JP5103227B2 - Radar antenna - Google Patents

Radar antenna Download PDF

Info

Publication number
JP5103227B2
JP5103227B2 JP2008052651A JP2008052651A JP5103227B2 JP 5103227 B2 JP5103227 B2 JP 5103227B2 JP 2008052651 A JP2008052651 A JP 2008052651A JP 2008052651 A JP2008052651 A JP 2008052651A JP 5103227 B2 JP5103227 B2 JP 5103227B2
Authority
JP
Japan
Prior art keywords
dielectric substrate
pair
antenna
antenna element
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008052651A
Other languages
Japanese (ja)
Other versions
JP2009212727A (en
Inventor
扶 手代木
尚志 河村
綾 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2008052651A priority Critical patent/JP5103227B2/en
Publication of JP2009212727A publication Critical patent/JP2009212727A/en
Application granted granted Critical
Publication of JP5103227B2 publication Critical patent/JP5103227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、車載用あるいは携帯用のレーダとして今後使用されるUWB(Ultra Wide Band)のレーダに適したアンテナにおいて、電波発射禁止帯(23.6〜24.0GHz)へ放射を抑制しつつ、広いレーダ検知角を得るための技術に関する。   The present invention is an antenna suitable for a UWB (Ultra Wide Band) radar that will be used in the future as a vehicle-mounted or portable radar, while suppressing radiation to a radio wave emission prohibited band (23.6 to 24.0 GHz) The present invention relates to a technique for obtaining a wide radar detection angle.

主に車載用あるいは携帯用の近距離用レーダとして、22〜29GHzの準ミリ波帯であるUWBを利用することが提案されている。   It has been proposed to use UWB, which is a quasi-millimeter wave band of 22 to 29 GHz, mainly as a vehicle-mounted or portable short-range radar.

このUWBで使用されるレーダ装置のアンテナとしては、放射特性が広帯域であることの他に、車載時に車体とバンパーとの隙間に設置されること等を考慮して、小型で且つ薄型平面構造であることが必要である。   The antenna of the radar device used in this UWB has a small and thin planar structure, considering that it is installed in the gap between the vehicle body and the bumper when mounted on the vehicle, in addition to having a wide radiation characteristic. It is necessary to be.

また、UWBで規定されている微弱電力で探査が行え、バッテリ駆動可能なように無駄な電力消費を抑えるために、低損失、高利得が要求され、そのためのアレー化が容易に達成できることが必要である。   Moreover, in order to perform exploration with the weak power specified by UWB and suppress wasteful power consumption so that it can be driven by a battery, low loss and high gain are required, and it is necessary to easily achieve an array for that purpose. It is.

また、低コスト化のため、アンテナ素子や給電部がパターン印刷技術で構成できる構造あることが望ましい。   In order to reduce the cost, it is desirable that the antenna element and the power feeding unit have a structure that can be configured by a pattern printing technique.

さらに、国際無線通信規則(RR)によって、23.6〜24.0GHzの範囲が、地球探査衛星(EESS)のパッシブセンサーなどを保護するための電波発射禁止帯と定められており、このため準ミリ波帯UWBのアンテナについてもこの周波数帯の電波放射が小さくなることが望ましい。   In addition, the International Radio Communication Regulation (RR) defines the range of 23.6 to 24.0 GHz as a radio wave emission prohibition zone for protecting passive sensors of the Earth exploration satellite (EESS). It is desirable that the radio wave radiation of this frequency band is also small for the millimeter wave band UWB antenna.

これらの要求に答えるアンテナとして、本願出願人は、誘電体基板の一面側に地板導体を重なり合うように設け、誘電体基板の反対面に一対のアンテナ素子を形成し、さらに、金属ポストを波長に比べて十分狭い間隔でアンテナ素子の周りを全周にわたって囲むように並べて設けて電波発射禁止帯で利得にノッチを生じさせるキャビティ構造とし、さらに金属ポストの端側をその並び方向に沿って短絡し、且つアンテナ素子方向に所定距離延びた枠状導体を設けて、表面波を抑制する技術を、次の特許文献1、特許文献2において提案している。   As an antenna that responds to these requirements, the applicant of the present application provides a ground plane conductor to overlap one surface of the dielectric substrate, forms a pair of antenna elements on the opposite surface of the dielectric substrate, and further uses a metal post as a wavelength. In comparison, the antenna elements are arranged side by side so as to surround the entire circumference at a sufficiently narrow interval to create a cavity structure that creates a notch in the gain in the radio wave emission prohibited band, and the end side of the metal post is short-circuited along the arrangement direction. The following Patent Document 1 and Patent Document 2 propose a technique for suppressing a surface wave by providing a frame-shaped conductor extending a predetermined distance in the antenna element direction.

国際公開 WO 2006/051947 A1International Publication WO 2006/051947 A1 国際公開 WO 2007/055028 A1International Publication WO 2007/055028 A1

上記構造のアンテナは、アンテナ素子の周りを一周するように金属ポストを並べた閉鎖型のキャビティ構造を有しているため、電波発射禁止帯におけるノッチを大きく取れる利点がある。   Since the antenna having the above structure has a closed cavity structure in which metal posts are arranged so as to go around the antenna element, there is an advantage that a large notch can be taken in the radio wave emission prohibited band.

しかしながら、上記のように閉鎖型のキャビティで、直線偏波型のアンテナ素子(例えばダイポール型)を囲んだ場合、アンテナ素子の並び方向(E面)だけでなく、それと直交する方向(H面)のビーム幅が狭くなる。一般的に車載用等のレーダの場合、H面が水平面となるように設置するため、レーダとしての検知幅が不足するという新たな問題が生じる。   However, when a linearly polarized antenna element (for example, a dipole type) is surrounded by a closed cavity as described above, not only the arrangement direction of the antenna elements (E plane) but also the direction orthogonal to it (H plane) The beam width becomes narrower. In general, in the case of an on-vehicle radar or the like, since the H plane is installed so as to be a horizontal plane, a new problem arises that the detection width as a radar is insufficient.

本発明は、この問題を解決して、広帯域で電波発射禁止帯等の特定周波数帯への放射を抑制しつつ、広いレーダ検知角が得られるレーダ用アンテナを提供することを目的としている。   An object of the present invention is to solve this problem and to provide a radar antenna that can obtain a wide radar detection angle while suppressing radiation to a specific frequency band such as a radio wave emission prohibition band in a wide band.

前記目的を達成するために、本発明の請求項1記載のレーダ用アンテナは、
長方形の誘電体基板(21)と、
前記誘電体基板の一面側に重なり合う長方形の地板導体(22)と、
前記誘電体基板の反対面に該誘電体基板の長辺方向に沿った直線上に並ぶように形成された一対の素子片(23a、23b)からなるダイポール型のアンテナ素子(23)と、
一端側が前記地板導体に接続され、前記誘電体基板をその厚さ方向に沿って貫通し、他端側が前記誘電体基板の反対面まで延びた金属ポスト(30)を所定間隔で前記誘電体基板の両短辺に沿って並べて形成した一対のポスト壁(31a、31b)からなり、該一対のポスト壁で前記アンテナ素子をその電界方向に挟むことにより、該一対のポスト壁の間隔(Lw)によって決まる特定周波数帯でノッチを生じさせる対向壁面型のキャビティ(31)と、
前記誘電体基板の反対面側に、前記一対のポスト壁をそれぞれ形成する複数の金属ポストの他端側をその並び方向に沿って短絡し、且つ前記アンテナ素子方向に所定距離延びた一対のリム導体(32a、32b)とを備え
さらに、前記誘電体基板のポスト壁が延びている短辺方向の幅(Lx)を、前記特定周波数帯でノッチを生じさせる前記一対のポスト壁の間隔(Lw)よりも狭く形成して、前記誘電体基板の長辺方向に沿った電界面のビーム幅に対して、短辺方向に沿った磁界面のビーム幅を広げたことを特徴とする。
In order to achieve the above object, a radar antenna according to claim 1 of the present invention comprises:
A rectangular dielectric substrate (21);
A rectangular ground plane conductor (22) overlapping one surface of the dielectric substrate;
The pair of elements pieces formed so as to be aligned on a straight line along the longitudinal direction of the dielectric substrate on the opposite surface of the dielectric substrate and (23a, 23b) dipole antenna element made of (2 3),
One end connected to the ground plane conductor, the dielectric substrate wherein the dielectric substrate penetrates along the thickness direction, the metal posts (30) which has the other end extending to the opposite surface of the dielectric substrate at a predetermined interval A pair of post walls (31a, 31b) formed side by side along both short sides of the antenna element, and the antenna element is sandwiched between the pair of post walls in the direction of the electric field, thereby separating the pair of post walls (Lw). An opposite wall surface type cavity (31) for generating a notch in a specific frequency band determined by :
A pair of rims that short-circuit the other end sides of the plurality of metal posts that respectively form the pair of post walls on the opposite surface side of the dielectric substrate along the arrangement direction and extend a predetermined distance in the antenna element direction Conductors (32a, 32b) ,
Further, the width (Lx) in the short side direction in which the post wall of the dielectric substrate extends is formed to be narrower than the interval (Lw) between the pair of post walls that cause notches in the specific frequency band, The beam width of the magnetic field surface along the short side direction is increased with respect to the beam width of the electric field surface along the long side direction of the dielectric substrate .

また、本発明の請求項2のレーダ用アンテナは、
前記請求項1記載のレーダ用アンテナを、共通の誘電体基板上に前記ポスト壁の延びている方向と直交する方向に複数組並べてアレー化したことを特徴とする。
The radar antenna according to claim 2 of the present invention is
A plurality of sets of radar antennas according to claim 1 are arrayed on a common dielectric substrate in a direction orthogonal to the direction in which the post wall extends .

また、本発明の請求項3のレーダ用アンテナは、請求項記載のレーダ用アンテナにおいて、
前記ポスト壁が延びている短辺方向の幅(Lx)を前記一対のポスト壁の間隔(Lw)の2/3以下に設定したことを特徴とする。
A radar antenna according to claim 3 of the present invention is the radar antenna according to claim 2 ,
The width (Lx) in the short side direction in which the post walls extend is set to 2/3 or less of the distance (Lw) between the pair of post walls .

本発明のレーダ用アンテナは、上記したように、複数の金属ポストを所定間隔で並べて形成した一対のポスト壁で、アンテナ素子を挟む対向壁面型のキャビティ構造とし、その一対のポスト壁をそれぞれ形成する複数の金属ポストの他端側をその並び方向に沿って短絡し、且つアンテナ素子方向に所定距離延びた一対のリム導体を備える構造である。   As described above, the radar antenna according to the present invention has a pair of post walls formed by arranging a plurality of metal posts at a predetermined interval, and has a cavity structure of opposing wall surfaces sandwiching the antenna element, and each of the pair of post walls is formed. In this structure, the other end sides of the plurality of metal posts are short-circuited along the arrangement direction, and include a pair of rim conductors extending a predetermined distance in the antenna element direction.

このため、ダイポール型のような直線偏波アンテナの場合には、電界の集中する素子片の並び方向(電界面)について一対のポスト壁が有効な共振特性を示し、UWBにおける発射禁止帯等の特定帯域に大きなノッチを生じさせるとともに、磁界面側を壁面で挟まなくて済むのでその幅をノッチ周波数と無関係に狭くすることができ、レーダとしての検知幅を格段に広くすることができる。また、それによってアンテナを小型化でき、車載用あるいは携帯用としてさらに好適となる。   For this reason, in the case of a linearly polarized antenna such as a dipole type, a pair of post walls exhibit effective resonance characteristics with respect to the arrangement direction (electric field surface) of element pieces where electric fields concentrate, A large notch is generated in the specific band, and the magnetic field side does not have to be sandwiched between the wall surfaces, so that the width can be narrowed regardless of the notch frequency, and the detection width as a radar can be greatly increased. In addition, the antenna can be reduced in size, which is more suitable for in-vehicle use or portable use.

以下、図面に基づいて本発明の実施の形態を説明する。
図1〜図4は、本発明を適用したUWBに適したレーダ用アンテナ20(以下、単にアンテナ20と記す)の構造を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show the structure of a radar antenna 20 (hereinafter simply referred to as antenna 20) suitable for UWB to which the present invention is applied.

(第1の実施形態)
このアンテナ20は、誘電体基板21と、その誘電体基板21の一面側に重なり合う地板導体22と、誘電体基板21の反対面に直線上(y方向)に並ぶように形成された一対の素子片23a、23bからなるダイポール型のアンテナ素子23と、一端側が地板導体22に接続され、誘電体基板21をその厚さ方向(z方向)に沿って貫通し、他端側が誘電体基板22の反対面まで延びた金属ポスト30を管内波長に比べて十分狭い間隔で基板幅方向(x方向)に並べて形成した一対のポスト壁31a、31bで、アンテナ素子23を素子片23a、23bの並び方向に沿った方向から挟むことにより構成した対向壁面型のキャビティ31と、誘電体基板21の反対面側に、一対のポスト壁31a、31bをそれぞれ形成する複数の金属ポスト30の他端側をその並び方向に沿って短絡し、且つアンテナ素子23方向に所定距離延びた一対のリム導体32a、32bとを備えている。
(First embodiment)
The antenna 20 includes a dielectric substrate 21, a ground plane conductor 22 that overlaps one surface of the dielectric substrate 21, and a pair of elements formed on the opposite surface of the dielectric substrate 21 so as to be arranged in a straight line (y direction). A dipole antenna element 23 composed of the pieces 23a and 23b, one end side of which is connected to the ground plane conductor 22, penetrates the dielectric substrate 21 along the thickness direction (z direction), and the other end side of the dielectric substrate 22 The antenna element 23 is arranged in a direction in which the element pieces 23a and 23b are arranged by a pair of post walls 31a and 31b formed by arranging the metal posts 30 extending to the opposite surface in the substrate width direction (x direction) at a sufficiently narrow interval compared to the guide wavelength. And a plurality of metal posts that respectively form a pair of post walls 31 a and 31 b on the opposite surface side of the dielectric substrate 21. 30 the other end of the short-circuited along the arrangement direction, and includes and a pair of rims conductor 32a extending a predetermined distance to the antenna element 23 direction, and 32b.

さらに具体的にいえば、このアンテナ20は、例えば低誘電率(3.5前後)の縦長矩形の基板で厚さ1.2mmの誘電体基板21と、その誘電体基板21の一面側(図1、図2で背面側)に設けられた地板導体22と、誘電体基板21の反対面側(図1、図2で前面側)にパターン形成された励振用のダイポール型のアンテナ素子23と、アンテナ素子23に給電するための一対の給電ピン25a、25bとを有している。   More specifically, the antenna 20 includes, for example, a dielectric substrate 21 having a low dielectric constant (around 3.5) and a rectangular substrate having a thickness of 1.2 mm, and one surface side of the dielectric substrate 21 (see FIG. 1, a ground plane conductor 22 provided on the back side in FIG. 2 and a dipole antenna element 23 for excitation patterned on the opposite side of the dielectric substrate 21 (front side in FIGS. 1 and 2) And a pair of power supply pins 25 a and 25 b for supplying power to the antenna element 23.

アンテナ素子23は、広帯域な特性が得られる所謂ボウタイ型のもので、誘電体基板21の長手方向(y方向)に沿って並んだ一対の三角形状の素子片23a、23bにより形成されていて、その一方の素子片23aに接続された給電ピン25aは誘電体基板21をその厚さ方向(z方向)に貫通して地板導体22の穴22aを通過し、他方の素子片23bに接続された給電ピン25bは誘電体基板21をその厚さ方向に貫通して地板導体22に接続されている。   The antenna element 23 is a so-called bow tie type that can obtain a wide band characteristic, and is formed by a pair of triangular element pieces 23 a and 23 b arranged along the longitudinal direction (y direction) of the dielectric substrate 21. The feed pin 25a connected to the one element piece 23a passes through the dielectric substrate 21 in the thickness direction (z direction), passes through the hole 22a of the ground plane conductor 22, and is connected to the other element piece 23b. The power supply pin 25 b penetrates the dielectric substrate 21 in the thickness direction and is connected to the ground plane conductor 22.

ここでダイポール型のアンテナ素子23は平衡型であるのに対し給電が不平衡型であるので本来であればバランを介してアンテナ素子23と給電ピン25a、25bの間を接続する必要があるが、給電ピン25aに接続される同軸ケーブルの配線あるいは伝送線路を適宜工夫することでバランを用いなくても実質的に平衡型と同等の給電を行うことができ、アンテナ素子23を直線偏波で励振駆動できる。   Here, although the dipole antenna element 23 is a balanced type, the power feeding is an unbalanced type. Therefore, it is necessary to connect the antenna element 23 and the power feeding pins 25a and 25b via a balun. By appropriately devising the wiring or transmission line of the coaxial cable connected to the feed pin 25a, it is possible to feed substantially the same as the balanced type without using a balun, and the antenna element 23 can be linearly polarized. Can be driven by excitation.

ただし、広帯域化のために誘電体基板21の厚みが伝搬波長の1/4程度と比較的大きいため、誘電体基板21の表面に沿った表面波が励振され、その表面波の影響により所望特性が得られない。   However, since the thickness of the dielectric substrate 21 is relatively large, such as about 1/4 of the propagation wavelength, in order to increase the bandwidth, surface waves along the surface of the dielectric substrate 21 are excited, and the desired characteristics are affected by the surface waves. Cannot be obtained.

これを解決する技術として、前記した特許文献1、2では、アンテナ素子の周りを一周するように金属ポストを波長に比べて十分狭い間隔で並べた閉鎖型のキャビティ構造を採用し、そのキャビティの共振現象により、アンテナ利得の周波数特性が電波発射禁止帯で鋭い落ち込み(ノッチ)を生じるようにするとともに、それらの複数の金属ポストの先端側を短絡する枠状導体により誘電体基板21の表面に沿った表面波の影響を抑制していた。しかし、その従来構造では、アンテナ素子23によって励振される直線偏波の電界面(E面)、即ち、アンテナ素子23の素子片23a、23bの並び方向だけでなく、それに直交する磁界面(H面)の方向のビーム幅が狭くなり、レーダとして広い検知幅が得られない。   As a technique for solving this, in Patent Documents 1 and 2 described above, a closed cavity structure in which metal posts are arranged at a sufficiently narrow interval compared to the wavelength so as to make a round around the antenna element is adopted. Due to the resonance phenomenon, the antenna gain frequency characteristic causes a sharp drop (notch) in the radio wave emission prohibited band, and a frame-like conductor that short-circuits the tips of the plurality of metal posts on the surface of the dielectric substrate 21. The influence of the along surface wave was suppressed. However, in the conventional structure, not only the linearly polarized electric field plane (E plane) excited by the antenna element 23, that is, the arrangement direction of the element pieces 23a and 23b of the antenna element 23, but also the magnetic field plane (H The beam width in the direction of (surface) becomes narrow, and a wide detection width cannot be obtained as a radar.

そこで、この実施形態のアンテナ20では、直線偏波の場合、キャビティ内の電界がE面方向(即ち、ダイポール型でアンテナ素子23を構成する一対の素子片23a、23bの並ぶy方向)に集中している点に着目し、金属ポスト30によって形成されるキャビティ構造を、アンテナ素子23の全周を囲む閉鎖構造から、前記したように、細い(例えば0.3mm)の金属ポスト30を使用する電波の波長に比べて十分狭い間隔(例えば0.9mm)で直線的に並べて形成した一対のポスト壁31a、31bにより、アンテナ素子23をE面方向、即ち、一対の素子23a、23bの並び方向(y方向)から挟む対向壁面型のキャビティ構造としている。なお、ポスト壁31a、31bの間隔Lwは9mmとしている。   Therefore, in the antenna 20 of this embodiment, in the case of linear polarization, the electric field in the cavity is concentrated in the E plane direction (that is, the y direction in which the pair of element pieces 23a and 23b that constitute the antenna element 23 is a dipole type). Paying attention to this, the cavity structure formed by the metal post 30 is used as a thin (for example, 0.3 mm) metal post 30 from the closed structure surrounding the entire circumference of the antenna element 23 as described above. The antenna element 23 is arranged in the E-plane direction, that is, the direction in which the pair of elements 23a and 23b are arranged, by a pair of post walls 31a and 31b that are linearly arranged with a sufficiently narrow interval (for example, 0.9 mm) compared to the wavelength of the radio wave. The cavity structure is a facing wall surface type sandwiched from (y direction). The interval Lw between the post walls 31a and 31b is 9 mm.

このようにE面方向の対向壁で構成されたキャビティ構造を採用することで、特定周波数帯でノッチを生じさせた状態で、誘電体基板21の幅をポスト壁の間隔Lwより狭くすることができ、それに伴って水平面(xz面)のレーダ検知幅を格段に広げることができる。   By adopting the cavity structure composed of the opposing walls in the E-plane direction in this way, the width of the dielectric substrate 21 can be made narrower than the interval Lw between the post walls in a state where notches are generated in a specific frequency band. Accordingly, the radar detection width on the horizontal plane (xz plane) can be greatly increased.

また、金属ポスト30によってアンテナ素子23をE面方向から挟む対向壁面型のキャビティ構造を形成していることに伴い、誘電体基板21の表面側において、一方の壁を形成する複数の金属ポスト30の一端側を短絡するリム導体32aと、他方の壁を形成する複数の金属ポスト30の一端側を短絡するリム導体32bが分離された構造となっている。   In addition, a plurality of metal posts 30 forming one wall are formed on the surface side of the dielectric substrate 21 by forming the opposing wall surface type cavity structure sandwiching the antenna element 23 from the E plane direction by the metal posts 30. The rim conductor 32a that short-circuits one end side of the rim conductor and the rim conductor 32b that short-circuits one end side of the plurality of metal posts 30 that form the other wall are separated.

なお、この金属ポスト30は、例えば誘電体基板21に貫通する穴の内壁にメッキ加工(スルーホールメッキ)することで実現されている。   The metal post 30 is realized, for example, by plating (through-hole plating) the inner wall of a hole that penetrates the dielectric substrate 21.

また、リム導体32a、32bの金属ポスト30からアンテナ素子方向の幅(有効リム幅)は、表面波の波長のほぼ1/4(例えば1.2mm前後)に相当している。つまり、この有効リム幅の部分は、その先端側からポスト壁側を見たとき、表面波に対してインピーダンス無限大のπ/4伝送路を形成する。したがって、表面に沿った電流が流れないことになり、この電流阻止作用によって表面波が抑圧され、放射特性の暴れを防いでいることになる。   Further, the width of the rim conductors 32a and 32b from the metal post 30 to the antenna element (effective rim width) corresponds to approximately ¼ of the wavelength of the surface wave (for example, around 1.2 mm). That is, this effective rim width portion forms a π / 4 transmission line having an infinite impedance with respect to the surface wave when the post wall side is viewed from the tip side. Therefore, no current flows along the surface, and the surface wave is suppressed by this current blocking action, thereby preventing the radiation characteristics from being disturbed.

ただし、この実施形態では、図2に示しているように、リム導体32a、32bの両端の有効リム幅L1を小さく(例えば0.26mm)中央の有効リム幅L2を最大(例えば1.26mm)となるように山型に変化させてノッチ幅を広げているが、幅を1.2mm程度で一定にしてもよい。   However, in this embodiment, as shown in FIG. 2, the effective rim width L1 at both ends of the rim conductors 32a and 32b is reduced (for example, 0.26 mm), and the central effective rim width L2 is maximized (for example, 1.26 mm). The notch width is increased by changing the shape into a mountain shape, but the width may be constant at about 1.2 mm.

上記実施形態では、アンテナ素子23が、2等辺3角形の素子片23a、23bを、その頂点が近接する状態で対称に配置したボウタイアンテナの例を示したが、素子片形状が帯板あるいは菱形等であってもよい。   In the above embodiment, the antenna element 23 is an example of a bow tie antenna in which the isosceles triangular element pieces 23a and 23b are arranged symmetrically with their apexes close to each other. Etc.

(第2の実施形態)
上記実施形態のアンテナ20はアンテナ素子23が一つのものであったが、図5、図6に示すアンテナ20′のように、前記構造アンテナを縦長の共通の誘電体基板21′およびそれに対応した地板導体22′に、ポスト壁の延びている方向と直交する方向(この例では素子片23a、23bの並び方向が一直線上に揃うように)に複数組(この例では4組)並べてアレー化し、各アンテナ素子23に同相給電することで、水平面(xz面)の広いレーダ検知幅を維持しつつ高利得が得られる。
(Second Embodiment)
The antenna 20 of the above embodiment has a single antenna element 23. However, as in the antenna 20 'shown in FIG. 5 and FIG. 6, the structural antenna corresponds to a vertically long common dielectric substrate 21' and the same. A plurality of sets (four sets in this example) are arranged in an array on the ground plane conductor 22 'in a direction orthogonal to the direction in which the post wall extends (in this example, the arrangement direction of the element pieces 23a and 23b is aligned). By supplying in-phase power to each antenna element 23, a high gain can be obtained while maintaining a wide radar detection width on a horizontal plane (xz plane).

図7は、この実施形態のアンテナ20′で、誘電体基板21′の幅Lxを変えたときのH面(水平面)の指向性の変化を示すものであり、内寸Lw=9mmの閉鎖型のキャビティ構造を有する従来アンテナの半値幅(3dB幅)が70度であるのに対し、実施形態のアンテナ20′でLx=9mmにしたとき78度、Lx=6mmにしたとき96度、Lx=3mmにしたとき126度の半値幅が得られている。   FIG. 7 shows a change in directivity of the H plane (horizontal plane) when the width Lx of the dielectric substrate 21 ′ is changed in the antenna 20 ′ of this embodiment, and is a closed type with an inner dimension Lw = 9 mm. The half-width (3 dB width) of the conventional antenna having the cavity structure of 70 degrees is 70 degrees, whereas the antenna 20 ′ of the embodiment has 78 degrees when Lx = 9 mm, 96 degrees when Lx = 6 mm, and Lx = When set to 3 mm, a half-width of 126 degrees is obtained.

図8は、誘電体基板21′の幅Lxを変えたときの利得の周波数特性を示している。この図からキャビティが閉鎖型から対向壁型になったことで、利得の若干の低下は認められるが、電波発射禁止帯におけるノッチは十分の深さが得られている。   FIG. 8 shows the frequency characteristics of the gain when the width Lx of the dielectric substrate 21 'is changed. From this figure, a slight decrease in gain is recognized as the cavity is changed from the closed type to the opposed wall type, but the notch in the radio wave emission prohibited band has a sufficient depth.

このE面方向の対向壁で構成されたキャビティ構造を採用することで、誘電体基板21′の幅を、ポスト壁の間隔Lwより狭くすることができ、それに伴ってレーダ検知幅を格段に広げることができる。   By adopting a cavity structure composed of opposing walls in the E-plane direction, the width of the dielectric substrate 21 'can be made narrower than the interval Lw between the post walls, and the radar detection width is greatly increased accordingly. be able to.

なお、このアンテナ20′では、縦に並んだ4組のアンテナ素子23に対して、5つのポスト壁31a〜31eを用い、そのうち、3つのポスト壁31b、31c、31dを共用している。   In this antenna 20 ', five post walls 31a to 31e are used for four sets of antenna elements 23 arranged vertically, and among these, three post walls 31b, 31c and 31d are shared.

また、このアンテナ20′では、図6に示したように、地板導体22′の背面側に設けた誘電体基板24の表面に、マイクロストリップ線路40を形成して、給電点40aから各アンテナ素子23に同相給電する例を示している。この給電の方法についてはマイクロストリップ線路以外にコプレーナ線路等を用いることができる。   Further, in this antenna 20 ', as shown in FIG. 6, a microstrip line 40 is formed on the surface of the dielectric substrate 24 provided on the back side of the ground plane conductor 22', and each antenna element is formed from the feeding point 40a. 23 shows an example of in-phase power feeding. As for the power feeding method, a coplanar line or the like can be used in addition to the microstrip line.

(第3の実施形態)
上記実施形態のアンテナ20は、アンテナ素子23が直線偏波のダイポール型の例であったが、図9に示すアンテナ50のように、アンテナ素子53として特許文献1のようなスパイラル型の素子による円偏波型のものを用いた場合でも、前記した対向壁面型のキャビティ構造では電波発射禁止帯におけるノッチが確認されている。なお、このアンテナ50の他の構成要素は前記実施形態と同等であり、同一符号を付している。
(Third embodiment)
In the antenna 20 of the above-described embodiment, the antenna element 23 is an example of a linearly polarized dipole. However, as the antenna element 53 shown in FIG. Even when a circularly polarized wave type is used, a notch in the radio wave emission prohibited band is confirmed in the above-described opposed wall type cavity structure. In addition, the other component of this antenna 50 is equivalent to the said embodiment, and attaches | subjects the same code | symbol.

即ち、アンテナ50は、誘電体基板21と、その誘電体基板21の一面側に重なり合う地板導体22と、誘電体基板21の反対面にスパイラル状に形成されたアンテナ素子53と、一端側が地板導体22に接続され、誘電体基板21をその厚さ方向に沿って貫通し、他端側が誘電体基板22の反対面まで延びた金属ポスト30を管内波長に比べて十分狭い間隔で並べて形成した一対のポスト壁31a、31bで、アンテナ素子43を挟むことにより構成した対向壁面型のキャビティ31と、誘電体基板21の反対面側に、一対のポスト壁31a、31bをそれぞれ形成する複数の金属ポスト30の他端側をその並び方向に沿って短絡し、且つアンテナ素子23方向に所定距離延びた一対のリム導体32a、32bとを備えている。なお、アンテナ素子53の中央端が給電ピン25aに接続される。   That is, the antenna 50 includes a dielectric substrate 21, a ground plane conductor 22 that overlaps one surface of the dielectric substrate 21, an antenna element 53 formed in a spiral shape on the opposite surface of the dielectric substrate 21, and a ground plane conductor on one end side. A pair of metal posts 30 connected to 22 and penetrating through the dielectric substrate 21 along the thickness direction and having the other end extending to the opposite surface of the dielectric substrate 22 are arranged at a sufficiently narrow interval compared to the wavelength in the tube. A plurality of metal posts that respectively form a pair of post walls 31a and 31b on the opposite surface side of the dielectric substrate 21 and an opposite wall surface type cavity 31 constituted by sandwiching the antenna element 43 between the post walls 31a and 31b. 30 is provided with a pair of rim conductors 32a and 32b that are short-circuited in the arrangement direction and extend a predetermined distance in the direction of the antenna element 23. The central end of the antenna element 53 is connected to the power feed pin 25a.

このアンテナ50の場合も、前記同様にポスト壁32a、32bの延びている方向と直交する方向の幅(基板幅)Lxをポスト壁32a、32bの間隔Lwより狭くすることができ、それによりポスト壁32a、32bの間隔Lwによって決まる周波数帯の利得のノッチと、基板幅方向の指向性(xz面指向性)を広げて水平面のレーダ検知範囲を拡大することできる。   In the case of this antenna 50 as well, the width (substrate width) Lx in the direction orthogonal to the direction in which the post walls 32a and 32b extend can be made smaller than the interval Lw between the post walls 32a and 32b. The radar detection range on the horizontal plane can be expanded by expanding the notch of the gain in the frequency band determined by the interval Lw between the walls 32a and 32b and the directivity in the substrate width direction (xz plane directivity).

(第4の実施形態)
また、図10、図11に示すアンテナ50′のように、上記構造のアンテナ50を、縦長の共通の誘電体基板21′およびそれに対応した地板導体22′に、ポスト壁の延びている方向と直交する方向に複数組(この例では4組)並べてアレー化し、各アンテナ素子43を同相で励振することで広いレーダ検知幅を維持しつつ高利得が得られる。
(Fourth embodiment)
Further, like the antenna 50 ′ shown in FIGS. 10 and 11, the antenna 50 having the above structure is connected to the vertically long common dielectric substrate 21 ′ and the corresponding ground plane conductor 22 ′ in the direction in which the post wall extends. A plurality of sets (four sets in this example) are arranged in an orthogonal direction to form an array, and each antenna element 43 is excited in the same phase, thereby obtaining a high gain while maintaining a wide radar detection width.

図12は、この実施形態のアンテナ50′で、誘電体基板21′の幅Lxを変えたときのH面(水平面)の指向性の変化を示すものであり、内寸Lw=9mmの閉鎖型のキャビティ構造を有する従来アンテナの半値幅(3dB)が60度であるのに対し、実施形態のアンテナ50′ではLx=6mmにしたとき92度の半値幅が得られる。   FIG. 12 shows a change in directivity of the H plane (horizontal plane) when the width Lx of the dielectric substrate 21 ′ is changed in the antenna 50 ′ of this embodiment, and is a closed type with an inner dimension Lw = 9 mm. The half width (3 dB) of the conventional antenna having the cavity structure is 60 degrees, whereas the antenna 50 'of the embodiment can obtain a half width of 92 degrees when Lx = 6 mm.

また、図13は、誘電体基板21′の幅Lxを変えたときの利得の周波数特性を示している。この図からキャビティが閉鎖型から対向壁型になったことで、利得の低下は認められるが、電波発射禁止帯におけるノッチの深さは得られる。このアンテナ50′を用いたレーダでは、アンテナ50′に接続されるフィルタ等により、電波発射禁止帯におけるノッチは十分な深さが得られる。   FIG. 13 shows the frequency characteristics of the gain when the width Lx of the dielectric substrate 21 ′ is changed. As can be seen from this figure, the gain is reduced by changing the cavity from the closed type to the opposed wall type, but the depth of the notch in the radio wave emission prohibited band can be obtained. In the radar using this antenna 50 ', a notch in the radio wave emission prohibited band can be obtained with a sufficient depth by a filter or the like connected to the antenna 50'.

なお、このアンテナ50′は、特許文献1に記載されているシーケンシャルアレーであり、スパイラル型のアンテナ素子53の上下に隣り合う2つを一組とし、その組を成す2つのアンテナ素子の角度を90度変えて配置するとともに、図11に示しているように、地板導体22′の背面側に設けた誘電体基板24の表面にマイクロストリップ線路40を形成して、組を成す2つのアンテナ素子53にπ/2相当の位相差を付与(上下に隣り合う2つのアンテナ素子のうち上側のアンテナ素子への線路長より下側のアンテナ素子への線路長をπ/2相当分長くする)することで、組を成すアンテナ素子の交差偏波成分を相殺しつつ同相励振している。   The antenna 50 ′ is a sequential array described in Patent Document 1, and two adjacent elements on the upper and lower sides of the spiral antenna element 53 are set as one set, and the angle of the two antenna elements forming the set is determined. As shown in FIG. 11, the microstrip line 40 is formed on the surface of the dielectric substrate 24 provided on the back surface side of the ground plane conductor 22 ', and two antenna elements forming a set are arranged. A phase difference equivalent to π / 2 is given to 53 (the line length to the lower antenna element is made longer by π / 2 than the line length to the upper antenna element of the two vertically adjacent antenna elements). Thus, in-phase excitation is performed while canceling the cross polarization components of the antenna elements forming the set.

本発明の実施形態の斜視図A perspective view of an embodiment of the present invention 本発明の実施形態の正面図Front view of an embodiment of the present invention 図2のA−A線断面図AA line sectional view of FIG. 本発明の実施形態の背面図Rear view of an embodiment of the present invention アレー化したアンテナの構成例を示す図Diagram showing configuration example of arrayed antenna アレー化したアンテナの給電線路の構成例を示す図Diagram showing configuration example of arrayed antenna feed line 実施形態の基板幅に対するレーダ検知幅の変化を示す図The figure which shows the change of the radar detection width with respect to the board | substrate width of embodiment 実施形態の基板幅に対する利得の周波数特性を示す図The figure which shows the frequency characteristic of the gain with respect to the board | substrate width of embodiment アンテナ素子が円偏波型の場合の構成例を示す図The figure which shows the structural example when an antenna element is a circular polarization type 円偏波型でアレー化したアンテナの構成例を示す図Diagram showing a configuration example of circularly polarized antenna array 円偏波型でアレー化したアンテナの給電線路の構成例を示す図Diagram showing a configuration example of a circularly polarized antenna feed line 実施形態の基板幅に対するレーダ検知幅の変化を示す図The figure which shows the change of the radar detection width with respect to the board | substrate width of embodiment 実施形態の基板幅に対する利得の周波数特性を示す図The figure which shows the frequency characteristic of the gain with respect to the board | substrate width of embodiment

符号の説明Explanation of symbols

20、20′50、50′……レーダ用アンテナ、21、21′……誘電体基板、22、22′……地板導体、23……アンテナ素子、23a、23b……素子片、24……誘電体基板、25a、25b……給電ピン、30……金属ポスト、31……キャビティ、31a〜31e……ポスト壁、32a、32b……リム導体、40……マイクロストリップ線路、53……アンテナ素子   20, 20'50, 50 '... radar antenna, 21, 21' ... dielectric substrate, 22, 22 '... ground plane conductor, 23 ... antenna element, 23a, 23b ... element piece, 24 ... Dielectric substrate, 25a, 25b ... feed pin, 30 ... metal post, 31 ... cavity, 31a to 31e ... post wall, 32a, 32b ... rim conductor, 40 ... microstrip line, 53 ... antenna element

Claims (3)

長方形の誘電体基板(21)と、
前記誘電体基板の一面側に重なり合う長方形の地板導体(22)と、
前記誘電体基板の反対面に該誘電体基板の長辺方向に沿った直線上に並ぶように形成された一対の素子片(23a、23b)からなるダイポール型のアンテナ素子(23)と、
一端側が前記地板導体に接続され、前記誘電体基板をその厚さ方向に沿って貫通し、他端側が前記誘電体基板の反対面まで延びた金属ポスト(30)を所定間隔で前記誘電体基板の両短辺に沿って並べて形成した一対のポスト壁(31a、31b)からなり、該一対のポスト壁で前記アンテナ素子をその電界方向に挟むことにより、該一対のポスト壁の間隔(Lw)によって決まる特定周波数帯でノッチを生じさせる対向壁面型のキャビティ(31)と、
前記誘電体基板の反対面側に、前記一対のポスト壁をそれぞれ形成する複数の金属ポストの他端側をその並び方向に沿って短絡し、且つ前記アンテナ素子方向に所定距離延びた一対のリム導体(32a、32b)とを備え
さらに、前記誘電体基板のポスト壁が延びている短辺方向の幅(Lx)を、前記特定周波数帯でノッチを生じさせる前記一対のポスト壁の間隔(Lw)よりも狭く形成して、前記誘電体基板の長辺方向に沿った電界面のビーム幅に対して、短辺方向に沿った磁界面のビーム幅を広げたことを特徴とするレーダ用アンテナ。
A rectangular dielectric substrate (21);
A rectangular ground plane conductor (22) overlapping one surface of the dielectric substrate;
The pair of elements pieces formed so as to be aligned on a straight line along the longitudinal direction of the dielectric substrate on the opposite surface of the dielectric substrate and (23a, 23b) dipole antenna element made of (2 3),
One end connected to the ground plane conductor, the dielectric substrate wherein the dielectric substrate penetrates along the thickness direction, the metal posts (30) which has the other end extending to the opposite surface of the dielectric substrate at a predetermined interval A pair of post walls (31a, 31b) formed side by side along both short sides of the antenna element, and the antenna element is sandwiched between the pair of post walls in the direction of the electric field, thereby separating the pair of post walls (Lw). An opposite wall surface type cavity (31) for generating a notch in a specific frequency band determined by :
A pair of rims that short-circuit the other end sides of the plurality of metal posts that respectively form the pair of post walls on the opposite surface side of the dielectric substrate along the arrangement direction and extend a predetermined distance in the antenna element direction Conductors (32a, 32b) ,
Further, the width (Lx) in the short side direction in which the post wall of the dielectric substrate extends is formed to be narrower than the interval (Lw) between the pair of post walls that cause notches in the specific frequency band, A radar antenna, wherein the beam width of the magnetic field surface along the short side direction is expanded with respect to the beam width of the electric field surface along the long side direction of the dielectric substrate .
前記請求項1記載のレーダ用アンテナを、共通の誘電体基板上に前記ポスト壁の延びている方向と直交する方向に複数組並べてアレー化したことを特徴とするレーダ用アンテナ。 Claim 1 radar antenna according a common dielectric the features and, Relais over da antennas that it has an array of side by side a plurality of sets in a direction perpendicular to the direction extending post walls on the substrate. 前記ポスト壁が延びている短辺方向の幅(Lx)を前記一対のポスト壁の間隔(Lw)の2/3以下に設定したことを特徴とする請求項記載のレーダ用アンテナ。 The radar antenna according to claim 2 , wherein a width (Lx) in a short side direction in which the post wall extends is set to 2/3 or less of a distance (Lw) between the pair of post walls .
JP2008052651A 2008-03-03 2008-03-03 Radar antenna Expired - Fee Related JP5103227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052651A JP5103227B2 (en) 2008-03-03 2008-03-03 Radar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052651A JP5103227B2 (en) 2008-03-03 2008-03-03 Radar antenna

Publications (2)

Publication Number Publication Date
JP2009212727A JP2009212727A (en) 2009-09-17
JP5103227B2 true JP5103227B2 (en) 2012-12-19

Family

ID=41185467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052651A Expired - Fee Related JP5103227B2 (en) 2008-03-03 2008-03-03 Radar antenna

Country Status (1)

Country Link
JP (1) JP5103227B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045844A1 (en) * 2009-10-16 2011-04-21 Kabushiki Kaisha Sato Magnetic rfid coupler with balanced signal configuration
JP5723999B1 (en) * 2014-01-20 2015-05-27 日本電業工作株式会社 Antenna device considering the surrounding environment
JP6880986B2 (en) * 2016-05-10 2021-06-02 Agc株式会社 In-vehicle antenna
CN105826673B (en) * 2016-05-16 2018-05-04 河南师范大学 Ultra wide band tear drop shape dipole antenna
CN105811101B (en) * 2016-05-16 2019-02-19 河南师范大学 A kind of ultra wide band water-drop-shaped antenna for through-wall radar
CN106898869B (en) * 2017-03-22 2022-10-04 中国人民解放军国防科学技术大学 High-gain directional radiation dielectric resonator antenna
KR20230084609A (en) * 2019-09-26 2023-06-13 아싸 아브로이 에이비 Ultra-wide band antenna configuration for physical access control system
CN218415019U (en) * 2021-12-01 2023-01-31 加特兰微电子科技(上海)有限公司 Onboard antenna, radio device, and electronic apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3048944B2 (en) * 1989-08-21 2000-06-05 三菱電機株式会社 Array antenna
JPH082004B2 (en) * 1989-08-21 1996-01-10 三菱電機株式会社 Microstrip antenna
JP2803583B2 (en) * 1994-11-15 1998-09-24 日本電気株式会社 Patch antenna
JP3298604B2 (en) * 1995-07-10 2002-07-02 日本電信電話株式会社 Coplanar guide transmission line
US7362285B2 (en) * 2004-06-21 2008-04-22 Lutron Electronics Co., Ltd. Compact radio frequency transmitting and receiving antenna and control device employing same
EP1814196A4 (en) * 2004-11-15 2007-11-07 Anritsu Corp Circularly polarized antenna and radar device using it
WO2007055028A1 (en) * 2005-11-14 2007-05-18 Anritsu Corporation Rectilinear polarization antenna and radar device using the same

Also Published As

Publication number Publication date
JP2009212727A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5103227B2 (en) Radar antenna
JP4681614B2 (en) Linearly polarized antenna and radar apparatus using the same
WO2014119141A1 (en) Antenna device
JPWO2006051947A1 (en) Circularly polarized antenna and radar apparatus using the same
EP3528339A1 (en) Antenna device
WO2014123024A1 (en) Antenna device and array antenna device
US5717410A (en) Omnidirectional slot antenna
CN108232439B (en) Linear array antenna and planar array antenna of substrate integrated waveguide slot feed
WO2017213243A1 (en) On-vehicle antenna apparatus
JP5388943B2 (en) Waveguide / MSL converter and planar antenna
WO2016047779A1 (en) Antenna array, wireless communication apparatus, and method for making antenna array
US8847837B2 (en) Antenna and radar apparatus
JP2009100253A (en) Antenna for radar device
KR20130096009A (en) Multi band patch antenna
Top et al. A circularly polarized omni-directional low loss Ka-band slot antenna
JP5078732B2 (en) Antenna device
JP2010103871A (en) Antenna device and array antenna device
KR102039398B1 (en) Integrated Antenna Operating in Multiple Frequency Bands
JP6611238B2 (en) Waveguide / transmission line converter, array antenna, and planar antenna
JP2007235682A (en) Planar antenna
JP2013197682A (en) Antenna device
US9356360B1 (en) Dual polarized probe coupled radiating element
Sharma et al. Diagonal slotted diamond shaped dual circularly polarized microstrip patch antenna with dumbbell aperture coupling
US10804589B1 (en) Parallel plate antenna with vertical polarization
CN214313519U (en) Antenna assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5103227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees