gly,Gly−Phe,Gly−Gly−Gly,Gly−Phe−Gly,Phe−Gly−Gly,Gly−Gly−Phe,Gly−Gly−Phe−Glyから選択される請求項1〜3のいずれかに記載のポリエーテル。 The linker is Gly-Gly, Ala-GLy, Gly-Ala, Leu-Gly, Gly-Leu, Ile-Gly, Gly-Ile, Phe-Gly, Gly-Phe, Gly-Gly-Gly, Gly-Phe-Gly, The polyether according to any one of claims 1 to 3, selected from Phe-Gly-Gly, Gly-Gly-Phe and Gly-Gly-Phe-Gly. 薬理作用を有する化合物が抗悪性腫瘍薬、抗炎症薬、抗リウマチ薬、酵素阻害薬または核酸である請求項1〜のいずれかに記載のポリエーテル。 The polyether according to any one of claims 1 to 4 , wherein the compound having a pharmacological action is an antineoplastic agent, an anti-inflammatory agent, an anti-rheumatic agent, an enzyme inhibitor or a nucleic acid. 抗悪性腫瘍薬がアルキル化薬、代謝拮抗薬、抗腫瘍性抗生物質、微小管阻害薬、ホルモン類似薬、トポイソメラーゼ阻害薬、生物製剤(サイトカイン)、分子標的治療薬、非特異的免疫賦活薬から選択される請求項5に記載のポリエーテル。 Antineoplastic agent is an alkylating agent, antimetabolite, antitumor antibiotics, microtubule inhibitors, hormone analogs agents, preparative topoisomerase inhibitors, biologic (cytokines), targeted therapy, nonspecific immunostimulation The polyether of claim 5 selected from drugs. アルキル化薬がマスタード薬またはニトロソウレア類から選択される請求項6に記載のポリエーテル。 The polyether according to claim 6, wherein the alkylating agent is selected from mustard agents or nitrosoureas. 代謝拮抗薬が葉酸代謝拮抗薬であるメトトレキセート、ピリミジン代謝拮抗薬である5−フルオロウラシル、プリン代謝拮抗薬の6−MPから選択される請求項6に記載のポリエーテル。 7. The polyether according to claim 6, wherein the antimetabolite is selected from methotrexate, which is an antifolate, 5-fluorouracil, which is a pyrimidine antimetabolite, and 6-MP, which is an antipurine antimetabolite. 抗腫瘍性抗生物質がアンスラサイクリン系のドキソルビシン、ダウノルビシン、マイトマイシンCから選択される請求項6に記載のポリエーテル。 The polyether according to claim 6, wherein the antitumor antibiotic is selected from anthracycline doxorubicin, daunorubicin and mitomycin C. 微小管阻害薬がタキサン系のパクリタキセル、ドセタキセルから選択される請求項6に記載のポリエーテル。 The polyether according to claim 6, wherein the microtubule inhibitor is selected from taxane-based paclitaxel and docetaxel. トポイソメラーゼ阻害薬がトポイソメラーゼI阻害薬のイリノテカン、ノギテカンから選択される請求項6に記載のポリエーテル。 7. The polyether according to claim 6, wherein the topoisomerase inhibitor is selected from the topoisomerase I inhibitor irinotecan, nogitecan. 分子標的治療薬がイマチニブ、ゲフィチニブから選択される請求項6に記載のポリエーテル。 Polyether of claim 6, targeted therapy imatinib is selected Gefichini blanking or al. 抗炎症薬が副腎皮質ステロイド薬、非ステロイド性抗炎症薬から選択される請求項5に記載のポリエーテル。 The polyether according to claim 5, wherein the anti-inflammatory drug is selected from corticosteroids and non-steroidal anti-inflammatory drugs. 副腎皮質ステロイド薬がヒドロコルチゾン、コルチゾン、プレドニゾロン、メチルプレドニゾロン、デキサメタゾン、ベタメタゾンから選択される請求項13に記載のポリエーテル。 14. The polyether of claim 13 , wherein the corticosteroid is selected from hydrocortisone, cortisone, prednisolone, methylprednisolone, dexamethasone, betamethasone. 非ステロイド性抗炎症薬がサリチル酸系のアスピリン、アントラニル系のメフェナム酸、プロピオン酸系のイブプロフェン、ロキソプロフェン、アリール酢酸系のジクロフェナク、インドメタシンから選択される請求項13に記載のポリエーテル。 14. The polyether according to claim 13 , wherein the non-steroidal anti-inflammatory drug is selected from salicylic acid type aspirin, anthranilic mefenamic acid, propionic acid type ibuprofen, loxoprofen, arylacetic acid type diclofenac, and indomethacin. 抗リウマチ薬が免疫調節薬、免疫抑制薬から選択される請求項5に記載のポリエーテル。 Polyether according to claim 5, antirheumatic drugs immunomodulatory agents are selected immunosuppressant or al. 免疫調節薬が金チオリンゴ酸ナトリウム、ペニシラミン、ロベンザリットから選択される請求項16に記載のポリエーテル。 The polyether according to claim 16 , wherein the immunomodulator is selected from sodium gold thiomalate, penicillamine, lobenzarit. 免疫抑制薬がミゾリビン、メトトレキサート、タクロリムスから選択される請求項16に記載のポリエーテル。 Polyether of claim 16, immunosuppressant mizoribine, Metotorekisa bets are selected from data Kurorimusu. 酵素阻害薬がファスジルまたは塩酸ファスジルから選択される請求項5に記載のポリエーテル。 The polyether according to claim 5, wherein the enzyme inhibitor is selected from fasudil or fasudil hydrochloride. 請求項1〜19のいずれかに記載のポリエーテルを含む製剤。 Formulations containing polyether according to any of claims 1 to 19. 2が水素又は無機塩基、または有機塩基である請求項1に記載のポリエーテルを用いた生体内組織への薬物送達用担体。 The carrier for drug delivery to in vivo tissues using the polyether according to claim 1 , wherein R 2 is hydrogen, an inorganic base, or an organic base. 式(III)および式(IV)で表される繰り返し単位からなり、かつ、式(A)で表される繰り返し単位を有さない請求項1〜19のいずれかに記載のポリエーテルの製造方法であって、
式(I)および式(II)で表される化合物をランダム共重合する工程を含む前記製造方法。
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
(式中、R1は−OR2または−NHR3で示される基を表し、R2およびR3は水素、無機塩基あるいは有機塩基またはC1〜C15の炭化水素を含む基、またはアミノ酸もしくはペプチドであるリンカーが結合した薬理作用を有する化合物を表す。
ここで同一の共重合体内でR1、R2またはR3は同一であっても異なっていてもよいが、同一の共重合体内では少なくとも1以上の、アミノ酸もしくはペプチドであるリンカーが結合した薬理作用を有する化合物が含まれるものとする。各構造単位のモル比は、(III)/((III)+(IV))=0.001〜0.5であり、構造単位(III)および(IV)のモル%はそれぞれ(III)=0.1〜99.9および(IV)=0.1〜99.9である。ここで、式(III)および式(IV)を構造単位として含むポリエーテルは、ポリエチレングリコール(PEG)換算重量平均分子量が1,000〜100,000である。)
The method for producing a polyether according to any one of claims 1 to 19, comprising a repeating unit represented by formula (III) and formula (IV) and not having a repeating unit represented by formula (A). Because
The said manufacturing method including the process of carrying out the random copolymerization of the compound represented by Formula (I) and Formula (II).
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
Figure 0005105166
(Wherein R 1 represents a group represented by —OR 2 or —NHR 3 , R 2 and R 3 represent hydrogen, an inorganic base or an organic base, a group containing a C 1 to C 15 hydrocarbon, an amino acid or The compound which has the pharmacological action which the linker which is a peptide couple | bonded is represented.
Here, R 1 , R 2, or R 3 may be the same or different in the same copolymer, but in the same copolymer, at least one pharmacology to which a linker that is an amino acid or a peptide is bound. The compound which has an effect | action shall be included . The molar ratio of each structural unit is (III) / ((III) + (IV)) = 0.001 to 0.5, and the molar percentage of the structural units (III) and (IV) is (III) = 0.1-99.9 and (IV) = 0.1-99.9. Here, the polyether containing formula (III) and formula (IV) as a structural unit has a weight average molecular weight in terms of polyethylene glycol (PEG) of 1,000 to 100,000. )
重合に用いる触媒が塩基およびルイス酸から選択される請求項22に記載のポリエーテルを製造する方法。 The method for producing a polyether according to claim 22 , wherein the catalyst used for the polymerization is selected from a base and a Lewis acid. 重合に用いる触媒が水酸化カリウム、水酸化ナトリウム、水酸化セシウムやナトリウムメトキシド、ナトリウムエトキシド、ナトリムプロポキシド、ナトリウムt−ブトキシド、カリウムプロポキシド、カリウムt−ブトキシド、カリウム−t−2−メチル−2−ブトシキドおよび三フッ化ホウ素エーテル錯体、トリアルキルアルミニウム、トリエチルアルミニウム、トリフェニルアルミニウム、トリブチルアルミニウムから選択され、単独もしくは混合して使用される請求項22に記載のポリエーテルを製造する方法。 The catalyst used for polymerization is potassium hydroxide, sodium hydroxide, cesium hydroxide, sodium methoxide, sodium ethoxide, sodium propoxide, sodium t-butoxide, potassium propoxide, potassium t-butoxide, potassium-t-2-methyl The method for producing a polyether according to claim 22 , wherein the polyether is selected from -2-butoxide and boron trifluoride ether complex, trialkylaluminum, triethylaluminum, triphenylaluminum, tributylaluminum, and used alone or in combination.
JP2007327277A 2007-12-19 2007-12-19 Method for producing polyether Expired - Fee Related JP5105166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007327277A JP5105166B2 (en) 2007-12-19 2007-12-19 Method for producing polyether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007327277A JP5105166B2 (en) 2007-12-19 2007-12-19 Method for producing polyether

Publications (2)

Publication Number Publication Date
JP2009149728A JP2009149728A (en) 2009-07-09
JP5105166B2 true JP5105166B2 (en) 2012-12-19

Family

ID=40919247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007327277A Expired - Fee Related JP5105166B2 (en) 2007-12-19 2007-12-19 Method for producing polyether

Country Status (1)

Country Link
JP (1) JP5105166B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2623677T3 (en) * 2009-11-18 2017-07-12 Nektar Therapeutics Salt form of a polymer-drug multibrace conjugate product
CN107868243B (en) * 2017-12-11 2020-10-23 江苏苏博特新材料股份有限公司 Preparation method of amino acid-derivatized phosphorous acid water reducing agent
JP7352958B2 (en) * 2018-02-01 2023-09-29 国立大学法人 東京大学 Polymeric compounds for nucleic acid delivery
WO2020193802A1 (en) * 2019-03-28 2020-10-01 Fundación De La Comunidad Valenciana Centro De Investigación Príncipe Felipe Polymeric conjugates and uses thereof
KR102182288B1 (en) * 2019-06-26 2020-11-24 주식회사 쎄코 Brush polymer compound for drug delivery and method for preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189243B2 (en) * 2005-01-14 2013-04-24 旭化成株式会社 Drug complex and carrier for drug delivery

Also Published As

Publication number Publication date
JP2009149728A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5944836B2 (en) Polymeric drug delivery conjugates and methods of making and using the same
JP4420472B2 (en) Drug complex
AU723442B2 (en) Method for preparing drug complex
EP0916348B1 (en) alkyldextran-polyalcohol drug complexes
Pasut et al. PEG-epirubicin conjugates with high drug loading
JP5856069B2 (en) Polymer derivatives of novel cytidine antimetabolites
JP2002543111A (en) Amplification of folate-mediated targeting to tumor cells using polymers
WO2005121181A1 (en) Multi-drop tree branching polyethylene glycol-oligopeptides and active derivates and pharmaceutical compounds there of
JP2008543916A (en) N, N-bis- (2-hydroxyethyl) glycinamide as a linker in polymer conjugated prodrugs
JPWO2009116509A1 (en) Bioactive substance polymer conjugate
WO2006115293A1 (en) NOVEL BLOCK COPOLYMER USED FOR PREPARING pH-RESPONSIVE POLYMER MICELLE, AND METHOD FOR PRODUCING SAME
WO2000074721A1 (en) Vitamin directed dual targeting therapy
US9415114B2 (en) Conformations of divergent peptides with mineral binding affinity
JP5105166B2 (en) Method for producing polyether
Tai et al. A novel rapamycin-polymer conjugate based on a new poly (ethylene glycol) multiblock copolymer
AU2017265310A1 (en) Multi-arm polymeric targeting anti-cancer conjugate
KR102279429B1 (en) Multi-cancer target anti-cancer conjugate
JPH1192405A (en) Medicinal complex
JP6799823B2 (en) Polyion complex of block copolymer containing poly (L-arginine) segment and polyanionic polymer
US20060263328A1 (en) Hydrophilic polymers with pendant functional groups and method thereof
US20050220754A1 (en) Vitamin directed targeting therapy
JP5189243B2 (en) Drug complex and carrier for drug delivery
CN1281270C (en) Polypeptide, the conjugate thereof with doxorubicin and a pharmaceutical composition based thereon
CN115666653A (en) Antibody-drug conjugates
CN106822913B (en) Complex, preparation method thereof and hydrogel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees