JP5099700B2 - Nondestructive measuring device detector bank and nondestructive measuring device - Google Patents

Nondestructive measuring device detector bank and nondestructive measuring device Download PDF

Info

Publication number
JP5099700B2
JP5099700B2 JP2008134487A JP2008134487A JP5099700B2 JP 5099700 B2 JP5099700 B2 JP 5099700B2 JP 2008134487 A JP2008134487 A JP 2008134487A JP 2008134487 A JP2008134487 A JP 2008134487A JP 5099700 B2 JP5099700 B2 JP 5099700B2
Authority
JP
Japan
Prior art keywords
neutron
neutrons
detector
thermal
epithermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008134487A
Other languages
Japanese (ja)
Other versions
JP2009281878A (en
Inventor
満夫 春山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2008134487A priority Critical patent/JP5099700B2/en
Publication of JP2009281878A publication Critical patent/JP2009281878A/en
Application granted granted Critical
Publication of JP5099700B2 publication Critical patent/JP5099700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、ウラン及びプルトニウム等の核分裂性物質を含有する廃棄物を処分するに当たり、非破壊的方法によって、廃棄物に内蔵される核分裂物質の含有量を測定する非破壊測定装置に関する。さらに詳細には、特定の廃棄物に限定されることなく、高密度金属圧縮体や中性子毒物を含む廃棄物に対しても正確に核分裂性物質の測定を行うことができる非破壊測定装置及び当該非破壊測定装置に用いる検出器バンクに関する。   The present invention relates to a non-destructive measurement apparatus that measures the content of fission material contained in waste by a non-destructive method when disposing of waste containing fissile material such as uranium and plutonium. More specifically, the present invention is not limited to a specific waste, and a non-destructive measuring apparatus capable of accurately measuring fissile materials even for waste including high-density metal compacts and neutron poisons, and The present invention relates to a detector bank used in a nondestructive measuring apparatus.

放射性廃棄物固体の核分裂性物質の非破壊検査方法としてアクティブ中性子法が提案されて用いられている(たとえば特許文献1等参照)。特許文献1記載の方法は、中性子発生管より放出された高速中性子が測定対象物である廃棄物固体中で散乱し減速して熱中性子化し、その熱中性子が当該廃棄物固体中の核分裂性物質を核分裂させたときに放出される核分裂中性子の時間−計数成分を最小二乗法によりフィッティングして選択的に抽出し、その成分の計数値総和を求め、その計数値総和を測定対象物である廃棄物固体中に内蔵されている核分裂性物質の総量を示す値とする方法である。   An active neutron method has been proposed and used as a nondestructive inspection method for radioactive waste solid fissionable materials (see, for example, Patent Document 1). In the method described in Patent Document 1, fast neutrons emitted from a neutron generator tube are scattered in a solid waste that is a measurement object, decelerated to thermal neutrons, and the thermal neutrons are fissile materials in the solid waste. The time-count component of fission neutrons released when fissioning is performed is selectively extracted by fitting by the least square method, the sum of the count values of the components is obtained, and the sum of the count values is discarded as the measurement object This is a method of setting a value indicating the total amount of fissile material incorporated in a solid.

このような非破壊検査方法を実施する非破壊測定装置としては、たとえば、図11に示す中性子検出器を内蔵する検出器バンクを備えるものが提案されている(特許文献2)。かかる検出器バンクは、複数の検出器303をポリエチレンからなる中性子減速体302で取り囲み、さらに中性子減速体302全体をカドミウムからなる熱中性子吸収体301で覆ってなる。   As a nondestructive measuring apparatus that implements such a nondestructive inspection method, for example, an apparatus including a detector bank incorporating a neutron detector shown in FIG. 11 has been proposed (Patent Document 2). In this detector bank, a plurality of detectors 303 are surrounded by a neutron moderator 302 made of polyethylene, and the entire neutron moderator 302 is covered with a thermal neutron absorber 301 made of cadmium.

このような構造の従来の検出器バンクにおける検出過程を図12に示す。検出体系内には高速中性子の減速の度合いにより高速中性子とエピサーマル中性子、熱中性子が混在する。その中で熱中性子601は検出器バンクの外壁を構成するカドミウムからなる熱中性子吸収体301により吸収分離されるため、検出器バンク内にはエピサーマル中性子と、高速中性子が進入する。エピサーマル中性子と高速中性子は、検出器バンク内側を構成するポリエチレンからなる中性子減速体302により減速される。中性子検出器303で検出されるのは、測定体系内のエピサーマル中性子に起因する熱中性子602と、高速中性子に起因する熱中性子603、同じくエピサーマル中性子604、それと減速せずに到達したエピサーマル中性子605と高速中性子606である。   FIG. 12 shows a detection process in the conventional detector bank having such a structure. In the detection system, fast neutrons, epithermal neutrons, and thermal neutrons are mixed depending on the degree of deceleration of fast neutrons. Among them, the thermal neutron 601 is absorbed and separated by the thermal neutron absorber 301 made of cadmium constituting the outer wall of the detector bank, so that epithermal neutrons and fast neutrons enter the detector bank. Epithermal neutrons and fast neutrons are decelerated by a neutron moderator 302 made of polyethylene constituting the detector bank. The neutron detector 303 detects the thermal neutrons 602 caused by epithermal neutrons in the measurement system, the thermal neutrons 603 caused by fast neutrons, the epithermal neutrons 604, and the epithermal which arrived without deceleration. They are neutron 605 and fast neutron 606.

このような従来の非破壊測定方法では、検出効率を最大にすることを目標とし、中性子の速度が遅いほど検出効率は高い性質があるため、高速中性子である照射中性子及び核分裂中性子をポリエチレン等の中性子減速材によりできるだけ効率良く熱中性子に減速して検出する方法を採用している。この方法では、測定体系内で混在している高速中性子である核分裂中性子及び照射中性子と測定体系及び当該廃棄物固体により高速中性子が減速されてなるエピサーマル中性子及び熱中性子とを、検出器バンクの外壁を構成するカドミウムからなる熱中性子吸収体で吸収分離し、そこを通過した高速中性子(核分裂中性子及び照射中性子)及びエピサーマル中性子を中性子検出器の周囲を取り囲むポリエチレンからなる中性子減速体で減速して、熱中性子化して高速中性子を効率良く検出する。照射中性子スペクトル成分中には、中性子検出器内のエピサーマル中性子に起因する中性子が支配的となり、その結果、測定対象物が高密度金属圧縮廃棄体や中性子毒物(熱中性子吸収物質;Gd)を含むものである場合、核分裂中性子時間スペクトルは照射中性子時間スペクトル中に埋没し、核分裂中性子が発生していてもスペクトル解析による核分裂中性子成分の分離抽出が不可能となるため、特定の廃棄物しか正確に測定できないという問題があった(図9参照)。
特開平11−64528号公報 特許第3845685号公報
In such a conventional nondestructive measurement method, the target is to maximize the detection efficiency, and the slower the neutron velocity, the higher the detection efficiency. A method of detecting by decelerating to thermal neutrons as efficiently as possible with a neutron moderator is adopted. In this method, fission neutrons and irradiated neutrons, which are fast neutrons mixed in the measurement system, and epithermal neutrons and thermal neutrons in which the fast neutrons are slowed down by the measurement system and the solid waste are detected in the detector bank. It absorbs and separates with a thermal neutron absorber made of cadmium constituting the outer wall, and decelerates fast neutrons (fission neutrons and irradiated neutrons) and epithermal neutrons that have passed therethrough with a neutron moderator made of polyethylene surrounding the neutron detector. Thus, thermal neutrons are used to detect fast neutrons efficiently. In the irradiated neutron spectrum component, neutrons caused by epithermal neutrons in the neutron detector are dominant, and as a result, the object to be measured is high-density metal compression waste or neutron poison (thermal neutron absorbing material; Gd). If included, the fission neutron time spectrum is buried in the irradiation neutron time spectrum, and even if fission neutrons are generated, it becomes impossible to separate and extract fission neutron components by spectral analysis, so only specific waste is accurately measured. There was a problem that it was not possible (see FIG. 9).
JP-A-11-64528 Japanese Patent No. 3845685

したがって、本発明の目的は、特定の廃棄物に制限されることなく、高密度金属圧縮体や中性子毒物を含む廃棄体等、種々の廃棄物や物体中の核分裂性物質を正確に測定できる非破壊測定装置及び当該装置に用いるための検出器バンクを提供することにある。   Therefore, the object of the present invention is not limited to specific waste, and it is possible to accurately measure fissile materials in various wastes and objects such as high-density metal compacts and wastes containing neutron poisons. The object is to provide a destructive measuring device and a detector bank for use in the device.

本発明者らは、上記課題を解消すべく鋭意検討した結果、中性子検出器バンクの構造を改良することにより、上記目的を達成し得ること見出し、本発明を完成するに至った。
すなわち、本発明は、放射性廃棄物固体の核分裂性物質の非破壊測定装置に用いる検出器バンクであって、中性子検出器と、当該中性子検出器の周囲を取り囲むカドミウムからなる熱中性子吸収体と、当該熱中性子吸収体の周囲を取り囲むポリエチレンからなる中性子減速体と、当該中性子減速体の周囲を取り囲むホウ素含有物質からなる熱中性子及びエピサーマル中性子吸収体と、当該熱中性子及びエピサーマル中性子吸収体の周囲を取り囲む構造材と、を具備する検出器バンクに関する。
As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by improving the structure of the neutron detector bank, and have completed the present invention.
That is, the present invention is a detector bank used in a non-destructive measurement device for radioactive waste solid fissile material, a neutron detector, and a thermal neutron absorber made of cadmium surrounding the neutron detector, A neutron moderator made of polyethylene surrounding the thermal neutron absorber, a thermal neutron absorber and an epithermal neutron absorber made of a boron-containing material surrounding the neutron moderator, and the thermal neutron and epithermal neutron absorber. A detector bank comprising a surrounding structural member.

前記ホウ素含有物質は、ホウ素又は炭化ホウ素であることが好ましい。
また、前記構造材は、鉄又は鉄合金、特にステンレススチールからなることが好ましい。
The boron-containing material is preferably boron or boron carbide.
The structural material is preferably made of iron or an iron alloy, particularly stainless steel.

また、本発明によれば、中性子反射体の内側に、検査対象の放射性廃棄物固体を中心として、上記本発明の検出器バンクと、中性子発生管と、を対向する位置に配置してなる、放射性廃棄物固体の核分裂性物質の非破壊測定装置が提供される。   Further, according to the present invention, the detector bank of the present invention and the neutron generator tube are arranged at opposing positions around the radioactive waste solid to be inspected inside the neutron reflector, A non-destructive measuring device for radioactive waste solid fissile material is provided.

本発明の検出器バンクを具備する核分裂性物質の非破壊測定装置によれば、特定の廃棄物に制限されることなく、高密度金属圧縮体や中性子毒物を含む廃棄体等、種々の廃棄物や物体中の核分裂性物質を正確に測定できる。   According to the nondestructive measuring apparatus for fissile material comprising the detector bank of the present invention, various kinds of waste such as high density metal compacts and waste containing neutron poisons are not limited to specific wastes. Can accurately measure fissile material in objects.

さらに詳細には、本発明の非破壊測定装置は、中性子検出器内の高速中性子に起因するエピサーマル中性子と減速せずに到達した高速中性子とを選択的に検出することができ、これにより従来は測定検出が不可能であった金属圧縮固化廃棄体等やGd等の熱中性子吸収物質(中性子毒物)を含む廃棄物の測定が可能である。   In more detail, the nondestructive measuring apparatus of the present invention can selectively detect epithermal neutrons caused by fast neutrons in the neutron detector and fast neutrons reached without decelerating. It is possible to measure wastes containing thermal neutron absorbing substances (neutron poisons) such as Gd and the like, which have been impossible to measure and detect.

以下、本発明の好ましい実施形態について図面を参照して説明する。
ここで、図1は、本発明の非破壊測定装置の一実施形態を示す概略図である。図2は、図1に示す本発明の中性子検出器バンクの内部構造を示す拡大透視平面図であり、図3は、図2に示す本発明の中性子検出器バンクにおける中性子の検出過程を模式的に示す模式図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
Here, FIG. 1 is a schematic view showing an embodiment of the nondestructive measuring apparatus of the present invention. FIG. 2 is an enlarged perspective plan view showing the internal structure of the neutron detector bank of the present invention shown in FIG. 1, and FIG. 3 schematically shows a neutron detection process in the neutron detector bank of the present invention shown in FIG. It is a schematic diagram shown in FIG.

図1に示す非破壊測定装置1は、高速中性子発生管102a,102b及び中性子検出器内蔵検出器バンク103を中性子反射体101で取り囲んでなる核分裂性物質量の非破壊測定装置である。放射性廃棄物固体104は、非破壊測定装置1の中心に位置づけられる。高速中性子発生管102a及び102bと、中性子検出器内蔵検出器バンク103とは、放射性廃棄物固体を中心として、互いに対向する位置に配置されている。
The nondestructive measuring apparatus 1 shown in FIG. 1 is a nondestructive measuring apparatus for the amount of fissile material formed by surrounding fast neutron generating tubes 102a and 102b and a detector bank 103 with a built-in neutron detector with a neutron reflector 101. The radioactive waste solid 104 is positioned at the center of the nondestructive measuring apparatus 1. The fast neutron generator tubes 102a and 102b and the detector bank 103 with a built-in neutron detector are arranged at positions facing each other around the radioactive waste solid.

具体的には、断面形状が正方形状の測定空間100を囲む中性子反射体101として、SUS304を使用している。測定空間100の2つの隅(図1における上方側の2つの角)にはそれぞれ中性子発生管102a,102bが配されている。また、図1の下方側には30本の中性子検出器が3個の中性子検出器バンク103内に分配して配置されている。また、測定空間100の中心部には検査対象である金属性圧縮固化廃棄体104が、その中心部に239Pu105を100mg配置した状態で配されている。このような非破壊測定装置全体の構造(中性子検出器バンク103を除く構造)は、特許第3845685号公報に記載の装置と同様であり、詳細な説明を省略する。
Specifically, SUS304 is used as the neutron reflector 101 surrounding the measurement space 100 having a square cross section. Neutron generating tubes 102a and 102b are arranged at two corners of the measurement space 100 (two corners on the upper side in FIG. 1), respectively. Further, 30 neutron detectors are distributed and arranged in three neutron detector banks 103 on the lower side of FIG. In addition, a metallic compression-solidified waste body 104 to be inspected is disposed in the central portion of the measurement space 100 in a state where 100 mg of 239 Pu105 is disposed in the central portion. The entire structure of the nondestructive measuring apparatus (a structure excluding the neutron detector bank 103 ) is the same as the apparatus described in Japanese Patent No. 3845685, and detailed description thereof is omitted.

本発明の装置における特徴部分である中性子検出器バンク103は、図2に示すように、所定間隔をあけて複数個配設されてなる中性子出器205と、中性子検出器205の周囲を取り囲むカドミウムからなる熱中性子吸収体204と、熱中性子吸収体204の周囲を取り囲むポリエチレンからなる中性子減速体203と、中性子減速体203の周囲を取り囲むホウ素含有物質からなる熱中性子及びエピサーマル中性子吸収体202と、熱中性子及びエピサーマル中性子吸収体202の周囲を取り囲む構造材201と、を具備する。
As shown in FIG. 2, the neutron detector bank 103, which is a characteristic part of the apparatus of the present invention, includes a neutron emitter 205 having a plurality of neutron emitters arranged at a predetermined interval, and a cadmium surrounding the neutron detector 205. a thermal neutron absorber 204 made of a neutron moderator 203 made of polyethylene surrounding the thermal neutron absorber 204, the thermal neutrons and epithermal neutron absorbers 202 consisting of boron-containing material surrounding the neutron moderator 203 And a structural member 201 surrounding the thermal neutron and epithermal neutron absorber 202.

本実施形態においては、構造材201としてSUS304を、熱中性子及びエピサーマル中性子吸収体202として炭化ホウ素(BC)を、中性子減速体203としてポリエチレンを、熱中性子吸収体204としてカドミウムを用いている。炭化ホウ素としては 10 を95%含むものを好ましく用いることができ、ポリエチレンとしては一般的な密度ポリエチレンを好ましく用いることができ、その密度は0.98g/cmで、12mmの厚さが最適である。また、熱中性子吸収体204と検出器205との間には、検出器を挿入するためのクリアランススペースが設けられている。
In the present embodiment, the SUS304 as a structural material 201, a boron carbide (B 4 C) as thermal neutrons and epithermal neutron absorbers 202, polyethylene neutron moderator 203, using cadmium as thermal neutron absorber 204 Yes. Can be preferably used those containing 10 B 95% as boron carbide, polyethylene as can be preferably used a general high-density polyethylene, its density is 0.98 g / cm 3, the thickness of 12mm Is optimal. In addition, a clearance space for inserting the detector is provided between the thermal neutron absorber 204 and the detector 205.

本実施形態の中性子検出器において、構造材201の厚みは、4mmであり、熱中性子及びエピサーマル中性子吸収体202の厚みは 10 を95%含むBCで3mm、 10 が天然(19.6%)のBCで10mmであり、中性子減速体203の厚み(中性子吸収体202と熱中性子吸収体204との間の最も幅の狭い部分における厚み)は12mmであり、熱中性子吸収体204の厚みは1mmである。熱中性子吸収体204と検出器205との間隔は1mmであり、検出器205の直径は25.4mmである。これらの厚みは限定的なものではないが、たとえば熱中性子及びエピサーマル中性子吸収体202として、 10 を95%含む炭化ホウ素を1cm又は2cmのように極端に厚くすると、検出感度が非常に悪くなるか検出不可能になってしまうことが考えられる。
In the neutron detector of the present embodiment, the thickness of the structural member 201 is 4 mm, thermal neutrons and epithermal neutron absorbers 202 3 mm in B 4 C thickness containing 10 B 95% of, 10 B natural (19 .6%) B 4 C is 10 mm, and the thickness of the neutron moderator 203 (thickness in the narrowest part between the neutron absorber 202 and the thermal neutron absorber 204) is 12 mm, and thermal neutron absorption The thickness of the body 204 is 1 mm. The distance between the thermal neutron absorber 204 and the detector 205 is 1 mm, and the diameter of the detector 205 is 25.4 mm. Although these thicknesses are not limited, for example, when boron carbide containing 95% of 10 B is extremely thick as 1 cm or 2 cm as the thermal neutron and epithermal neutron absorber 202, the detection sensitivity is very poor. It may be impossible to detect.

本実施形態の中性子検出器バンク103による検出過程を図3に示す。図3に示すように、中性子検出器バンク103の外からの熱中性子701及びエピサーマル中性子702は、炭化ホウ素(BC)からなる中性子吸収体202に吸収される。検出器バンク内部に進入した高速中性子は、ポリエチレンからなる中性子減速体203により減速され、熱中性子、エピサーマル中性子及び減速されなかった高速中性子とに分化する。高速中性子が減速した熱中性子703については、中性子検出器205の周りに配置したカドミウムからなる熱中性子吸収体204に吸収される。したがって、最終的に中性子検出器205により検出されるのは、測定体系内の高速中性子に起因するエピサーマル中性子704と減速されずに到達した高速中性子705となる。
The detection process by the neutron detector bank 103 of this embodiment is shown in FIG. As shown in FIG. 3, thermal neutrons 701 and epithermal neutrons 702 from outside the neutron detector bank 103 are absorbed by the neutron absorber 202 made of boron carbide (B 4 C). Fast neutrons that have entered the detector bank are decelerated by a neutron moderator 203 made of polyethylene, and differentiated into thermal neutrons, epithermal neutrons, and fast neutrons that have not been decelerated. The thermal neutrons 703 whose fast neutrons are decelerated are absorbed by the thermal neutron absorber 204 made of cadmium disposed around the neutron detector 205. Therefore, what is finally detected by the neutron detector 205 is epithermal neutrons 704 caused by fast neutrons in the measurement system and fast neutrons 705 that arrive without deceleration.

なお、本発明は上述の実施形態に何ら制限されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明はこれらに制限されるものではない。
〔実施例1及び比較例1〕
図1及び図2に示す中性子検出器バンク103を具備する非破壊測定装置1を用いてその有効性を確認するためのモンテカルロシミュレーション計算を実施した。計算は、中性子発生管102a,102bから14MeVの高速中性子を約100億粒子発生させ、全ての中性子検出器205で検出される中性子について時間依存機能を持たせた計算を行うことにより、実験値と全く同じ時間依存計算データを得た。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, this invention is not restrict | limited to these.
[Example 1 and Comparative Example 1]
The Monte Carlo simulation calculation for confirming the effectiveness was performed using the nondestructive measuring apparatus 1 including the neutron detector bank 103 shown in FIGS. 1 and 2. The calculation is performed by generating approximately 10 billion particles of 14 MeV fast neutrons from the neutron generator tubes 102a and 102b, and performing a calculation with a time-dependent function for the neutrons detected by all the neutron detectors 205. Exactly the same time-dependent calculation data was obtained.

その結果を図4に示す。図4は、計算により得た結果を最小二乗法により照射中性子成分401と核分裂中性子計数成分402にフィッティングして分離したものである。また、図5には、比較のために図11及び12に示す従来の中性子検出器バンクを用いて得た結果を示す。   The result is shown in FIG. FIG. 4 shows a result obtained by fitting a result obtained by calculation into an irradiation neutron component 401 and a fission neutron counting component 402 by the least square method and separating them. FIG. 5 shows the results obtained by using the conventional neutron detector bank shown in FIGS. 11 and 12 for comparison.

図5に示す結果から、図11に示す従来の中性子検出器バンクを有する装置では、核分裂中性子計数成分502は照射中性子成分501に埋没してしまい確認できないことがわかる。これに対して、本発明の装置では、図2に示す中性子検出器バンクを有するので、図4に示すように、照射中性子成分が完全に消滅する時間は0.82m秒から0.12m秒になり、約7分の1に短縮されており、その結果、従来の装置では照射中性子成分に隠れて確認出来なかった測定対象の核分裂中性子502の計数成分が、図4の参照番号402に示すように確認および分離抽出できるようになり、検出感度および検出限界値を飛躍的に改善できていることがわかる。
From the results shown in FIG. 5, it can be seen that in the apparatus having the conventional neutron detector bank shown in FIG. 11 , the fission neutron counting component 502 is buried in the irradiated neutron component 501 and cannot be confirmed. On the other hand, since the apparatus of the present invention has the neutron detector bank shown in FIG. 2, as shown in FIG. 4, the time for the irradiation neutron component to completely disappear is changed from 0.82 msec to 0.12 msec. As a result, the counting component of the fission neutron 502 to be measured, which was hidden behind the irradiated neutron component and could not be confirmed by the conventional apparatus, is indicated by reference numeral 402 in FIG. It can be seen that the detection sensitivity and the detection limit value can be dramatically improved.

図6は比較対象としての図12に示す従来型の中性子検出器バンク内の中性子減速体領域における中性子エネルギー別時間依存データを示したものである。同様に図7は本発明の装置における中性子検出器バンク内の中性子減速体領域における中性子エネルギー別時間依存データを中性子のエネルギー別に分けて示したものである。   FIG. 6 shows time-dependent data according to neutron energy in the neutron moderator region in the conventional neutron detector bank shown in FIG. 12 as a comparison object. Similarly, FIG. 7 shows the time-dependent data for each neutron energy in the neutron moderator region in the neutron detector bank in the apparatus of the present invention divided by neutron energy.

双方を比較すると、図6において照射中性子の消滅時間は、測定体系内のエピサーマル中性子若しくは高速中性子に起因する熱中性子801と測定体系内のエピサーマル中性子が進入したもの若しくは高速中性子に起因するエピサーマル中性子802が支配的である。   Comparing both, in FIG. 6, the annihilation time of the irradiated neutrons is the epithermal neutron 801 caused by epithermal neutrons or fast neutrons in the measurement system and epithermal neutrons entered in the measurement system, or epithesis caused by fast neutrons. Thermal neutron 802 is dominant.

一方、図7において照射中性子の消滅時間は、測定体系内の熱中性子とエピサーマル中性子を炭化ホウ素(BC)により吸収分離することにより、測定体系内の高速中性子に起因する熱中性子901とエピサーマル中性子が支配的になり、照射中性子が消滅するまでの時間は従来型の中性子検出器バンクに比べ0.72m秒から0.3m秒と約2.5分の1になっている。 On the other hand, in FIG. 7, the annihilation time of irradiated neutrons is determined by absorbing and separating the thermal neutrons and epithermal neutrons in the measurement system with boron carbide (B 4 C), and the thermal neutrons 901 caused by the fast neutrons in the measurement system. Epithermal neutrons become dominant, and the time until the irradiated neutrons disappear is 0.72 ms to 0.3 ms, which is about 1/2 of that of a conventional neutron detector bank.

更に、図8に、図7に示す中性子検出器バンクの検出器領域における中性子エネルギー別時間依存データを中性子のエネルギー別に分けて示す。
図7と図8とを比較すると、図7の中性子減速体領域で照射中性子の消滅時間において支配的であった測定体系内の高速中性子に起因する熱中性子は、中性子検出器205の周囲を取り囲むカドミウムからなる熱中性子吸収体204の作用により吸収分離され、測定体系内の高速中性子に起因するエピサーマル中性子1001と減速せずに検出器領域まで侵入してきた高速中性子1002が照射中性子の消滅時間において支配的になり、結果的に消滅時間を0.82m秒から0.12m秒と約7分の1に短縮している。
Further, FIG. 8 shows the time-dependent data for each neutron energy in the detector region of the neutron detector bank shown in FIG.
Comparing FIG. 7 with FIG. 8, thermal neutrons caused by fast neutrons in the measurement system that were dominant in the annihilation time of irradiated neutrons in the neutron moderator region of FIG. In the extinction time of the irradiated neutrons, the epithermal neutrons 1001 that have been absorbed and separated by the action of the thermal neutron absorber 204 made of cadmium and have entered the detector region without decelerating due to the fast neutrons 1001 in the measurement system. As a result, the extinction time is reduced from 0.82 msec to 0.12 msec to about 1/7.

これらの結果から、本発明装置においては、より正確に測定可能であることがわかる。
〔実施例3及び比較例3〕
従来型の中性子検出器バンクを用いて、Gdを200g混入させたセメント固化廃棄体について、実施例1と同様に実験を行った結果を図9に示す。この場合には、高圧縮金属廃棄体の測定の場合と同様に、核分裂中性子計数成分2002は中性子発生管からの問い掛け中性子成分2001に完全に隠れて測定不可能となってしまう。
From these results, it can be seen that the apparatus of the present invention can be measured more accurately.
[Example 3 and Comparative Example 3]
FIG. 9 shows the result of an experiment conducted in the same manner as in Example 1 on a cement solidified waste mixed with 200 g of Gd using a conventional neutron detector bank. In this case, the fission neutron counting component 2002 is completely hidden behind the interrogation neutron component 2001 from the neutron generating tube, and measurement is impossible, as in the case of measurement of a highly compressed metal waste.

これに対して、本発明の装置においては、図2に示す構成の中性子検出器バンクを用いているので、Gdを含む廃棄体について適用した場合でも、図10に示すように、高密度金属廃棄体と同様、問い掛け中性子3001に隠れることなく核分裂中性子計数成分3002が分離可能であった。   In contrast, the apparatus of the present invention uses the neutron detector bank having the configuration shown in FIG. 2, so even when applied to a waste containing Gd, as shown in FIG. Like the body, the fission neutron counting component 3002 was separable without being hidden by the interrogation neutron 3001.

この結果から、本発明の装置によれば、従来の装置では不可能であった中性子毒物を含む廃棄物中に存在する核分裂物質の検出が可能であることがわかる。   From this result, it can be seen that according to the apparatus of the present invention, it is possible to detect the fission material present in the waste containing the neutron poison, which is impossible with the conventional apparatus.

図1は、本発明の非破壊測定装置の一実施形態を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the nondestructive measuring apparatus of the present invention. 図2は、図1に示す非破壊測定装置に用いられる本発明の中性子検出器バンクの内部構造を示す拡大透視平面図である。FIG. 2 is an enlarged perspective plan view showing the internal structure of the neutron detector bank of the present invention used in the nondestructive measuring apparatus shown in FIG. 図3は、図2に示す本発明の中性子検出器バンクにおける中性子の検出過程を模式的に示す模式図である。FIG. 3 is a schematic diagram schematically showing a neutron detection process in the neutron detector bank of the present invention shown in FIG. 図4は、本発明の新型検出器バンクでのモンテカルロシミュレーション計算によって、密度4.0g/cmの金属廃棄物ドラムを測定した時に得られる時間依存測定データを示した図である。FIG. 4 is a diagram showing time-dependent measurement data obtained when a metal waste drum having a density of 4.0 g / cm 3 is measured by Monte Carlo simulation calculation using the new detector bank of the present invention. 図5は、従来型検出器バンクでのモンテカルロシミュレーション計算によって、密度4.0g/cmの金属廃棄物ドラムを測定した時に得られる時間依存測定データを示した図である。FIG. 5 is a diagram showing time-dependent measurement data obtained when a metal waste drum having a density of 4.0 g / cm 3 is measured by Monte Carlo simulation calculation using a conventional detector bank. 図6は、従来型の検出器バンク内の中性子減速体領域における中性子エネルギー別時間依存データを示した図である。FIG. 6 is a diagram showing time-dependent data according to neutron energy in the neutron moderator region in the conventional detector bank. 図7は、本発明の新型検出器バンク内の中性子減速体領域における中性子エネルギー別時間依存データを示した図である。FIG. 7 is a diagram showing time-dependent data according to neutron energy in the neutron moderator region in the new detector bank of the present invention. 図8は、本発明の新型検出器バンク内のHe−3検出器領域における中性子エネルギー別時間依存データを示した図である。FIG. 8 is a diagram showing time-dependent data according to neutron energy in the He-3 detector region in the new detector bank of the present invention. 図9は、従来型検出器バンクでのモンテカルロシミュレーション計算によって、200gのGdを均一混合させたセメント固化廃棄物ドラムを測定した時に得られる時間依存測定データを示した図である。FIG. 9 is a diagram showing time-dependent measurement data obtained when a cement-solidified waste drum in which 200 g of Gd is uniformly mixed is measured by Monte Carlo simulation calculation using a conventional detector bank. 図10は、本発明の新型検出器バンクでのモンテカルロシミュレーション計算によって、200gのGdを均一混合させたセメント固化廃棄物ドラムを測定した時に得られる時間依存測定データを示した図である。FIG. 10 is a diagram showing time-dependent measurement data obtained when a cement solidified waste drum in which 200 g of Gd is uniformly mixed is measured by Monte Carlo simulation calculation using the new detector bank of the present invention. 図11は、従来型の検出器バンクの略図である。FIG. 11 is a schematic diagram of a conventional detector bank. 図12は、図11に示す従来型検出器における中性子分離と検出過程を示した略図である。FIG. 12 is a schematic diagram showing the neutron separation and detection process in the conventional detector shown in FIG.

符号の説明Explanation of symbols

101:中性子反射体
102a:中性子発生管
102b:中性子発生管
103:中性子検出器バンク
104:放射性廃棄体
105:核物質
201:構造材(鉄又はSUS)
202:熱中性子及びエピサーマル中性子の吸収体(炭化ホウ素)
203:中性子減速体(ポリエチレン)
204:熱中性子吸収体(カドミウム)
205:中性子検出器
301:カドミウムからなる熱中性子吸収体
302:ポリエチレンからなる中性子減速体
303:中性子検出器
501:照射中性子成分
502:核分裂中性子計数成分
701:熱中性子
702:エピサーマル中性子
703:高速中性子が減速した熱中性子
704:高速中性子に起因するエピサーマル中性子
705:減速されずに到達した高速中性子
801:高速中性子に起因する熱中性子
802:高速中性子に起因するエピサーマル中性子
901:高速中性子に起因する熱中性子
1001:高速中性子に起因するエピサーマル中性子
1002:減速せずに検出器領域まで侵入してきた高速中性子
2001:中性子発生管からの問い掛け中性子成分
2002:核分裂中性子計数成分
3001:問い掛け中性子
3002:核分裂中性子計数成分
101: Neutron reflector 102a: Neutron generator tube 102b: Neutron generator tube 103: Neutron detector bank 104: Radioactive waste 105: Nuclear material 201: Structural material (iron or SUS)
202: Absorber of thermal and epithermal neutrons (boron carbide)
203: Neutron moderator (polyethylene)
204: Thermal neutron absorber (cadmium)
205: Neutron detector
301: Thermal neutron absorber made of cadmium
302: Neutron moderator made of polyethylene
303: Neutron detector
501: Irradiation neutron component
502: Fission neutron counting component
701: Thermal Neutron
702: Epithermal neutron
703: Thermal neutrons decelerated by fast neutrons
704: Epithermal neutrons caused by fast neutrons
705: Fast neutrons reached without deceleration
801: Thermal neutrons caused by fast neutrons
802: Epithermal neutrons caused by fast neutrons
901: Thermal neutrons caused by fast neutrons
1001: Epithermal neutrons caused by fast neutrons
1002: Fast neutrons that have entered the detector region without slowing down
2001: Questioning neutron components from neutron generator tubes
2002: Fission neutron counting component
3001: Interrogation Neutron
3002: Fission neutron counting component

Claims (2)

中性子反射体の内側に、検査対象の放射性廃棄物固体を中心として、検出器バンクと、中性子発生管と、を対向する位置に配置してなる、放射性廃棄物固体の核分裂性物質の非破壊測定装置であって、当該検出器バンクは、
中性子検出器と、
当該中性子検出器の周囲を完全に取り囲むカドミウムからなる熱中性子吸収体と、
当該熱中性子吸収体の周囲を完全に取り囲むポリエチレンからなる中性子減速体と、
当該中性子減速体の周囲を完全に取り囲むホウ素含有物質からなる熱中性子及びエピサーマル中性子吸収体と、
当該熱中性子及びエピサーマル中性子吸収体の周囲を取り囲む構造材と
を具備し、
中性子検出器内の高速中性子に起因するエピサーマル中性子と減速せずに到達した高速中性子とを選択的に検出する非破壊測定装置
Non-destructive measurement of fissile material in radioactive waste solids, with the detector bank and the neutron generator tube positioned opposite each other, centered on the radioactive waste solid to be inspected, inside the neutron reflector A device, wherein the detector bank is
A neutron detector;
A thermal neutron absorber made of cadmium completely surrounding the neutron detector;
A neutron moderator made of polyethylene that completely surrounds the thermal neutron absorber;
Thermal and epithermal neutron absorbers composed of boron-containing materials that completely surround the neutron moderator,
And a structural material surrounding the thermal neutron and epithermal neutron absorber ,
A non-destructive measuring device that selectively detects epithermal neutrons caused by fast neutrons in neutron detectors and fast neutrons that arrive without deceleration .
前記ホウ素含有物質は、ホウ素又は炭化ホウ素である、請求項1に記載の非破壊測定装置
The non-destructive measuring apparatus according to claim 1, wherein the boron-containing substance is boron or boron carbide.
JP2008134487A 2008-05-22 2008-05-22 Nondestructive measuring device detector bank and nondestructive measuring device Active JP5099700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134487A JP5099700B2 (en) 2008-05-22 2008-05-22 Nondestructive measuring device detector bank and nondestructive measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134487A JP5099700B2 (en) 2008-05-22 2008-05-22 Nondestructive measuring device detector bank and nondestructive measuring device

Publications (2)

Publication Number Publication Date
JP2009281878A JP2009281878A (en) 2009-12-03
JP5099700B2 true JP5099700B2 (en) 2012-12-19

Family

ID=41452479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134487A Active JP5099700B2 (en) 2008-05-22 2008-05-22 Nondestructive measuring device detector bank and nondestructive measuring device

Country Status (1)

Country Link
JP (1) JP5099700B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140051A (en) * 1987-11-26 1989-06-01 Nippon Atom Ind Group Co Ltd Neutron measuring apparatus
JPH01152390A (en) * 1987-12-09 1989-06-14 Nippon Atom Ind Group Co Ltd Fast neutron detector
JPH01244345A (en) * 1988-03-25 1989-09-28 Nippon Atom Ind Group Co Ltd Neutron measuring apparatus
JPH02222857A (en) * 1989-02-23 1990-09-05 Toshiba Corp Method and apparatus for measuring radioactivity
JPH03237385A (en) * 1990-02-15 1991-10-23 Toshiba Corp Neutron collimator
JP2001042048A (en) * 1999-07-27 2001-02-16 Toshiba Corp Neutron detector and detecting method
JP3845685B2 (en) * 2001-07-10 2006-11-15 独立行政法人 日本原子力研究開発機構 Nondestructive measuring device for the amount of fissile material in radioactive waste solids

Also Published As

Publication number Publication date
JP2009281878A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4576368B2 (en) Neutron moderator, neutron irradiation method, and hazardous substance detection apparatus
US20060126773A1 (en) Apparatus for nondestructive measurement of fissle materials in solid radioactive wastes
JP2010048799A (en) Apparatus and method for detection of fissile material using active interrogation
JP6164748B2 (en) Nuclear material detection device and nuclear material detection method
JPH02161340A (en) Fissionable material characterization
Lyoussi et al. Transuranic waste detection by photon interrogation and on-line delayed neutron counting
Chichester et al. Using electronic neutron generators in active interrogation to detect shielded fissionable material
JP5099700B2 (en) Nondestructive measuring device detector bank and nondestructive measuring device
Caldwell et al. Experimental evaluation of the differential die-away pulsed-neutron technique for the fissile assay of hot irradiated fuel waste
Fallot The detection of reactor antineutrinos for reactor core monitoring: an overview
Haruyama et al. Improvement of detection limit in 14MeV neutron direct interrogation method by decreasing background
Kashyap et al. Differential Die-Away Analysis for detection of 235U in metallic matrix
Ohzu et al. Development of differential die-away technique in an integrated active neutron NDA system for nuclear non-proliferation and nuclear security
JP2010112726A (en) Method for determining nuclide composition of fissionable material
Chichester et al. Active neutron interrogation to detect shielded fissionable material
Grimes et al. Enhancing the performance of a tensioned metastable fluid detector based active interrogation system for the detection of SNM in< 1 m3 containers using a D–D neutron interrogation source in moderated/reflected geometries
Koizumi et al. LaBr3 γ-ray spectrometer for detecting 10B in debris of melted nuclear fuel
JP2609707B2 (en) Fissile material measuring device
CN214844913U (en) Detection apparatus for special nuclear material
Shiba et al. Gamma-ray measurement for classification of fuel debris and waste
Passard et al. PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods
Hagen et al. Detection of Special Nuclear Material in Cargo using Continuous Neutron Interrogation and Tension Metastable Fluid Detectors
RU100270U1 (en) PHOTO-NUCLEAR DEVICE WITH COMBINED GAMMA-NEUTRON DETECTOR FOR DETECTION OF NUCLEAR MATERIALS
Trahan Nondestructive Assay for International Safeguards: Context, Science, and Technology
Zhu et al. Uranium enrichment determination by high-energy photon interrogation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250