JP5100260B2 - Cylindrical substrate manufacturing method and electrophotographic photosensitive member manufacturing method - Google Patents

Cylindrical substrate manufacturing method and electrophotographic photosensitive member manufacturing method Download PDF

Info

Publication number
JP5100260B2
JP5100260B2 JP2007222387A JP2007222387A JP5100260B2 JP 5100260 B2 JP5100260 B2 JP 5100260B2 JP 2007222387 A JP2007222387 A JP 2007222387A JP 2007222387 A JP2007222387 A JP 2007222387A JP 5100260 B2 JP5100260 B2 JP 5100260B2
Authority
JP
Japan
Prior art keywords
cylindrical
cutting
cylindrical metal
cylindrical substrate
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007222387A
Other languages
Japanese (ja)
Other versions
JP2009050988A5 (en
JP2009050988A (en
Inventor
康夫 小島
重教 植田
寿康 白砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007222387A priority Critical patent/JP5100260B2/en
Publication of JP2009050988A publication Critical patent/JP2009050988A/en
Publication of JP2009050988A5 publication Critical patent/JP2009050988A5/ja
Application granted granted Critical
Publication of JP5100260B2 publication Critical patent/JP5100260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Turning (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Description

本発明は、円筒状基体の製造方法および電子写真感光体の製造方法に関するものである The present invention relates to a method for manufacturing a cylindrical substrate and a method for manufacturing an electrophotographic photosensitive member .

複写機やレーザービームプリンターなどの電子写真方式を採用した画像形成装置、いわゆる電子写真装置は、電子写真感光体、帯電手段、露光手段、現像手段及び転写手段を有するものが一般的である。ここで、帯電手段は、電子写真感光体を帯電させるための手段であり、露光手段は、帯電された電子写真感光体に静電潜像を形成するための手段である。また、現像手段は、電子写真感光体に形成された静電潜像を現像剤担持体に担持された現像剤により現像して現像像を形成するための手段であり、転写手段は、電子写真感光体に形成された現像像を転写材(紙等)に転写するための手段である。   An image forming apparatus employing an electrophotographic system such as a copying machine or a laser beam printer, so-called electrophotographic apparatus, generally includes an electrophotographic photosensitive member, a charging unit, an exposure unit, a developing unit, and a transfer unit. Here, the charging unit is a unit for charging the electrophotographic photosensitive member, and the exposure unit is a unit for forming an electrostatic latent image on the charged electrophotographic photosensitive member. The developing means is a means for developing the electrostatic latent image formed on the electrophotographic photosensitive member with a developer carried on the developer carrying body to form a developed image, and the transfer means is an electrophotographic means. It is a means for transferring the developed image formed on the photoreceptor to a transfer material (paper or the like).

上記構成を有する電子写真装置において、高画質の画像を得るためには、電子写真感光体と現像剤担持体(現像ローラーや現像スリーブ等)との間の距離が一定に保たれていることが必要である。そして、電子写真感光体と現像剤担持体との間の距離を一定に保つためには、電子写真感光体及び現像剤担持体の精度が高くなければならない。   In the electrophotographic apparatus having the above configuration, in order to obtain a high-quality image, the distance between the electrophotographic photosensitive member and the developer carrier (developing roller, developing sleeve, etc.) must be kept constant. is necessary. In order to keep the distance between the electrophotographic photosensitive member and the developer carrying member constant, the electrophotographic photosensitive member and the developer carrying member must have high accuracy.

電子写真感光体や現像剤担持体等には、一般的に円筒状基体が使用される。円筒状基体の端部には、軸又は軸受部を有する端部係合部材(ギヤやフランジ等)が係合され、円筒状基体は、回転可能に保持される。従って、電子写真感光体や現像剤担持体等に用いられる円筒状基体には、高い外径精度(外径寸法、真円度、円筒度)が求められる。また、回転時の全振れに関わる精度(端部係合部材が係合する端部内側の両端同軸度、端部内径部と外径部の同軸度、外径と端面との直角度)等が高精度であることも求められる。   A cylindrical substrate is generally used for an electrophotographic photosensitive member, a developer carrying member, and the like. An end engaging member (gear, flange, etc.) having a shaft or a bearing is engaged with the end of the cylindrical base, and the cylindrical base is held rotatably. Accordingly, a cylindrical substrate used for an electrophotographic photosensitive member, a developer carrier and the like is required to have high outer diameter accuracy (outer diameter dimension, roundness, cylindricity). Also, accuracy related to total runout during rotation (both end concentricity inside the end engaged by the end engaging member, concentricity between the end inner diameter and the outer diameter, perpendicularity between the outer diameter and the end face), etc. Is also required to be highly accurate.

円筒状基体の精度を高める方法の一つとして、押出、引抜加工を経て所定長に切断された円筒状金属素管に、旋盤での切削加工を施す方法が知られている。ここでの切削加工には、円筒状金属素管の両端部に、外周面に対して略直角の端部加工面を形成する端面切削加工、円筒状金属素管の外径を所定の精度、面粗さに仕上げる外径切削加工等が含まれる。   As one method for improving the accuracy of a cylindrical substrate, there is known a method in which a cylindrical metal base tube cut to a predetermined length through extrusion and drawing is subjected to cutting with a lathe. In the cutting process here, the end surface cutting process that forms an end machining surface substantially perpendicular to the outer peripheral surface at both ends of the cylindrical metal pipe, the outer diameter of the cylindrical metal pipe has a predetermined accuracy, Includes outer diameter cutting to finish the surface roughness.

また、円筒状金属素管の両端部の内周面及び外周面を切削することによって支持体を製造する方法が提案されている(特許文献1参照)。   In addition, a method of manufacturing a support by cutting the inner peripheral surface and the outer peripheral surface of both ends of a cylindrical metal pipe has been proposed (see Patent Document 1).

また、円筒状金属素管に外周面に対して粗切削加工を施した後に、両端内周面にインロー加工を施し、さらに外周面に対して切削加工を施すことで加工精度を高める方法も提案されている(特許文献2参照)。   We also propose a method to increase machining accuracy by subjecting the cylindrical metal tube to rough cutting on the outer peripheral surface, then inlaying the inner peripheral surface at both ends, and further cutting the outer peripheral surface. (See Patent Document 2).

また、円筒状金属素管の外周面にセンターレス研磨加工を施した後、両端内面に外周面を加工基準としたインロー加工を施し、さらにインロー加工面を加工基準として、外周面に切削加工を施すことで加工精度を高める方法も提案されている(特許文献3参照)。
特開平2−110570公報 特許第3583272号明細書 特開2003−162078公報
In addition, after the centerless polishing process is performed on the outer peripheral surface of the cylindrical metal base tube, the inner surface of both ends is subjected to inlay processing using the outer peripheral surface as a processing reference, and further, the outer peripheral surface is cut using the inlay processing surface as a processing reference. There has also been proposed a method for improving machining accuracy by applying the method (see Patent Document 3).
JP-A-2-110570 Japanese Patent No. 3583272 JP 2003-162078 A

従来、上記のような方法によって、円筒状基体の高精度化が図られてきた。しかし、上述したような従来技術では、高精度化と加工コスト低減との両立が十分に図れない。すなわち、従来技術では、高精度化のために、非常に複雑な加工工程が必要であり、かつ各加工工程ごとに加工用の装置が必要となり、加工コストが上昇してしまう。   Conventionally, high accuracy of a cylindrical substrate has been achieved by the method as described above. However, with the conventional technology as described above, it is not possible to sufficiently achieve both high accuracy and reduction in processing cost. That is, in the prior art, a very complicated processing step is required for high accuracy, and a processing device is required for each processing step, resulting in an increase in processing cost.

また、加工工程を簡素化して円筒状基体を製造することも可能であるが、精度の低い円筒状金属素管は加工装置でしっかりと保持できず、円筒状金属素管の加工中にガタツキが発生する。そこで、ガタツキ抑制のために円筒状金属素管を保持する力を強めると、円筒状金属素管が変形する等の問題が発生する。   It is also possible to simplify the machining process and manufacture a cylindrical substrate, but the cylindrical metal element tube with low accuracy cannot be firmly held by the processing apparatus, and rattling occurs during the processing of the cylindrical metal element tube. appear. Therefore, when the force for holding the cylindrical metal element tube is increased in order to suppress backlash, problems such as deformation of the cylindrical metal element tube occur.

本発明は、上記のような状況に鑑みてなされたものであり、高精度な円筒状基体を低コストで生産性良く製造することができる円筒状基体の製造方法、および、該円筒状基体を使用した電子写真感光体の製造方法を提供することを目的とする。 The present invention has been made in view of the above situation , and a method for manufacturing a cylindrical substrate capable of manufacturing a highly accurate cylindrical substrate at low cost with high productivity , and the cylindrical substrate. It is an object of the present invention to provide a method for producing a used electrophotographic photoreceptor .

本発明の円筒状基体の製造方法は、円筒状金属素管の端面及び外面に切削加工を施して円筒状基体を得るものである。具体的には、前記円筒状金属素管の内面に保持手段を圧接させて前記円筒状金属素管を保持する工程と、前記保持手段によって保持された前記円筒状金属素管の端面を片端面あたり複数回切削する複数回の端面切削加工工程と、前記保持手段によって保持された前記円筒状金属素管の外面を切削する外面切削加工工程とを有する。そして、前記複数回の端面切削加工工程及び前記外面切削加工工程が、前記保持手段を取り外すことなく施され、かつ、前記複数回の端面切削加工工程の第一回目が、前記円筒状金属素管に対して最初に施される切削加工である。
また、本発明の電子写真感光体の製造方法は、円筒状金属素管の端面及び外面に切削加工を施して円筒状基体を得る工程と、得られた前記円筒状基体の外面に感光体材料層を形成して電子写真感光体を得る工程とを有する。そして、前記円筒状基体を得る工程が、前記本発明の円筒状基体の製造方法によって前記円筒状基体を得る工程である。
The method for producing a cylindrical substrate of the present invention is to obtain a cylindrical substrate by cutting the end surface and the outer surface of a cylindrical metal base tube. Specifically, the holding means is pressed against the inner surface of the cylindrical metal element tube to hold the cylindrical metal element pipe, and the end surface of the cylindrical metal element tube held by the holding means is the one end surface. It has a plurality of end surface cutting step a plurality of times cut per, and an outer surface cutting step of cutting the outer surface of the cylindrical metal tube which is held by the holding means. The plurality of end face cutting steps and the outer face cutting step are performed without removing the holding means, and the first end of the plurality of end face cutting steps is the cylindrical metal blank. Is the first cutting process applied to
In addition, the method for producing an electrophotographic photoreceptor of the present invention includes a step of cutting the end face and the outer surface of a cylindrical metal base tube to obtain a cylindrical substrate, and a photoreceptor material on the outer surface of the obtained cylindrical substrate. Forming a layer to obtain an electrophotographic photosensitive member. The step of obtaining the cylindrical substrate is a step of obtaining the cylindrical substrate by the method for producing a cylindrical substrate of the present invention.

本発明によれば、円筒状金属素管が安定して保持・固定された状態で切削加工を実施することができるので、精度の高い円筒状基体を低コストで生産性良く製造することができ、また、該円筒状基体を使用した電子写真感光体を製造することができる。 According to the present invention, it is possible to perform cutting while the cylindrical metal base tube is stably held and fixed, so that a highly accurate cylindrical substrate can be manufactured at low cost and with high productivity. Further, Ru can be prepared an electrophotographic photosensitive member using the cylindrical substrate.

以下、本発明の円筒状基体の製造方法の実施形態の一例について、図面を参照しながら詳細に説明する。   Hereinafter, an example of an embodiment of a method for producing a cylindrical substrate of the present invention will be described in detail with reference to the drawings.

本実施形態に係る円筒状基体の製造方法は、円筒状金属素管に複数回の切削加工を施して円筒状基体を得るものであり、図1(a)〜(e)は、主要工程における円筒状金属素管101の形状変化を示す模式的断面図である。具体的には、図1(a)は、加工前の円筒状金属素管101の形状を示している。また、図1(b)は、第1の端面切削加工工程、図1(c)は第2の端面切削加工工程、図1(d)はインロー加工工程、図1(e)は外面切削加工工程における円筒状金属素管101の形状変化をそれぞれ示している。尚、各図において斜線で示された部分が各加工工程において切削(除去)される部分である。   The method for manufacturing a cylindrical substrate according to the present embodiment is to obtain a cylindrical substrate by subjecting a cylindrical metal base tube to a plurality of times of cutting, and FIGS. 1 (a) to 1 (e) show the main steps. FIG. 6 is a schematic cross-sectional view showing a shape change of a cylindrical metal pipe 101. Specifically, FIG. 1A shows the shape of the cylindrical metal base tube 101 before processing. 1B is a first end face cutting process, FIG. 1C is a second end face cutting process, FIG. 1D is an inlay process, and FIG. 1E is an outer face cutting process. The shape change of the cylindrical metal pipe 101 in the process is shown. In addition, the part shown with the oblique line in each figure is a part cut (removed) in each process.

円筒状金属素管101の材質は、使用目的に応じた材質であればよく、特定の材質に限定されない。例えば、電気伝導率の観点からは、銅、アルミニウム、金、銀、白金、鉛、ニッケル、コバルト、鉄、クロム、モリブデン、チタン、ステンレス等が好適な材質として挙げられる。さらに、加工性や製造コストを含めて考慮すると、円筒状金属素管101の材質としては、アルミニウムが最適であり、例えばAl−Mg系合金やAl−Mn系合金を用いることが望ましい。   The material of the cylindrical metal base tube 101 is not limited to a specific material as long as it is a material according to the purpose of use. For example, from the viewpoint of electrical conductivity, suitable materials include copper, aluminum, gold, silver, platinum, lead, nickel, cobalt, iron, chromium, molybdenum, titanium, and stainless steel. Further, considering the workability and manufacturing cost, aluminum is the most suitable material for the cylindrical metal tube 101, and it is desirable to use, for example, an Al—Mg alloy or an Al—Mn alloy.

円筒状金属素管101を製造する具体的方法は、精度やコストなどを考慮されて決定されるが、アルミニウムまたはアルミニウム合金を用いる場合、押出、引抜、矯正等の工程を経て製造された管材を所定の長さに切断する方法が一般的である。このようにして製造された円筒状金属素管101の内部には、押出、引抜、矯正等の工程で多少の残留応力が生じている。円筒状基体の製造時の切削加工や、例えば電子写真感光体製造時の加熱等に残留応力が開放されると、完成品である円筒状基体に変形が生じる。一般的に、残留応力の除去には、所定の長さに切断された管材(円筒状金属素管101)に対して加熱処理(焼鈍)が行われ、通常300〜430℃程度の温度で処理される。残留応力が大きい場合、焼鈍処理を行うと、円筒状金属素管101が大きく変形し、小さい場合は変形も小さい。従って、高精度の円筒状基体を製造するためには、残留応力が小さいもの、即ち、焼鈍処理前後で変形が小さく、かつ焼鈍処理後に所定の寸法精度をもった円筒状金属素管101を使用することが好ましい。   The specific method for manufacturing the cylindrical metal pipe 101 is determined in consideration of accuracy, cost, and the like. However, when aluminum or an aluminum alloy is used, a pipe manufactured through processes such as extrusion, drawing, and correction is used. A method of cutting to a predetermined length is common. In the cylindrical metal blank 101 manufactured in this way, some residual stress is generated by processes such as extrusion, drawing, and correction. When the residual stress is released by cutting during the production of the cylindrical substrate, for example by heating during the production of the electrophotographic photosensitive member, the cylindrical substrate as a finished product is deformed. Generally, in order to remove residual stress, heat treatment (annealing) is performed on a pipe material (cylindrical metal base tube 101) cut to a predetermined length, and the treatment is usually performed at a temperature of about 300 to 430 ° C. Is done. When the residual stress is large, when the annealing process is performed, the cylindrical metal element tube 101 is greatly deformed, and when it is small, the deformation is also small. Therefore, in order to manufacture a highly accurate cylindrical base, a cylindrical metal base tube 101 having a small residual stress, that is, a small deformation before and after the annealing process and having a predetermined dimensional accuracy after the annealing process is used. It is preferable to do.

次に、上記円筒状金属素管101を出発部材とする円筒状基体の製造方法について具体的に説明する。尚、本発明の円筒状基体の製造方法では、複数の切削工程を1台の旋盤で行う。よって、複数の切削加工用刃物(バイト)が取り付け可能な刃物台(タレット)を有するとともに、円筒状金属素管101の両端面を同時切削可能とするためのタレットを複数有し、円筒状金属素管101を回転させながら切削加工を行うことができる旋盤を用いる。   Next, the manufacturing method of the cylindrical base | substrate which uses the said cylindrical metal raw tube 101 as a starting member is demonstrated concretely. In addition, in the manufacturing method of the cylindrical base | substrate of this invention, several cutting processes are performed with one lathe. Therefore, it has a tool post (turret) to which a plurality of cutting tools (cutting tools) can be attached and a plurality of turrets for enabling simultaneous cutting of both end faces of the cylindrical metal tube 101, and a cylindrical metal A lathe capable of cutting while rotating the raw tube 101 is used.

まず、図1(a)に示す円筒状金属素管101を不図示の旋盤にセットする。ここで、円筒状金属素管101の外面及び両端内面を加工するためは、円筒状金属素管101をその内側から保持する必要がある。図2は、円筒状金属素管101をその内側から保持するための保持手段の一例としてのコレットチャック201の断面を示す模式図である。コレットチャック201は、支軸202、可動楔形部203、固定楔形部204、保持部205を有する。   First, the cylindrical metal base tube 101 shown in FIG. 1A is set on a lathe (not shown). Here, in order to process the outer surface of the cylindrical metal pipe 101 and the inner surfaces of both ends, it is necessary to hold the cylindrical metal pipe 101 from the inner side. FIG. 2 is a schematic view showing a cross section of a collet chuck 201 as an example of a holding means for holding the cylindrical metal element tube 101 from the inside. The collet chuck 201 includes a support shaft 202, a movable wedge shape portion 203, a fixed wedge shape portion 204, and a holding portion 205.

コレットチャック201を円筒状金属素管101に挿入して旋盤にセットすると、旋盤の芯押しによって、コレットチャック201内のバネ(不図示)を介して可動楔形部203が固定楔形部204の方向へ押される。すると、可動楔形部203と固定楔形部204とによって挟まれた保持部205が円筒状金属素管101の径方向外側へ拡張し、円筒状金属素管101の内面に圧接する。以上によって、円筒状金属素管101がその内側から保持される。このとき、保持部205が円筒状金属素管101の内面に圧接する力が強すぎると、円筒状金属素管101を変形させてしまい、弱すぎると保持が不安定となるので、適度な力で圧接させる必要がある。   When the collet chuck 201 is inserted into the cylindrical metal tube 101 and set on a lathe, the movable wedge 203 is moved toward the fixed wedge 204 via a spring (not shown) in the collet chuck 201 by pushing the center of the lathe. Pressed. Then, the holding portion 205 sandwiched between the movable wedge-shaped portion 203 and the fixed wedge-shaped portion 204 expands outward in the radial direction of the cylindrical metal element tube 101 and presses against the inner surface of the cylindrical metal element tube 101. As described above, the cylindrical metal base tube 101 is held from the inside. At this time, if the force that the holding portion 205 presses against the inner surface of the cylindrical metal element tube 101 is too strong, the cylindrical metal element tube 101 is deformed, and if it is too weak, the holding becomes unstable. It is necessary to press contact with.

次に、旋盤にセットされた円筒状金属素管101に対して切削加工を開始するが、切削加工前の円筒状金属素管101(図1(a))の全長は、完成品である円筒状基体の全長よりも1〜5mm程度長い。すなわち、円筒状金属素管101は、1〜5mm程度の余長部106を備えている。尚、図1(a)(b)では、余長部106とそれ以外の部分との境界を鎖線で示してある。かかる余長部106は、端面切削加工の加工代の確保と、運搬時にある程度のキズ・打コン等があっても加工時に影響が出ないようにするためのものである。   Next, cutting is started with respect to the cylindrical metal element tube 101 set on the lathe, and the entire length of the cylindrical metal element tube 101 (FIG. 1A) before the cutting process is a completed cylinder. 1 to 5 mm longer than the overall length of the substrate. That is, the cylindrical metal base tube 101 includes an extra length portion 106 of about 1 to 5 mm. In FIGS. 1A and 1B, the boundary between the extra length portion 106 and other portions is indicated by a chain line. The extra length portion 106 is provided to ensure a machining allowance for the end face cutting and to prevent an influence during machining even if there is a certain amount of scratches and punching during transportation.

まず、図1(a)に示す円筒状金属素管101に対して端面切削加工工程を実施する。端面切削加工工程は、図1(b)に示す第1の端面切削加工工程(粗切削加工)と、図1(c)に示す第2の端面切削加工工程(仕上げ切削加工)とに分けて実施する。そして、第1の端面切削加工工程では、円筒状金属素管101の余長部106の一部106aのみを切削する。従って、第1の端面切削加工工程は、円筒状基体の仕上がり寸法及び精度には影響が少ない工程である。   First, an end face cutting process is performed on the cylindrical metal base tube 101 shown in FIG. The end face cutting process is divided into a first end face cutting process (rough cutting process) shown in FIG. 1 (b) and a second end face cutting process (finish cutting process) shown in FIG. 1 (c). carry out. In the first end face cutting process, only a part 106a of the extra length portion 106 of the cylindrical metal pipe 101 is cut. Therefore, the first end face cutting process is a process that has little influence on the finished size and accuracy of the cylindrical substrate.

切削加工開始前、円筒状金属素管101はコレットチャック201により保持されていることは既述のとおりである。しかし、十分に安定した状態で保持・固定されているわけではなく、ある程度のガタツキを持って保持・固定されている。従って、円筒状金属素管101に切削加工を行うと、切削抵抗による負荷によって円筒状金属素管101がある程度動く。このある程度動くことで、図2に示すコレットチャック201の保持部205がさらに拡張し、保持部205と円筒状金属素管101との間のガタツキが除去され、円筒状金属素管101がより安定して保持・固定される。このようにしてガタツキが除去された後は、より高精度な切削加工が可能となる。したがって、切削加工を行う場合には、複数回に分けて行うことが有効である。本発明では、円筒状金属素管101に対する最初の切削加工工程によってこのガタツキ除去を行う。より具体的には、仕上がり寸法及び精度に影響が少ない第1の端面切削加工工程によってガタツキ除去を行う。   As described above, the cylindrical metal tube 101 is held by the collet chuck 201 before the start of cutting. However, it is not held and fixed in a sufficiently stable state, and is held and fixed with some backlash. Therefore, when the cylindrical metal element tube 101 is cut, the cylindrical metal element tube 101 moves to some extent due to the load caused by the cutting resistance. By moving to some extent, the holding portion 205 of the collet chuck 201 shown in FIG. 2 is further expanded, and rattling between the holding portion 205 and the cylindrical metal element tube 101 is removed, and the cylindrical metal element tube 101 is more stable. Held and fixed. After the rattling has been removed in this way, more accurate cutting can be performed. Therefore, when cutting, it is effective to divide it into multiple times. In the present invention, this backlash removal is performed by the first cutting process for the cylindrical metal pipe 101. More specifically, the backlash removal is performed by a first end face cutting process that has little influence on the finished dimensions and accuracy.

同様の効果は、円筒状金属素管101の端面切削加工工程で無くても、外面切削加工工程やインロー加工工程によっても得られる。しかし、コレットチャック201の保持部205からなるべく離れた位置に切削抵抗による負荷を与えた方がガタツキ除去の効果が大きい。例えば、保持部205が円筒状金属素管101の内面であって、かつ、母線方向中央に圧接されている場合には、円筒状金属素管101の端面が保持部205から最も離れた切削位置となる。よって、端面切削加工工程が、ガタツキ除去にとって最も有効である。また、端面切削加工工程は所要時間が短いので、短時間でガタツキを除去することもできるため、生産性が良い。以上より、端面切削加工工程を複数回に分けて実施し、その第一回目の工程によってガタツキを除去するのが最も有効である。   Similar effects can be obtained not only by the end face cutting process of the cylindrical metal tube 101 but also by the outer face cutting process or the inlay process. However, when the load due to the cutting resistance is applied to a position as far as possible from the holding portion 205 of the collet chuck 201, the effect of removing the backlash is greater. For example, when the holding part 205 is the inner surface of the cylindrical metal element tube 101 and is pressed against the center in the busbar direction, the cutting position at which the end surface of the cylindrical metal element tube 101 is farthest from the holding part 205 is used. It becomes. Therefore, the end face cutting process is the most effective for removing shakiness. Further, since the time required for the end face cutting process is short, rattling can be removed in a short time, and thus productivity is good. From the above, it is most effective to divide the end face cutting process into a plurality of times and remove backlash by the first process.

第1の端面切削加工工程について図3を参照しながらより詳しく説明する。図3は、円筒状金属素管101の端部断面、切削加工用バイト、切削加工部を模式的に示した拡大図である。尚、図示されている拡大部分は、図1(b)において丸で囲まれた部分である。   The first end face cutting process will be described in more detail with reference to FIG. FIG. 3 is an enlarged view schematically showing an end cross section, a cutting tool bit, and a cutting portion of the cylindrical metal base tube 101. The enlarged portion shown in the figure is a circled portion in FIG.

図3(a)に示すように、第1の端面切削加工工程では、旋盤にセットされた円筒状金属素管101を回転させつつ、端面切削加工用バイト301を円筒状金属素管101の母線方向に移動させる。これによって、円筒状金属素管101の端部(余長部106の一部106a)を切削する。このときの円筒状金属素管101を回転速度は、例えば2000rpmである。さらに、必要に応じて、端面切削加工用バイト301を斜め方向へ移動させ、図中に符号302で示す部分を切削して面取りを行う。   As shown in FIG. 3A, in the first end face cutting process, the end face cutting tool 301 is connected to the bus bar of the cylindrical metal base pipe 101 while rotating the cylindrical metal base pipe 101 set on the lathe. Move in the direction. As a result, the end portion of the cylindrical metal base tube 101 (a part 106a of the extra length portion 106) is cut. The rotational speed of the cylindrical metal base tube 101 at this time is, for example, 2000 rpm. Furthermore, if necessary, the end face cutting tool 301 is moved in an oblique direction, and a portion indicated by reference numeral 302 in the drawing is cut to perform chamfering.

第1の端面切削加工工程を複数回に分けて実施すると、ガタツキ除去の効果がより大きくなる。例えば、第1の端面切削加工工程を2回に分けて実施する場合について図3(b)を参照して説明する。まず、端面切削加工用バイト301を円筒状金属素管101の母線方向に移動させ、余長部106の一部106aの径方向半分に相当する部分303を切削する。さらに、端面切削加工用バイト301を円筒状金属素管101の母線方向に移動させ、径方向残り半分に相当する部分304を切削する。尚、加工順を逆にして、部分304を切削してから部分303を切削してもよい。また、図3(c)に示すように、端面切削加工用バイト301を円筒状金属素管101の母線方向に移動させ、余長部106の一部106aの母線方向半分に相当する部分305を切削する。次いで、端面切削加工用バイト301を母線方向にさらに移動させ、残り半分に相当する部分306を切削することも可能である。   When the first end face cutting process is performed in a plurality of times, the effect of removing the backlash becomes greater. For example, a case where the first end face cutting process is performed in two steps will be described with reference to FIG. First, the end face cutting tool 301 is moved in the generatrix direction of the cylindrical metal base tube 101 to cut a portion 303 corresponding to a half in the radial direction of the portion 106 a of the extra length portion 106. Further, the end face cutting tool 301 is moved in the direction of the generatrix of the cylindrical metal base tube 101 to cut a portion 304 corresponding to the remaining half in the radial direction. Note that the processing order may be reversed, and the portion 304 may be cut after the portion 304 is cut. Further, as shown in FIG. 3C, the end face cutting tool 301 is moved in the direction of the generatrix of the cylindrical metal base tube 101, and a portion 305 corresponding to a half in the generatrix direction of the portion 106 a of the extra length portion 106 is formed. To cut. Next, the end face cutting tool 301 can be further moved in the direction of the generatrix and the portion 306 corresponding to the remaining half can be cut.

いずれにしても、第1の端面切削加工工程では、円筒状金属素管101の余長部106の一部106aを切削することによって円筒状金属素管101に切削抵抗による負荷を与え、ガタツキを除去する。   In any case, in the first end face cutting process, by cutting a part 106a of the extra length portion 106 of the cylindrical metal pipe 101, a load due to the cutting resistance is applied to the cylindrical metal pipe 101, and rattling is prevented. Remove.

次に、第1の端面切削加工工程を経た円筒状金属素管101に対して、同一の旋盤を用いて、コレットチャック201で保持した状態で、旋盤から取り外すことなく、第2の端面切削加工工程を実施する。第2の端面切削加工工程は、所謂仕上げ加工の工程であり、余長部106の残部106bを切削し、円筒状金属素管101の長さを円筒状基体の長さに合わせる工程である。   Next, with respect to the cylindrical metal base tube 101 that has undergone the first end face cutting process, the second end face cutting process is performed without removing it from the lathe while being held by the collet chuck 201 using the same lathe. Perform the process. The second end face cutting step is a so-called finishing step, in which the remaining portion 106b of the extra length portion 106 is cut and the length of the cylindrical metal base tube 101 is adjusted to the length of the cylindrical base.

第2の端面切削加工工程について図4を参照してより詳しく説明する。図4(a)に示すように、第1の端面切削加工工程と同様に、端面切削加工用バイト301を円筒状金属素管101の母線方向に移動させ、余長部106の残部106bを切削する。尚、第2の端面切削加工工程では、図4(b)に示すように、端面切削加工用バイト301を円筒状金属素管101の径方向外側から内側へ移動させて、残部106bを切削することも可能である。   The second end face cutting process will be described in more detail with reference to FIG. As shown in FIG. 4A, as in the first end face cutting step, the end face cutting tool 301 is moved in the direction of the generatrix of the cylindrical metal blank 101, and the remaining part 106b of the extra length part 106 is cut. To do. In the second end face cutting step, as shown in FIG. 4B, the end face cutting tool 301 is moved from the radially outer side to the inner side of the cylindrical metal base tube 101 to cut the remaining portion 106b. It is also possible.

次に、第2の端面切削加工工程を経た円筒状金属素管101に対し、同一の旋盤を用いて、コレットチャック201で保持した状態で、旋盤から取り外すことなく、インロー加工を施す。具体的には、図5に示すように、円筒状金属素管101を例えば2000rpmで回転させつつ、インロー加工用バイト401を円筒状金属素管101の母線方向に移動させて、円筒状金属素管101の端部内側108を切削する。もっとも、インロー加工が不要な場合は、図5に示す工程が省略される。   Next, the cylindrical metal base tube 101 that has undergone the second end face cutting process is subjected to inlay processing without being removed from the lathe while being held by the collet chuck 201 using the same lathe. Specifically, as shown in FIG. 5, while rotating the cylindrical metal element tube 101 at, for example, 2000 rpm, the inlay cutting tool 401 is moved in the direction of the generatrix of the cylindrical metal element tube 101, and the cylindrical metal element The inner end 108 of the tube 101 is cut. However, when the inlay process is unnecessary, the process shown in FIG. 5 is omitted.

尚、端面切削加工、インロー加工など円筒状金属素管101の端部に加工を施す場合、両端部に対して同時に加工を施すことが望ましい。これは、円筒状金属素管101への切削抵抗を対称にすることで加工精度が向上すること、加工時間が短縮可能であること等の理由による。   In addition, when processing the edge part of the cylindrical metal raw tube 101, such as end face cutting and inlay processing, it is desirable to process to both ends simultaneously. This is because the machining accuracy is improved by making the cutting resistance to the cylindrical metal pipe 101 symmetrical, the machining time can be shortened, and the like.

次に、インロー加工工程を経た円筒状金属素管101に対し、同一の旋盤を用いて、コレットチャック201で保持した状態で、旋盤から取り外すことなく、外面切削加工工程を実施する。具体的には、図6に示すように、円筒状金属素管101を例えば2000rpmで回転させつつ、外面切削加工用バイト501を円筒状金属素管101の母線方向に移動させて、外面109を切削する。尚、必要に応じて、外面にさらなる仕上げ切削加工を施してもよい。また、仕上げ切削加工は別の旋盤を用いて行ってもよい。   Next, an outer surface cutting process is carried out on the cylindrical metal base tube 101 that has undergone the inlay process without removing it from the lathe while being held by the collet chuck 201 using the same lathe. Specifically, as shown in FIG. 6, the outer surface cutting tool 501 is moved in the generatrix direction of the cylindrical metal base tube 101 while rotating the cylindrical metal base tube 101 at, for example, 2000 rpm, and the outer surface 109 is moved. To cut. In addition, you may give further finishing cutting to an outer surface as needed. Moreover, you may perform finish cutting using another lathe.

ここで、円筒状金属素管101は、金属であるがゆえに、加工雰囲気温度による膨張、収縮があり、特にアルミニウムまたはアルミニウム合金は膨張、収縮量が大きい。従って、高精度な円筒状基体を製造する場合、加工雰囲気温度の変化が無いことが理想である。そこで、切削加工中の雰囲気温度の変動を2℃以内、つまり基準温度±1℃に管理することが望ましい。   Here, since the cylindrical metal pipe 101 is a metal, it has expansion and contraction due to the processing atmosphere temperature, and particularly, aluminum or aluminum alloy has a large expansion and contraction amount. Therefore, when manufacturing a highly accurate cylindrical substrate, it is ideal that there is no change in the processing atmosphere temperature. Therefore, it is desirable to manage the variation of the ambient temperature during the cutting process within 2 ° C., that is, to be the reference temperature ± 1 ° C.

以上の様にして製造された円筒状基体の一使用例について説明する。ここでは、円筒状基体を基体とした電子写真感光体の製造方法について説明する。電子写真感光体は、円筒状基体の外面に感光体材料層が形成されてなり、CVD法等により形成したa−Si(アモルファスシリコン)感光体のような無機感光体や、電荷発生材料と電荷輸送材料とを組み合わせ、塗布形成した有機感光体等があげられる。ここでは、一例として、a−Si感光体の製造方法の概要について図7を参照して説明する。   An example of use of the cylindrical substrate manufactured as described above will be described. Here, a method for producing an electrophotographic photoreceptor using a cylindrical substrate as a substrate will be described. An electrophotographic photosensitive member is formed by forming a photosensitive material layer on the outer surface of a cylindrical substrate, and an inorganic photosensitive member such as an a-Si (amorphous silicon) photosensitive member formed by a CVD method or the like, a charge generating material and a charge. Examples thereof include organic photoreceptors formed by coating with a transport material. Here, as an example, an outline of a method for manufacturing an a-Si photosensitive member will be described with reference to FIG.

a−Si感光体は、一般的に高周波プラズマCVD(Chemical Vapor Deposition)法により製造される。図7に示す装置は、電子写真感光体の製造に使用する高周波プラズマCVD装置の一例である。   The a-Si photosensitive member is generally manufactured by a high frequency plasma CVD (Chemical Vapor Deposition) method. The apparatus shown in FIG. 7 is an example of a high-frequency plasma CVD apparatus used for manufacturing an electrophotographic photosensitive member.

図示されている高周波プラズマCVD装置は、縦型の真空容器でカソード電極を兼ねた反応容器702を有し、この反応容器702内の周囲には容器の長手方向に延びる原料ガス導入管703が複数本配設されている。また、ガス導入管703の側面には、長手方向に沿って多数の細孔(不図示)が設けられている。さらに、反応容器702内の中心には、ヒータ704が設けられている。電子写真感光体の基体となる円筒状基体105は、基体ホルダ705に装着された状態で、ヒータ704の周囲に縦向きで設置される。尚、反応容器702の上部には蓋706が設けられており、この蓋706を開けて、円筒状基体105を上記のように設置する。   The illustrated high-frequency plasma CVD apparatus includes a reaction vessel 702 that also serves as a cathode electrode in a vertical vacuum vessel, and a plurality of source gas introduction pipes 703 extending in the longitudinal direction of the vessel are provided around the reaction vessel 702. This is arranged. Further, a large number of pores (not shown) are provided on the side surface of the gas introduction pipe 703 along the longitudinal direction. Further, a heater 704 is provided in the center of the reaction vessel 702. The cylindrical substrate 105 serving as the substrate of the electrophotographic photosensitive member is installed in the vertical direction around the heater 704 while being mounted on the substrate holder 705. A lid 706 is provided on the upper portion of the reaction vessel 702. The lid 706 is opened, and the cylindrical substrate 105 is installed as described above.

反応容器702の側面には、マッチングボックス707を介して高周波電源714が接続されている。また、反応容器702の下部には、原料ガス導入管703に接続された原料ガス供給管708が取り付けられ、この供給管708は、供給バルブ709を介して図示しないガス供給装置に接続されている。また、反応容器702の下部には排気管710が取り付けられ、この排気管710は排気バルブ711を介して図示しない排気装置(真空ポンプ)に接続されている。反応容器702の下部には、他に、円筒状基体105が装着された基体ホルダ705を回転させるモータ712、真空計713が取り付けられている。   A high frequency power source 714 is connected to the side surface of the reaction vessel 702 via a matching box 707. A source gas supply pipe 708 connected to a source gas introduction pipe 703 is attached to the lower part of the reaction vessel 702, and the supply pipe 708 is connected to a gas supply device (not shown) via a supply valve 709. . Further, an exhaust pipe 710 is attached to the lower part of the reaction vessel 702, and the exhaust pipe 710 is connected to an exhaust device (vacuum pump) (not shown) via an exhaust valve 711. In addition, a motor 712 and a vacuum gauge 713 for rotating the substrate holder 705 on which the cylindrical substrate 105 is mounted are attached to the lower portion of the reaction vessel 702.

上記の装置を用いた高周波プラズマCVD法によるa−Si感光体は次のように形成される。まず、反応容器702内に電子写真感光体の基体となる円筒状基体105が装着された基体ホルダ705をセットし、蓋706を閉じた後、図示しない排気装置により反応容器702内を所定の圧力まで排気する。以後、排気を続けながら、モータ712により円筒状基体105が装着された基体ホルダ705を回転させ、ヒータ704により円筒状基体105を内側から加熱して、円筒状基体105を所定の温度に制御する。円筒状基体105が所定の温度に維持されたら、所望の原料ガスをそれぞれの流量制御器(不図示)により調節しながら、原料ガス導入管703を通して反応容器702内に導入する。導入された原料ガスは反応容器702内を満たした後、排気管710を通って反応容器702外に排気される。   The a-Si photosensitive member by the high frequency plasma CVD method using the above apparatus is formed as follows. First, a substrate holder 705 mounted with a cylindrical substrate 105 serving as a substrate of an electrophotographic photosensitive member is set in the reaction vessel 702, the lid 706 is closed, and then the reaction vessel 702 is filled with a predetermined pressure by an exhaust device (not shown). Exhaust until. Thereafter, while continuing the exhaust, the substrate holder 705 on which the cylindrical substrate 105 is mounted is rotated by the motor 712, and the cylindrical substrate 105 is heated from the inside by the heater 704 to control the cylindrical substrate 105 to a predetermined temperature. . When the cylindrical substrate 105 is maintained at a predetermined temperature, a desired source gas is introduced into the reaction vessel 702 through the source gas introduction pipe 703 while being adjusted by respective flow rate controllers (not shown). The introduced source gas fills the inside of the reaction vessel 702 and is then exhausted outside the reaction vessel 702 through the exhaust pipe 710.

このようにして、原料ガスが満たされた反応容器702内が所定の圧力になって安定したことを真空計713により確認したら、高周波電源714(例えば13.56MHzのRF帯域)により、高周波を所望の投入電力量で反応容器702内に導入する。すると、反応容器702内にグロー放電が発生する。このグロー放電のエネルギによって、原料ガスが分解されてプラズマイオンが生成され、円筒状基体105の表面に珪素を主体としたa−Si堆積膜が形成される。この際、ガス種、ガス導入量、ガス導入比率、圧力、基体温度、投入電力、膜厚などのパラメータを調整することにより様々な特性のa−Si堆積膜を形成することができ、電子写真特性を制御することができる。   In this way, when it is confirmed by the vacuum gauge 713 that the inside of the reaction vessel 702 filled with the source gas has become a predetermined pressure and stabilized, a high frequency is desired by a high frequency power source 714 (for example, an RF band of 13.56 MHz). Is introduced into the reaction vessel 702 with the amount of input power. Then, glow discharge is generated in the reaction vessel 702. By the energy of this glow discharge, the source gas is decomposed to generate plasma ions, and an a-Si deposited film mainly composed of silicon is formed on the surface of the cylindrical substrate 105. At this time, an a-Si deposited film having various characteristics can be formed by adjusting parameters such as gas type, gas introduction amount, gas introduction ratio, pressure, substrate temperature, input power, and film thickness. Properties can be controlled.

以上のようにして、円筒状基体105の表面にa−Si堆積膜が所望の膜厚で形成されたら、高周波電力の供給を止め、供給バルブ709等を閉じて、反応容器702内への原料ガスの導入を停止し、一層分のa−Si堆積膜の形成を終える。同様の操作を複数回繰り返すことにより所望の構造のa−Si感光体が製造される。   As described above, when the a-Si deposited film is formed on the surface of the cylindrical substrate 105 with a desired film thickness, the supply of high-frequency power is stopped, the supply valve 709 and the like are closed, and the raw material into the reaction vessel 702 is obtained. The introduction of the gas is stopped, and the formation of the a-Si deposited film for one layer is finished. By repeating the same operation a plurality of times, an a-Si photoreceptor having a desired structure is manufactured.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。尚、以下の説明では上述した実施形態において説明した構成と同一の構成又は対応する構成については、同一の符号を用いる。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In the following description, the same reference numerals are used for the same or corresponding configurations as those described in the above-described embodiments.

また、以下の実施例および比較例では、円筒状金属素管101として、マグネシウムを2.5重量%含有したAl−Mg合金の引抜管で、380℃で2時間の焼鈍処理を行ったものを用いた。   Further, in the following examples and comparative examples, the cylindrical metal base tube 101 is an Al—Mg alloy drawn tube containing 2.5% by weight of magnesium and subjected to annealing treatment at 380 ° C. for 2 hours. Using.

また、切削加工工程中の雰囲気温度は、基準温度23℃、変動温度を2℃以内つまり±1℃で管理して行った。   The atmospheric temperature during the cutting process was controlled by controlling the reference temperature at 23 ° C. and the fluctuation temperature within 2 ° C., that is, ± 1 ° C.

また、円筒状金属素管101及び円筒状基体105の寸法を表1に示す(単位はmm)。尚、インロー加工工程については、切削量が1.5mmと大きいため、二回に分けて実施した。   The dimensions of the cylindrical metal base tube 101 and the cylindrical base body 105 are shown in Table 1 (unit: mm). The inlay process was performed twice because the cutting amount was as large as 1.5 mm.

Figure 0005100260
Figure 0005100260

(実施例1)
コレットチャック201を挿入した円筒状金属素管101を株式会社エグロ製の旋盤(商品名:SD550)にセットし、円筒状金属素管101を内側から保持した。この状態で、円筒状金属素管101を2000rpmで回転させ、表2に示す条件で、旋盤から取り外すことなく連続して加工を行って、円筒状基体105を100本製造した。第1の端面切削加工工程では、図3(a)に示す矢印方向に端面切削加工用バイト301を送り、端面全体を0.8mm切削した。次に、第2の端面切削加工工程では、図4(a)に示す矢印方向に端面切削用バイト301を送り、端面全体を0.2mm切削した。
Example 1
The cylindrical metal pipe 101 into which the collet chuck 201 was inserted was set on a lathe (trade name: SD550) manufactured by Egro Corporation, and the cylindrical metal pipe 101 was held from the inside. In this state, the cylindrical metal base tube 101 was rotated at 2000 rpm, and was continuously processed without being removed from the lathe under the conditions shown in Table 2, and 100 cylindrical base bodies 105 were manufactured. In the first end face cutting step, the end face cutting tool 301 was fed in the direction of the arrow shown in FIG. 3A, and the entire end face was cut by 0.8 mm. Next, in the second end face cutting step, the end face cutting tool 301 was fed in the direction of the arrow shown in FIG. 4A, and the entire end face was cut by 0.2 mm.

一回目のインロー加工工程(表2中では「インロー加工1」)及び二回目のインロー加工工程(表2中では「インロー加工2」)では、図5に示す矢印方向にインロー加工用バイト401を送り、端部内側108を端面から13.0mmに渡って切削した。   In the first inlay processing step ("Inlay processing 1" in Table 2) and the second inlay processing step ("Inlay processing 2" in Table 2), the inlay processing bit 401 is placed in the direction of the arrow shown in FIG. Feeding and cutting the end part inner side 108 over 13.0 mm from the end face.

次に、外面切削加工工程を実施して円筒状金属素管101の外面全体を切削した。具体的には、図6に示す矢印方向に外面切削加工用バイト501を送り、外面109の全体を切削した。尚、加工順1、2、3、4、については両端同時加工を行った。

Next, the entire outer surface of the cylindrical metal base tube 101 was cut by performing an outer surface cutting process. Specifically, the outer surface cutting tool 501 was fed in the direction of the arrow shown in FIG. 6 to cut the entire outer surface 109. In addition, about the processing order 1, 2, 3, 4, the both ends simultaneous processing was performed.

Figure 0005100260
Figure 0005100260

以上のようにして製造された円筒状基体105について、「外径寸法」、「外径真円度」、「外径円筒度」、「外径対インロー内径同軸度」、「両端インロー内径同軸度」、「端面直角度」、「加工時間」の各項目について評価した。尚、「外径寸法」、「外径真円度」及び「外径円筒度」は、外径に関する精度を示す評価項目である。また、「外径対インロー内径同軸度」、「両端インロー内径同軸度」及び「端面直角度」は、回転時の全振れに関する精度を示す評価項目である。また、「加工時間」は、生産性に関する評価項目である。   Regarding the cylindrical base body 105 manufactured as described above, “outer diameter dimension”, “outer diameter roundness”, “outer diameter cylindricity”, “outer diameter vs. inner diameter coaxiality”, “both ends of inner diameter coaxiality” Each item of “degree”, “edge perpendicularity”, and “processing time” was evaluated. Note that “outer diameter dimension”, “outer diameter roundness”, and “outer diameter cylindricity” are evaluation items indicating accuracy regarding the outer diameter. In addition, “outer diameter vs. inner diameter coaxiality”, “both ends inner diameter coaxiality” and “end face perpendicularity” are evaluation items indicating the accuracy related to total runout during rotation. “Processing time” is an evaluation item related to productivity.

(外径寸法の評価)
マイクロメーター(株式会社ミツトヨ製)を用い、円筒状基体105の中央及び両端から20mm位置の3点の寸法を測定し、製造した100本間の平均値とバラツキから工程能力を算出した。工程能力指数Cpkは次式によって表される。
Cpk={(U−L)−|U+L−2X|}/6σ
但し、Uは規格上限値、Lは規格下限値、Xは平均値、σは標準偏差
得られた結果の評価は、後述する比較例で得られた結果を100としたときの相対評価で実施した。つまり、評価結果は数字が大きいほど良い。
(外径真円度、外径円筒度の評価)
株式会社ミツトヨ製の真円度円筒形状測定機(商品名:ROUNDTEST RA−436)を用い、円筒状基体105の中央、両端から20mm、両端から100mmの計5点について真円度を測定し、その5点から円筒度を算出した。算出結果の評価は、製造した100本間の平均値とバラツキから工程能力を算出し、後述する比較例で得られた結果を100としたときの相対評価で実施した。つまり、評価結果は数字が大きいほど良い。
(外径対インロー内径同軸度、両端インロー内径同軸度の評価)
図8に測定の概略図を示す。円筒状基体105の両端部を2台のVブロック801で支持し、ダイヤルゲージ802及び803をインロー加工が施された端部内面(インロー内径部)に当てる。そして、円筒状基体105を1回転させたときの、ダイヤルゲージ802及び803の指示値の最大値と最小値を測定し、その差をそれぞれの外径対インロー内径同軸度とした。また、円筒状基体105を1回転させたときの、ダイヤルゲージ802と803の指示値の差の最大値と最小値を測定し、その差を両端インロー内径同軸度とした。測定結果の評価は、製造した100本間の平均値とバラツキから工程能力を算出し、後述する比較例で得られた結果を100としたときの相対評価で実施した。つまり、評価結果は数字が大きいほど良い。
(Evaluation of outer diameter)
Using a micrometer (manufactured by Mitutoyo Corporation), the dimensions of three points at 20 mm positions from the center and both ends of the cylindrical substrate 105 were measured, and the process capability was calculated from the average value and the variation among the 100 manufactured. The process capability index Cpk is expressed by the following equation.
Cpk = {(UL)-| U + L-2X |} / 6σ
However, U is the standard upper limit value, L is the standard lower limit value, X is the average value, and σ is the standard deviation. The evaluation of the obtained results is carried out by relative evaluation when the result obtained in the comparative example described later is 100. did. In other words, the larger the number, the better the evaluation result.
(Evaluation of outer diameter roundness and outer diameter cylindricity)
Using a roundness cylindrical shape measuring machine (trade name: ROUNDTEST RA-436) manufactured by Mitutoyo Co., Ltd., the roundness was measured for a total of 5 points, 20 mm from both ends and 100 mm from both ends, of the cylindrical base body 105, The cylindricity was calculated from the five points. Evaluation of the calculation result was performed by relative evaluation when the process capability was calculated from the average value and variation among 100 manufactured, and the result obtained in the comparative example described later was taken as 100. In other words, the larger the number, the better the evaluation result.
(Evaluation of outer diameter vs. inner diameter coaxiality, both ends inner diameter coaxiality)
FIG. 8 shows a schematic diagram of the measurement. Both end portions of the cylindrical base body 105 are supported by two V blocks 801, and dial gauges 802 and 803 are applied to the inner surface of the end portion (inner inner diameter portion) subjected to inlay processing. Then, the maximum value and the minimum value of the indication values of the dial gauges 802 and 803 when the cylindrical base body 105 was rotated once were measured, and the difference was defined as the respective outer diameter to inlay inner diameter coaxiality. Further, the maximum value and the minimum value of the difference between the indication values of the dial gauges 802 and 803 when the cylindrical substrate 105 was rotated once were measured, and the difference was defined as the both-end inlay inner diameter coaxiality. Evaluation of the measurement results was carried out by relative evaluation when the process capability was calculated from the average value and variation among the 100 manufactured, and the result obtained in the comparative example described later was taken as 100. In other words, the larger the number, the better the evaluation result.

(端面直角度の評価)
株式会社ミツトヨ製の真円度円筒形状測定機(商品名:ROUNDTEST RA−436)を用い、端面を基準として円筒状基体105の両端から20mm位置の2点の傾きを端面直角度として測定した。測定結果の評価は、製造した100本間の平均値とバラツキから工程能力を算出し、後述する比較例で得られた結果を100とした時の相対評価で実施した。つまり、評価結果は数字が大きいほど良い。
(Evaluation of perpendicularity of the end face)
Using a roundness cylindrical shape measuring machine (trade name: ROUNDTEST RA-436) manufactured by Mitutoyo Corporation, the inclination of two points at 20 mm positions from both ends of the cylindrical base body 105 with respect to the end face was measured as an end face perpendicularity. Evaluation of the measurement results was carried out by relative evaluation when the process capability was calculated from the average value and variation between 100 manufactured, and the result obtained in the comparative example described later was taken as 100. In other words, the larger the number, the better the evaluation result.

(加工時間の評価)
円筒状基体105を連続して100本加工するために要する時間を計測し、後述する比較例で得られた結果を100としたときの相対評価で実施した。つまり、評価結果は数字が小さいほど良い。
(Evaluation of processing time)
The time required to continuously process 100 cylindrical substrates 105 was measured, and a relative evaluation was performed with the result obtained in the comparative example described later as 100. In other words, the smaller the number, the better the evaluation result.

また、得られた円筒状基体105の外面に仕上げ切削加工を施した。仕上げ切削加工には、株式会社エグロ製の旋盤(商品名:RL550)を用いた。具体的には、円筒状基体105をコレットチャックで内側から保持した状態で、3000rpmで回転させ、インロー内径基準で、表3に示す条件で加工を行った。尚、表3中の外面粗切削加工と外面仕上げ切削加工は、加工用バイトを並べて設置し、同時に加工を実施した。その後、洗浄を行い、図7に示す高周波プラズマCVD装置を用いて、円筒状基体105上に、表4に示す条件で、a−Si感光体の形成を行った。

Further, the outer surface of the obtained cylindrical substrate 105 was subjected to finish cutting. A lathe (trade name: RL550) manufactured by Egro Co., Ltd. was used for the finish cutting. Specifically, the cylindrical substrate 105 was held at the collet chuck from the inside, rotated at 3000 rpm, and processed under the conditions shown in Table 3 on the basis of the inner diameter of the inlay. In addition, the outer surface rough cutting processing and the outer surface finishing cutting processing in Table 3 were performed by arranging the cutting tools side by side. Thereafter, cleaning was performed, and an a-Si photosensitive member was formed on the cylindrical substrate 105 under the conditions shown in Table 4 using the high-frequency plasma CVD apparatus shown in FIG.

Figure 0005100260
Figure 0005100260

Figure 0005100260
Figure 0005100260

得られたa−Si感光体の両端に、図9に示すフランジ902及び903を取り付けて回転可能とし、電子写真感光体ユニット901を作製した。そして、電子写真感光体特性の評価として「振れ」「Vd面ムラ」の評価を行った。   The electrophotographic photoreceptor unit 901 was manufactured by attaching flanges 902 and 903 shown in FIG. 9 to both ends of the obtained a-Si photoreceptor so as to be rotatable. Then, as the evaluation of the electrophotographic photosensitive member characteristics, “runout” and “Vd surface unevenness” were evaluated.

電子写真感光体特性の評価には、複写機(株式会社キヤノン製の商品名「iR5000」改造機)を用いた。図10に、上記複写機の概略を示す。電子写真感光体ユニット901は図中時計回り回転駆動可能に支持されている。この電子写真感光体ユニット901の周りには、前露光器1008、主帯電器1002、潜像形成用露光器1009及び電位センサ1003が時計回り方向に順に配置されている。次に、静電潜像上にトナーを付着させて現像を行うための現像器1004、トナー像を被記録媒体に転写するための転写帯電器1005a、分離帯電器1005bが配置されている。その後、残留トナーを除去するためのクリーニングローラー1006及びクリーニングブレード1007を具備したクリーナー1010が配置されている。   For evaluation of the characteristics of the electrophotographic photosensitive member, a copying machine (trade name “iR5000” modified machine manufactured by Canon Inc.) was used. FIG. 10 shows an outline of the copying machine. The electrophotographic photoreceptor unit 901 is supported so as to be capable of rotating clockwise in the drawing. Around the electrophotographic photosensitive member unit 901, a pre-exposure device 1008, a main charger 1002, a latent image forming exposure device 1009, and a potential sensor 1003 are sequentially arranged in the clockwise direction. Next, a developing device 1004 for performing development by attaching toner on the electrostatic latent image, a transfer charging device 1005a for transferring the toner image to a recording medium, and a separation charging device 1005b are arranged. Thereafter, a cleaner 1010 including a cleaning roller 1006 and a cleaning blade 1007 for removing residual toner is disposed.

振れを測定する際には、現像器1004及びクリーナー1010を取り外し、現像器1004の代わりに、電子写真感光体ユニット901の母線方向の所定位置の振れを測定できる変位センサ(株式会社キーエンス製の商品名EX−502、不図示)を装着した。そして、電子写真感光体ユニット901を回転させ、変位センサをユニット901の端部より母線方向に移動させ、母線方向に40mm間隔の9点でそれぞれ最大値と最小値の差の測定を行った。さらに、9点での測定値の最大値を振れとし、100本間の平均値とバラツキから工程能力を算出した。   When measuring the shake, the developing device 1004 and the cleaner 1010 are removed, and instead of the developing device 1004, a displacement sensor (a product made by Keyence Corporation) that can measure the shake at a predetermined position in the bus line direction of the electrophotographic photosensitive member unit 901. Name EX-502 (not shown) was attached. Then, the electrophotographic photosensitive member unit 901 was rotated, the displacement sensor was moved from the end of the unit 901 in the bus direction, and the difference between the maximum value and the minimum value was measured at 9 points at intervals of 40 mm in the bus direction. Furthermore, the maximum value of the measured values at 9 points was regarded as the fluctuation, and the process capability was calculated from the average value and the variation between the 100 samples.

Vd面ムラの測定では、現像器1004及びクリーナー1010を取り外し、現像器1004の代わりに電子写真感光体ユニット901の母線方向の所定位置の電子写真特性を測定できる電位プローブ(TREK社製Model344、不図示)を装着した。
また、プロセススピード265mm/sec、前露光(波長660nmのLED)光量を2.3μJ/cmとした。そして、電子写真感光体ユニット901
の母線方向中位置の表面電位が、電位プローブで測定して450V(暗電位)になるように主帯電器1002の電流値を調整した。その後、電位プローブを電子写真感光体ユニット901の端部より母線方向に移動させて、母線方向に40mm間隔の9点でそれぞれの最大値、最小値の測定を行った。全ての測定値の最大値と最小値の差をVd面ムラとし、100本の平均値とバラツキから工程能力を算出した。「振れ」および「Vd面ムラ」の評価は、後述の比較例で得られた結果を100としたときの相対評価で実施した。つまり、評価結果は数字が大きいほど良い。
In the measurement of Vd surface unevenness, the developing device 1004 and the cleaner 1010 are removed, and instead of the developing device 1004, a potential probe (Model 344, manufactured by TREK Co., Ltd., which can measure electrophotographic characteristics at a predetermined position in the bus bar direction of the electrophotographic photosensitive member unit 901 is used. (Shown) was attached.
The process speed was 265 mm / sec, and the amount of pre-exposure (LED with a wavelength of 660 nm) was 2.3 μJ / cm 2 . Then, the electrophotographic photoreceptor unit 901
The current value of the main charger 1002 was adjusted so that the surface potential at the middle position in the bus line was 450 V (dark potential) as measured with a potential probe. Thereafter, the potential probe was moved in the direction of the bus from the end of the electrophotographic photosensitive member unit 901, and the maximum value and the minimum value were measured at 9 points at intervals of 40 mm in the direction of the bus. The difference between the maximum value and the minimum value of all measured values was regarded as Vd surface unevenness, and the process capability was calculated from the average value and variation of 100 samples. Evaluation of “runout” and “Vd surface unevenness” was carried out by relative evaluation with the result obtained in the comparative example described later as 100. In other words, the larger the number, the better the evaluation result.

(各評価結果のランク付け)
「加工時間」を除く前記各評価項目に関して、以下に示す基準でランク付けを行った。
(Ranking of each evaluation result)
With respect to each of the evaluation items excluding “processing time”, ranking was performed according to the following criteria.

A・・・175より大きい
B・・・150より大きく175以下
C・・・125より大きく150以下
D・・・100より大きく125以下
E・・・100(変化なし)
F・・・100未満
A: greater than 175 B: greater than 150 and less than 175 C: greater than 125 and less than 150 D: greater than 100 and less than 125 E: 100 (no change)
F ... less than 100

「加工時間」の結果は、以下に示す基準でランク付けを行った。
A・・・40未満
B・・・40以上60未満
C・・・60以上80未満
D・・・80以上100未満
E・・・100(変化なし)
F・・・100より大きい
The result of “processing time” was ranked according to the following criteria.
A ... less than 40 B ... 40 or more and less than 60 C ... 60 or more and less than 80 D ... 80 or more and less than 100 E ... 100 (no change)
F ... Greater than 100

(総合評価)
上記9項目(「外径寸法」「外径真円度」「外径円筒度」「外径対インロー内径同軸度」「両端インロー内径同軸度」「端面直角度」「加工時間」「振れ」「Vd面ムラ」)の評価結果について、以下に示す基準でランク付けを行った。ランク付けの結果は表7に示す。
A・・・各項目でBレベル以上、かつAレベル4個以上
B・・・各項目でBレベル以上
C・・・各項目でCレベル以上
D・・・各項目でDレベル以上
E・・・各項目でEレベル以上
F・・・各項目で一つでもFレベルがある
(Comprehensive evaluation)
9 items above ("Outer Diameter", "Outer Diameter Roundness", "Outer Diameter Cylindricity", "Outer Diameter vs. Inner Inner Inner Diameter Concentricity", "Both Inner Inner Inner Diameter Concentricity", "End Face Right Angle", "Processing Time", "Runout" The evaluation results of “Vd surface unevenness”) were ranked according to the following criteria. The ranking results are shown in Table 7.
A: B level or higher for each item and 4 or more A levels B ... B level or higher for each item C ... C level or higher for each item D ... D level or higher for each item E ...・ Each item is over E level F ・ ・ ・ Each item has F level

(実施例2)
実施例1に対して、表2中の加工順2の第1の端面切削加工工程を、図3(b)に示す方法に変更した。第1の端面切削加工工程の一回目で、部分303を幅2mmで切削し、二回目で部分304を切削した。それ以外は実施例1と同様にして円筒状基体を100本製造した。得られた円筒状基体を用いて実施例1と同様に電子写真感光体ユニットを作製し、実施例1と同様の評価を行い、評価結果に基づいてランク付けを行った。ランク付けの結果を表7に示す。
(Example 2)
Compared to Example 1, the first end face cutting process in the processing order 2 in Table 2 was changed to the method shown in FIG. In the first end face cutting step, the portion 303 was cut with a width of 2 mm, and the portion 304 was cut a second time. Otherwise, 100 cylindrical substrates were produced in the same manner as in Example 1. Using the obtained cylindrical substrate, an electrophotographic photosensitive member unit was produced in the same manner as in Example 1, and the same evaluation as in Example 1 was performed, and ranking was performed based on the evaluation result. The ranking results are shown in Table 7.

(実施例3)
実施例1に対して、加工順を変更した。具体的には、表2中の加工順を、1、2、5、3、4の順、つまり、外面切削加工工程後にインロー加工工程を実施した。それ以外は実施例1と同様にして円筒状基体を100本製造した。得られた円筒状基体を用いて実施例1と同様に電子写真感光体ユニットを作製し、実施例1と同様の評価を行い、評価結果に基づいてランク付けを行った。ランク付けの結果を表7に示す。
(Example 3)
The processing order was changed with respect to Example 1. Specifically, the processing order in Table 2 was performed in the order of 1, 2, 5, 3, 4, that is, the inlaying process after the outer surface cutting process. Otherwise, 100 cylindrical substrates were produced in the same manner as in Example 1. Using the obtained cylindrical substrate, an electrophotographic photosensitive member unit was produced in the same manner as in Example 1, and the same evaluation as in Example 1 was performed, and ranking was performed based on the evaluation result. The ranking results are shown in Table 7.

(実施例4)
実施例1に対して、インロー加工工程を省略し、表2中の加工順を、1、2、5の順で実施した。それ以外は実施例1と同様にして円筒状基体を作製し、実施例1と同様の評価を行い、評価結果に基づいてランク付けを行った。ランク付けの結果を表7に示す。尚、本実施例ではインロー加工を実施していないので、「両端インロー内径同軸度」「外径対インロー内径同軸度」「振れ」「Vd面ムラ」の各評価は省略した。
Example 4
The inlay processing step was omitted with respect to Example 1, and the processing order in Table 2 was performed in the order of 1, 2, and 5. Otherwise, a cylindrical substrate was produced in the same manner as in Example 1, and the same evaluation as in Example 1 was performed, and ranking was performed based on the evaluation results. The ranking results are shown in Table 7. In this example, since the inlay process was not performed, each evaluation of “both ends of the inner diameter coaxiality”, “outer diameter vs. inner diameter coaxiality”, “runout”, and “Vd surface unevenness” was omitted.

(比較例)
端面加工済みの円筒状金属素管をその内側から保持した状態で株式会社エグロ製の旋盤(商品名:SD550)にセットし、2000rpmで回転させ、表5に示す条件でインロー加工を両端同時に行った。その後、インロー加工済み円筒状金属素管を一旦旋盤から取り外し、インロー内径基準で外面切削加工を行った。外面切削加工は、株式会社エグロ製の旋盤(商品名:RL550)を用い、コレットチャックでインロー内径部を保持した状態で、2000rpmで回転させ、表6に示す条件で加工を行った。以上のようにして、円筒状基体を100本製造した。得られた円筒状基体を用いて実施例1と同様にして電子写真感光体ユニットを作製し、実施例1と同様の評価を行い、評価結果に基づいてランク付けを行った。ランク付けの結果を表7に示す。
(Comparative example)
A cylindrical metal tube that has undergone end face processing is held from the inside, set on a lathe made by Egro Co., Ltd. (trade name: SD550), rotated at 2000 rpm, and subjected to inlay processing at both ends simultaneously under the conditions shown in Table 5 It was. Thereafter, the cylindrical metal blank that had been subjected to inlay processing was once removed from the lathe and subjected to outer surface cutting processing based on the inner diameter of the inlay. The outer surface cutting was performed under the conditions shown in Table 6 using a lathe made by Egro Co., Ltd. (trade name: RL550), rotating at 2000 rpm with the inner diameter portion held by the collet chuck. As described above, 100 cylindrical substrates were manufactured. Using the obtained cylindrical substrate, an electrophotographic photoreceptor unit was produced in the same manner as in Example 1, and the same evaluation as in Example 1 was performed, and ranking was performed based on the evaluation result. The ranking results are shown in Table 7.

Figure 0005100260
Figure 0005100260

Figure 0005100260
Figure 0005100260

Figure 0005100260
※項目A〜Iは以下を示す
I:外径寸法、II:外径真円度、III:外径円筒度
IV:外径対インロー内径同軸度、V:両端インロー内径同軸度
VI:端面直角度、VII:加工時間、VIII:振れ、IX:Vd面ムラ
尚、表中の「−」は「評価せず」を示す。
Figure 0005100260
* Items A to I indicate the following
I: Outer diameter dimension, II: Outer diameter roundness, III: Outer diameter cylindricity
IV: Outer diameter vs. inner diameter coaxiality, V: Both ends inner diameter coaxiality
VI: End face perpendicularity, VII: Processing time, VIII: Runout, IX: Vd surface unevenness “-” in the table indicates “not evaluated”.

表7から、本発明により、項目I〜VIに関する円筒状基体の精度が向上した
ことがわかる。特に、回転時の振れに関わる精度(項目IV〜VI)に関して良化
している。これは、本発明によって、円筒状金属素管が安定して保持・固定された状態で切削加工が実施された効果である。円筒状基体の高精度化は、円筒状基体を使った製品の特性である項目VIII、IXによく現れている。また、項目VII
から、円筒状金属素管を保持した状態で一連の加工を行うことで、加工時間が半減されていることもわかる。
From Table 7, it can be seen that the accuracy of the cylindrical substrate related to items I to VI was improved by the present invention. In particular, the accuracy (items IV to VI) related to vibration during rotation is improved. This is an effect that the cutting is performed in a state where the cylindrical metal pipe is stably held and fixed by the present invention. Improvements in the accuracy of cylindrical substrates are often seen in items VIII and IX, which are characteristics of products using cylindrical substrates. Item VII
Thus, it can be seen that the processing time is halved by performing a series of processing while holding the cylindrical metal tube.

以上を総合すると、本発明によって、高精度でかつ生産性良く円筒状基体を製造することが可能となったことがわかる。   In summary, it can be seen that the present invention makes it possible to manufacture a cylindrical substrate with high accuracy and high productivity.

本発明に係る円筒状基体の製造方法の各工程における円筒状金属素管の形状変化を示す模式図である。It is a schematic diagram which shows the shape change of the cylindrical metal raw tube in each process of the manufacturing method of the cylindrical base | substrate which concerns on this invention. コレットチャックの断面を示す模式図である。It is a schematic diagram which shows the cross section of a collet chuck. 第1の端面切削加工工程を示す模式図である。It is a schematic diagram which shows a 1st end surface cutting process. 第2の端面切削加工工程を示す模式図である。It is a schematic diagram which shows a 2nd end surface cutting process. インロー加工工程を示す模式図である。It is a schematic diagram which shows an inlay process. 外面切削加工工程を示す模式図である。It is a schematic diagram which shows an outer surface cutting process. 電子写真感光体の製造に使用する高周波プラズマCVD装置の一例を示す模式図である。It is a schematic diagram which shows an example of the high frequency plasma CVD apparatus used for manufacture of an electrophotographic photoreceptor. 同軸度評価の方法を示す概略図である。It is the schematic which shows the method of coaxiality evaluation. 電子写真感光体ユニットを示す模式図である。It is a schematic diagram which shows an electrophotographic photoreceptor unit. 電子写真感光体ユニットの特性評価に用いた複写機を示す概略図である。FIG. 2 is a schematic view showing a copying machine used for evaluating characteristics of an electrophotographic photosensitive member unit.

符号の説明Explanation of symbols

101 円筒状金属素管
105 円筒状基体
205 保持部
106 余長部
106a 余長部の一部
106b 余長部の残部
DESCRIPTION OF SYMBOLS 101 Cylindrical metal pipe 105 Cylindrical base body 205 Holding | maintenance part 106 Extra length part 106a Part of extra length part 106b The remainder of extra length part

Claims (9)

円筒状金属素管の端面及び外面に切削加工を施して円筒状基体を得る円筒状基体の製造方法において、
前記製造方法が、前記円筒状金属素管の内面に保持手段を圧接させて前記円筒状金属素管を保持する工程と、前記保持手段によって保持された前記円筒状金属素管の端面を片端面あたり複数回切削する複数回の端面切削加工工程と、前記保持手段によって保持された前記円筒状金属素管の外面を切削する外面切削加工工程と、を有し、
前記複数回の端面切削加工工程及び前記外面切削加工工程が、前記保持手段を取り外すことなく施され、かつ、
前記複数回の端面切削加工工程の第一回目が、前記円筒状金属素管に対して最初に施される切削加工である
ことを特徴とする円筒状基体の製造方法。
In the method of manufacturing a cylindrical substrate, the end surface and the outer surface of the cylindrical metal tube are cut to obtain a cylindrical substrate.
The manufacturing method includes a step of holding the cylindrical metal element tube by pressing a holding unit against an inner surface of the cylindrical metal element tube, and an end surface of the cylindrical metal element tube held by the holding unit on one end surface. includes a plurality of end surface cutting step a plurality of times cut per, and an outer surface cutting step of cutting the outer surface of the cylindrical metal tube which is held by said holding means,
The plurality of end face cutting steps and the outer face cutting step are performed without removing the holding means, and
A method for producing a cylindrical substrate, wherein a first round of the plurality of end face cutting steps is a cutting step first applied to the cylindrical metal base tube.
前記円筒状金属素管を保持する工程が、前記保持手段を前記円筒状金属素管の母線方向中央に圧接させる工程である請求項1記載の円筒状基体の製造方法。 The step of holding the cylindrical metal tube is, the manufacturing method of the cylindrical substrate according to claim 1, wherein the step of pressing said holding means to the generatrix direction center of the front Symbol cylindrical metal tube. 前記保持手段が、コレットチャックである請求項1又は2に記載の円筒状基体の製造方法。The method for manufacturing a cylindrical substrate according to claim 1, wherein the holding means is a collet chuck. 前記複数回の端面切削加工工程が、前記円筒状基体に対する前記円筒状金属素管の余長部の一部を切削する第1の端面切削加工工程と、前記余長部の残部を切削する第2の端面切削加工工程と、を含み、
前記複数回の端面切削加工工程の第一回目が、前記第1の端面切削加工工程である請求項1〜3のいずれか1項に記載の円筒状基体の製造方法。
The plurality of end face cutting steps include a first end face cutting step for cutting a part of the extra length portion of the cylindrical metal base tube with respect to the cylindrical base, and a first step for cutting the remaining portion of the extra length portion. 2 end face cutting process steps,
The method for manufacturing a cylindrical substrate according to any one of claims 1 to 3 , wherein a first round of the plurality of end face cutting steps is the first end face cutting step.
前記第1の端面切削加工工程が、複数回に分けて実施される請求項1〜4のいずれか1項に記載の円筒状基体の製造方法。The method for manufacturing a cylindrical substrate according to any one of claims 1 to 4, wherein the first end face cutting step is performed in a plurality of times. 前記複数回の端面切削加工工程が、前記円筒状金属素管の両端面を同時に切削する工程である請求項1〜のいずれか1項に記載の円筒状基体の製造方法。 The method for manufacturing a cylindrical substrate according to any one of claims 1 to 5 , wherein the plurality of end face cutting steps are steps for simultaneously cutting both end faces of the cylindrical metal pipe. 前記円筒状金属素管の材料が、アルミニウム又はアルミニウム合金である請求項1〜のいずれか1項に記載の円筒状基体の製造方法。 The method for manufacturing a cylindrical substrate according to any one of claims 1 to 6 , wherein a material of the cylindrical metal pipe is aluminum or an aluminum alloy. 前記切削加工工程中の雰囲気温度の変動を2℃以内とする請求項1〜のいずれか1項に記載の円筒状基体の製造方法。 The method for producing a cylindrical substrate according to any one of claims 1 to 7 , wherein a change in the atmospheric temperature during the cutting process is set to 2 ° C or less. 円筒状金属素管の端面及び外面に切削加工を施して円筒状基体を得る工程と、得られた前記円筒状基体の外面に感光体材料層を形成して電子写真感光体を得る工程と、を有する電子写真感光体の製造方法において、
前記円筒状基体を得る工程が、請求項1〜のいずれか1項に記載の製造方法によって前記円筒状基体を得る工程であることを特徴とする電子写真感光体の製造方法。
A step of cutting the end face and the outer surface of the cylindrical metal base tube to obtain a cylindrical substrate; a step of forming a photosensitive material layer on the outer surface of the obtained cylindrical substrate to obtain an electrophotographic photosensitive member; In a method for producing an electrophotographic photoreceptor having
The method for producing an electrophotographic photoreceptor, wherein the step of obtaining the cylindrical substrate is a step of obtaining the cylindrical substrate by the production method according to any one of claims 1 to 8 .
JP2007222387A 2007-08-29 2007-08-29 Cylindrical substrate manufacturing method and electrophotographic photosensitive member manufacturing method Expired - Fee Related JP5100260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222387A JP5100260B2 (en) 2007-08-29 2007-08-29 Cylindrical substrate manufacturing method and electrophotographic photosensitive member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222387A JP5100260B2 (en) 2007-08-29 2007-08-29 Cylindrical substrate manufacturing method and electrophotographic photosensitive member manufacturing method

Publications (3)

Publication Number Publication Date
JP2009050988A JP2009050988A (en) 2009-03-12
JP2009050988A5 JP2009050988A5 (en) 2010-10-07
JP5100260B2 true JP5100260B2 (en) 2012-12-19

Family

ID=40502529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222387A Expired - Fee Related JP5100260B2 (en) 2007-08-29 2007-08-29 Cylindrical substrate manufacturing method and electrophotographic photosensitive member manufacturing method

Country Status (1)

Country Link
JP (1) JP5100260B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539016B2 (en) * 2010-05-18 2014-07-02 キヤノン株式会社 Method for producing electrophotographic photosensitive member and method for producing substrate for electrophotographic photosensitive member
JP6741168B2 (en) 2017-10-18 2020-08-19 富士電機株式会社 Conductive support, method for producing the same, electrophotographic photoreceptor and electrophotographic apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174301A (en) * 1995-12-25 1997-07-08 Okuma Mach Works Ltd Work method and device of both end surfaces of hollow work
JP2001162404A (en) * 1999-12-13 2001-06-19 Fuji Xerox Co Ltd Jig for lathe, method of manufacturing for cylindrical base body, and cylindrical base body
JP2003162078A (en) * 2001-11-29 2003-06-06 Fuji Denki Gazo Device Kk Production method for cylindrical base body for electrophotographic photosensitive body and electrophotographic photosensitive body using the base body
JP2003167361A (en) * 2001-11-30 2003-06-13 Konica Corp Method for manufacturing cylindrical base substance for electrophotographic photoreceptor, cylindrical base substance for electrophotographic photoreceptor, electrophotographic sensitive body, image forming apparatus and process cartridge
JP2007072175A (en) * 2005-09-07 2007-03-22 Canon Inc Method for manufacturing electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP2009050988A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP2011133865A (en) Electrophotographic photoreceptor and electrophotographic apparatus
JP5100260B2 (en) Cylindrical substrate manufacturing method and electrophotographic photosensitive member manufacturing method
JP2017037327A (en) Method for manufacturing base material for electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, metal block used for manufacturing base material for electrophotographic photoreceptor by impact press work, and method for manufacturing cylindrical body
EP1541705A2 (en) Method for processing cylinder periphery, processes for producing development roller and photoconductor drum, and development roller and photoconductor drum
JP2000029342A (en) Thin roller and manufacture of it
US10649354B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP2000122310A (en) Production of mirror surface pipe for photorecertive drum of copying machine or the like
JP2009169158A (en) Method of manufacturing electrophotographic photoreceptor, and electrophotographic photoreceptor
US10222714B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP5539016B2 (en) Method for producing electrophotographic photosensitive member and method for producing substrate for electrophotographic photosensitive member
WO2007132838A1 (en) Base pipe for photosensitive drum
JP5941365B2 (en) Method for producing electrophotographic photosensitive member
JP4131307B2 (en) Method for manufacturing tube for electrophotographic photosensitive drum substrate
JP2002137101A (en) Machining method for thin-walled core metal unit and machining method for fixing roller core metal unit for electrophotographic device
JP2010230989A (en) Method for manufacturing electrophotographic photoreceptor
JP3281604B2 (en) Electrophotographic photosensitive member substrate, electrophotographic photosensitive member, and image forming apparatus using the electrophotographic photosensitive member
JP2004154789A (en) Method for manufacturing thin cylindrical body
JP4827608B2 (en) Deposited film forming apparatus, deposited film forming method, and electrophotographic photoreceptor manufacturing method
JP6962835B2 (en) Electrophotographic photosensitive member and an image forming apparatus equipped with the photoconductor
JP2011257658A (en) Manufacturing method of electrophotographic photoreceptor
JP5818521B2 (en) Electrophotographic equipment
JP2018163338A (en) Electrophotographic photoreceptor and image forming apparatus
JP2001005205A (en) Substrate for electrophotographic photoreceptor and electrophotographic photoreceptor and image forming device using the same
JP5599046B2 (en) Method for producing electrophotographic photosensitive member
JP4555910B2 (en) Photoreceptor substrate, electrophotographic photoreceptor and image forming apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5100260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees