JP5101560B2 - Method and apparatus for producing hydrogen - Google Patents

Method and apparatus for producing hydrogen Download PDF

Info

Publication number
JP5101560B2
JP5101560B2 JP2009099032A JP2009099032A JP5101560B2 JP 5101560 B2 JP5101560 B2 JP 5101560B2 JP 2009099032 A JP2009099032 A JP 2009099032A JP 2009099032 A JP2009099032 A JP 2009099032A JP 5101560 B2 JP5101560 B2 JP 5101560B2
Authority
JP
Japan
Prior art keywords
hydrogen
laser
containing compound
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009099032A
Other languages
Japanese (ja)
Other versions
JP2009184919A (en
Inventor
一之 平尾
清貴 三浦
靖彦 下間
国和 浅香
一廣 前
哲也 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
LEF Technology Inc
Original Assignee
Kyoto University
LEF Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, LEF Technology Inc filed Critical Kyoto University
Priority to JP2009099032A priority Critical patent/JP5101560B2/en
Publication of JP2009184919A publication Critical patent/JP2009184919A/en
Application granted granted Critical
Publication of JP5101560B2 publication Critical patent/JP5101560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素を製造する方法と装置に関し、特に非熱的反応により水素を製造する方法と装置に関する。   The present invention relates to a method and apparatus for producing hydrogen, and more particularly to a method and apparatus for producing hydrogen by a non-thermal reaction.

従来より、水素(H)ガスの製造方法について様々な研究開発が行われている。たとえば、原料として炭化水素やアルコールを用い、担持Niのような触媒の存在下で、300〜800℃、1〜30atm程度の圧力下で分解させる方法(炭化水素の「水蒸気」改質反応)が知られている。しかしながら、この方法では、高温高圧という過酷な条件を必要とし、触媒の使用が必須である。また、副生物として一酸化炭素や二酸化炭素が生成するためこれらを除去し、無害化する工程も必要となる。そのため、かかる製造方法は反応に要するコストが高く、安全性にも劣っている。 Conventionally, various research and development have been conducted on methods for producing hydrogen (H 2 ) gas. For example, there is a method (hydrocarbon “steam” reforming reaction) in which hydrocarbon or alcohol is used as a raw material and is decomposed under a pressure of about 1 to 30 atm at 300 to 800 ° C. in the presence of a catalyst such as supported Ni. Are known. However, this method requires severe conditions such as high temperature and high pressure, and the use of a catalyst is essential. Moreover, since carbon monoxide and carbon dioxide are produced as by-products, a process for removing these and making them harmless is also required. Therefore, such a production method has a high cost for reaction and is inferior in safety.

また、原料として水を用い、これを、電気分解、光触媒分解、メカノキャタリシス法などによって分解し、水素を製造する方法も知られている。しかしながら、この方法は、閉鎖循環系での検討しかなされておらず、また、エネルギー効率が低い。   Also known is a method for producing hydrogen by using water as a raw material and decomposing it by electrolysis, photocatalytic decomposition, mechanocatalysis, or the like. However, this method has been studied only in a closed circulation system and has low energy efficiency.

特許文献1及び2には、プラズマ反応を利用して炭化水素、エーテル、アルコール及び水のような原料化合物を分解する、水素の製造方法が記載されている。しかしながら、プラズマを発生させるには高電圧を要するため危険性が高く、装置が大規模になる。   Patent Documents 1 and 2 describe a method for producing hydrogen in which a raw material compound such as hydrocarbon, ether, alcohol, and water is decomposed using a plasma reaction. However, since a high voltage is required to generate plasma, the risk is high and the apparatus becomes large.

また、プラズマ反応は気相で行われる。そのため、原料化合物は予めガス化してから反応に供する必要があり、操作が繁雑でエネルギー効率が低い。さらに、気相反応は反応選択性に劣り副生成物が多く、収率も低くなる。   The plasma reaction is performed in the gas phase. Therefore, it is necessary to gasify the raw material compound in advance and use it for the reaction, which is complicated in operation and low in energy efficiency. Furthermore, the gas phase reaction is inferior in reaction selectivity, has many by-products, and the yield is low.

特開2002−338203公報JP 2002-338203 A 特開2005−247638公報JP-A-2005-247638

本発明は上記従来の問題を解決するものであり、その目的とするところは、操作が簡単で安全性が高く、エネルギー効率も高い水素の製造方法と製造装置を提供することにある。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a hydrogen production method and production apparatus that are easy to operate, high in safety, and high in energy efficiency.

本発明は、水素含有化合物の液体に、パルスレーザーを照射する工程を有する水素の製造方法と製造装置であって、
該パルスレーザーのパルス幅が10 −12 秒以下であり、
該水素含有化合物が炭素数1〜4のアルコールからなる群から選択される少なくとも一種の化合物を含むものであり、
パルスレーザーの照射がメタノール改質触媒の存在下で行われる水素の製造方法と製造装置を提供するものであり、そのことにより上記目的が達成される。
The present invention is a method and apparatus for producing hydrogen having a step of irradiating a liquid of a hydrogen-containing compound with a pulse laser ,
The pulse width of the pulse laser is 10-12 seconds or less,
The hydrogen-containing compound includes at least one compound selected from the group consisting of alcohols having 1 to 4 carbon atoms,
The present invention provides a method and an apparatus for producing hydrogen in which pulsed laser irradiation is performed in the presence of a methanol reforming catalyst, whereby the above object is achieved.

本発明の方法と装置では、原料化合物は液体のまま反応に供され、反応を常温で行うことができるため、操作が簡単でエネルギー効率が高い。また、反応選択性が高く副生成物が少ないため高収率である。更に、高温高圧環境や高電圧を必要とせず、安全性に優れている。   In the method and apparatus of the present invention, since the raw material compound is subjected to the reaction in a liquid state and the reaction can be performed at room temperature, the operation is simple and the energy efficiency is high. Moreover, since the reaction selectivity is high and there are few by-products, it is a high yield. Furthermore, it does not require a high-temperature and high-pressure environment or a high voltage, and is excellent in safety.

本発明の実施の形態に係る水素の製造装置の構成を示す概略図である。It is the schematic which shows the structure of the manufacturing apparatus of hydrogen which concerns on embodiment of this invention.

本発明の水素の製造方法と製造装置に使用する原料は、水素含有化合物である。水素含有化合物としては、炭素数1〜4の炭化水素、炭素数1〜4のアルコール、炭素数1〜9のアルデヒド、炭素数2〜8のエーテル、炭素数3〜5のエステルなどの有機化合物、および水、硫化水素、水素化物などの無機化合物が挙げられる。これらの化合物は単独で用いてもよいが、2種以上併用しても構わない。   The raw material used for the hydrogen production method and production apparatus of the present invention is a hydrogen-containing compound. Examples of the hydrogen-containing compound include organic compounds such as hydrocarbons having 1 to 4 carbon atoms, alcohols having 1 to 4 carbon atoms, aldehydes having 1 to 9 carbon atoms, ethers having 2 to 8 carbon atoms, and esters having 3 to 5 carbon atoms. And inorganic compounds such as water, hydrogen sulfide, and hydride. These compounds may be used alone or in combination of two or more.

好ましい炭化水素には、脂肪族炭化水素、不飽和脂肪族炭化水素などが含まれる。脂肪族炭化水素としては、メタン、エタン、プロパン、ジメチルプロパン、不飽和脂肪族炭化水素としては、エチレン、プロピレン、プロピン、ブチレン、ブタジエンなどが挙げられる。本発明で特に好ましく使用される炭化水素は、メタン、エタン、プロパンである。   Preferred hydrocarbons include aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, and the like. Examples of the aliphatic hydrocarbon include methane, ethane, propane, dimethylpropane, and examples of the unsaturated aliphatic hydrocarbon include ethylene, propylene, propyne, butylene, and butadiene. Hydrocarbons particularly preferably used in the present invention are methane, ethane and propane.

アルコールには、飽和アルコール、不飽和アルコールなどが含まれる。飽和アルコールとしては、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、エチレングリコールなどが挙げられ、不飽和アルコールとしては、アリルアルコールなどが挙げられる。本発明で好ましく使用されるアルコール類はメタノール、エタノール、プロパノール、ブタノールである。本発明で特に好ましく使用されるアルコールは、メタノール、エタノールである。   Alcohol includes saturated alcohol, unsaturated alcohol, and the like. Examples of the saturated alcohol include methanol, ethanol, propanol, butanol, isopropyl alcohol, and ethylene glycol. Examples of the unsaturated alcohol include allyl alcohol. Alcohols preferably used in the present invention are methanol, ethanol, propanol and butanol. Alcohols particularly preferably used in the present invention are methanol and ethanol.

また、本発明においては、上記炭化水素、アルコールの他にアルデヒド(例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレイン、ベンズアルデヒド、シンナムアルデヒド)、エーテル(例えば、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、1,2−ジメトキシエタン、テトラヒドロフラン、1,4−ジオキサン、アニソール)、エステル(例えば、酢酸メチル、酢酸エチル、酪酸メチル、酪酸エチル)などの有機化合物も使用することができる。   In the present invention, in addition to the above hydrocarbons and alcohols, aldehydes (for example, formaldehyde, acetaldehyde, propionaldehyde, acrolein, benzaldehyde, cinnamaldehyde), ethers (for example, dimethyl ether, ethyl methyl ether, diethyl ether, dipropyl ether) , Diisopropyl ether, dibutyl ether, 1,2-dimethoxyethane, tetrahydrofuran, 1,4-dioxane, anisole), esters (eg, methyl acetate, ethyl acetate, methyl butyrate, ethyl butyrate) and the like may be used. it can.

水としては、純水の他雨水、水道水、1次処理済み排水などを使用することができる。また、水以外の無機化合物として、硫化水素などの硫黄化合物、SiHなどのシラン類、PHなどのホスフィン類も使用できる。 As water, rainwater, tap water, primary treated wastewater, etc. can be used in addition to pure water. Moreover, as inorganic compounds other than water, sulfur compounds such as hydrogen sulfide, silanes such as SiH 4, and phosphines such as PH 3 can also be used.

水素含有化合物は照射する際に液状であればよい。すなわち、冷却、加熱、加圧、減圧などして液化しうる水素含有化合物は原料として使用することができる。しかしながら、水素含有化合物は常温(25℃)及び常圧(1気圧)において液体であることが好ましい。常温で気体や固体である水素含有化合物を液化し、又は液状を維持するために装置やエネルギーを要し、反応操作が複雑になる。   The hydrogen-containing compound may be liquid when irradiated. That is, a hydrogen-containing compound that can be liquefied by cooling, heating, pressurization, decompression or the like can be used as a raw material. However, the hydrogen-containing compound is preferably a liquid at normal temperature (25 ° C.) and normal pressure (1 atm). In order to liquefy a hydrogen-containing compound that is a gas or a solid at room temperature, or to maintain a liquid state, an apparatus and energy are required, and the reaction operation becomes complicated.

つまり、好ましい水素含有化合物は、常温における蒸気圧が400kPa以下、好ましくは1Pa〜100kPaであるか、1気圧下での沸点が20℃以上、好ましくは30〜200℃のものである。   That is, a preferable hydrogen-containing compound has a vapor pressure of 400 kPa or less, preferably 1 Pa to 100 kPa at room temperature, or a boiling point of 20 ° C. or more, preferably 30 to 200 ° C. under 1 atm.

かかる水素含有化合物にフェムト秒レーザーを照射する。照射対象の水素含有化合物は液体であればよい。水素含有化合物は液状を維持するために冷却又は加熱されてもよい。しかしながら、その際に熱を加えたとしても、熱は水素含有化合物の反応にあまり関与しないと考えられる。   Such a hydrogen-containing compound is irradiated with a femtosecond laser. The hydrogen-containing compound to be irradiated may be a liquid. The hydrogen-containing compound may be cooled or heated to maintain a liquid state. However, even if heat is applied at that time, it is considered that heat does not contribute much to the reaction of the hydrogen-containing compound.

レーザーの照射は、水素含有化合物を、少なくとも一部がフェムト秒レーザーを透過可能な容器に収納して、通常は常温で行う。その際、レーザーの照射と同時に酸素ガスを導入することが好ましい。反応系内に酸素が存在していると副生成物である一酸化炭素が酸化され、COに改質されるからである。照射はバッチ式で行なっても連続式で行なってもよい。また、レーザーを集光照射する位置は容器内部で集光するように適宜調節すればよい。 Laser irradiation is usually performed at room temperature, with the hydrogen-containing compound at least partially housed in a container that can transmit a femtosecond laser. In that case, it is preferable to introduce oxygen gas simultaneously with laser irradiation. This is because, if oxygen is present in the reaction system, carbon monoxide as a by-product is oxidized and reformed to CO 2 . Irradiation may be performed batchwise or continuously. In addition, the position where the laser is focused and irradiated may be adjusted as appropriate so that the laser is focused inside.

フェムト秒レーザーの照射スポット径は特に制限されず、レンズの大きさや開口数又は倍率などに応じて適宜選択することができ、例えば、50μm以下(好ましくは0.1〜10μm程度)の範囲から選択することができる。   The irradiation spot diameter of the femtosecond laser is not particularly limited, and can be appropriately selected according to the size, numerical aperture, or magnification of the lens, for example, selected from a range of 50 μm or less (preferably about 0.1 to 10 μm). can do.

一般に、フェムト秒レーザーとは、レーザーのパルス幅が数〜数百フェムト秒のレーザーをいうが、本発明の水素製造方法と製造装置では、パルス幅が10−1 秒以下の超短パルスレーザーが好適に用いられる。例えば、パルス幅が1×10−15秒〜1×10−12秒、好ましくは1×10−15秒〜1×10−14秒、より好ましくは10×10−15秒〜500×10−15秒であるパルスレーザーが用いられる。 In general, the femtosecond laser, the pulse width of the laser means a laser having to hundreds femtoseconds, hydrogen production method and production apparatus of the present invention, the pulse width of less than 10 -1 2-second ultra-short pulse laser Are preferably used. For example, the pulse width is 1 × 10 −15 seconds to 1 × 10 −12 seconds, preferably 1 × 10 −15 seconds to 1 × 10 −14 seconds, more preferably 10 × 10 −15 seconds to 500 × 10 −15. A pulsed laser that is seconds is used.

フェムト秒レーザーは、例えば、チタン・サファイア結晶を媒質とするレーザー、エルビウムドープ石英のファイバーレーザーや色素レーザーを再生、増幅して得ることができる。フェムト秒レーザーの波長は、例えば、250〜1000nmから適宜選択する。また、フェムト秒レーザーの繰り返し数は、例えば、1Hz〜80MHzの範囲から選択し、通常、10Hz〜500kHz程度である。   The femtosecond laser can be obtained, for example, by reproducing and amplifying a laser using a titanium / sapphire crystal as a medium, an erbium-doped quartz fiber laser, or a dye laser. The wavelength of the femtosecond laser is appropriately selected from, for example, 250 to 1000 nm. Further, the number of repetitions of the femtosecond laser is selected from a range of 1 Hz to 80 MHz, for example, and is usually about 10 Hz to 500 kHz.

フェムト秒レーザーの照射エネルギーのフルエンスは集光レンズによる集光条件にもよるが、1〜1×10J/cm、好ましくは1×10〜1×10J/cmに調節する。照射エネルギーのフルエンスが1×10J/cm未満であると反応が不十分であり、十分な水素発生量を得ることができない、また1×10J/cmを越えると単に空気中で集光するだけでも光学ブレークダウンにより焦点近傍でプラズマが発生し、水素含有化合物への照射は真空チャンバー内で行う必要があり、反応操作が煩雑となる。 The fluence of the irradiation energy of the femtosecond laser is adjusted to 1 to 1 × 10 6 J / cm 2 , preferably 1 × 10 3 to 1 × 10 5 J / cm 2, although it depends on the condensing condition of the condensing lens. . When the fluence of irradiation energy is less than 1 × 10 3 J / cm 2 , the reaction is insufficient, and a sufficient amount of hydrogen generation cannot be obtained, and when it exceeds 1 × 10 5 J / cm 2 , it is simply in the air. Even if the light is condensed in the plasma, plasma is generated in the vicinity of the focal point due to optical breakdown, and it is necessary to irradiate the hydrogen-containing compound in a vacuum chamber, which makes the reaction operation complicated.

分子のエネルギーポテンシャルとレーザー光を相互作用させるために、水素含有化合物に照射されるレーザーの光電場強度は、好ましくは1012W/cm以上とする。レーザーの光電場強度が1012W/cm未満であると分子のエネルギーポテンシャルとレーザー光とが十分に相互作用できず、分子のイオン化やクーロン爆発による分子の解離を誘起することができない。そのために、レーザー照射手段であるレーザー照射部は、集光レンズを有する光学系を備えており、レーザー発生部から出射されたレーザーを光学系で集光して水素含有化合物に照射する。 In order to make the energy potential of the molecule interact with the laser light, the photoelectric field intensity of the laser irradiated to the hydrogen-containing compound is preferably 10 12 W / cm 2 or more. When the photoelectric field intensity of the laser is less than 10 12 W / cm 2 , the energy potential of the molecule and the laser beam cannot sufficiently interact, and molecular ionization or molecular dissociation due to Coulomb explosion cannot be induced. For this purpose, the laser irradiation unit, which is a laser irradiation unit, includes an optical system having a condensing lens. The laser emitted from the laser generation unit is condensed by the optical system and applied to the hydrogen-containing compound.

水素含有化合物にフェムト秒レーザーを照射すると、水素含有化合物分子の電子状態が影響を受けて、レーザーの光電場によりエネルギーポテンシャルが変形する。さらに、多光子イオン化やトンネルイオン化などを経て水素含有化合物分子はイオン化される。イオン化された水素含有化合物分子は、クーロン爆発により、水素含有化合物分子の解離が誘起される。このようにして水素含有化合物の分解反応が起こり、最終的に水素が発生する。発生した水素は気体であり、系外に放出され、収集管などを用いて収集される。分解反応時に触媒は存在しなくてもよい。触媒は一般に高価であり、触媒を用いない場合、反応が安価に行なえる。また、触媒が不存在であると反応系が単一相になるため、反応の管理及び操作が非常に簡単になる。   When a femtosecond laser is irradiated to a hydrogen-containing compound, the electronic state of the hydrogen-containing compound molecule is affected, and the energy potential is deformed by the photoelectric field of the laser. Furthermore, the hydrogen-containing compound molecules are ionized through multiphoton ionization, tunnel ionization, and the like. In the ionized hydrogen-containing compound molecule, dissociation of the hydrogen-containing compound molecule is induced by Coulomb explosion. In this way, the decomposition reaction of the hydrogen-containing compound occurs, and finally hydrogen is generated. The generated hydrogen is a gas, is released out of the system, and is collected using a collection tube or the like. No catalyst may be present during the decomposition reaction. The catalyst is generally expensive, and when the catalyst is not used, the reaction can be performed at a low cost. Moreover, since the reaction system becomes a single phase in the absence of the catalyst, the management and operation of the reaction becomes very simple.

但し、触媒を用いると水素の収率が向上するため、触媒の存在下で分解反応を行なってもよい。例えば、好ましい触媒は、一般に「メタノール改質触媒」と呼ばれる化合物である。メタノール改質触媒は、例えば、アルミナなどの担体に白金などの白金属元素、又は銅、ニッケル、クロム、亜鉛などの碑金属元素及びその酸化物などを担持した金属化合物の粉末、またはCu−ZnO系、またはCu−ZnO−M(但し、Mは亜鉛に置換する他の金属であり、アルミニウム、クロム、ガリウム、鉄、マンガン、セリウム、パラジウム、白金及び金からなる群から選ばれた少なくとも一種の金属)などである。またTiOに代表される光触媒でもよい。 However, since the yield of hydrogen improves when a catalyst is used, the decomposition reaction may be performed in the presence of the catalyst. For example, a preferred catalyst is a compound commonly referred to as a “methanol reforming catalyst”. The methanol reforming catalyst is, for example, a powder of a metal compound in which a white metal element such as platinum or a metal element such as copper, nickel, chromium or zinc and an oxide thereof are supported on a support such as alumina, or Cu-ZnO. Or Cu—ZnO—M (wherein M is another metal substituted for zinc, and at least one selected from the group consisting of aluminum, chromium, gallium, iron, manganese, cerium, palladium, platinum, and gold) Metal). Or it may be a photocatalyst typified by TiO 2.

触媒の使用量は照射するフェムト秒レーザーの波長にもよるが、波長800nmの場合、水素含有化合物に対して0.001〜0.1重量%、好ましくは0.005〜0.05重量%である。触媒の使用量が少なすぎると収率の向上効果が不十分であり、多すぎると、触媒を添加した水素含有化合物内部において、レーザー光の透過率が小さくなり、十分なレーザー光を水素含有化合物内部で集光できなくなるため、有意な向上効果が得られない。   Although the amount of the catalyst used depends on the wavelength of the femtosecond laser to be irradiated, in the case of a wavelength of 800 nm, it is 0.001 to 0.1% by weight, preferably 0.005 to 0.05% by weight with respect to the hydrogen-containing compound. is there. If the amount of the catalyst used is too small, the effect of improving the yield is insufficient, and if it is too large, the transmittance of the laser beam is reduced inside the hydrogen-containing compound to which the catalyst is added, and sufficient laser light is transmitted to the hydrogen-containing compound. Since the light cannot be condensed inside, a significant improvement effect cannot be obtained.

以下の実施例により本発明を図1を用いて更に具体的に説明するが、本発明はこれらに限定されない。実施例中、「部」などの量は、特に断らない限り重量基準である。
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto. In the examples, amounts such as “parts” are based on weight unless otherwise specified.

<実施例1>
図1に示すように、パルス幅が10−12秒以下のレーザーが透過可能なガラスからなる縦10mm、横10mm、高さ20mmの枝付き分光セル(容器)3(容量5cc)に水素含有化合物4として純度99.8%のメタノールを入れ、シリコーンゴム栓6にて密栓した栓にシリンジ針7を2本挿入し、マグネチックスターラー5で攪拌しながら、シリンジ針を通してNガスボンベ9からNガスを供給して約10分間バブリングし、メタノールを脱気した。Nガスを注入したシリンジ針に設置したコック8を密栓し、残りの針にガスタイトシリンジ10を取り付けた。
<Example 1>
As shown in FIG. 1, a hydrogen-containing compound is placed in a branching spectroscopic cell (container) 3 (capacity 5 cc) made of glass capable of transmitting a laser having a pulse width of 10-12 seconds or less and having a length of 10 mm, a width of 10 mm, and a height of 20 mm. No. 4 was charged with 99.8% pure methanol, and two syringe needles 7 were inserted into a stopper sealed with a silicone rubber stopper 6 and stirred with a magnetic stirrer 5 while passing through the syringe needle through the N 2 gas cylinder 9 to N 2. Gas was supplied and bubbled for about 10 minutes to degas methanol. The cock 8 installed on the syringe needle into which N 2 gas was injected was sealed, and the gas tight syringe 10 was attached to the remaining needles.

レーザー照射部10のレーザー発生部11から出射したレーザー12を集光レンズ13で集光し、分光セル3に収容されているメタノールに照射した。図示するように、レーザー照射部10から出射されたレーザー12のレーザー集光部が分光セルの内部中央部付近に位置するように、レーザー照射部10を調整した。集光レンズ13で集光されたレーザースポットの光電場強度を測定した。測定の結果、光電場強度は66×1015W/cmであった。また、メタノールにレーザーが照射されている間、マグネチックスターラー5でメタノールを攪拌した。レーザーの照射条件を表1に示す。 The laser 12 emitted from the laser generation unit 11 of the laser irradiation unit 10 was collected by a condenser lens 13 and irradiated to methanol accommodated in the spectroscopic cell 3. As shown in the figure, the laser irradiation unit 10 was adjusted so that the laser condensing unit of the laser 12 emitted from the laser irradiation unit 10 was positioned in the vicinity of the inner central portion of the spectroscopic cell. The photoelectric field intensity of the laser spot condensed by the condenser lens 13 was measured. As a result of the measurement, the photoelectric field intensity was 66 × 10 15 W / cm 2 . Further, the methanol was stirred with the magnetic stirrer 5 while the laser was irradiated to the methanol. Table 1 shows the laser irradiation conditions.

[表1]

Figure 0005101560
[Table 1]
Figure 0005101560

レーザー照射によりメタノールが分解し、発生したガスをガスタイトシリンジで捕集した(ガス発生により、分光セルの内圧が上昇することにより、自然に捕集された。)ところ、約4mLであった。捕集された発生ガスのうち、無機ガス成分についてガスクロマトグラフ装置(島津製作所製「GC−8A」、検出器:TCD)を用いて分析した。捕集した発生ガス成分のうち、無機ガス成分は、水素、酸素および窒素であった。窒素は、メタノールの脱気を行った際のN2ガスの残留である。発生した4mL中の水素、酸素および窒素ガスの成分含有量を表2に示す。   The methanol was decomposed by the laser irradiation, and the generated gas was collected with a gas tight syringe (the gas was naturally collected by increasing the internal pressure of the spectroscopic cell due to gas generation). Among the collected generated gases, inorganic gas components were analyzed using a gas chromatograph (“GC-8A” manufactured by Shimadzu Corporation, detector: TCD). Of the generated gas components collected, the inorganic gas components were hydrogen, oxygen and nitrogen. Nitrogen is the residue of N2 gas when methanol is degassed. Table 2 shows the component contents of the generated hydrogen, oxygen, and nitrogen gas in 4 mL.

<実施例2>
純度99.8%のメタノールに、CuO−ZnO−Al系メタノール改質触媒(ズードケミー社製「MDC−3」)を所定量秤量し、濃度0.01重量%のメタノール懸濁液を作製した。
<Example 2>
A predetermined amount of a CuO—ZnO—Al 2 O 3 methanol reforming catalyst (“MDC-3” manufactured by Zude Chemie) was weighed into 99.8% purity methanol, and a methanol suspension having a concentration of 0.01 wt% was obtained. Produced.

メタノールの代わりに得られた懸濁液を用いること以外は実施例1と同様にして、分解反応を行い、発生ガスを捕集及び分析した。発生ガスの量は約7mLであった。なお捕集したガスの分析は、発生したガス量約7mLのうち、4mLを前記ガスクロマトグラフ装置に注入することで行った。また分析結果を表2に示す。   A decomposition reaction was performed in the same manner as in Example 1 except that the suspension obtained instead of methanol was used, and the generated gas was collected and analyzed. The amount of generated gas was about 7 mL. The collected gas was analyzed by injecting 4 mL of the generated gas amount of about 7 mL into the gas chromatograph apparatus. The analysis results are shown in Table 2.

[表2]

Figure 0005101560
[Table 2]
Figure 0005101560

<比較例>
パルス幅が10×10−9秒のパルスレーザーを照射すること以外は実施例1と同様にして、メタノールの分解反応を行ったところ、Hガスの発生はなかった。パルス幅が10×10−9秒のパルスレーザーを集光レンズで集光されたレーザースポットの光電場強度を測定した結果、1.4×1012W/cmであった。
<Comparative example>
When methanol was decomposed in the same manner as in Example 1 except that a pulse laser with a pulse width of 10 × 10 −9 seconds was irradiated, no H 2 gas was generated. It was 1.4 * 10 < 12 > W / cm < 2 > as a result of measuring the photoelectric field intensity | strength of the laser spot condensed with the condensing lens about 10 * 10 < -9 > -second pulse laser.

2・・・集光レンズ、
3・・・枝付き分光セル、
4・・・水素含有化合物、
5・・・マグネチックスターラー、
6・・・シリコーンゴム栓、
7・・・シリンジ針、
8・・・コック、
9・・・N2ガス、
10・・・ガスタイトシリンジ、
11・・・レーザー照射部、
12・・・レーザー、
13・・・集光レンズ。
2 ... Condensing lens,
3 ... Spectral cell with branches,
4 ... hydrogen-containing compound,
5 ... Magnetic stirrer,
6 ... Silicone rubber stopper,
7 ... syringe needle,
8 ... cook,
9 ... N2 gas,
10 ... Gastight syringe,
11 ... laser irradiation part,
12 ... Laser,
13 ... Condensing lens.

Claims (2)

水素含有化合物の液体に、パルスレーザーを照射する工程を有する水素の製造方法であって、
該パルスレーザーのパルス幅が10−12秒以下であり、
該水素含有化合物が炭素数1〜4のアルコールからなる群から選択される少なくとも一種の化合物を含むものであり、
パルスレーザーの照射がメタノール改質触媒の存在下で行われる水素の製造方法。
A method for producing hydrogen comprising a step of irradiating a liquid of a hydrogen-containing compound with a pulse laser,
The pulse width of the pulse laser is 10-12 seconds or less,
Der those containing at least one compound hydrogen-containing compound is selected from the group consisting of an alcohol having 1 to 4 carbon atoms is,
A method for producing hydrogen, wherein pulsed laser irradiation is performed in the presence of a methanol reforming catalyst .
レーザーが透過できる材料からなるレーザー透過部を有し、水素含有化合物の液体を収容する容器と、前記レーザー透過部を透過して、前記水素含有化合物の液体にパルスレーザーを照射するレーザー照射手段を備えた水素製造装置であって、
該パルスレーザーのパルス幅が10−12秒以下であり、
該水素含有化合物が炭素数1〜4のアルコールからなる群から選択される少なくとも一種の化合物を含むものであり、
パルスレーザーの照射がメタノール改質触媒の存在下で行われる水素製造装置。
A container having a laser transmission part made of a material capable of transmitting a laser and containing a liquid containing a hydrogen-containing compound; and a laser irradiation means for irradiating a pulse laser to the liquid containing the hydrogen-containing compound through the laser transmission part A hydrogen production apparatus comprising:
The pulse width of the pulse laser is 10-12 seconds or less,
Der those containing at least one compound hydrogen-containing compound is selected from the group consisting of an alcohol having 1 to 4 carbon atoms is,
A hydrogen production system in which pulsed laser irradiation is performed in the presence of a methanol reforming catalyst .
JP2009099032A 2009-04-15 2009-04-15 Method and apparatus for producing hydrogen Active JP5101560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009099032A JP5101560B2 (en) 2009-04-15 2009-04-15 Method and apparatus for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099032A JP5101560B2 (en) 2009-04-15 2009-04-15 Method and apparatus for producing hydrogen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008522251A Division JP4333929B2 (en) 2006-06-29 2006-06-29 Method and apparatus for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2009184919A JP2009184919A (en) 2009-08-20
JP5101560B2 true JP5101560B2 (en) 2012-12-19

Family

ID=41068546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099032A Active JP5101560B2 (en) 2009-04-15 2009-04-15 Method and apparatus for producing hydrogen

Country Status (1)

Country Link
JP (1) JP5101560B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204200A1 (en) * 2013-06-18 2014-12-24 서강대학교산학협력단 Hydrogen fuel converter provided with photocatalyst and method for preparing hydrogen from methanol using photocatalyst
KR102153528B1 (en) * 2013-06-18 2020-09-08 서강대학교 산학협력단 hydrogen fuel processor containing photocatalyst
KR102411726B1 (en) * 2020-09-17 2022-06-22 전남대학교산학협력단 Electrochemical fuel production method using adsorption energy control through electromagnetic wave irradiation, and electrochemical fuel production device that produces fuel using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255501A (en) * 2001-02-23 2002-09-11 Laser Gijutsu Sogo Kenkyusho Hydrogen and electric energy generation system
JP2002338203A (en) * 2001-05-22 2002-11-27 National Institute Of Advanced Industrial & Technology Method for generating hydrogen by low temperature plasma
JP4362695B2 (en) * 2003-08-18 2009-11-11 ソニー株式会社 Fuel reformer and fuel reforming method
JP2005247638A (en) * 2004-03-04 2005-09-15 Nissan Motor Co Ltd Hydrogen generation apparatus, hydrogen generation system and hydrogen generation method
JP2006306667A (en) * 2005-04-28 2006-11-09 Hamamatsu Photonics Kk Hydrogen generator and ice crusher
JP4333929B2 (en) * 2006-06-29 2009-09-16 国立大学法人京都大学 Method and apparatus for producing hydrogen

Also Published As

Publication number Publication date
JP2009184919A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
da Silva et al. Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction
Kähler et al. Probing the reactivity of ZnO and Au/ZnO nanoparticles by methanol adsorption: a TPD and DRIFTS study
Duan et al. Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor
JP2010516610A (en) Method and system for producing hydrogen-enriched fuels using microwave-induced methane decomposition for catalysts
JP5101560B2 (en) Method and apparatus for producing hydrogen
CN101679026A (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
JPWO2015198608A1 (en) Reaction product manufacturing method and phase interface reaction apparatus using phase interface reaction, and secondary reaction product manufacturing method
Escobar-Alarcón et al. Hydrogen production by laser irradiation of metals in water under an ultrasonic field: A novel approach
US20050226808A1 (en) Laser photo-catalytic process for the production of hydrogen
JP4333929B2 (en) Method and apparatus for producing hydrogen
Kambara et al. Hydrogen production from ammonia using plasma membrane reactor
Baowei et al. Gliding arc plasma reforming of toluene for on-board hydrogen production
Ghorbani et al. Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure
Lin et al. Enhanced selective cleavage of aryl CO bond by atomically dispersed Pt on α-MoC for hydrodeoxygenation of anisole
JP2020189270A (en) Catalyst material and production method of the same, as well as production method of synthesis gas
Halasi et al. Catalytic and photocatalytic reactions of H2+ CO2 on supported Au catalysts
KR100855106B1 (en) Purifying Method of Used O-18 Enriched Target Water And Apparatus Thereof
JP2005247638A (en) Hydrogen generation apparatus, hydrogen generation system and hydrogen generation method
Batista et al. Understanding photochemical pathways of laser-induced metal ion reduction through byproduct analysis
US20050045467A1 (en) Method for the conversion of methane into hydrogen and higher hydrocarbons using UV laser
Tange et al. Formation of two kinds of carbon with different properties by acetone decomposition using in-liquid plasma method
Gonçalves et al. Laser induced generation of hydrogen by using NdAlO3 nanocrystals as photocatalysts in alcohols
US20070272541A1 (en) Method for generating hydrogen gas and generator for the same
US20160304342A1 (en) Photocatalysis-induced partial oxidation of methanol reforming process for producing hydrogen and photocatalyst material
KR20130067011A (en) Method and apparatus for producing methane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250