JP5099102B2 - Radio identification device and radio identification method - Google Patents

Radio identification device and radio identification method Download PDF

Info

Publication number
JP5099102B2
JP5099102B2 JP2009245012A JP2009245012A JP5099102B2 JP 5099102 B2 JP5099102 B2 JP 5099102B2 JP 2009245012 A JP2009245012 A JP 2009245012A JP 2009245012 A JP2009245012 A JP 2009245012A JP 5099102 B2 JP5099102 B2 JP 5099102B2
Authority
JP
Japan
Prior art keywords
feature vector
section
waveform
digital complex
complex envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009245012A
Other languages
Japanese (ja)
Other versions
JP2011091712A (en
Inventor
雅人 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009245012A priority Critical patent/JP5099102B2/en
Publication of JP2011091712A publication Critical patent/JP2011091712A/en
Application granted granted Critical
Publication of JP5099102B2 publication Critical patent/JP5099102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuits Of Receivers In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は無線機同定装置及び無線機同定方法に係り、特に効率良く電波を監視するための無線機同定装置及び無線機同定方法に関する。   The present invention relates to a radio identification device and a radio identification method, and more particularly to a radio identification device and a radio identification method for efficiently monitoring radio waves.

違法な無線機の特定には、人間が違法な電波を出力している無線機の現場に行って、その場で違法な電波を出力しているかどうかを調べる必要があり、多大な労力を必要とする。このため、効率良く電波を監視する方法として、無線機同定装置が提案されている。   To identify an illegal radio device, it is necessary to go to the site of the radio device that is outputting illegal radio waves, and to check whether or not illegal radio waves are being output on the spot. And For this reason, a radio identification device has been proposed as a method for efficiently monitoring radio waves.

例えば、特許文献1には、FM検波を利用した無線機同定装置が記載されている。この無線機同定装置では、無線機のプレストーク時に見られる周波数揺らぎをFM検波法にてFM検波信号に変換し、このFM検波信号の立ち上がりを無線機の特徴ベクトルとして用いて既知の無線機の特徴ベクトルとの類似度から未知の無線機の機種または個体を同定する。   For example, Patent Document 1 describes a wireless device identification device using FM detection. In this wireless device identification apparatus, frequency fluctuations that are seen during a wireless device's press talk are converted into FM detection signals by the FM detection method, and the rise of this FM detection signal is used as a feature vector of the wireless device. An unknown radio model or individual is identified from the similarity to the feature vector.

また、特許文献2には、周波数情報が雑音の影響を受け難いという物理的特性を利用して、雑音を含む受信信号であっても無線機固有のスペクトログラムパターンを保持する構成の無線機同定装置が開示されている。   Further, Patent Document 2 discloses a radio identification device having a configuration in which a spectrogram pattern unique to a radio is retained even for a received signal including noise, using a physical characteristic that frequency information is hardly affected by noise. Is disclosed.

更に、特許文献3には、レーダの目標反射波と雑音を区別するために閾値を用い、閾値を越えた信号の周波数(ビート周波数)を測定することで目標までの距離を求める距離測定装置が開示されている。この特許文献3では、ビート周波数を測定することを同定と呼んでいる。   Further, Patent Document 3 discloses a distance measuring device that uses a threshold value to distinguish a radar target reflected wave and noise, and obtains the distance to the target by measuring the frequency (beat frequency) of the signal exceeding the threshold value. It is disclosed. In Patent Document 3, measuring beat frequency is called identification.

特開2006−211250号公報JP 2006-211250 A 特開2004−214817号公報JP 2004-214817 A 特開平09−090024号公報Japanese Patent Laid-Open No. 09-090024

しかしながら、特許文献1記載の無線機同定装置では、隣接チャネルによる干渉の防止と受信S/N改善のために、特徴ベクトル波形抽出の直前に受信フィルタを設けると、周波数変動が受信フィルタの帯域を超える区間では、受信フィルタの出力にて受信信号が除去されてしまう。この場合には、特徴ベクトルが正確に抽出できず、帯域内区間で特徴ベクトルの一致度が高くても全体区間での一致度が低下するため、その結果、無線機同定の性能が劣化するという問題がある。   However, in the wireless device identification device described in Patent Document 1, if a reception filter is provided immediately before the feature vector waveform extraction in order to prevent interference due to adjacent channels and improve the reception S / N, the frequency variation reduces the bandwidth of the reception filter. In the section exceeding, the received signal is removed at the output of the reception filter. In this case, the feature vector cannot be accurately extracted, and even if the matching degree of the feature vector in the in-band section is high, the matching degree in the entire section is lowered, and as a result, the performance of radio identification is deteriorated. There's a problem.

また、上記受信フィルタを設けない場合には、隣接チャンネルによる干渉により正確に特徴ベクトル波形が収集できないことや、受信S/Nの劣化に伴って雑音の影響が増大することから、無線機同定の性能が劣化するという問題がある。   If the reception filter is not provided, the feature vector waveform cannot be collected accurately due to interference by adjacent channels, and the influence of noise increases as the reception S / N deteriorates. There is a problem that performance deteriorates.

また、特許文献2記載の無線機同定装置は、フェージングによる受信信号レベルの低下や、隣接チャネル抑圧用のフィルタ帯域よりも受信信号の周波数偏差が大であることなどに起因して、無線機の信号が雑音レベルに埋もれてしまう(S/N値が負)ような劣悪な受信信号においては、固有パターンを保持することができないため、無線機同定が困難である。   In addition, the wireless device identification apparatus described in Patent Document 2 is based on a decrease in the received signal level due to fading, or because the frequency deviation of the received signal is larger than the filter band for adjacent channel suppression. Inferior received signals in which the signal is buried in the noise level (negative S / N value) cannot hold the unique pattern, making radio identification difficult.

更に、この特許文献2記載の無線機同定装置に、特許文献3記載の閾値を設定して雑音を無効にする発明を組み合わせて無線機同定を行うようにした場合も、受信フィルタによって検出した信号が雑音のみとなるため、その雑音を除くために閾値を用いる本発明を構成することはできない。   Further, even when the wireless device identification apparatus described in Patent Document 2 is combined with the invention for invalidating noise by setting the threshold described in Patent Document 3, the signal detected by the reception filter is also used. Since only noise is present, it is not possible to construct the present invention using a threshold value to remove the noise.

本発明は以上の点に鑑みなされたもので、特徴ベクトル波形の雑音における影響を減少させ、無線機同定の性能を向上し得る無線機同定装置及び無線機同定方法を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a wireless device identification apparatus and a wireless device identification method that can reduce the influence of feature vector waveforms on noise and improve the performance of wireless device identification. .

上記の目的を達成するため、本発明の無線機同定装置は、無線機の送信信号を受信して得た受信信号からデジタル複素包絡信号を生成するデジタル複素包絡信号生成手段と、デジタル複素包絡信号をFM検波して、立ち上がり時の周波数変動波形である特徴ベクトル波形を抽出する抽出手段と、デジタル複素包絡信号の受信信号エネルギーが閾値以下の区間であるか否かを判定する判定手段と、判定手段により閾値以下の区間と判定された区間の特徴ベクトル波形を特定の波形に形成し、受信信号エネルギーが閾値より大きな区間の特徴ベクトル波形を用いて無線機同定処理を行う同定処理手段と有することを特徴とする。   In order to achieve the above object, a radio identification apparatus according to the present invention includes a digital complex envelope signal generating means for generating a digital complex envelope signal from a reception signal obtained by receiving a transmission signal of a radio, and a digital complex envelope signal. An extraction means for extracting a feature vector waveform which is a frequency fluctuation waveform at the time of rising, a determination means for determining whether or not the received signal energy of the digital complex envelope signal is equal to or less than a threshold, and a determination And an identification processing means for forming a feature vector waveform of a section determined as a section below a threshold by the means into a specific waveform and performing a radio identification process using a feature vector waveform of a section where the received signal energy is larger than the threshold. It is characterized by.

また、上記の目的を達成するため、本発明の無線機同定方法は、無線機の送信信号を受信して得た受信信号からデジタル複素包絡信号を生成するデジタル複素包絡信号生成ステップと、デジタル複素包絡信号をFM検波して、立ち上がり時の周波数変動波形である特徴ベクトル波形を抽出する抽出ステップと、デジタル複素包絡信号の受信信号エネルギーが閾値以下の区間であるか否かを判定する判定ステップと、判定ステップにより閾値以下の区間と判定された区間の特徴ベクトル波形を特定の波形に形成し、受信信号エネルギーが閾値より大きな区間の特徴ベクトル波形を用いて無線機同定処理を行う同定処理ステップとを含むことを特徴とする。   In order to achieve the above object, a radio identification method of the present invention includes a digital complex envelope signal generation step for generating a digital complex envelope signal from a reception signal obtained by receiving a transmission signal of a radio, a digital complex envelope An extraction step of FM-detecting the envelope signal to extract a feature vector waveform which is a frequency fluctuation waveform at the time of rising; and a determination step of determining whether or not the received signal energy of the digital complex envelope signal is within a threshold value or less An identification processing step of forming a feature vector waveform of a section determined as a section equal to or less than a threshold by the determination step into a specific waveform, and performing a radio identification process using a feature vector waveform of a section in which the received signal energy is larger than the threshold; It is characterized by including.

本発明によれば、予め設定した閾値以下の小エネルギー受信信号入力期間を無効期間又は補間区間に設定して、雑音による影響を減少させることで、無線機同定の性能を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the performance of radio | wireless machine identification can be improved by setting the low energy received signal input period below a preset threshold value to an invalid period or an interpolation period, and reducing the influence by noise.

本発明の無線機同定装置の第1の実施形態のブロック図である。It is a block diagram of 1st Embodiment of the radio | wireless machine identification apparatus of this invention. 図1中の無効区間判定回路の一実施形態のブロック図である。It is a block diagram of one Embodiment of the invalid area determination circuit in FIG. 図1中のFM検波特徴ベクトル抽出部の一実施形態のブロック図である。It is a block diagram of one Embodiment of the FM detection feature vector extraction part in FIG. 受信フィルタによって、特定の帯域外のデジタル複素包絡信号が遮断された特徴ベクトル波形の一例を示す図である。It is a figure which shows an example of the feature vector waveform by which the digital complex envelope signal out of the specific band was interrupted | blocked by the receiving filter. 図2中の受信エネルギー測定回路で計算されたデジタル複素包絡信号のエネルギーがある閾値以下の区間だけ特徴ベクトルの値がゼロとされた特徴ベクトル波形の一例を示す図である。It is a figure which shows an example of the feature vector waveform by which the value of the feature vector was set to zero only in the area below a certain threshold value of the energy of the digital complex envelope signal calculated by the received energy measuring circuit in FIG. 本発明の無線機同定装置の第1の実施形態の動作説明用フローチャートである。It is a flowchart for operation | movement description of 1st Embodiment of the radio | wireless machine identification device of this invention. 本発明の無線機同定装置の第2の実施形態のブロック図である。It is a block diagram of 2nd Embodiment of the radio | wireless machine identification device of this invention. 図7中のFM検波特徴ベクトル抽出部の一実施形態のブロック図である。It is a block diagram of one Embodiment of the FM detection feature vector extraction part in FIG. 特定の帯域を超える特徴ベクトルを直線で表す線形補間を用いた特徴ベクトル波形の一例を示す図である。It is a figure which shows an example of the feature vector waveform using the linear interpolation which represents the feature vector exceeding a specific zone | line with a straight line. 本発明の無線機同定装置の第2の実施形態の動作説明用フローチャートである。It is a flowchart for operation | movement description of 2nd Embodiment of the radio | wireless machine identification device of this invention.

次に、本発明の実施形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明になる無線機同定装置の第1の実施形態のブロック図を示す。同図に示すように、本実施形態の無線機同定装置1Aは、受信機3からの受信信号が供給され、A/D変換器4、受信フィルタ5、無効区間判定回路6、FM検波特徴ベクトル抽出部7A、特徴ベクトルDB(データベース)8及び無線機同定処理部9を含んで構成される。
(First embodiment)
FIG. 1 shows a block diagram of a first embodiment of a radio identification device according to the present invention. As shown in the figure, the radio identification apparatus 1A of the present embodiment is supplied with a reception signal from the receiver 3, and receives an A / D converter 4, a reception filter 5, an invalid interval determination circuit 6, an FM detection feature vector. An extraction unit 7A, a feature vector DB (database) 8 and a radio device identification processing unit 9 are included.

A/D変換器4は、アンテナ2で受信した無線機(図示せず)からの信号を、受信機3で中間周波数に変換して得られたアナログの中間周波数信号を入力信号として受け、その中間周波数信号をデジタル複素包絡信号に変換する。受信フィルタ5は、特定の通過周波数帯域外のデジタル複素包絡信号を遮断する帯域フィルタである。   The A / D converter 4 receives, as an input signal, an analog intermediate frequency signal obtained by converting a signal from a radio (not shown) received by the antenna 2 into an intermediate frequency by the receiver 3. Convert the intermediate frequency signal into a digital complex envelope signal. The reception filter 5 is a band filter that blocks a digital complex envelope signal outside a specific pass frequency band.

無効区間判定回路6は、受信フィルタ5により周波数選択されたデジタル複素包絡信号を入力信号として受け、入力デジタル複素包絡信号より計算される受信信号エネルギーが、ある閾値以下の特徴ベクトルを無効化する区間を判定する。   The invalid interval determination circuit 6 receives a digital complex envelope signal frequency-selected by the reception filter 5 as an input signal, and invalidates a feature vector whose received signal energy calculated from the input digital complex envelope signal is a certain threshold value or less. Determine.

FM検波特徴ベクトル抽出部7Aは、デジタル複素包絡信号をFM検波することにより、立ち上がり時の周波数変動波形、すなわち特徴ベクトル波形を抽出する。無線機同定処理部9は、FM検波特徴ベクトル抽出部7Aから転送された特徴ベクトル波形と特徴ベクトルDB8に予め保存している特徴ベクトル波形をユーザーからの指示により参照し、特徴ベクトルの一致度やピーク値などによる相関性から無線機を同定する。相関性が無い場合、無線機同定処理部9は、ユーザーの指示に基づき特徴ベクトルDB8に特徴ベクトル波形を転送、登録する。   The FM detection feature vector extraction unit 7A extracts a frequency fluctuation waveform at the time of rising, that is, a feature vector waveform, by performing FM detection on the digital complex envelope signal. The wireless device identification processing unit 9 refers to the feature vector waveform transferred from the FM detection feature vector extraction unit 7A and the feature vector waveform stored in advance in the feature vector DB 8 according to an instruction from the user, The radio is identified from the correlation based on the peak value. If there is no correlation, the radio equipment identification processing unit 9 transfers and registers the feature vector waveform in the feature vector DB 8 based on the user's instruction.

次に、図1中の無効区間判定回路6の詳細な構成について説明する。図2は、無効区間判定回路6の一実施形態のブロック図を示す。同図に示すように、無効区間判定回路6は、受信エネルギー測定回路61と閾値判定回路62とを含んで構成される。   Next, a detailed configuration of the invalid section determination circuit 6 in FIG. 1 will be described. FIG. 2 shows a block diagram of an embodiment of the invalid section determination circuit 6. As shown in the figure, the invalid interval determination circuit 6 includes a reception energy measurement circuit 61 and a threshold determination circuit 62.

受信エネルギー測定回路61は、受信フィルタ5を通過したデジタル複素包絡信号の同相成分I(n)及び直交成分Q(n)から、受信信号エネルギーE(n)を次式により算出し測定する。   The reception energy measurement circuit 61 calculates and measures the reception signal energy E (n) from the in-phase component I (n) and the quadrature component Q (n) of the digital complex envelope signal that has passed through the reception filter 5 by the following equation.

E(n)={I(n)}+{Q(n)}
閾値判定回路62は、受信エネルギー測定回路61により測定した受信信号エネルギーE(n)が、予め設定した閾値以下ならば無効であると判定し、その判定結果をFM検波特徴ベクトル抽出部7Aへ出力する。
E (n) = {I (n)} 2 + {Q (n)} 2
The threshold determination circuit 62 determines that the received signal energy E (n) measured by the received energy measurement circuit 61 is invalid if it is equal to or lower than a preset threshold, and outputs the determination result to the FM detection feature vector extraction unit 7A. To do.

図3は、図1中のFM検波特徴ベクトル抽出部7Aの一実施形態のブロック図を示す。図3に示すように、FM検波特徴ベクトル抽出部7Aは、FM検波回路71と特徴ベクトルゼロ埋め回路72とから構成される。   FIG. 3 shows a block diagram of an embodiment of the FM detection feature vector extraction unit 7A in FIG. As shown in FIG. 3, the FM detection feature vector extraction unit 7 </ b> A includes an FM detection circuit 71 and a feature vector zero padding circuit 72.

FM検波回路71は、受信フィルタ5を通過したデジタル複素包絡信号のFM検波を行い、信号立ち上がりの周波数変動波形を特徴ベクトル波形として抽出して出力する。特徴ベクトルゼロ埋め回路72は、無効区間判定回路6から判定信号が有効区間であることを示しているときには、FM検波回路71からの特徴ベクトル波形をそのまま転送し、上記判定信号が無効区間であることを示しているときには、FM検波回路71からの特徴ベクトル波形に替えて、その無効区間、値0の特徴ベクトルを出力する。   The FM detection circuit 71 performs FM detection of the digital complex envelope signal that has passed through the reception filter 5, and extracts and outputs the frequency fluctuation waveform at the rising edge of the signal as a feature vector waveform. The feature vector zero padding circuit 72 transfers the feature vector waveform from the FM detection circuit 71 as it is when the determination signal from the invalid interval determination circuit 6 indicates that it is an effective interval, and the determination signal is an invalid interval. In this case, instead of the feature vector waveform from the FM detection circuit 71, a feature vector of the invalid section and value 0 is output.

このようにして、本実施形態によれば、無効区間判定回路6とFM検波特徴ベクトル抽出部7Aとにより、特徴ベクトル波形のうち、受信信号エネルギーE(n)が、予め設定した閾値以下の無効区間を同定処理範囲から除外することにより、雑音による影響を減少させ、無線機同定の性能を向上させるものである。   As described above, according to the present embodiment, the invalid section determination circuit 6 and the FM detection feature vector extraction unit 7A perform invalidity in which the received signal energy E (n) of the feature vector waveform is equal to or less than a preset threshold value. By excluding the section from the identification processing range, the influence of noise is reduced and the performance of radio identification is improved.

図4は、受信フィルタ5によって、特定の帯域外のデジタル複素包絡信号が遮断された特徴ベクトル波形の例である。周波数変動が受信フィルタ5の帯域外にまで達する区間では、FM検波特徴ベクトル抽出部7Aへの入力信号は受信フィルタ5の帯域内の雑音信号のみとなるため、雑音の特徴ベクトル波形が抽出される。   FIG. 4 is an example of a feature vector waveform in which a digital complex envelope signal outside a specific band is blocked by the reception filter 5. In a section where the frequency fluctuation reaches the outside of the band of the reception filter 5, the input signal to the FM detection feature vector extraction unit 7A is only a noise signal within the band of the reception filter 5, so that a noise feature vector waveform is extracted. .

図4において、期間T1、T3、T5は有効期間であり、期間T2、T4は無効期間である。無効期間T2、T4では前述したように、受信信号エネルギーE(n)が、予め設定した閾値以下の小エネルギー受信信号入力期間であり、受信フィルタ5の帯域内の雑音信号のみとなる。小エネルギー受信信号は、受信信号の信号成分が雑音成分と比較して小さく、受信信号エネルギーが雑音エネルギーと同程度の信号である。   In FIG. 4, periods T1, T3, and T5 are valid periods, and periods T2 and T4 are invalid periods. In the invalid periods T2 and T4, as described above, the received signal energy E (n) is a low energy received signal input period equal to or less than a preset threshold value, and only the noise signal within the band of the reception filter 5 is obtained. The low energy received signal is a signal in which the signal component of the received signal is smaller than the noise component, and the received signal energy is comparable to the noise energy.

図5は、受信エネルギー測定回路61で計算されたデジタル複素包絡信号のエネルギーを用いた閾値判定回路62によって、受信信号エネルギーE(n)が、予め設定した閾値以下の無効区間だけ特徴ベクトルの値が0にされたFM検波特徴ベクトル抽出部7Aの出力波形の一例を示す。   FIG. 5 shows the value of the feature vector only in an invalid interval where the received signal energy E (n) is equal to or less than a preset threshold value by the threshold determination circuit 62 using the energy of the digital complex envelope signal calculated by the received energy measuring circuit 61. An example of an output waveform of the FM detection feature vector extraction unit 7A in which is set to 0 is shown.

図5において、期間Ta、Tc、Teの波形は図4の有効期間T1、T3、T5における特徴ベクトル波形を示し、期間Tb、Tdの波形は図4の無効期間T2、T4における値0の特徴ベクトル波形を示す。   In FIG. 5, the waveforms of the periods Ta, Tc, Te show the feature vector waveforms in the valid periods T1, T3, T5 of FIG. 4, and the waveforms of the periods Tb, Td are the features of the value 0 in the invalid periods T2, T4 of FIG. A vector waveform is shown.

次に、図1の無線機同定装置1Aの動作について、図6のフローチャートを参照して説明する。受信機3は、アンテナ2で受信した無線機(図示せず)からの信号をアナログ信号である中間周波数の中間周波数信号に変換する。A/D変換器4は、この中間周波数信号をデジタル複素包絡信号に変換する(ステップS1)。   Next, the operation of the wireless device identification apparatus 1A of FIG. 1 will be described with reference to the flowchart of FIG. The receiver 3 converts a signal from a radio (not shown) received by the antenna 2 into an intermediate frequency signal of an intermediate frequency that is an analog signal. The A / D converter 4 converts this intermediate frequency signal into a digital complex envelope signal (step S1).

受信フィルタ5は、A/D変換器4から出力されたデジタル複素包絡信号のうち、特定の通過周波数帯域外のデジタル複素包絡信号を遮断する帯域制限を行う(ステップS2)。無効区間判定回路6は、受信フィルタ5を通過した特定の通過周波数帯域のデジタル複素包絡信号を入力信号として受け、その入力デジタル複素包絡信号から計算された受信信号エネルギーが閾値以下であるか否かによって、特徴ベクトルを無効とするか、または有効とするかを選択する(ステップS3)。   The reception filter 5 performs band limitation to block a digital complex envelope signal outside a specific pass frequency band from the digital complex envelope signal output from the A / D converter 4 (step S2). The invalid interval determination circuit 6 receives a digital complex envelope signal of a specific pass frequency band that has passed through the reception filter 5 as an input signal, and whether or not the received signal energy calculated from the input digital complex envelope signal is equal to or less than a threshold value. To select whether the feature vector is invalid or valid (step S3).

すなわち、前述したように、無効区間判定回路6は、図4に示す期間T2、T4のように、受信フィルタ5からの入力デジタル複素包絡信号から計算された受信信号エネルギーが閾値以下の小エネルギー受信信号入力期間では無効を選択し、FM検波特徴ベクトル抽出部7Aに特徴ベクトルの値を0とする命令を出力する(ステップS4)。また、無効区間判定回路6は、図4に示す期間T1、T3、T5のように、入力デジタル複素包絡信号から計算された受信信号エネルギーが閾値より大である入力期間では有効を選択し、FM検波特徴ベクトル抽出部7Aに特徴ベクトルの値を受信フィルタ5より受け取る命令を出力する(ステップS5)。   In other words, as described above, the invalid interval determination circuit 6 receives the low energy received with the received signal energy calculated from the input digital complex envelope signal from the reception filter 5 being equal to or less than the threshold as in the periods T2 and T4 shown in FIG. Invalid is selected during the signal input period, and an instruction for setting the value of the feature vector to 0 is output to the FM detection feature vector extraction unit 7A (step S4). Further, the invalid interval determination circuit 6 selects valid in the input period in which the received signal energy calculated from the input digital complex envelope signal is larger than the threshold, as in the periods T1, T3, and T5 shown in FIG. A command for receiving the value of the feature vector from the reception filter 5 is output to the detection feature vector extraction unit 7A (step S5).

FM検波特徴ベクトル抽出部7Aは、図3に示したFM検波回路71により受信フィルタ5を通過したデジタル複素包絡信号のFM検波を行い、信号立ち上がりの周波数変動波形を特徴ベクトル波形として、予め設定した区間まで抽出する(ステップS6のY、S7)。このとき、FM検波特徴ベクトル抽出部7Aは、図3に示した特徴ベクトルゼロ埋め回路72により、無効区間判定回路6からの判定信号が有効区間であることを示しているときには、FM検波回路71からの特徴ベクトル波形をそのまま転送し、上記判定信号が無効区間であることを示しているときには、FM検波回路71からの特徴ベクトル波形に替えて、その無効区間、値0の特徴ベクトルを出力する。これにより、FM検波特徴ベクトル抽出部7Aから、図5に示すような、無効区間だけ特徴ベクトルの値が0に形成された特徴ベクトル波形が出力される。   The FM detection feature vector extraction unit 7A performs FM detection of the digital complex envelope signal that has passed through the reception filter 5 by the FM detection circuit 71 shown in FIG. 3, and presets the frequency fluctuation waveform of the signal rise as a feature vector waveform. Up to the section is extracted (Y in step S6, S7). At this time, if the feature vector zero padding circuit 72 shown in FIG. 3 indicates that the determination signal from the invalid section determination circuit 6 is a valid section, the FM detection feature vector extraction unit 7A has an FM detection circuit 71. When the determination signal indicates that it is an invalid section, the feature vector waveform from the FM detector circuit 71 is output instead of the feature vector waveform from the FM detection circuit 71. . Thereby, a feature vector waveform in which the value of the feature vector is set to 0 only for the invalid section as shown in FIG. 5 is output from the FM detection feature vector extraction unit 7A.

続いて、無線機同定処理部9は、FM検波特徴ベクトル抽出部7Aからの特徴ベクトル波形を取得し、その特徴ベクトル波形を新たな特徴ベクトル波形として特徴ベクトルDB8に登録するか、もしくは予め保存されている既知の複数の無線機の何れの機種、または個体であるか同定するかを選択する(ステップS8)。   Subsequently, the radio identification processing unit 9 acquires the feature vector waveform from the FM detection feature vector extraction unit 7A, and registers the feature vector waveform as a new feature vector waveform in the feature vector DB 8 or is stored in advance. It is selected whether to identify which model or individual of the plurality of known wireless devices (step S8).

無線機の特徴ベクトル波形の登録の場合には、ユーザーの指示によって無線機同定処理部9から特徴ベクトルDB8に特徴ベクトル波形を転送し、この特徴ベクトル波形を特徴ベクトルDB8に保存する(ステップS9)。特徴ベクトルDB8に存在しない無線機の特徴ベクトルを取得した場合は、ユーザーの指示に基づき登録を選択する。   In the case of registering the feature vector waveform of the wireless device, the feature vector waveform is transferred from the wireless device identification processing unit 9 to the feature vector DB 8 in accordance with a user instruction, and the feature vector waveform is stored in the feature vector DB 8 (step S9). . When a feature vector of a radio that does not exist in the feature vector DB 8 is acquired, registration is selected based on a user instruction.

一方、無線機の同定の場合には、ユーザーの指示によって無線機同定処理部9は、FM検波特徴ベクトル抽出部7Aより転送された特徴ベクトル波形と特徴ベクトルDB8から転送された保存している特徴ベクトルとの類似度による評価から無線機を同定する(ステップS10)。類似度を求めるには、ピーク値の相関、信号間距離などの方法がある。   On the other hand, in the case of identification of a radio device, the radio device identification processing unit 9 according to a user instruction stores a feature vector waveform transferred from the FM detection feature vector extraction unit 7A and a stored feature transferred from the feature vector DB 8. The wireless device is identified from the evaluation based on the similarity to the vector (step S10). In order to obtain the similarity, there are methods such as correlation of peak values and distance between signals.

このように、本実施形態によれば、受信フィルタ5の帯域内の雑音信号のみとなる、予め設定した閾値以下の小エネルギー受信信号入力期間を無効期間に設定して、特徴ベクトルの値を0にして同定処理に用いないようにしたため、雑音による影響を減少させ、無線機同定の性能を向上させることができる。また、本実施形態によれば、隣接チャネルによる干渉を防止するために受信フィルタ5を用いても、無効区間以外の特徴ベクトルのみによる同定処理が可能であるため、無線機同定の性能の劣化を防ぐことができる。   As described above, according to the present embodiment, the low energy received signal input period equal to or less than the preset threshold value that is only the noise signal in the band of the reception filter 5 is set as the invalid period, and the value of the feature vector is set to 0. Thus, since it is not used for the identification process, the influence of noise can be reduced and the performance of radio identification can be improved. In addition, according to the present embodiment, even if the reception filter 5 is used to prevent interference due to adjacent channels, identification processing can be performed using only feature vectors other than the invalid section, so that the performance of radio identification is degraded. Can be prevented.

また、本実施形態では、経済的に優れた構成にできる。その理由は、既存の無線機同定装置に受信フィルタ5と無効区間判定回路6を追加するのみであり、一般的に用いられる安価なハードウェアで設計可能となるためである。   Moreover, in this embodiment, it can be set as the economically excellent structure. The reason is that only the reception filter 5 and the invalid interval determination circuit 6 are added to the existing radio identification device, and the design can be made with generally used inexpensive hardware.

更に、本実施形態では、リアルタイム性に優れているという特長が得られる。その理由は、本実施形態は特徴ベクトルを変化させるための時間が短く、処理に必要な演算量が既存の同定回路と殆ど変わらないためである。   Furthermore, in this embodiment, the feature that it is excellent in real-time property is acquired. The reason is that in this embodiment, the time for changing the feature vector is short, and the amount of calculation required for processing is almost the same as that of the existing identification circuit.

(第2の実施形態)
図7は、本発明になる無線機同定装置の第2の実施形態のブロック図を示す。同図に示すように、本実施形態の無線機同定装置1Bは、受信機3からの受信信号が供給され、A/D変換器4、受信フィルタ5、補間区間判定回路14、FM検波特徴ベクトル抽出部7B、特徴ベクトルDB(データベース)8及び無線機同定処理部9を含んで構成される。図7中、図1と同一構成部分には同一符号を付し、その説明を省略する。
(Second Embodiment)
FIG. 7 shows a block diagram of a second embodiment of the radio identification device according to the present invention. As shown in the figure, the radio identification device 1B of the present embodiment is supplied with a reception signal from the receiver 3, and receives an A / D converter 4, a reception filter 5, an interpolation interval determination circuit 14, an FM detection feature vector. An extraction unit 7B, a feature vector DB (database) 8 and a radio device identification processing unit 9 are included. In FIG. 7, the same components as those in FIG.

図7において、補間区間判定回路14は、受信フィルタ5により遮断される特定の帯域外のデジタル複素包絡信号の入力区間を補間区間と判定し、その判定結果をFM検波特徴ベクトル抽出部7Bへ出力する。補間判定回路14は、無効区間判定回路6と同様の回路構成である。   In FIG. 7, the interpolation interval determination circuit 14 determines that the input interval of the digital complex envelope signal outside the specific band blocked by the reception filter 5 is an interpolation interval, and outputs the determination result to the FM detection feature vector extraction unit 7B. To do. The interpolation determination circuit 14 has a circuit configuration similar to that of the invalid section determination circuit 6.

図8は、FM検波特徴ベクトル抽出部7Bの一実施形態のブロック図を示す。同図に示すように、FM検波特徴ベクトル抽出部7Bは、FM検波回路71及び特徴ベクトル補間回路73により構成される。   FIG. 8 shows a block diagram of an embodiment of the FM detection feature vector extraction unit 7B. As shown in the figure, the FM detection feature vector extraction unit 7B includes an FM detection circuit 71 and a feature vector interpolation circuit 73.

FM検波回路71は、受信フィルタ5を通過したデジタル複素包絡信号のFM検波を行い、信号立ち上がりの周波数変動波形を特徴ベクトル波形として抽出して出力する。特徴ベクトル補間回路73は、補間区間の特徴ベクトルに補間処理(例えば、線形補間、ラグランジュ補間)を施すことで、新たな特徴ベクトル波形を形成する。図9は、特定の帯域を超える特徴ベクトルを直線で表す線形補間を用いた特徴ベクトル波形の一例を示す。   The FM detection circuit 71 performs FM detection of the digital complex envelope signal that has passed through the reception filter 5, and extracts and outputs the frequency fluctuation waveform at the rising edge of the signal as a feature vector waveform. The feature vector interpolation circuit 73 forms a new feature vector waveform by performing interpolation processing (for example, linear interpolation, Lagrange interpolation) on the feature vectors in the interpolation section. FIG. 9 shows an example of a feature vector waveform using linear interpolation that represents a feature vector exceeding a specific band by a straight line.

次に、本実施形態の動作について図10のフローチャートを参照して説明する。同図中、図6と同一処理ステップには同一符号を付し、その説明を省略する。   Next, the operation of the present embodiment will be described with reference to the flowchart of FIG. In the figure, the same processing steps as those in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.

図10に示すステップS11において、補間区間判定回路14は、受信フィルタ5を通過した特定の通過周波数帯域のデジタル複素包絡信号を入力信号として受け、その入力デジタル複素包絡信号の入力区間が、補間区間であるか有効区間であるかを判定する。すなわち、ステップS11において、補間区間判定回路14は、上記のデジタル複素包絡信号の入力区間が、受信フィルタ5により遮断された特定の帯域外のデジタル複素包絡信号の入力区間であるときは補間区間と判定し、入力区間が受信フィルタ5により遮断されていない入力区間であるときは、有効区間と判定する。   In step S11 shown in FIG. 10, the interpolation interval determination circuit 14 receives a digital complex envelope signal of a specific pass frequency band that has passed through the reception filter 5 as an input signal, and the input interval of the input digital complex envelope signal is the interpolation interval. Or whether it is a valid section. That is, in step S11, the interpolation interval determination circuit 14 determines that the input interval of the digital complex envelope signal is an interpolation interval when the digital complex envelope signal outside the specific band blocked by the reception filter 5 is input. When it is determined that the input section is an input section that is not blocked by the reception filter 5, the input section is determined to be an effective section.

FM検波特徴ベクトル抽出部7Bは、図8に示したFM検波回路71により受信フィルタ5を通過したデジタル複素包絡信号のFM検波を行い、信号立ち上がりの周波数変動波形を特徴ベクトル波形として、予め設定した区間まで抽出する(ステップS6のY、S7)。   The FM detection feature vector extraction unit 7B performs FM detection of the digital complex envelope signal that has passed through the reception filter 5 by the FM detection circuit 71 shown in FIG. 8 and presets the frequency fluctuation waveform of the signal rise as a feature vector waveform. Up to the section is extracted (Y in step S6, S7).

このとき、FM検波特徴ベクトル抽出部7Bは、図8に示した特徴ベクトル補間回路73により、補間区間判定回路14からの判定信号が有効区間であることを示しているときには、FM検波回路71からの特徴ベクトル波形をそのまま転送し、上記判定信号が補間区間であることを示しているときには、FM検波回路71からの特徴ベクトルに対して、補間処理(例えば、線形補間、ラグランジュ補間)を施すことで、新たな特徴ベクトル波形を形成する。   At this time, when the feature vector interpolation circuit 73 shown in FIG. 8 indicates that the determination signal from the interpolation section determination circuit 14 is an effective section, the FM detection feature vector extraction unit 7B starts from the FM detection circuit 71. When the feature vector waveform is transferred as it is and the determination signal indicates that it is an interpolation section, interpolation processing (for example, linear interpolation, Lagrangian interpolation) is performed on the feature vector from the FM detection circuit 71. Thus, a new feature vector waveform is formed.

上記の補間処理として直線で表す線形補間を採用した場合、FM検波特徴ベクトル抽出部7Bから、図9に示すような、補間区間だけ特徴ベクトルの値が直線で補間された新たな特徴ベクトル波形が出力される。   When linear interpolation represented by a straight line is adopted as the above-described interpolation processing, a new feature vector waveform in which the value of the feature vector is interpolated by a straight line for the interpolation section as shown in FIG. Is output.

このように、本実施形態によれば、雑音のみとなる補間区間の特徴ベクトルに対して補間処理を行うことで雑音の影響を減少させると共に、特徴ベクトルを補間処理により任意に変更できるので、無線機の同定の誤り率を減らすことができる。すなわち、本実施形態によれば、無線機同定における最適な特徴ベクトル波形を調査し、無線機同定の性能を向上させることが期待できる。また、本実施形態も、上記実施形態と同様に、経済的に優れた構成にできると共に、リアルタイム性に優れているという特長が得られる。   As described above, according to the present embodiment, the influence of the noise is reduced by performing the interpolation process on the feature vector of the interpolation section including only noise, and the feature vector can be arbitrarily changed by the interpolation process. The error rate of machine identification can be reduced. That is, according to the present embodiment, it is expected that the optimum feature vector waveform in radio identification is investigated and the performance of radio identification is improved. In addition, the present embodiment, like the above-described embodiment, has an advantage that it can be configured economically and has excellent real-time properties.

なお、本発明は以上の実施形態に限定されるものではなく、例えば、特徴ベクトル抽出において、受信信号からスペクトログラムを求め、そのピーク値を抽出することにより特徴ベクトル波形を求めることも可能である。この場合、FM検波特徴ベクトル抽出部7A、7Bの替りにスペクトログラムのピーク値を抽出する公知の回路に置き換えればよい。   The present invention is not limited to the above embodiment. For example, in feature vector extraction, a spectrogram can be obtained from a received signal, and a peak value can be obtained to obtain a feature vector waveform. In this case, a known circuit for extracting the spectrogram peak value may be used instead of the FM detection feature vector extraction units 7A and 7B.

1A、1B 無線機同定装置
2 アンテナ
3 受信機
4 A/D変換器
5 受信フィルタ
6 無効区間判定回路
7A、7B FM検波特徴ベクトル抽出部
8 特徴ベクトルDB
9 無線機同定処理部
14 補間区間判定回路
61 受信エネルギー測定回路
62 閾値判定回路
71 FM検波回路
72 特徴ベクトルゼロ埋め回路
73 特徴ベクトル補間回路
1A, 1B Radio equipment identification device 2 Antenna 3 Receiver 4 A / D converter 5 Reception filter 6 Invalid section judgment circuit 7A, 7B FM detection feature vector extraction unit 8 Feature vector DB
9 Radio identification processing unit 14 Interpolation section determination circuit 61 Received energy measurement circuit 62 Threshold determination circuit 71 FM detection circuit 72 Feature vector zero padding circuit 73 Feature vector interpolation circuit

Claims (12)

無線機の送信信号を受信して得た受信信号からデジタル複素包絡信号を生成するデジタル複素包絡信号生成手段と、
前記デジタル複素包絡信号をFM検波して、立ち上がり時の周波数変動波形である特徴ベクトル波形を抽出する抽出手段と、
前記デジタル複素包絡信号の受信信号エネルギーが閾値以下の区間であるか否かを判定する判定手段と、
前記判定手段により前記閾値以下の区間と判定された区間の前記特徴ベクトル波形を特定の波形に形成し、前記受信信号エネルギーが前記閾値より大きな区間の前記特徴ベクトル波形を用いて無線機同定処理を行う同定処理手段と
を有することを特徴とする無線機同定装置。
A digital complex envelope signal generating means for generating a digital complex envelope signal from a received signal obtained by receiving a transmission signal of a radio;
Extraction means for performing FM detection on the digital complex envelope signal and extracting a feature vector waveform which is a frequency fluctuation waveform at the time of rising;
Determining means for determining whether or not the received signal energy of the digital complex envelope signal is a section below a threshold;
The feature vector waveform of the section determined as the section equal to or less than the threshold by the determining means is formed into a specific waveform, and radio equipment identification processing is performed using the feature vector waveform of the section where the received signal energy is larger than the threshold. An identification processing means for performing wireless identification.
無線機の送信信号を受信して得た受信信号からデジタル複素包絡信号を生成するデジタル複素包絡信号生成手段と、
前記デジタル複素包絡信号をFM検波して、立ち上がり時の周波数変動波形である特徴ベクトル波形を抽出する抽出手段と、
前記デジタル複素包絡信号の受信信号エネルギーが閾値以下の区間を無効区間と判定し、前記受信信号エネルギーが前記閾値より大である区間を有効区間と判定する判定手段と、
前記無効区間に対応する区間の前記特徴ベクトル波形を所定値に設定して同定の処理範囲から除外し、前記有効区間に対応する区間の前記特徴ベクトル波形を用いて無線機同定処理を行う同定処理手段と
を有することを特徴とする無線機同定装置。
A digital complex envelope signal generating means for generating a digital complex envelope signal from a received signal obtained by receiving a transmission signal of a radio;
Extraction means for performing FM detection on the digital complex envelope signal and extracting a feature vector waveform which is a frequency fluctuation waveform at the time of rising;
A determination unit that determines a section where the received signal energy of the digital complex envelope signal is equal to or less than a threshold value as an invalid section, and determines a section where the received signal energy is greater than the threshold value as a valid section;
An identification process in which the feature vector waveform of the section corresponding to the invalid section is set to a predetermined value and excluded from the identification processing range, and a radio identification process is performed using the feature vector waveform of the section corresponding to the valid section And a radio identification device.
無線機の送信信号を受信して得た受信信号からデジタル複素包絡信号を生成するデジタル複素包絡信号生成手段と、
前記デジタル複素包絡信号をFM検波して、立ち上がり時の周波数変動波形である特徴ベクトル波形を抽出する抽出手段と、
前記デジタル複素包絡信号の受信信号エネルギーが閾値以下の区間を補間区間と判定し、前記受信信号エネルギーが前記閾値より大である区間を有効区間と判定する判定手段と、
前記補間区間に対応する区間の前記特徴ベクトル波形に対して補間処理を行って得た補間処理後の特徴ベクトル波形と、前記有効区間に対応する区間の前記特徴ベクトル波形とを用いて無線機同定処理を行う同定処理手段と
を有することを特徴とする無線機同定装置。
A digital complex envelope signal generating means for generating a digital complex envelope signal from a received signal obtained by receiving a transmission signal of a radio;
Extraction means for performing FM detection on the digital complex envelope signal and extracting a feature vector waveform which is a frequency fluctuation waveform at the time of rising;
A determination unit that determines an interval in which the received signal energy of the digital complex envelope signal is equal to or less than a threshold as an interpolation interval, and determines an interval in which the received signal energy is greater than the threshold as an effective interval;
Radio equipment identification using the feature vector waveform after the interpolation process obtained by performing the interpolation process on the feature vector waveform in the section corresponding to the interpolation section and the feature vector waveform in the section corresponding to the effective section An identification processing means for performing processing.
前記抽出手段からの前記デジタル複素包絡信号に対して、特定の周波数帯域外の信号成分を除外し、除外後の前記デジタル複素包絡信号を前記判定手段及び前記同定処理手段に供給する受信フィルタ手段を更に有することを特徴とする請求項1乃至3のうちいずれか一項記載の無線機同定装置。   Reception filter means for excluding signal components outside a specific frequency band from the extraction means and supplying the digital complex envelope signal after the exclusion to the determination means and the identification processing means. The wireless device identification device according to any one of claims 1 to 3, further comprising: 前記同定処理手段は、
前記無効区間に対応する区間の前記特徴ベクトル波形の値をゼロに設定し、前記有効区間に対応する区間の前記特徴ベクトル波形と共に出力する特徴ベクトルゼロ埋め手段と、
前記特徴ベクトルゼロ埋め手段から出力された前記特徴ベクトル波形と、予めデータベースに記憶されている特徴ベクトル波形との相関性に基づいて、無線機同定処理を行う処理手段と
を含むことを特徴とする請求項2記載の無線機同定装置。
The identification processing means includes
A feature vector zero padding means for setting the value of the feature vector waveform in the section corresponding to the invalid section to zero and outputting it together with the feature vector waveform in the section corresponding to the valid section;
Processing means for performing radio equipment identification processing based on a correlation between the feature vector waveform output from the feature vector zero padding means and a feature vector waveform stored in advance in a database. The radio | wireless machine identification device of Claim 2.
前記同定処理手段は、
前記補間区間に対応する区間の前記特徴ベクトル波形に対して補間処理を行い、前記有効区間に対応する区間の前記特徴ベクトル波形と共に出力する特徴ベクトル補間手段と、
前記特徴ベクトル補間手段から出力された前記特徴ベクトル波形と、予めデータベースに記憶されている特徴ベクトル波形との相関性に基づいて、無線機同定処理を行う処理手段と
を含むことを特徴とする請求項3記載の無線機同定装置。
The identification processing means includes
Interpolating the feature vector waveform in the section corresponding to the interpolation section, and outputting the feature vector waveform together with the feature vector waveform in the section corresponding to the effective section;
And a processing unit for performing a radio identification process based on a correlation between the feature vector waveform output from the feature vector interpolation unit and a feature vector waveform stored in advance in a database. Item 4. The wireless device identification apparatus according to Item 3.
無線機の送信信号を受信して得た受信信号からデジタル複素包絡信号を生成するデジタル複素包絡信号生成ステップと、
前記デジタル複素包絡信号をFM検波して、立ち上がり時の周波数変動波形である特徴ベクトル波形を抽出する抽出ステップと、
前記デジタル複素包絡信号の受信信号エネルギーが閾値以下の区間であるか否かを判定する判定ステップと、
前記判定ステップにより前記閾値以下の区間と判定された区間の前記特徴ベクトル波形を特定の波形に形成し、前記受信信号エネルギーが前記閾値より大きな区間の前記特徴ベクトル波形を用いて無線機同定処理を行う同定処理ステップと
を含むことを特徴とする無線機同定方法。
A digital complex envelope signal generating step for generating a digital complex envelope signal from a received signal obtained by receiving a transmission signal of a radio;
An extraction step of performing FM detection on the digital complex envelope signal and extracting a feature vector waveform which is a frequency fluctuation waveform at the time of rising;
A determination step of determining whether or not the received signal energy of the digital complex envelope signal is a section below a threshold;
The feature vector waveform of the section determined as the section equal to or less than the threshold by the determination step is formed into a specific waveform, and radio equipment identification processing is performed using the feature vector waveform of the section where the received signal energy is larger than the threshold. A radio identification method comprising: an identification processing step to be performed.
無線機の送信信号を受信して得た受信信号からデジタル複素包絡信号を生成するデジタル複素包絡信号生成ステップと、
前記デジタル複素包絡信号をFM検波して、立ち上がり時の周波数変動波形である特徴ベクトル波形を抽出する抽出ステップと、
前記デジタル複素包絡信号の受信信号エネルギーが閾値以下の区間を無効区間と判定し、前記受信信号エネルギーが前記閾値より大である区間を有効区間と判定する判定ステップと、
前記無効区間に対応する区間の前記特徴ベクトル波形を所定値に設定して同定の処理範囲から除外し、前記有効区間に対応する区間の前記特徴ベクトル波形を用いて無線機同定処理を行う同定処理ステップと
を含むことを特徴とする無線機同定方法。
A digital complex envelope signal generating step for generating a digital complex envelope signal from a received signal obtained by receiving a transmission signal of a radio;
An extraction step of performing FM detection on the digital complex envelope signal and extracting a feature vector waveform which is a frequency fluctuation waveform at the time of rising;
A step of determining an interval where the received signal energy of the digital complex envelope signal is equal to or less than a threshold as an invalid interval, and determining an interval where the received signal energy is greater than the threshold as an effective interval;
An identification process in which the feature vector waveform of the section corresponding to the invalid section is set to a predetermined value and excluded from the identification processing range, and a radio identification process is performed using the feature vector waveform of the section corresponding to the valid section A radio identification method comprising the steps of:
無線機の送信信号を受信して得た受信信号からデジタル複素包絡信号を生成するデジタル複素包絡信号生成ステップと、
前記デジタル複素包絡信号をFM検波して、立ち上がり時の周波数変動波形である特徴ベクトル波形を抽出する抽出ステップと、
前記デジタル複素包絡信号の受信信号エネルギーが閾値以下の区間を補間区間と判定し、前記受信信号エネルギーが前記閾値より大である区間を有効区間と判定する判定ステップと、
前記補間区間に対応する区間の前記特徴ベクトル波形に対して補間処理を行って得た補間処理後の特徴ベクトル波形と、前記有効区間に対応する区間の前記特徴ベクトル波形とを用いて無線機同定処理を行う同定処理ステップと
を含むことを特徴とする無線機同定方法。
A digital complex envelope signal generating step for generating a digital complex envelope signal from a received signal obtained by receiving a transmission signal of a radio;
An extraction step of performing FM detection on the digital complex envelope signal and extracting a feature vector waveform which is a frequency fluctuation waveform at the time of rising;
A determination step of determining a section where the received signal energy of the digital complex envelope signal is equal to or less than a threshold as an interpolation section, and determining a section where the received signal energy is larger than the threshold as an effective section;
Radio equipment identification using the feature vector waveform after the interpolation process obtained by performing the interpolation process on the feature vector waveform in the section corresponding to the interpolation section and the feature vector waveform in the section corresponding to the effective section An identification processing step for performing processing.
前記抽出ステップにより抽出された前記デジタル複素包絡信号に対して、特定の周波数帯域外の信号成分を除外し、除外後の前記デジタル複素包絡信号を前記判定ステップ及び前記同定処理ステップで処理させる周波数選択ステップを更に含むことを特徴とする請求項7乃至9のうちいずれか一項記載の無線機同定方法。   A frequency selection that excludes signal components outside a specific frequency band from the digital complex envelope signal extracted by the extraction step, and causes the digital complex envelope signal after the exclusion to be processed in the determination step and the identification processing step. The wireless device identification method according to claim 7, further comprising a step. 前記同定処理ステップは、
前記無効区間に対応する区間の前記特徴ベクトル波形の値をゼロに設定し、前記有効区間に対応する区間の前記特徴ベクトル波形と共に出力する特徴ベクトルゼロ埋めステップと、
前記特徴ベクトルゼロ埋めステップで得られた前記特徴ベクトル波形と、予めデータベースに記憶されている特徴ベクトル波形との相関性に基づいて、無線機同定処理を行う処理ステップと
を含むことを特徴とする請求項8記載の無線機同定方法。
The identification processing step includes
Setting the value of the feature vector waveform in the section corresponding to the invalid section to zero, and outputting the feature vector waveform together with the feature vector waveform in the section corresponding to the valid section; and
And a processing step of performing radio equipment identification processing based on a correlation between the feature vector waveform obtained in the feature vector zero padding step and a feature vector waveform stored in advance in a database. The radio | wireless machine identification method of Claim 8.
前記同定処理ステップは、
前記補間区間に対応する区間の前記特徴ベクトル波形に対して補間処理を行い、前記有効区間に対応する区間の前記特徴ベクトル波形と共に出力する特徴ベクトル補間ステップと、
前記特徴ベクトル補間ステップで得られた前記特徴ベクトル波形と、予めデータベースに記憶されている特徴ベクトル波形との相関性に基づいて、無線機同定処理を行う処理ステップと
を含むことを特徴とする請求項9記載の無線機同定方法。
The identification processing step includes
Interpolating the feature vector waveform in the section corresponding to the interpolation section, and outputting the feature vector waveform together with the feature vector waveform in the section corresponding to the effective section; and
And a processing step of performing a radio identification process based on a correlation between the feature vector waveform obtained in the feature vector interpolation step and a feature vector waveform stored in advance in a database. Item 10. The wireless device identification method according to Item 9.
JP2009245012A 2009-10-26 2009-10-26 Radio identification device and radio identification method Expired - Fee Related JP5099102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245012A JP5099102B2 (en) 2009-10-26 2009-10-26 Radio identification device and radio identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245012A JP5099102B2 (en) 2009-10-26 2009-10-26 Radio identification device and radio identification method

Publications (2)

Publication Number Publication Date
JP2011091712A JP2011091712A (en) 2011-05-06
JP5099102B2 true JP5099102B2 (en) 2012-12-12

Family

ID=44109520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245012A Expired - Fee Related JP5099102B2 (en) 2009-10-26 2009-10-26 Radio identification device and radio identification method

Country Status (1)

Country Link
JP (1) JP5099102B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143545B2 (en) * 2013-05-15 2017-06-07 三菱電機株式会社 Radio frequency signal identification apparatus and radio frequency signal identification method
JP6324257B2 (en) * 2014-08-12 2018-05-16 三菱電機株式会社 Radio wave identification system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970950B2 (en) * 1991-04-17 1999-11-02 富士通テン株式会社 Inter-vehicle distance measuring device having threshold value determining means
JP2004214817A (en) * 2002-12-27 2004-07-29 National Institute Of Information & Communication Technology Radio identification system
JP4543283B2 (en) * 2005-01-27 2010-09-15 日本電気株式会社 Radio identification method and apparatus
JP2008079188A (en) * 2006-09-25 2008-04-03 Matsushita Electric Ind Co Ltd Receiver

Also Published As

Publication number Publication date
JP2011091712A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
CN101577564B (en) Self-adaptive signal frequency spectrum sensing and detection method based on decision threshold
US20050270218A1 (en) Radar detector and radar detecting method for WLAN systems according to 802.11 wireless communication standards
US20140086089A1 (en) Method for detecting interference between base stations and base station
CN101467412A (en) Signal detection in multicarrier communication system
WO2018131450A1 (en) Wireless analysis device, wireless analysis method, and program
JP5099102B2 (en) Radio identification device and radio identification method
KR101584846B1 (en) Autocorrelation-based spectrum sensing for fm signals
KR101040256B1 (en) System and method for finding direction of signal with improved direction finding accuracy
CN104253659A (en) Spectrum sensing method and device
CN104635204B (en) A kind of signal source localization method based on Duffing Lorenz chaos systems
WO2011093797A1 (en) Method for spectrum sensing and communication device
KR20110034570A (en) Method and apparatus for wireless location measurement
JP3998023B2 (en) Ranging and position measuring method using spread spectrum signal and apparatus for performing the method
JP2013152112A (en) Time difference orientation detection device
RU2006132681A (en) CORRELATION METHOD FOR RECOGNIZING ADVERSE ELECTROMAGNETIC RADIATION AND CALCULATION OF A COMPUTER ENGINEERING
KR100916180B1 (en) An Enhanced Energy Detector for identification of the VSB and WMP signal in the IEEE 802.22 System and Detecting Method
CN107576848A (en) A kind of template setting and template detection method based on spectrum analysis
JP6532976B2 (en) Signal transmitting / receiving apparatus and method for detecting synchronization point in signal
US9294327B2 (en) Method for identifying OFDM communication signal using OFDM symbol estimation
JP4845819B2 (en) Signal detection apparatus, receiver, and threshold calculation method
JP5075101B2 (en) Interference signal suppression method and apparatus, repeater apparatus
JP2013205046A (en) Radio altimeter and method of measuring altitude
CN101828903B (en) Linear detection method for signals in non-free space environment around human body
JP5464724B1 (en) Receiving apparatus, receiving method, and transmitting / receiving system
CN101873288B (en) Method and device for code acquisition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees