JP5099543B2 - Welding method of austempered spheroidal graphite cast iron - Google Patents

Welding method of austempered spheroidal graphite cast iron Download PDF

Info

Publication number
JP5099543B2
JP5099543B2 JP2007189347A JP2007189347A JP5099543B2 JP 5099543 B2 JP5099543 B2 JP 5099543B2 JP 2007189347 A JP2007189347 A JP 2007189347A JP 2007189347 A JP2007189347 A JP 2007189347A JP 5099543 B2 JP5099543 B2 JP 5099543B2
Authority
JP
Japan
Prior art keywords
members
cast iron
spheroidal graphite
graphite cast
insert material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007189347A
Other languages
Japanese (ja)
Other versions
JP2009022987A (en
Inventor
文男 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2007189347A priority Critical patent/JP5099543B2/en
Publication of JP2009022987A publication Critical patent/JP2009022987A/en
Application granted granted Critical
Publication of JP5099543B2 publication Critical patent/JP5099543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、オーステンパ球状黒鉛鋳鉄の溶接方法に関する。   The present invention relates to a method for welding austempered spheroidal graphite cast iron.

オーステンパ球状黒鉛鋳鉄(以降はADIと記すこともある)は、球状黒鉛鋳鉄をオーステンパ処理して得られるものである。このADIは機械的性質が大変優れており鋳鉄の中でも最も高強度であるため、自動車部品や構造部材の材料として有用であり、ADIの利用によって部材の薄肉化,軽量化が可能である。
特開平11−104884号公報
Austempered spheroidal graphite cast iron (hereinafter sometimes referred to as ADI) is obtained by austempering a spheroidal graphite cast iron. This ADI is very excellent in mechanical properties and has the highest strength among cast irons. Therefore, it is useful as a material for automobile parts and structural members, and the use of ADI can reduce the thickness and weight of members.
Japanese Patent Laid-Open No. 11-104884

しかしながら、球状黒鉛鋳鉄の溶接方法は知られているものの(特許文献1を参照)、ADIを溶接する方法は現在までほとんど研究されておらず、ADIを欠陥なく溶接する方法は知られていない。すなわち、ADIは溶接が著しく困難で、ADIを溶接すると溶接割れ(クラック),気孔(ポロシティ)等の溶接欠陥が生じるため、満足な溶接を行うことができないという難点を有していた。このようなADIの性質は、ADIを利用する上で大きな制約となっている。
そこで、本発明は、上記のような従来技術が有する問題点を解決し、溶接割れ,気孔等の溶接欠陥が生じにくいオーステンパ球状黒鉛鋳鉄の溶接方法を提供することを課題とする。
However, although a method for welding spheroidal graphite cast iron is known (see Patent Document 1), a method for welding ADI has hardly been studied until now, and a method for welding ADI without defects is not known. That is, ADI is extremely difficult to weld, and when ADI is welded, welding defects such as weld cracks and porosity occur, so that satisfactory welding cannot be performed. Such a property of ADI is a major limitation in using ADI.
Accordingly, an object of the present invention is to solve the above-described problems of the prior art and to provide a method for welding austempered spheroidal graphite cast iron that is less prone to weld defects such as weld cracks and pores.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る請求項1のオーステンパ球状黒鉛鋳鉄の溶接方法は、少なくとも一方がオーステンパ球状黒鉛鋳鉄からなる2つの部材を突合せ、そこにレーザを照射して前記両部材を溶接するに際して、前記両部材の突合せ面の間にインサート材を挿入してレーザを照射し、前記両部材の突合せ面近傍部分と前記インサート材とを共に溶融、凝固させ前記両部材を溶接するとともに、前記インサート材は、前記両部材の突合せ面近傍部分と前記インサート材とが溶融、凝固した溶融凝固部の組織が、オーステナイト相を主とする組織となるような金属からなり、該金属が、ニッケル及びクロムを合金成分として含有する鋼であることを特徴とする。 In order to solve the above problems, the present invention has the following configuration. That is, in the welding method for austempered spheroidal graphite cast iron according to claim 1 according to the present invention, at least one of the two members made of austempered spheroidal graphite cast iron is abutted, and when the two members are welded by irradiating a laser therewith, Insert material is inserted between the abutting surfaces of both members and irradiated with laser, the abutting surface vicinity portion of both members and the insert material are melted and solidified together, and both the members are welded. the abutting surface near portions of both members and said insert material is melted, solidified melt-solidified portion of the tissue, Ri Do a metal such as a tissue composed mainly of austenite phase, the metal is nickel and chromium characterized Oh Rukoto in steel containing as an alloy component.

また、本発明に係る請求項2のオーステンパ球状黒鉛鋳鉄の溶接方法は、請求項1に記載のオーステンパ球状黒鉛鋳鉄の溶接方法において、前記鋼がSUS310Sであることを特徴とする Further, the welding method of austempered ductile iron according to claim 2 of the present invention is a method of welding austempered ductile iron according to claim 1, wherein the steel is characterized SUS310S der Rukoto.

本発明のオーステンパ球状黒鉛鋳鉄の溶接方法によれば、溶接割れ等の溶接欠陥をほとんど生じることなくオーステンパ球状黒鉛鋳鉄を溶接することができる。   According to the welding method for austempered spheroidal graphite cast iron of the present invention, austempered spheroidal graphite cast iron can be welded with almost no weld defects such as weld cracks.

本発明に係るオーステンパ球状黒鉛鋳鉄の溶接方法の実施の形態を、図面を参照しながら詳細に説明する。図1,2は、オーステンパ球状黒鉛鋳鉄の溶接方法を説明する図であり、図1は斜視図、図2は一部を破断した側面図である。
板状のADI製試験片(縦100mm,横100mm,厚さ6mm)を用意して、アセトン中で超音波洗浄した。洗浄した2枚のADI製試験片1,1を溶接台10に載置し、互いの側面1a,1aを突合せた。その際には、突合せた両側面(突合せ面)1a,1aの間に、ニッケル(ただし、不可避の不純物を含有している)製のインサート材3を挿入した。
An embodiment of a welding method for austempered spheroidal graphite cast iron according to the present invention will be described in detail with reference to the drawings. 1 and 2 are views for explaining a welding method for austempered spheroidal graphite cast iron, FIG. 1 is a perspective view, and FIG. 2 is a side view with a part broken away.
A plate-shaped ADI test piece (length 100 mm, width 100 mm, thickness 6 mm) was prepared and ultrasonically cleaned in acetone. The two washed ADI test pieces 1 and 1 were placed on the welding table 10 and the side surfaces 1a and 1a were butted against each other. At that time, an insert material 3 made of nickel (but containing inevitable impurities) was inserted between the both side surfaces (butting surfaces) 1a and 1a.

そして、両試験片1,1の側面1a,1aの近傍部分及びインサート材3にレーザを照射して溶接を行った。レーザ溶接の条件は、溶接速度500mm/min、焦点位置−2mmである。また、このレーザ溶接はシールドガス法により行い、シールドガスとしてヘリウムとアルゴンを用いた。図1,2に示すように、ヘリウムは流量30L/minでレーザを照射している部分及びその周辺部に試験片1の上方から吹き付け、アルゴンは流量10L/minで試験片1の下側に流した。   And the laser beam was irradiated to the vicinity part of the side surfaces 1a and 1a of both the test pieces 1 and 1, and the insert material 3, and it welded. The laser welding conditions are a welding speed of 500 mm / min and a focal position of −2 mm. The laser welding was performed by a shield gas method, and helium and argon were used as the shield gas. As shown in FIGS. 1 and 2, helium is sprayed from above the test piece 1 to the portion irradiated with the laser at a flow rate of 30 L / min and its peripheral portion, and argon is applied to the lower side of the test piece 1 at a flow rate of 10 L / min. Washed away.

レーザを照射すると、試験片1,1の側面1a,1aの近傍部分とインサート材3とが共に溶融される。そして、レーザの照射を停止すると、溶融している部分が凝固して両試験片1,1が溶接される。
ADIは炭素や黒鉛を多量に含有しているため、インサート材3を用いずに溶接すると、溶融、凝固した部分(以降は溶融凝固部と記す)が白銑化して硬化し、溶接割れや気孔が発生した。そのため、一応接合はしたものの、接合部の強度は極めて低く、実用に耐え得るものではなかった。溶接割れの発生は、急熱,急冷による熱サイクルを受けて、溶融凝固部が著しく硬化したことが一因であると考えられる。
When the laser is irradiated, both the vicinity of the side surfaces 1a and 1a of the test pieces 1 and 1 and the insert material 3 are melted. When the laser irradiation is stopped, the melted portion is solidified and the two test pieces 1 and 1 are welded.
Since ADI contains a large amount of carbon and graphite, when it is welded without using the insert material 3, the melted and solidified portion (hereinafter referred to as the melt-solidified portion) turns white and hardens, resulting in weld cracks and pores. There has occurred. For this reason, although bonded once, the strength of the bonded portion was extremely low and could not withstand practical use. The occurrence of weld cracking is thought to be due to the fact that the melted and solidified portion has been significantly hardened due to thermal cycles due to rapid heating and rapid cooling.

一方、インサート材3を用いて溶接した場合は、ADIとニッケルとが共に溶融して混合されるため、溶融凝固部の組織はオーステナイト相を主とする組織となる。そのため、溶融凝固部の硬さが低くなって、溶接割れが抑制されたと考えられ、接合部の強度は、インサート材3を用いずに溶接した場合と比べて格段に高かった。
ADI製試験片1に用いたADI及びインサート材3に用いたニッケルの化学組成を表1に示す。また、溶融凝固部の化学組成を表2に示す。なお、シェフラー組織図による溶融凝固部のニッケル当量は37.4であり、クロム当量は0.02であった。
On the other hand, when welding is performed using the insert material 3, since the ADI and nickel are melted and mixed together, the structure of the melt-solidified portion is a structure mainly composed of the austenite phase. Therefore, it was considered that the hardness of the melt-solidified part was lowered and weld cracking was suppressed, and the strength of the joint part was much higher than when welding without using the insert material 3.
Table 1 shows the chemical composition of ADI used for the ADI test piece 1 and nickel used for the insert material 3. Table 2 shows the chemical composition of the melt-solidified part. In addition, the nickel equivalent of the melt-solidified part by a Schaeffler structure chart was 37.4, and the chromium equivalent was 0.02.

Figure 0005099543
Figure 0005099543

Figure 0005099543
Figure 0005099543

図3に、溶融凝固部の周辺部分の硬さ分布を示す。硬さの測定位置は、表面から1mm内部とした。インサート材3を用いずに溶接した場合の結果は、白丸印でプロットしてあるが、溶融凝固部(図3にはF.Z.と記してある)の平均硬さは824Hvで、熱影響部(図3にはH.A.Z.と記してある)の最高硬さは1192Hvであり、500Hv以下である元のADIの硬さよりも著しく硬化していることが分かる。これに対して、インサート材3を用いて溶接した場合は、黒丸印でプロットしてあるが、溶融凝固部の平均硬さは395Hvで、熱影響部の最高硬さは1047Hvであり、溶融凝固部の硬さは元のADIの硬さとほぼ同程度であることが分かる。   FIG. 3 shows the hardness distribution of the peripheral part of the melt-solidified part. The measurement position of hardness was 1 mm inside from the surface. The results of welding without using the insert material 3 are plotted with white circles, but the average hardness of the melt-solidified portion (indicated as F.Z. in FIG. 3) is 824 Hv, which is affected by heat. It can be seen that the maximum hardness of the part (indicated as HAZ in FIG. 3) is 1192 Hv, which is significantly harder than the original ADI hardness of 500 Hv or less. On the other hand, when welding using the insert material 3, it is plotted with black circles, but the average hardness of the melt-solidified portion is 395 Hv, and the maximum hardness of the heat-affected zone is 1047 Hv. It can be seen that the hardness of the part is approximately the same as that of the original ADI.

なお、インサート材3の素材はニッケルに限定されるものではなく、インサート材3を形成する金属がADIに混合されることにより溶融凝固部の組織が、オーステナイト相を主とする組織となるならば、他種の金属でも差し支えない。例えば、ニッケルを合金成分として含有する合金でもよいし、ニッケル及びクロムを合金成分として含有する合金でもよい。この合金においては、ニッケルが主成分であってもよいし、ニッケル以外の金属が主成分であってもよい。ニッケル以外の金属が主成分である合金としては、例えば鋼があげられる。このような鋼の具体例としては、SUS304やSUS310Sがあげられる。
また、本実施形態においては、インサート材3の厚さを1.0mmとしたが、溶融凝固部の組織がオーステナイト相を主とする組織となるならば、この厚さに限定されるものではない。
In addition, the raw material of the insert material 3 is not limited to nickel, and if the metal forming the insert material 3 is mixed with ADI, the structure of the melt-solidified portion becomes a structure mainly composed of an austenite phase. Other types of metals can be used. For example, an alloy containing nickel as an alloy component or an alloy containing nickel and chromium as an alloy component may be used. In this alloy, nickel may be the main component, or a metal other than nickel may be the main component. As an alloy whose main component is a metal other than nickel, for example, steel is cited. Specific examples of such steel include SUS304 and SUS310S.
In the present embodiment, the thickness of the insert material 3 is 1.0 mm. However, the thickness is not limited to this thickness as long as the structure of the melt-solidified portion is mainly austenite phase. .

さらに、本実施形態においては、ADI製の部材同士を溶接する方法について説明したが、2つの部材のうち一方の部材がADI製であれば、他方の部材は他種の金属(例えば球状黒鉛鋳鉄)製であっても、本発明の溶接方法を適用することができる。すなわち、オーステンパ球状黒鉛鋳鉄からなる部材と、他種の金属材料からなる部材とを突合せ、突合せ面の間にインサート材を挿入して前述のようにレーザ溶接を行えば、溶接割れ等の溶接欠陥をほとんど生じることなく両部材を溶接することができる。
以上説明したように、本発明のオーステンパ球状黒鉛鋳鉄の溶接方法によれば、溶接割れ等の溶接欠陥をほとんど生じることなくオーステンパ球状黒鉛鋳鉄を溶接することができる。よって、低強度の鋳鉄に代えて、オーステンパ球状黒鉛鋳鉄を自動車部品や構造部材の材料として適用することが可能となる。
Furthermore, in this embodiment, although the method of welding the members made from ADI was demonstrated, if one member is a product made from ADI among two members, the other member will be other types of metals (for example, spheroidal graphite cast iron) ), The welding method of the present invention can be applied. That is, if a member made of austempered spheroidal graphite cast iron and a member made of another type of metal material are butted together and an insert material is inserted between the butted surfaces and laser welding is performed as described above, welding defects such as weld cracks Both members can be welded with almost no occurrence.
As described above, according to the welding method for austempered spheroidal graphite cast iron of the present invention, austempered spheroidal graphite cast iron can be welded with almost no weld defects such as weld cracks. Therefore, it becomes possible to apply austempered spheroidal graphite cast iron as a material for automobile parts and structural members in place of low-strength cast iron.

本発明に係るオーステンパ球状黒鉛鋳鉄の溶接方法の一実施形態を説明する斜視図である。It is a perspective view explaining one embodiment of the welding method of austempered spheroidal graphite cast iron concerning the present invention. 本発明に係るオーステンパ球状黒鉛鋳鉄の溶接方法の一実施形態を説明する側面図である。It is a side view explaining one embodiment of the welding method of austempered spheroidal graphite cast iron concerning the present invention. 溶融凝固部の周辺部分の硬さ分布を示すグラフである。It is a graph which shows the hardness distribution of the peripheral part of a melt-solidification part.

符号の説明Explanation of symbols

1 ADI製試験片
1a 側面(突合せ面)
3 インサート材
1 ADI specimen 1a Side (butting surface)
3 Insert material

Claims (2)

少なくとも一方がオーステンパ球状黒鉛鋳鉄からなる2つの部材を突合せ、そこにレーザを照射して前記両部材を溶接するに際して、前記両部材の突合せ面の間にインサート材を挿入してレーザを照射し、前記両部材の突合せ面近傍部分と前記インサート材とを共に溶融、凝固させ前記両部材を溶接するとともに、前記インサート材は、前記両部材の突合せ面近傍部分と前記インサート材とが溶融、凝固した溶融凝固部の組織が、オーステナイト相を主とする組織となるような金属からなり、該金属が、ニッケル及びクロムを合金成分として含有する鋼であることを特徴とするオーステンパ球状黒鉛鋳鉄の溶接方法。 At least one of the two members made of austempered spheroidal graphite cast iron is butted, and when the two members are welded by irradiating them with a laser, an insert material is inserted between the butt surfaces of the two members, and the laser is irradiated. The part near the butting surface of both members and the insert material are both melted and solidified to weld the both members, and the insert material is melted and solidified near the butting surface of the both members and the insert material. melt-solidified portion of the tissue, Ri Do a metal such as a tissue composed mainly of austenite phase, the metal is nickel and chromium austempered ductile iron characterized by Rukoto Oh in steel containing as alloying element Welding method. 前記鋼がSUS310Sであることを特徴とする請求項1に記載のオーステンパ球状黒鉛鋳鉄の溶接方法。 Welding method of austempered ductile iron according to claim 1, wherein the steel is characterized SUS310S der Rukoto.
JP2007189347A 2007-07-20 2007-07-20 Welding method of austempered spheroidal graphite cast iron Expired - Fee Related JP5099543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189347A JP5099543B2 (en) 2007-07-20 2007-07-20 Welding method of austempered spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189347A JP5099543B2 (en) 2007-07-20 2007-07-20 Welding method of austempered spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JP2009022987A JP2009022987A (en) 2009-02-05
JP5099543B2 true JP5099543B2 (en) 2012-12-19

Family

ID=40395312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189347A Expired - Fee Related JP5099543B2 (en) 2007-07-20 2007-07-20 Welding method of austempered spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP5099543B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104400244B (en) * 2014-09-26 2016-02-17 上海交通大学 Thin-wall titanium alloy spinning part laser weld fire check sensitivity tests method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290292A (en) * 1995-04-19 1996-11-05 Kobe Steel Ltd Electron beam, laser beam or tig welding method of ferrous sintered material or the like
JP2001334378A (en) * 2000-05-24 2001-12-04 Hitachi Constr Mach Co Ltd Method of welding cast iron with laser beam
JP2003105436A (en) * 2001-09-28 2003-04-09 Aisin Takaoka Ltd Surface treating method for cast iron member

Also Published As

Publication number Publication date
JP2009022987A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
Shanmugarajan et al. Fusion welding studies using laser on Ti–SS dissimilar combination
JP5099009B2 (en) Metal processing method and structure
Li et al. A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al–Zr–Fe titanium alloy
Thomy et al. Laser-MIG hybrid welding of aluminium to steel—effect of process parameters on joint properties
Taban et al. Comparison between microstructure characteristics and joint performance of 5086-H32 aluminium alloy welded by MIG, TIG and friction stir welding processes
Huang et al. The study of mechanical strength for fusion-brazed butt joint between aluminum alloy and galvanized steel by arc-assisted laser welding
Teker et al. Weldability and joining characteristics of AISI 430/AISI 1040 steels using keyhole plasma arc welding
Garcia-Garcia Microstructural and mechanical analysis of double pass dissimilar welds of twinning induced plasticity steel to austenitic/duplex stainless steels
Sarafan et al. Through-thickness residual stresses, microstructure, and mechanical properties of electron beam-welded CA6NM martensitic stainless steel after postweld heat treatment
Prajapati et al. An outlook on comparison of hybrid welds of different root pass and filler pass of FCAW and GMAW with classical welds of similar root pass and filler pass
Ramkumar et al. Effect of pulse density and the number of shots on hardness and tensile strength of laser shock peened, activated flux TIG welds of AISI 347
US20080078754A1 (en) Method of welding aluminum alloy steels
JP5099543B2 (en) Welding method of austempered spheroidal graphite cast iron
Devendranath Ramkumar et al. Effect of filler metals on the weldability and mechanical properties of multi-pass PCGTA weldments of AISI 316L
Sbalchiero et al. Replacement of gas metal arc welding by friction welding for joining tubes in the hydraulic cylinders industry
JP2017080791A (en) Weld conjugant of ferrous metal/aluminum-based metal, and method for production thereof
Winarto et al. Study the effect of welding position and plate thickness to the mechanical and microstructural properties of the TIG dissimilar metal welded between carbon steel ASTM A36 and stainless steel 304 plates
JP5948435B2 (en) Welding materials and welded joints
Zhao et al. Effect of preheating on hot cracking susceptibility in pulsed laser welding of invar alloy
Khan et al. Meeting weld quality criteria when laser welding Ni-based alloy 718
Sarafan et al. Mehanical properties of electron beam welded joints in thick gage CA6NM stainless steel
Jung et al. Study on mechanical properties of austenitic stainless steel depending on heat input at laser welding
Liedl et al. Laser assisted joining of dissimilar materials
JP2018094619A (en) Dissimilar metal jointing method, and dissimilar metal jointing member
Shehab et al. CO2 laser spot welding of thin sheets AISI 321 austenitic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees