JP5099527B2 - Method for producing a thin film pattern that absorbs near infrared light - Google Patents

Method for producing a thin film pattern that absorbs near infrared light Download PDF

Info

Publication number
JP5099527B2
JP5099527B2 JP2009237442A JP2009237442A JP5099527B2 JP 5099527 B2 JP5099527 B2 JP 5099527B2 JP 2009237442 A JP2009237442 A JP 2009237442A JP 2009237442 A JP2009237442 A JP 2009237442A JP 5099527 B2 JP5099527 B2 JP 5099527B2
Authority
JP
Japan
Prior art keywords
thin film
absorption
infrared light
ultraviolet light
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009237442A
Other languages
Japanese (ja)
Other versions
JP2011084766A (en
Inventor
橘  浩昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009237442A priority Critical patent/JP5099527B2/en
Publication of JP2011084766A publication Critical patent/JP2011084766A/en
Application granted granted Critical
Publication of JP5099527B2 publication Critical patent/JP5099527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、ドライプロセスにより、太陽電池素子等に用いる近赤外光吸収性の薄膜パターンを作製する技術に関する。   The present invention relates to a technique for producing a near-infrared light-absorbing thin film pattern used for a solar cell element or the like by a dry process.

従来から、固体基板上への薄膜のパターン形成の方法としては、フォトリソグラフィー方法や、放射線重合等の方法がその代表的なものとして知られている。このうちのリソグラフィー方法は、光架橋剤や光反応基を持つモノマー・ポリマー溶剤(フォトレジスト)を基板表面(例えばウェハ)に薄く塗布し、マスキングした後に、光(光架橋剤や光反応基が反応できる波長の光)照射することにより、部分的にフォトレジストの溶解度を変化させ(架橋反応による不溶化または結合切断による可溶化)、所定のパターニングを焼き付け転写する方法である。(特許文献1、非特許文献1,2)
一方、このような固体基板上の薄膜パターンを利用する技術分野の一つに太陽電池素子がある。太陽電池において高効率を達成するためには、自然光に含まれる1eV以下の近赤外領域の低エネルギーを有効利用することが不可欠である。そのため、太陽電池素子においては、このような近赤外光を吸収することのできる材質から成る薄膜をパターニングする製造技術が必要とされる。
しかし、リソグラフィー法による薄膜のパターン形成方法で近赤外光を吸収する薄膜を作成するには、近赤外光を吸収する化合物に光架橋剤を混合したり、光反応基を結合させたりする必要があり、パターンを形成するのに照射波長を選択したりしないといけないという問題があった。(特許文献2,3)
Conventionally, as a method for forming a pattern of a thin film on a solid substrate, a photolithography method, a method such as radiation polymerization, and the like are known as typical ones. Among these lithography methods, a monomer / polymer solvent (photoresist) having a photocrosslinking agent or a photoreactive group is thinly applied to a substrate surface (for example, a wafer), masked, and then light (photocrosslinker or photoreactive group is present). This is a method in which the solubility of the photoresist is partially changed by irradiation (light having a wavelength capable of reaction) (insolubilization by cross-linking reaction or solubilization by bond breaking), and predetermined patterning is baked and transferred. (Patent Document 1, Non-Patent Documents 1 and 2)
On the other hand, there is a solar cell element as one of the technical fields using such a thin film pattern on a solid substrate. In order to achieve high efficiency in a solar cell, it is indispensable to effectively use low energy in the near infrared region of 1 eV or less contained in natural light. Therefore, in the solar cell element, a manufacturing technique for patterning a thin film made of a material capable of absorbing such near infrared light is required.
However, in order to create a thin film that absorbs near-infrared light by a lithography method for forming a thin film pattern, a photo-crosslinking agent is mixed with a compound that absorbs near-infrared light, or a photoreactive group is bonded. There is a problem that it is necessary to select an irradiation wavelength in order to form a pattern. (Patent Documents 2 and 3)

特開2001-189261 レジストパターン形成方法Patent application title: Method for forming resist pattern 特開2005-114968 レジスト材料及びパターン形成方法JP-A-2005-114968 RESIST MATERIAL AND PATTERN FORMING METHOD 特開2008-275830 電子写真トナーJP2008-275830 ELECTROPHOTOGRAPHIC TONER

T. Li, J. Chen, M. Mitsuishi, and T. Miyashita, J. Mater. Chem., 1565(2003).T. Li, J. Chen, M. Mitsuishi, and T. Miyashita, J. Mater. Chem., 1565 (2003). K. Rameshbabu, Y. Kim, T. Kwon, J. Yoo, and E. Kim, Tetra. Lett., 4755(2007).K. Rameshbabu, Y. Kim, T. Kwon, J. Yoo, and E. Kim, Tetra. Lett., 4755 (2007).

本発明は、ドライプロセスで作成した薄膜を紫外光照射して、加熱処理するだけで、近赤外光を吸収する薄膜をパターニングして固定化できる方法を提供することを目的とする。   An object of the present invention is to provide a method capable of patterning and immobilizing a thin film that absorbs near-infrared light simply by irradiating the thin film prepared by a dry process with ultraviolet light and performing a heat treatment.

本発明者は、上記目的を、薄膜の材質として、以下の光反応性基を有するオリゴチオフェンを用いることにより達成した。固体基板上に形成した当該オリゴチオフェン蒸着膜に対し紫外線照射し、その後加熱することで、近赤外光を吸収する薄膜をパターニングすることが可能となる。より詳細には、本発明は、固体基板上に近赤外光を吸収する薄膜のパターニングを形成する、以下の方法を提供するものである。
下記の式で表されるオリゴチオフェンの薄膜を固体基板上に真空蒸着により形成し、当該基板に紫外光を照射後、加熱処理することにより、固体基板上に近赤外光を吸収する薄膜のパターニングを形成する方法。

Figure 0005099527
式中、R1,R2の一方はアンスリル基であり、他方はアンスリル基又はメチル基であり、nは1〜5の整数である。 The present inventor achieved the above object by using an oligothiophene having the following photoreactive group as the material of the thin film. The thin film that absorbs near-infrared light can be patterned by irradiating the oligothiophene vapor-deposited film formed on the solid substrate with ultraviolet light and then heating it. More specifically, the present invention provides the following method for forming a pattern of a thin film that absorbs near infrared light on a solid substrate.
A thin film of oligothiophene represented by the following formula is formed on a solid substrate by vacuum deposition, and after the substrate is irradiated with ultraviolet light, heat treatment is performed to form a thin film that absorbs near infrared light on the solid substrate. A method of forming patterning.
Figure 0005099527
In the formula, one of R1 and R2 is an anthryl group, the other is an anthryl group or a methyl group, and n is an integer of 1 to 5.

以上、説明したように、上記光反応性基を有するオリゴチオフェンを用いれば、ドライプロセスで作成した薄膜を紫外光照射して加熱処理するだけで、近赤外光を吸収する薄膜を簡便にパターニング形成できる。   As described above, if the oligothiophene having the photoreactive group is used, a thin film that absorbs near-infrared light can be easily patterned simply by irradiating the thin film prepared by the dry process with ultraviolet light and heat-treating it. Can be formed.

両末端をアントラセン置換したチオフェン1量体薄膜に、一定時間、紫外光照射した後の吸収スペクトル変化を示す図Diagram showing changes in absorption spectrum after irradiating ultraviolet light for a certain period of time on an anthracene-substituted thiophene monomer thin film 両末端をアントラセン置換したチオフェン1量体薄膜に、紫外光照射後、一定温度で10分間加熱した後の吸収スペクトル変化を示す図The figure which shows the absorption spectrum change after heating the thiophene monomer thin film which substituted the both ends to the anthracene for 10 minutes after ultraviolet irradiation. 両末端をアントラセン置換したチオフェン1量体薄膜を、300℃で10分間加熱した後の吸収スペクトル変化を示す図The figure which shows the absorption-spectrum change after heating the thiophene monomer thin film which substituted the both ends with anthracene for 10 minutes at 300 degreeC. 両末端をアントラセン置換したチオフェン5量体薄膜を、紫外光照射後、ならびに更に500℃で10分間加熱した後の吸収スペクトル変化を示す図The figure which shows the absorption-spectrum change after thiophen pentamer thin film which substituted the both ends with the anthracene after ultraviolet light irradiation, and also heating at 500 degreeC for 10 minute (s) 両末端をナフタレン置換したチオフェン4量体(n=4)薄膜を、紫外光照射後、ならびに更に一定温度、10分間加熱した後の吸収スペクトル変化を示す図The figure which shows the absorption-spectrum change after a thiophene tetramer (n = 4) thin film which substituted both ends with naphthalene after ultraviolet light irradiation, and also heating at a fixed temperature for 10 minutes. 一方の末端をアントラセン置換し、他方をメチル置換したチオフェン3量体(n=3)薄膜を、紫外光照射後、ならびに更に一定温度、10分間加熱した後の吸収スペクトル変化を示す図The figure which shows the absorption-spectrum change after the thiophene trimer (n = 3) thin film which substituted the one end with anthracene and the other methyl substituted after ultraviolet-light irradiation, and also heating for 10 minutes at fixed temperature.

以下、下記の実施例に基づいて、本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on the following examples.

1.実験方法
実験に用いたオリゴチオフェンは、以下に示す構造の物質である。両末端、あるいは片末端にアリール基を有するオリゴチオフェンを用いた。
1. Experimental Method Oligothiophene used in the experiment is a substance having the following structure. Oligothiophene having an aryl group at both ends or at one end was used.

Figure 0005099527
実験で用いた化合物の構造式
Figure 0005099527
Structural formula of the compound used in the experiment

両末端にアントラセンを有するチオフェン3量体(n=3)は、テトラキス(トリフェニルホスフィン)パラジウム(0)を触媒として、2,5−ビス(トリブチル錫)チオフェンと2−ブロモ−5−アンスリルチオフェンのスティルカップリング反応により合成した(以下の式(3−1))。片末端にアントラセンを有するチオフェン3量体(n=3)は、テトラキス(トリフェニルホスフィン)パラジウム(0)を触媒として、5−メチル−5‘−トリブチル錫−2,2’−ビチオフェンと2−ブロモ−5−アンスリルチオフェンのスティルカップリング反応により合成した(以下の式(3−2))。薄膜は真空蒸着法により石英基板上に作成した。得られた薄膜を大気下で紫外光を一定時間照射した後、真空下、一定温度、一定時間加熱し、室温まで冷却して大気下で紫外−可視−近赤外吸収スペクトルを測定した。   A thiophene trimer (n = 3) having anthracene at both ends is obtained by using tetrakis (triphenylphosphine) palladium (0) as a catalyst and 2,5-bis (tributyltin) thiophene and 2-bromo-5-anthryl. It was synthesized by a thiophene Stille coupling reaction (the following formula (3-1)). A thiophene trimer having an anthracene at one end (n = 3) is obtained by using tetrakis (triphenylphosphine) palladium (0) as a catalyst and 5-methyl-5′-tributyltin-2,2′-bithiophene and 2- It was synthesized by a Stille coupling reaction of bromo-5-anthrylthiophene (the following formula (3-2)). A thin film was formed on a quartz substrate by vacuum evaporation. The obtained thin film was irradiated with ultraviolet light for a certain period of time in the atmosphere, then heated in vacuum at a certain temperature for a certain period of time, cooled to room temperature, and an ultraviolet-visible-near infrared absorption spectrum was measured in the atmosphere.

Figure 0005099527
Figure 0005099527

2.実験結果
最初に、オリゴチオフェン薄膜を大気下で紫外光照射した時の吸収スペクトル変化について調べた。両末端がアントラセンで置換されたチオフェン1量体(n=1)薄膜の吸収スペクトルを図1に示す。紫外光を5分間照射することにより、3.2eV付近の吸収が減少する。更に、紫外光照射すると、照射時間の増加とともに、吸収が徐々に減少することが観測された。この結果は、2,5−ジアンスリルチオフェン薄膜を紫外光照射することにより、アントラセン基同士が2量化反応を起こしていることを示唆している。
2. Experimental results First, we investigated the change in absorption spectrum when an oligothiophene thin film was irradiated with ultraviolet light in the atmosphere. FIG. 1 shows an absorption spectrum of a thiophene monomer (n = 1) thin film in which both ends are substituted with anthracene. Irradiation with ultraviolet light for 5 minutes reduces the absorption near 3.2 eV. Furthermore, it was observed that when ultraviolet light was irradiated, the absorption gradually decreased as the irradiation time increased. This result suggests that anthracene groups cause a dimerization reaction by irradiating a 2,5-dianthrylthiophene thin film with ultraviolet light.

次に、紫外光照射した2,5−ジアンスリルチオフェン薄膜を真空下、一定温度で10分間加熱した後の吸収スペクトル変化を図2に示す。加熱温度の増加とともに、4.8eVの吸収の減少とともに、吸収の幅が広がり、吸収の裾の低エネルギーへの拡がりが観測された。加熱前の黄色の薄膜が、加熱後、褐色に変化していることから、バンドギャップが減少していることを示唆している。2量化したアントラセンが、加熱することにより開環してネットワーク化したためと考えられる。   Next, FIG. 2 shows the change in absorption spectrum after heating the ultraviolet light irradiated 2,5-dianthrylthiophene thin film at a constant temperature for 10 minutes under vacuum. As the heating temperature increased, the absorption range increased with a decrease in absorption of 4.8 eV, and the absorption tail was observed to spread to lower energy. The yellow thin film before heating changes to brown after heating, suggesting that the band gap is reduced. This is probably because dimerized anthracene was opened and networked by heating.

それに対して、紫外光を照射しないで両末端をアントラセン置換したチオフェン1量体薄膜を真空下、一定温度で10分間加熱した後の吸収スペクトル変化を図3に示す。300℃で10分間加熱すると、吸収がほとんどなくなり、更に加熱時間を増やすと吸収が消えてしまい、薄膜が基板から脱離しているものと思われる。   In contrast, FIG. 3 shows a change in absorption spectrum after heating a thiophene monomer thin film in which both ends are anthracene-substituted without irradiation with ultraviolet light at a constant temperature for 10 minutes under vacuum. When heated at 300 ° C. for 10 minutes, the absorption is almost lost, and when the heating time is further increased, the absorption disappears and the thin film seems to be detached from the substrate.

これらの結果は、アントラセンで置換したオリゴチオフェン薄膜を加熱する前に、紫外光照射によりアントラセンの2量化反応を起こさせると、その後、薄膜を加熱することにより、紫外光照射した箇所は赤外光を吸収する薄膜に変化して固定化され、紫外光照射していない箇所は薄膜が脱離することで、簡便に赤外光を吸収する薄膜をパターニング形成できることを示している。   These results show that when an anthracene dimerization reaction is caused by irradiation with ultraviolet light before heating the oligothiophene thin film substituted with anthracene, the thin film is then heated so that the portion irradiated with ultraviolet light becomes infrared light. This indicates that a thin film that absorbs infrared light can be easily formed by patterning by removing the thin film at a portion that is changed to a thin film that absorbs and is fixed and is not irradiated with ultraviolet light.

次に、両末端のアントラセンの間に結合しているチオフェンの数の効果について調べた。両末端がアントラセンで置換されたチオフェン5量体(n=5)薄膜の紫外光照射、ならびに加熱後の吸収スペクトル変化を図4に示す。薄膜に紫外光を照射することにより、3eVの吸収が減少し、吸収の裾の広がりが観測された。その後、真空下500℃で10分間、加熱することにより、4.6eVの吸収の減少とともに、吸収の幅が広がり、裾が近赤外領域まで広がることが観測された。図4の結果は、チオフェンの数の増加とともに、吸収の裾の広がりが大きくなることを示唆している。   Next, the effect of the number of thiophenes bonded between anthracene at both ends was examined. FIG. 4 shows changes in absorption spectrum after irradiation with ultraviolet light and heating of a thiophene pentamer (n = 5) thin film in which both ends are substituted with anthracene. By irradiating the thin film with ultraviolet light, the absorption of 3 eV decreased, and the spread of the bottom of the absorption was observed. After that, by heating at 500 ° C. for 10 minutes under vacuum, it was observed that the absorption width widened and the skirt widened to the near infrared region as the absorption decreased by 4.6 eV. The results in FIG. 4 suggest that the broadening of the absorption tail increases as the number of thiophenes increases.

次に、オリゴチオフェンの両末端の置換基効果について調べた。両末端がナフチル基で置換されたチオフェン4量体(n=4)薄膜への光照射、ならびに加熱後の吸収スペクトル変化を図5に示す。紫外光を1時間照射しても、吸収強度はほとんど変化しなかった。更に、加熱しても吸収強度が加熱温度の増加とともに減少するだけで、吸収の裾の広がりは観測されなかった。   Next, the effect of substituents at both ends of oligothiophene was examined. FIG. 5 shows changes in absorption spectrum after light irradiation and heating to a thiophene tetramer (n = 4) thin film substituted at both ends with a naphthyl group. Even when irradiated with ultraviolet light for 1 hour, the absorption intensity hardly changed. Furthermore, even when heated, the absorption intensity only decreased as the heating temperature increased, and no broadening of the absorption tail was observed.

それに対して、片方がメチル基、もう一方がアントラセン基で置換したチオフェン3量体(n=3)薄膜への紫外光照射、ならびに加熱後の吸収スペクトル変化を図6に示す。紫外光照射により、2.8eVの吸収の減少、ならびに、その後、一定温度で10分間加熱することにより、吸収の幅が広がり、裾の低エネルギー側への広がりが観測された。オリゴチオフェンの両末端にアントラセンが置換されている薄膜より、裾の広がりが少ないことが分かった。   On the other hand, FIG. 6 shows ultraviolet light irradiation to a thiophene trimer (n = 3) thin film substituted with a methyl group on one side and an anthracene group on the other side, and an absorption spectrum change after heating. A decrease in absorption of 2.8 eV due to irradiation with ultraviolet light, and a subsequent heating at a constant temperature for 10 minutes increased the width of absorption and the spread of the tail toward the lower energy side was observed. It was found that the tail spread is less than that of the thin film where anthracene is substituted on both ends of oligothiophene.

これらの結果から、薄膜を紫外光照射後に加熱することにより、近赤外光を吸収する薄膜に変換するには、オリゴチオフェンの片末端、あるいは両末端にアントラセン基が置換されている必要があることが分かった。更に、オリゴチオフェンへのアントラセンの置換数、ならびにチオフェンの結合数によって、薄膜の吸収波長を制御できることも明らかとなった。   From these results, it is necessary to substitute an anthracene group at one or both ends of oligothiophene to convert the thin film into a thin film that absorbs near-infrared light by heating after irradiation with ultraviolet light. I understood that. Furthermore, it has been clarified that the absorption wavelength of the thin film can be controlled by the number of anthracene substitutions to oligothiophene and the number of thiophene bonds.

本発明による近赤外光吸収性の薄膜のパターニングの技術は、薄膜太陽電池、可視光ELや紫外光センサー、光記録材料、薄膜トランジスターなどの素子を作成する用途に用いることができる。   The near-infrared light-absorbing thin film patterning technique according to the present invention can be used for applications such as thin film solar cells, visible light EL, ultraviolet light sensors, optical recording materials, and thin film transistors.

Claims (1)

下記の式で表されるオリゴチオフェンの薄膜を固体基板上に真空蒸着により形成し、当該基板に紫外光を照射後、加熱処理することにより、固体基板上に近赤外光を吸収する薄膜のパターニングを形成する方法。
Figure 0005099527
(式中、R1,R2の一方はアンスリル基であり、他方はアンスリル基又はメチル基であり、nは1〜5の整数である。)
A thin film of oligothiophene represented by the following formula is formed on a solid substrate by vacuum deposition, and after the substrate is irradiated with ultraviolet light, heat treatment is performed to form a thin film that absorbs near infrared light on the solid substrate. A method of forming patterning.
Figure 0005099527
(In the formula, one of R1 and R2 is an anthryl group, the other is an anthryl group or a methyl group, and n is an integer of 1 to 5.)
JP2009237442A 2009-10-14 2009-10-14 Method for producing a thin film pattern that absorbs near infrared light Expired - Fee Related JP5099527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009237442A JP5099527B2 (en) 2009-10-14 2009-10-14 Method for producing a thin film pattern that absorbs near infrared light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009237442A JP5099527B2 (en) 2009-10-14 2009-10-14 Method for producing a thin film pattern that absorbs near infrared light

Publications (2)

Publication Number Publication Date
JP2011084766A JP2011084766A (en) 2011-04-28
JP5099527B2 true JP5099527B2 (en) 2012-12-19

Family

ID=44077934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237442A Expired - Fee Related JP5099527B2 (en) 2009-10-14 2009-10-14 Method for producing a thin film pattern that absorbs near infrared light

Country Status (1)

Country Link
JP (1) JP5099527B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888102B (en) * 2019-02-27 2023-07-04 合肥工业大学 Solar blind area deep ultraviolet light detector based on organic field effect transistor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344493B1 (en) * 2007-12-17 2013-12-24 삼성전자주식회사 Single crystalline graphene sheet and process for preparing the same

Also Published As

Publication number Publication date
JP2011084766A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
Jim et al. Metal‐Free Alkyne Polyhydrothiolation: Synthesis of Functional Poly (vinylenesulfide) s with High Stereoregularity by Regioselective Thioclick Polymerization
Liu et al. Focused Microwave‐Assisted Synthesis of 2, 5‐Dihydrofuran Derivatives as Electron Acceptors for Highly Efficient Nonlinear Optical Chromophores
CN108912329B (en) Preparation method and application of patterned two-dimensional conjugated microporous polymer
Luo et al. Highly efficient and thermally stable electro‐optic polymer from a smartly controlled crosslinking process
WO2008111470A1 (en) Photosensitive resin composition, process for producing patterned hardened film with use thereof and electronic part
Luo et al. Recent progress in developing highly efficient and thermally stable nonlinear optical polymers for electro-optics
WO2016035823A1 (en) Low-resistance cladding material and electro-optic polymer optical waveguide
JP5099527B2 (en) Method for producing a thin film pattern that absorbs near infrared light
US11066519B2 (en) Photoresponsive hexahydrotriazine polymers
Ghanem et al. Synthesis of push–pull triarylamine dyes containing 5, 6-difluoro-2, 1, 3-benzothiadiazole units by direct arylation and their evaluation as active material for organic photovoltaics
Yang et al. Reconfigurable and NIR-responsive shape memory polymer containing bipheunit units and graphene
TWI431002B (en) Fullerene derivatives and optoelectronic devices utilizing the same
TWI640550B (en) Secondary nonlinear optical epoxy resin oligomer, chromophore group, and method for producing crosslinked layered secondary nonlinear optical nano composite material containing the same
Häußler et al. Hyperbranched conjugative macromolecules constructed from triple-bond building blocks
Zhou et al. Conjugated oligoyne-bridged [60] fullerene molecular dumbbells: Syntheses and thermal and morphological properties
Rathnayake et al. Luminescence of molecular and block copolymeric 2, 7-bis (phenylethenyl)-fluorenones; Identifying green-band emitter sites in a fluorene-based luminophore
US8143465B2 (en) Soluble branched triaroylbenzene-based polymer and its synthetic method
Knall et al. Synthesis of a conjugated pyrrolopyridazinedione–benzodithiophene (PPD–BDT) copolymer and its application in organic and hybrid solar cells
Baschir et al. EFFECT OF CNTS AND METAL-PHTHALOCYANINES ADDING ON THE PHOTO-ELECTRICAL BEHAVIOR OF THE PHOTOVOLTAIC STRUCTURES BASED ON POLYMERIC BLENDS
Li et al. Improvement in the storage stability of camphorquinone-based photocurable materials in sunlight via Z→ E photoisomerization of photomask agent
Wang et al. Highly photosensitive furan acrylate derivatives and their solid-state photopolymerization
Soomro et al. Preparation and photochemistry of dendrimers with isolated stilbene chromophores
JP2016060857A (en) Liquid crystal polymer film and production process therefor
JP2010248299A (en) Visible light-absorbing thin film and method for producing the same
Li et al. Design and synthesis of self-assembled nonlinear optical multichromophore dendrimers with different acceptors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees