JP5098408B2 - Brake control device for vehicle - Google Patents
Brake control device for vehicle Download PDFInfo
- Publication number
- JP5098408B2 JP5098408B2 JP2007106642A JP2007106642A JP5098408B2 JP 5098408 B2 JP5098408 B2 JP 5098408B2 JP 2007106642 A JP2007106642 A JP 2007106642A JP 2007106642 A JP2007106642 A JP 2007106642A JP 5098408 B2 JP5098408 B2 JP 5098408B2
- Authority
- JP
- Japan
- Prior art keywords
- hydraulic pressure
- amount
- wheel
- vehicle
- braking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Regulating Braking Force (AREA)
- Hydraulic Control Valves For Brake Systems (AREA)
Description
本発明は、車両用制動制御装置に関する。 The present invention relates to a vehicle brake control device.
特許文献1には、第1、第2のホイールシリンダを備える第1の液圧配管と、第3、第4のホイールシリンダを備える第2の液圧配管とが備えられ、車両走行状態に応じて2つの液圧配管の制動液圧配分が調整される車両用ブレーキ装置が記載されている。
より具体的には、この装置では、2つの液圧配管の一方に、マスタシリンダ圧に加算される補助液圧を発生させる液圧ポンプが備えられている。車両直進状態での制動操作時では、2つの液圧配管にマスタシリンダ圧そのものがそれぞれ供給される。一方、ステアリング操作角度が大きい状態(車両旋回状態)での制動操作時では、上記液圧ポンプが作動させられて上記一方の液圧配管にマスタシリンダ圧よりも大きい制動液圧が供給される。 More specifically, in this apparatus, a hydraulic pump that generates an auxiliary hydraulic pressure added to the master cylinder pressure is provided in one of the two hydraulic pipings. At the time of a braking operation in a straight vehicle state, the master cylinder pressure itself is supplied to the two hydraulic pipes. On the other hand, at the time of a braking operation in a state where the steering operation angle is large (vehicle turning state), the hydraulic pump is operated and a braking hydraulic pressure larger than the master cylinder pressure is supplied to the one hydraulic piping.
これにより、車両旋回状態での制動操作時において、車両直進状態での制動操作時よりも大きい制動力を得ることができると記載されている。しかしながら、このことは、車両旋回状態と車両直進状態とで、制動操作量に対する車両の減速度の増大特性(制動操作量と車両減速度との関係)が異なることを意味する。 Thus, it is described that a larger braking force can be obtained during a braking operation in a vehicle turning state than in a braking operation in a vehicle straight traveling state. However, this means that the vehicle deceleration increase characteristic (the relationship between the braking operation amount and the vehicle deceleration) differs between the vehicle turning state and the vehicle straight traveling state.
ここで、一般には、2つ液圧配管の制動液圧配分が変更されても、制動操作量に対する車両減速度の増大特性が一定に維持されることが好ましいと考えられる。加えて、車両の荷重状態、走行状態等に起因して車両が偏向し易い状態が発生している場合には、車両の方向安定性が確保され得る方向に2つ液圧配管の制動液圧配分が調整されることが好ましい。 Here, it is generally considered that it is preferable that the vehicle deceleration increasing characteristic with respect to the braking operation amount be maintained constant even when the braking hydraulic pressure distribution of the two hydraulic pipes is changed. In addition, when a state in which the vehicle is likely to be deflected due to a load state, a traveling state, or the like of the vehicle is generated, the braking hydraulic pressures of the two hydraulic pipes in a direction in which the directional stability of the vehicle can be ensured. The distribution is preferably adjusted.
本発明は係る知見に基づいてなされたものであって、その目的は、2系統の液圧配管を備える車両用制動制御装置において、制動操作量に対する車両減速度の増大特性を概ね一定に維持しつつ2つの液圧配管の制動液圧配分を調整して車両の方向安定性を確保することができるものを提供することにある。 The present invention has been made on the basis of such knowledge, and an object of the present invention is to maintain a vehicle deceleration increasing characteristic with respect to a braking operation amount substantially constant in a vehicle braking control device including two hydraulic pipings. It is another object of the present invention to provide a vehicle that can secure the directional stability of the vehicle by adjusting the brake hydraulic pressure distribution between the two hydraulic pipes.
本発明に係る第1の車両用制動制御装置は、車両の前後左右の4つの車輪の各ホイールシリンダに供給される制動液圧に応じた制動トルクを対応する車輪にそれぞれ付与する4つの車輪制動装置と、前記車両の運転者による制動操作量に応じた液圧量をそれぞれ発生する2つの液圧発生室を有する第1の液圧発生装置(マスタシリンダ)と、前記2つの液圧発生室のうちの一方を前記4つの車輪制動装置のうちの左右前輪に対応する2つと液圧的に接続する前輪の液圧配管と、前記2つの液圧発生室のうちの他方を前記4つの車輪制動装置のうちの左右後輪に対応する2つと液圧的に接続する後輪の液圧配管とを備える。即ち、この第1の車両用制動制御装置は、所謂「前後配管」を備えている。 The first vehicle braking control device according to the present invention provides four wheel brakings that respectively apply braking torques corresponding to the brake hydraulic pressures supplied to the wheel cylinders of the four wheels on the front, rear, left and right sides of the vehicle to the corresponding wheels. A first hydraulic pressure generating device (master cylinder) having two hydraulic pressure generating chambers each generating a hydraulic pressure amount corresponding to a braking operation amount by a driver of the vehicle, and the two hydraulic pressure generating chambers One of the four wheel braking devices is hydraulically connected to two corresponding to the left and right front wheels of the four wheel braking devices, and the other of the two hydraulic pressure generating chambers is the four wheels. Two of the braking devices corresponding to the left and right rear wheels and a hydraulic piping for the rear wheels connected hydraulically are provided. In other words, the first vehicle brake control device includes a so-called “front and rear pipe”.
この第1の車両用制動制御装置は、前記前輪、後輪の液圧配管のそれぞれにおいて前記第1の液圧発生装置により発生された前記液圧量に加算される補助液圧を発生する動力駆動の第2の液圧発生装置(液圧ポンプ)と、前記制動操作量を検出する検出手段と、前記検出された制動操作量に基づいて、前記前輪の液圧配管における前輪の補助液圧基準量及び前記後輪の液圧配管における後輪の補助液圧基準量を決定する基準量決定手段と、前記車両の荷重状態を表す状態量、前記車両の走行状態を表す状態量、及び前記車輪の滑り易さを表す状態量のうちの少なくとも1つを取得する取得手段と、前記決定された前輪、後輪の補助液圧基準量と前記取得された状態量とに基づいて、前記前輪の液圧配管における前輪の補助液圧目標量を前記前輪の補助液圧基準量以上に決定し、前記後輪の液圧配管における後輪の補助液圧目標量を前記後輪の補助液圧基準量以下に決定する目標量決定手段と、前記前輪、後輪の液圧配管のそれぞれにおける前記補助液圧を、前記決定された前輪、後輪の補助液圧目標量にそれぞれ一致するように調整する調圧手段とを更に備えている。 The first vehicle braking control device generates power for generating auxiliary hydraulic pressure added to the hydraulic pressure amount generated by the first hydraulic pressure generating device in each of the hydraulic piping for the front wheels and the rear wheels. A second hydraulic pressure generator (hydraulic pump) for driving, a detecting means for detecting the braking operation amount, and an auxiliary hydraulic pressure for the front wheel in the hydraulic piping for the front wheel based on the detected braking operation amount A reference amount determining means for determining a reference amount and an auxiliary hydraulic pressure reference amount of the rear wheel in the hydraulic piping of the rear wheel, a state amount indicating the load state of the vehicle, a state amount indicating the running state of the vehicle, and the Based on the acquisition means for acquiring at least one of the state quantities representing the slipperiness of the wheels, the determined auxiliary hydraulic pressure reference amounts of the front wheels and rear wheels, and the acquired state quantities, the front wheels The auxiliary hydraulic pressure target amount for the front wheel in the hydraulic piping A target amount determining means for determining the auxiliary hydraulic pressure target amount of the rear wheel in the hydraulic piping of the rear wheel to be equal to or lower than the auxiliary hydraulic pressure reference amount of the rear wheel, and the front wheel, Pressure adjusting means is further provided for adjusting the auxiliary hydraulic pressure in each of the hydraulic pressure pipes of the rear wheels so as to match the determined auxiliary hydraulic pressure target amounts of the front wheels and the rear wheels, respectively.
これによれば、制動操作時において、前記取得手段により取得された状態量に基づいて、前輪の液圧配管の制動液圧(マスタシリンダ圧+前輪の補助液圧)が前輪の基準液圧(マスタシリンダ圧+前輪の補助液圧基準量)以上の値に調整され、後輪の液圧配管の制動液圧(マスタシリンダ圧+後輪の補助液圧)が後輪の基準液圧(マスタシリンダ圧+後輪の補助液圧基準量)以下の値に調整される。 According to this, at the time of braking operation, based on the state quantity acquired by the acquisition means, the braking hydraulic pressure of the hydraulic piping of the front wheels (master cylinder pressure + auxiliary hydraulic pressure of the front wheels) becomes the reference hydraulic pressure of the front wheels ( The master cylinder pressure + front wheel auxiliary hydraulic pressure reference amount) is adjusted to a value equal to or greater than that, and the rear wheel hydraulic pipe braking hydraulic pressure (master cylinder pressure + rear wheel auxiliary hydraulic pressure) is the rear wheel reference hydraulic pressure (master Cylinder pressure + rear wheel auxiliary hydraulic pressure reference amount)) or less.
従って、例えば、車両の荷重状態、走行状態等に起因する車両の偏向のし易さが大きくなるほど、前輪の制動液圧配分比率が大きくされ後輪の制動液圧配分比率が小さくされ得る。これにより、車両全体に作用する制動力が概ね一定に維持される一方で、後輪の制動力(前後力)が小さくなって、後輪のコーナリングフォース(横力)の限界値が大きくなる。この結果、車両の偏向を抑制するための十分な後輪のコーナリングフォースが確保され得る。 Therefore, for example, the greater the ease with which the vehicle is deflected due to the load state, traveling state, etc. of the vehicle, the greater the braking fluid pressure distribution ratio of the front wheels and the smaller the braking fluid pressure distribution ratio of the rear wheels. As a result, the braking force acting on the entire vehicle is maintained substantially constant, while the braking force (front / rear force) of the rear wheels is reduced and the limit value of the cornering force (lateral force) of the rear wheels is increased. As a result, a sufficient rear wheel cornering force for suppressing the deflection of the vehicle can be ensured.
以上より、本発明に係る第1の車両用制動制御装置によれば、前後配管の場合において、制動操作量に対する車両減速度の増大特性を概ね一定に維持しつつ2つの液圧配管の制動液圧配分を調整して車両の方向安定性を確保することができる。 As described above, according to the first vehicle braking control apparatus of the present invention, in the case of the front and rear pipes, the braking fluid of the two hydraulic pipes is maintained while maintaining the vehicle deceleration increasing characteristic with respect to the braking operation amount substantially constant. The pressure distribution can be adjusted to ensure the directional stability of the vehicle.
本発明に係る第2の車両用制動制御装置は、上記第1の車両用制動制御装置のものと同じ4つの車輪制動装置、及び第1の液圧発生装置、並びに、前記2つの液圧発生室のうちの一方を前記4つの車輪制動装置のうちの左前輪及び右後輪に対応する2つと液圧的に接続する第1の液圧配管と、前記2つの液圧発生室のうちの他方を前記4つの車輪制動装置のうちの右前輪及び左後輪に対応する2つと液圧的に接続する第2の液圧配管とを備える。即ち、この第2の車両用制動制御装置は、所謂「ダイアゴナル配管(X配管ともいう)」を備えている。 The second vehicle brake control device according to the present invention includes the same four wheel brake devices, the first hydraulic pressure generator, and the two hydraulic pressure generators as those of the first vehicle brake control device. A first hydraulic pipe that hydraulically connects one of the chambers to two corresponding to the left front wheel and the right rear wheel of the four wheel braking devices; and of the two hydraulic pressure generation chambers A second hydraulic pipe that hydraulically connects the other to two of the four wheel braking devices corresponding to the right front wheel and the left rear wheel. That is, the second vehicle braking control device includes a so-called “diagonal pipe (also referred to as an X pipe)”.
本発明に係る第2の車両用制動制御装置は、前記第1、第2の液圧配管のそれぞれにおいて前記第1の液圧発生装置により発生された前記液圧量に加算される補助液圧を発生する動力駆動の第2の液圧発生装置と、前記制動操作量を検出する検出手段と、前記検出された制動操作量に基づいて、前記第1の液圧配管における第1の補助液圧基準量及び前記第2の液圧配管における第2の補助液圧基準量を決定する基準量決定手段と、前記車両の旋回状態を表す状態量、及び前記車輪の滑り易さを表す状態量のうちの少なくとも1つを取得する取得手段と、前記車両の旋回状態において前記決定された第1、第2の補助液圧基準量と前記取得された状態量とに基づいて、前記第1、第2の液圧配管のうち旋回外側前輪及び旋回内側後輪に対応する一方の液圧配管における第1の補助液圧目標量を前記第1、第2の補助液圧基準量のうち前記一方の液圧配管に対応する一方の補助液圧基準量以上に決定し、前記第1、第2の液圧配管のうちの他方の液圧配管における第2の補助液圧目標量を前記第1、第2の補助液圧基準量のうちの他方の補助液圧基準量以下に決定する目標量決定手段と、前記一方、他方の液圧配管のそれぞれにおける前記補助液圧を、前記決定された第1、第2の補助液圧目標量にそれぞれ一致するように調整する調圧手段とを備えている。 The second vehicle brake control device according to the present invention is configured such that the auxiliary hydraulic pressure added to the hydraulic pressure amount generated by the first hydraulic pressure generating device in each of the first and second hydraulic pressure pipes. A second hydraulic pressure generator driven by power, a detecting means for detecting the braking operation amount, and a first auxiliary fluid in the first hydraulic pipe based on the detected braking operation amount A reference amount determining means for determining a pressure reference amount and a second auxiliary hydraulic pressure reference amount in the second hydraulic pipe, a state amount representing the turning state of the vehicle, and a state amount representing the ease of slipping of the wheels. On the basis of the acquisition means for acquiring at least one of the following, the first and second auxiliary hydraulic pressure reference amounts determined in the turning state of the vehicle, and the acquired state quantity, Corresponds to the turning outer front wheel and turning inner rear wheel of the second hydraulic pipe A first auxiliary hydraulic pressure target amount in one hydraulic piping is determined to be greater than or equal to one auxiliary hydraulic pressure reference amount corresponding to the one hydraulic piping among the first and second auxiliary hydraulic pressure reference amounts; The second auxiliary hydraulic pressure target amount in the other hydraulic pipe among the first and second hydraulic pipes is set as the other auxiliary hydraulic pressure reference quantity in the first and second auxiliary hydraulic pressure reference quantities. The target amount determining means to be determined below and the auxiliary hydraulic pressure in each of the one and the other hydraulic pipes are adjusted so as to coincide with the determined first and second auxiliary hydraulic pressure target amounts, respectively. Pressure adjusting means.
これによれば、車両旋回状態での制動操作時において、前記取得手段により取得された状態量に基づいて、旋回外側前輪を含む「一方」の液圧配管の制動液圧(マスタシリンダ圧+「一方」の補助液圧)が「一方」の基準液圧(マスタシリンダ圧+「一方」の補助液圧基準量)以上の値に調整され、旋回内側前輪を含む「他方」の液圧配管の制動液圧(マスタシリンダ圧+「他方」の補助液圧)が「他方」の基準液圧(マスタシリンダ圧+「他方」の補助液圧基準量)以下の値に調整される。 According to this, during the braking operation in the vehicle turning state, based on the state quantity acquired by the acquisition means, the braking hydraulic pressure (master cylinder pressure + “ "One" auxiliary hydraulic pressure) is adjusted to a value equal to or higher than "One" reference hydraulic pressure (Master cylinder pressure + "One" auxiliary hydraulic pressure reference amount). The braking hydraulic pressure (master cylinder pressure + “other” auxiliary hydraulic pressure) is adjusted to a value equal to or less than the “other” reference hydraulic pressure (master cylinder pressure + “other” auxiliary hydraulic pressure reference amount).
従って、例えば、車両の走行状態等に起因する車両の偏向のし易さが大きくなるほど、旋回外側前輪及び旋回内側後輪の制動液圧配分比率が大きくされ旋回内側前輪及び旋回外側後輪の制動液圧配分比率が小さくされ得る。これにより、車両全体に作用する制動力が概ね一定に維持される。 Therefore, for example, the greater the ease of deflection of the vehicle due to the running state of the vehicle, the greater the braking hydraulic pressure distribution ratio between the turning outer front wheel and the turning inner rear wheel, and the braking of the turning inner front wheel and the turning outer rear wheel. The hydraulic pressure distribution ratio can be reduced. Thereby, the braking force acting on the entire vehicle is maintained substantially constant.
また、旋回状態での制動中では、車体の荷重移動により旋回内側後輪の接地荷重が最も減少し、旋回内側後輪のスリップが発生し易くなる。従って、アンチスキッド制御(ABS制御)等により旋回内側後輪の制動液圧(従って、制動力)の上昇が制限される。この結果、旋回外側前輪にのみ大きな制動力が作用することになるから、車両には旋回外向きのヨーイングモーメントが発生し、車両の偏向が抑制され得る。 Further, during braking in a turning state, the ground load on the rear inner wheel decreases most due to the load movement of the vehicle body, and the rear inner wheel slip easily occurs. Therefore, an increase in the brake fluid pressure (and hence the braking force) of the rear inner wheel is restricted by anti-skid control (ABS control) or the like. As a result, a large braking force is applied only to the outer front wheels of the turn, so that a yawing moment is generated in the vehicle toward the outside of the turn, and the deflection of the vehicle can be suppressed.
以上より、本発明に係る第2の車両用制動制御装置によれば、ダイアゴナル配管の場合において、制動操作量に対する車両減速度の増大特性を概ね一定に維持しつつ2つの液圧配管の制動液圧配分を調整して車両の方向安定性を確保することができる。 As described above, according to the second braking control device for a vehicle according to the present invention, in the case of diagonal piping, the braking fluid of the two hydraulic piping is maintained while maintaining the increase characteristic of the vehicle deceleration with respect to the braking operation amount substantially constant. The pressure distribution can be adjusted to ensure the directional stability of the vehicle.
ここにおいて、前記荷重状態を表す状態量としては、例えば、前記車両の静的な積載状態を表す値等が使用され得る。前記走行状態を表す状態量としては、例えば、前記車両の車体速度、前記車両の旋回状態を表す値等が使用され得る。前記車輪の滑り易さを表す状態量としては、例えば、前記車輪のスリップ速度等が使用され得る。 Here, as the state quantity representing the load state, for example, a value representing a static loading state of the vehicle can be used. As the state quantity representing the running state, for example, a vehicle body speed of the vehicle, a value representing a turning state of the vehicle, or the like can be used. As the state quantity indicating the slipperiness of the wheel, for example, the slip speed of the wheel can be used.
上記第1、第2の車両用制動制御装置において、前記目標量決定手段は、前記前輪、後輪の補助液圧目標量、又は前記第1、第2の補助液圧目標量を、前記制動操作量がゼロ又はゼロ近傍の微小値よりも大きい範囲に亘ってゼロよりも大きい値になるように決定するよう構成されることが好適である。 In the first and second vehicle braking control devices, the target amount determining means is configured to use the auxiliary hydraulic pressure target amount for the front wheels and the rear wheels, or the first and second auxiliary hydraulic pressure target amounts for the braking. It is preferable that the operation amount is determined to be a value larger than zero over a range larger than zero or a minute value near zero.
これによれば、運転者の制動操作の全領域で、マスタシリンダ圧に補助液圧(>0)が加算された状態が維持される。従って、制動操作の途中で補助液圧が付与開始されることに起因する運転者の制動操作に対する違和感の発生を抑制することができる。 According to this, the state where the auxiliary hydraulic pressure (> 0) is added to the master cylinder pressure is maintained in the entire region of the driver's braking operation. Therefore, it is possible to suppress the driver from feeling uncomfortable with the braking operation due to the start of application of the auxiliary hydraulic pressure during the braking operation.
また、第1の車両用制動制御装置において(即ち、前後配管の場合)、前記基準量決定手段は、前記前輪の補助液圧基準量を、前記制動操作量の増加に応じて増加するとともに前記制動操作量の増加に応じて増加勾配が大きくなるように決定し、前記後輪の補助液圧基準量を、前記制動操作量の増加に応じて増加するとともに前記制動操作量の増加に応じて増加勾配が小さくなるように決定するように構成されることが好適である。 Further, in the first vehicle braking control device (that is, in the case of front and rear piping), the reference amount determination means increases the auxiliary hydraulic pressure reference amount of the front wheels in accordance with an increase in the braking operation amount and In accordance with an increase in the braking operation amount, the increase gradient is determined to increase, and the auxiliary hydraulic pressure reference amount for the rear wheel is increased in accordance with the increase in the braking operation amount and in response to the increase in the braking operation amount. Suitably, the increase gradient is determined to be small.
これによれば、前輪、後輪の液圧配管の基準制動液圧配分の特性を、理想液圧配分(前輪及び後輪のロックが同時に発生する配分)に近い配分の特性に設定することができる。 According to this, the characteristic of the reference braking hydraulic pressure distribution of the hydraulic piping of the front wheel and the rear wheel can be set to a distribution characteristic close to the ideal hydraulic pressure distribution (the distribution in which the front wheel and the rear wheel are locked simultaneously). it can.
以下、本発明による車両用制動制御装置の各実施形態について図面を参照しつつ説明する。第1実施形態は「前後配管」を備えていて、第2実施形態は「ダイアゴナル配管」を備えている。 Hereinafter, embodiments of a vehicle brake control device according to the present invention will be described with reference to the drawings. The first embodiment includes “front and rear piping”, and the second embodiment includes “diagonal piping”.
(第1実施形態)
《装置の全体構成》
先ず、図1、及び図2を参照しながら、第1実施形態に係る車両用制動制御装置の全体構成について説明する。第1圧力発生手段(前記「第1の液圧発生装置」に対応)は、マスタシリンダMCである。マスタシリンダMCは、2つの液圧発生室(図示せず)を有していて、運転者のブレーキペダルBPの操作(制動操作)に応じて制動圧力(液圧)を発生する。即ち、運転者の発生する力(パワー)を動力源として制動圧力を発生する。更に、ブレーキペダル操作力を低減するために、マスタシリンダMCにはバキュームブースタVB(負圧ブースタ、ブレーキブースタともいう)を備えることができる。
(First embodiment)
<Overall configuration of the device>
First, the overall configuration of the vehicle brake control device according to the first embodiment will be described with reference to FIGS. 1 and 2. The first pressure generating means (corresponding to the “first hydraulic pressure generating device”) is the master cylinder MC. The master cylinder MC has two hydraulic pressure generation chambers (not shown), and generates a braking pressure (hydraulic pressure) in response to the driver's operation (braking operation) of the brake pedal BP. That is, the braking pressure is generated using the power generated by the driver as a power source. Furthermore, in order to reduce the brake pedal operating force, the master cylinder MC can be provided with a vacuum booster VB (also referred to as a negative pressure booster or a brake booster).
第2圧力発生手段(前記「第2の液圧発生装置」に対応)は、電気モータMによって駆動される流体ポンプ(液圧ポンプともいい、以下、単にポンプという)HP#であって、運転者のパワーとは別個の動力源(例えば、電力源)によって制動圧力を発生する。ポンプHP#は、マスタシリンダMCが吐出する流体の一部を吸引し、ホイールシリンダWC**に対して吐出する。 The second pressure generating means (corresponding to the “second hydraulic pressure generating device”) is a fluid pump (also referred to as a hydraulic pump, hereinafter simply referred to as a pump) HP # driven by an electric motor M, and is operated. The braking pressure is generated by a power source (for example, a power source) that is separate from the person's power. The pump HP # sucks a part of the fluid discharged from the master cylinder MC and discharges it to the wheel cylinder WC **.
ここで、「#」は、2系統の制動配管(液圧配管)における各配管系統を表す添字であり、制動配管が前後配管のときには、添字「f」は前輪系統、添字「r」は後輪系統を意味し、ダイアゴナル配管のときには、添字「1」は第1系統、添字「2」は第2系統を意味する。以下において、同じである。また、「**」は、各車輪を意味する添字であり、「fl」は左前輪、「fr」は右前輪、「rl」は左後輪、「rr」は右後輪を表す。以下において、同じである。 Here, “#” is a subscript representing each piping system in the two systems of braking piping (hydraulic piping). When the braking piping is front and rear piping, the subscript “f” is the front wheel system, and the subscript “r” is the rear. In the case of diagonal piping, the subscript “1” means the first system and the subscript “2” means the second system. The same applies to the following. “**” is a subscript meaning each wheel, “fl” represents the left front wheel, “fr” represents the right front wheel, “rl” represents the left rear wheel, and “rr” represents the right rear wheel. The same applies to the following.
このように、ポンプHP#は、配管部LM#から流体を吸引して配管部LW**に吐出する。このため、流体の移動が生じ、マスタシリンダMCの発生する制動圧力に対して補助的な制動圧力が発生する。 In this way, the pump HP # sucks the fluid from the pipe part LM # and discharges it to the pipe part LW **. For this reason, the movement of the fluid occurs, and an auxiliary braking pressure is generated with respect to the braking pressure generated by the master cylinder MC.
検出手段BSは、運転者の制動操作部材(例えば、ブレーキペダルBP)による制動操作量Bsを検出する。具体的は、マスタシリンダMC、或いは、マスタシリンダMCの2つの液圧発生室にそれぞれ接続された2つの制動配管(前輪、後輪の液圧配管)における制動圧力(マスタシリンダ圧力Pm#)を検出する。従って、制動操作量Bsとして、マスタシリンダ圧力Pm#を用いることができる。また、ブレーキペダルBPの変位量(ストローク)、操作力を検出し、これらの検出値(ブレーキペダルストローク、或いは、ブレーキペダル操作力)を制動操作量Bsとすることもできる。 The detection means BS detects the braking operation amount Bs by the driver's braking operation member (for example, the brake pedal BP). Specifically, the braking pressure (master cylinder pressure Pm #) in the master cylinder MC or two braking pipes (front and rear hydraulic pipes) connected to the two hydraulic pressure generation chambers of the master cylinder MC, respectively. To detect. Therefore, the master cylinder pressure Pm # can be used as the braking operation amount Bs. Further, the displacement (stroke) and operating force of the brake pedal BP can be detected, and these detected values (brake pedal stroke or brake pedal operating force) can be used as the braking operation amount Bs.
圧力調整手段(前記「調圧手段」に相当)は、例えば、リニア調圧弁(リニアソレノイド弁、リニア制御弁ともいう)LV#であり、第2圧力発生手段(ポンプ/電気モータ)が発生する圧力を、後述する補助圧力目標値SP#tに基づいて調圧する。そして、第1圧力発生手段(マスタシリンダMC)の発生する制動圧力に対して、第2圧力発生手段(ポンプ/電気モータ)の発生する制動圧力を加えてホイールシリンダWC**に与える。電気モータMの回転数を制御し、必要な圧力を発生させ、最終的な圧力の調整はリニアソレノイド弁LV#で行う。 The pressure adjusting means (corresponding to the “pressure adjusting means”) is, for example, a linear pressure adjusting valve (also referred to as a linear solenoid valve or a linear control valve) LV #, which is generated by the second pressure generating means (pump / electric motor). The pressure is adjusted based on an auxiliary pressure target value SP # t described later. Then, the braking pressure generated by the second pressure generating means (pump / electric motor) is added to the braking pressure generated by the first pressure generating means (master cylinder MC) and applied to the wheel cylinder WC **. The number of rotations of the electric motor M is controlled to generate a necessary pressure, and the final pressure adjustment is performed by the linear solenoid valve LV #.
《制動制御の構成》
次に、図3を参照しながら、第1実施形態に係る車両用制動制御装置による制動制御の構成について説明する。
《Brake control configuration》
Next, the configuration of the braking control by the vehicle braking control apparatus according to the first embodiment will be described with reference to FIG.
〈補助圧力基準値SP#oの演算〉
第1圧力発生手段(マスタシリンダMC)によって発生する制動圧力を補助(助勢)する圧力(制動圧力に加算される圧力)の基準値が、運転者の制動部材(ブレーキペダルBP)の操作量(以下、制動操作量Bsという)に基づいて演算される。制動操作量Bsは、制動操作量の検出手段BS(ブレーキペダルストロークセンサ、ブレーキペダル踏力センサ、マスタシリンダ圧力センサのうちの少なくともいずれか1つを用いる)の検出結果に基づいて演算される。
<Calculation of auxiliary pressure reference value SP # o>
The reference value of the pressure (pressure added to the braking pressure) for assisting (asserting) the braking pressure generated by the first pressure generating means (master cylinder MC) is the amount of operation of the braking member (brake pedal BP) of the driver ( Hereinafter, it is calculated based on the braking operation amount Bs). The braking operation amount Bs is calculated based on the detection result of the braking operation amount detecting means BS (using at least one of a brake pedal stroke sensor, a brake pedal depression force sensor, and a master cylinder pressure sensor).
マスタシリンダMCによって発生する制動圧力は、配管部LM#の圧力と同一である。運転者の制動操作の目的は車両(車体)を減速させることである。この装置は、制動圧力によってブレーキパッドをブレーキロータに押し付け、そのときに発生する摩擦力によって車輪に制動力を発生させる。このため、制動制御の対象は圧力(ホイールシリンダ内の流体の圧力)である。そのため、制動操作量Bsとして、同一物理量であるマスタシリンダ圧力Pm#を用いることが望ましい。 The braking pressure generated by the master cylinder MC is the same as the pressure in the piping part LM #. The purpose of the driver's braking operation is to decelerate the vehicle (vehicle body). This device presses a brake pad against a brake rotor by a braking pressure, and generates a braking force on a wheel by a frictional force generated at that time. For this reason, the target of braking control is pressure (pressure of fluid in the wheel cylinder). Therefore, it is desirable to use the master cylinder pressure Pm # that is the same physical quantity as the braking operation amount Bs.
補助圧力の基準値(前記「補助液圧基準量」に対応。以下、単に基準値SP#oとも呼ぶ)は、車両の基準となる諸元をベースにして、運転者の制動操作量Bsに基づいて演算される。車両の基準諸元は、車両重量Ms、重心位置、ホイールベースL等の値であり、乗員や積載の状態によって変化する値であるが、所定の状態(所定の乗員数や積載量)を想定した値である。 The reference value of the auxiliary pressure (corresponding to the above-mentioned “auxiliary hydraulic pressure reference amount”, hereinafter simply referred to as the reference value SP # o) is based on the specifications that serve as the vehicle reference and is based on the driver's braking operation amount Bs Calculated based on The standard specifications of the vehicle are values such as the vehicle weight Ms, the position of the center of gravity, the wheel base L, and the like, and are values that vary depending on the occupant and the loading state. It is the value.
補助圧力基準値SP#oは、いわゆる理想制動力配分(制動時の荷重移動を考慮して前後輪の制動力が夫々の荷重に比例した制動力となる配分)、或いは、それに近似した制動力配分の特性から演算される。図4A、図4Bはそれぞれ、制動操作量Bsに対する前輪、後輪補助圧力基準値SPfo,SProのテーブルである。この場合、補助圧力基準値SP#oは、制動操作量Bsの「0」からの増加に応じて「0」から比例的(線形的)に増大する。前輪、後輪補助圧力基準値SPfo,SProは、同じ値であっても異なっていてもよい。 The auxiliary pressure reference value SP # o is a so-called ideal braking force distribution (a distribution in which the braking force of the front and rear wheels becomes a braking force proportional to each load in consideration of load movement during braking), or a braking force approximated thereto. Calculated from the distribution characteristics. 4A and 4B are tables of front wheel and rear wheel auxiliary pressure reference values SPfo and SPro with respect to the braking operation amount Bs, respectively. In this case, the auxiliary pressure reference value SP # o increases proportionally (linearly) from “0” as the braking operation amount Bs increases from “0”. The front wheel and rear wheel auxiliary pressure reference values SPfo and SPro may be the same or different.
また、図5Aに示すように、前輪の補助圧力基準値SPfoは、制動操作量Bsの「0」からの増大に応じて「下に凸」の特性をもって「0」から増大するように設定され得る(実線を参照)。又は、「下に凸」の特性を近似した破線で示すように、制動操作量Bsの「0」からの増大に応じて傾きが増加する複数の直線によって「0」から増大するようにも設定され得る。 Further, as shown in FIG. 5A, the auxiliary pressure reference value SPfo for the front wheels is set to increase from “0” with a “convex downward” characteristic in response to an increase in the braking operation amount Bs from “0”. Get (see solid line). Alternatively, as indicated by a dashed line approximating the characteristic of “convex downward”, it is also set to increase from “0” by a plurality of straight lines whose inclination increases as the braking operation amount Bs increases from “0”. Can be done.
図5Bに示すように、後輪の補助圧力基準値SProは、制動操作量Bsの「0」からの増大に応じて「上に凸」の特性をもって「0」から増大するように設定され得る(実線を参照)。又は、「上に凸」の特性を近似した破線で示すように、制動操作量Bsの「0」からの増大に応じて傾きが減少する複数の直線によって「0」から増大するようにも設定され得る。これらにより、前後輪間の制動力配分を理想制動力配分により近づけることができる。 As shown in FIG. 5B, the auxiliary pressure reference value SPro for the rear wheels can be set to increase from “0” with a characteristic of “convex upward” in response to an increase in the braking operation amount Bs from “0”. (See solid line). Alternatively, as indicated by a broken line approximating the characteristic of “convex upward”, it is also set to increase from “0” by a plurality of straight lines whose inclination decreases as the braking operation amount Bs increases from “0”. Can be done. Thus, the braking force distribution between the front and rear wheels can be made closer to the ideal braking force distribution.
補助圧力の設定においては、任意の制動操作量を補助圧力付与の起点(開始点)とすることができる。ここで、「0」を含む微小の制動操作量(「0」、或いは「0」近傍の微小値)を補助圧力付与の起点とすることが望ましい。補助圧力の付与によって、ブレーキペダルBPの操作特性が変化するが、「0」を含む微小の制動操作量を補助圧力付与の起点とすることで、運転者への違和感を抑制することができる。 In setting the auxiliary pressure, an arbitrary amount of braking operation can be set as the starting point (starting point) for applying the auxiliary pressure. Here, it is desirable that a minute braking operation amount including “0” (“0” or a minute value in the vicinity of “0”) is used as a starting point for applying the auxiliary pressure. Although the operation characteristic of the brake pedal BP is changed by the application of the auxiliary pressure, a sense of discomfort to the driver can be suppressed by using a small amount of braking operation including “0” as the starting point of the application of the auxiliary pressure.
また、マスタシリンダMCがバキュームブースタVBを備え、バキュームブースタVBがジャンプイン特性(バキュームブースタの助勢力がゼロからステップ的に増大する特性。ジャンピング特性ともいう。)を有する場合、ジャンプインに相当する制動操作量を補助圧力付与の起点とすることもできる。バキュームブースタのジャンプインと補助圧力付与の起点を合わせることで、運転者への違和感を更に抑制することができる。 Further, when the master cylinder MC includes a vacuum booster VB and the vacuum booster VB has a jump-in characteristic (a characteristic in which the assisting force of the vacuum booster increases stepwise from zero, also referred to as a jumping characteristic), this corresponds to a jump-in. The amount of braking operation can also be used as the starting point for applying auxiliary pressure. By combining the jump-in of the vacuum booster and the starting point of the application of the auxiliary pressure, it is possible to further suppress a sense of discomfort to the driver.
補助圧力は、各車輪の接地荷重を推定し、これに基づいて設定することができる。この場合、制動操作量Bsに基づいて車体減速度の目標値を決定し、これを実現するための総制動力が演算される。そして、この総制動力を各車輪の接地荷重に基づいて配分する。接地荷重の推定は、前後加速度センサGXによる検出結果、或いは、車体速度Vxを微分して得られる車体減速度Gx、及び、車両の基準諸元に基づいてなされ得る。この場合であっても、補助圧力基準値SP#oは、制動操作量Bsに基づいて演算される。以上、このように補助圧力基準値SP#oを決定する手段が、前記「基準量決定手段」に対応する。 The auxiliary pressure can be set based on an estimated ground load of each wheel. In this case, the target value of the vehicle body deceleration is determined based on the braking operation amount Bs, and the total braking force for realizing this is calculated. This total braking force is distributed based on the ground contact load of each wheel. The ground load can be estimated based on the detection result of the longitudinal acceleration sensor GX, the vehicle body deceleration Gx obtained by differentiating the vehicle body speed Vx, and the vehicle reference specifications. Even in this case, the auxiliary pressure reference value SP # o is calculated based on the braking operation amount Bs. As described above, the means for determining the auxiliary pressure reference value SP # o corresponds to the “reference amount determination means”.
〈補助圧力目標値SP#tの演算〉
補助圧力の目標値(以下、単に目標値SP#tとも呼ぶ)は、基準値SP#oを、車両状態量、走行状態量、及び車輪状態量に基づいて決定される後述する修正値(修正係数)に基づいて修正されて得られる補助圧力の最終的な目標値である。第2圧力発生手段、及び、圧力調整手段は、補助圧力目標値SP#tに基づいて制御される。なお、この第1実施形態では、この修正値(修正係数)に基づく修正は、旋回時も直進時も行われる。
<Calculation of auxiliary pressure target value SP # t>
The target value of the auxiliary pressure (hereinafter also simply referred to as target value SP # t) is a reference value SP # o that is determined based on the vehicle state quantity, the running state quantity, and the wheel state quantity, which will be described later. This is the final target value of the auxiliary pressure obtained by correction based on the coefficient. The second pressure generating means and the pressure adjusting means are controlled based on the auxiliary pressure target value SP # t. In the first embodiment, the correction based on the correction value (correction coefficient) is performed during both turning and straight traveling.
SPft=Kf・Fnc(Bs)が成立する。ここで、Kfは前輪の修正係数であり、後述するKvhf、Kdcf、Kpyfを用いて、Kf=Kvhf・Kdcf・Kpyf(Kvhf、Kdcf、Kpyfのうちの少なくともいずれか1つを省略可能)に従って演算される。また、Fnc(Bs)は制動操作量Bsを引数として前輪補助圧力基準値SPfoを表す関数、或いは、テーブルであって、例えば、図4、或いは、図5に示した特性を備える。 SPft = Kf · Fnc (Bs) is established. Here, Kf is a front wheel correction coefficient, and is calculated according to Kf = Kvhf · Kdcf · Kpyf (at least one of Kvhf, Kdcf, Kpyf can be omitted) using Kvhf, Kdcf, Kpyf described later. Is done. Fnc (Bs) is a function or table representing the front wheel auxiliary pressure reference value SPfo with the braking operation amount Bs as an argument, and has the characteristics shown in FIG. 4 or FIG. 5, for example.
SPrt=Kr・Gnc(Bs)が成立する。ここで、Krは後輪の修正係数であり、後述するKvhr、Kdcr、Kpyrを用いて、Kr=Kvhr・Kdcr・Kpyr(Kvhr、Kdcr、Kpyrのうちの少なくともいずれか1つを省略可能)に従って演算される。また、Gnc(Bs)は制動操作量Bsを引数として後輪補助圧力基準値SProを表す関数、或いは、テーブルであって、例えば、図4、或いは、図5に示した特性を備える。 SPrt = Kr · Gnc (Bs) is established. Here, Kr is a rear wheel correction coefficient, and Kr = Kvhr · Kdcr · Kpyr (at least one of Kvhr, Kdcr, Kpyr can be omitted) using Kvhr, Kdcr, Kpyr described later. Calculated. Gnc (Bs) is a function or table representing the rear wheel auxiliary pressure reference value SPro with the braking operation amount Bs as an argument, and has the characteristics shown in FIG. 4 or FIG. 5, for example.
〈修正値(修正係数)の演算〉
1.車両状態に基づく修正値(修正係数)Kvh#の演算
車両状態量とは、車両の荷重状態(静的な積載状態)を表す値、或いは、荷重状態に依存して変化する値であり、例えば、車両重量に対する前輪軸の荷重の比率(前輪配分比率Jh)、車両重量に対する後輪軸の荷重の比率(後輪配分比率(1−Jh))、車両の横方向における荷重の偏差(以下、偏荷重Hkと呼ぶ)、又は、積載状態によって変化する車両の重心高Hgである。修正値(修正係数)Kvh#は、前輪配分比率Jh、偏荷重Hk、及び、重心高Hgのうちの少なくともいずれか1つに基づいて演算される。
<Calculation of correction value (correction coefficient)>
1. Calculation of the correction value (correction coefficient) Kvh # based on the vehicle state The vehicle state amount is a value representing the load state (static loading state) of the vehicle, or a value that changes depending on the load state. The ratio of the load on the front wheel shaft to the vehicle weight (front wheel distribution ratio Jh), the ratio of the load on the rear wheel shaft to the vehicle weight (rear wheel distribution ratio (1-Jh)), and the deviation of the load in the lateral direction of the vehicle (hereinafter referred to as bias) Or a center of gravity height Hg of the vehicle that changes depending on the loading state. The correction value (correction coefficient) Kvh # is calculated based on at least one of the front wheel distribution ratio Jh, the offset load Hk, and the center of gravity height Hg.
ここで、荷重配分比率(前輪配分比率)Jhを求めるために必要となる車両重量は、例えば、少なくとも1つの車輪に設けられた荷重センサ、空気ばねの空気圧力センサ、車高センサの検出結果に基づいて求められる。或いは、加速操作(車両に与えられる駆動力)と車両加速度との関係、制動操作(車両に与えられる制動力)と車両減速度との関係に基づいて求められる。 Here, the vehicle weight necessary for obtaining the load distribution ratio (front wheel distribution ratio) Jh is, for example, the detection result of a load sensor, an air spring air pressure sensor, or a vehicle height sensor provided on at least one wheel. Based on. Or it calculates | requires based on the relationship between acceleration operation (driving force given to a vehicle) and vehicle acceleration, and the relationship between braking operation (braking force given to a vehicle) and vehicle deceleration.
また、偏荷重Hkは、例えば、荷重センサ、空気ばねの空気圧力センサ、車高センサの検出結果から右側荷重と左側荷重とを求めることで得られる。或いは、シートベルト装着センサ、エアバック用の乗員センサ、乗員体格センサの検出結果から求める。重心高Hgは、例えば、車両重量から求められる。或いは、旋回状態とローリング運動との関係、減速状態とピッチング運動の関係から求められる。 The offset load Hk can be obtained, for example, by obtaining a right load and a left load from detection results of a load sensor, an air spring air pressure sensor, and a vehicle height sensor. Or it calculates | requires from the detection result of the seatbelt mounting sensor, the passenger | crew sensor for airbags, and a passenger | crew physique sensor. The center of gravity height Hg is obtained from, for example, the vehicle weight. Or it is calculated | required from the relationship between a turning state and rolling motion, and the relationship between a deceleration state and pitching motion.
例えば、Kvh#=Kjh#・Khk#・Khg#と表すことができる。ここで、Kjh#は前輪配分比率Jhに基づく修正係数、Khk#は偏荷重Hkに基づく修正係数、Khg#は重心高Hgに基づく修正係数である。そして、Kvh#を求めるに際し、Kjh#、Khk#、Khg#のうちの少なくともいずれか1つを省略することができる。 For example, Kvh # = Kjh # · Khk # · Khg # can be expressed. Here, Kjh # is a correction coefficient based on the front wheel distribution ratio Jh, Khk # is a correction coefficient based on the offset load Hk, and Khg # is a correction coefficient based on the center of gravity height Hg. In obtaining Kvh #, at least one of Kjh #, Khk #, and Khg # can be omitted.
先ず、修正係数Kjh#について説明する。修正係数Kjh#は、荷重配分比率(前輪の配分比率)Jhに基づいて、図6に示すように設定される。即ち、前輪配分比率Jhが所定値Jhaより小さいときには前輪及び後輪の修正係数Kjhf、Kjhrが「1」とされる。一方、所定値Jha以上では、前輪配分比率Jhの増加に応じて前輪修正係数Kjhfが「1」から増大していき、後輪修正係数Kjhrが「1」から減少していく。 First, the correction coefficient Kjh # will be described. The correction coefficient Kjh # is set as shown in FIG. 6 based on the load distribution ratio (front wheel distribution ratio) Jh. That is, when the front wheel distribution ratio Jh is smaller than the predetermined value Jha, the correction coefficients Kjhf and Kjhr for the front wheels and the rear wheels are set to “1”. On the other hand, above the predetermined value Jha, the front wheel correction coefficient Kjhf increases from “1” and the rear wheel correction coefficient Kjhr decreases from “1” as the front wheel distribution ratio Jh increases.
この場合、前輪、後輪修正係数Kjhf,Kjhrの「1」からの増大量及び減少量は、制動操作量Bsに対する車両の減速度の増大特性(制動操作量と車両減速度との関係)が概ね一定に維持され得るように決定される。即ち、ブレーキ効力係数、制動有効半径、ホイールシリンダ受圧面積等が考慮され、修正係数の増大量に対する制動力の増大量と、修正係数の減少量に対する制動力の減少量とが概ね一致するように、修正係数Kjh#は設定される。 In this case, the increase amount and the decrease amount of the front wheel and rear wheel correction coefficients Kjhf and Kjhr from “1” are the vehicle deceleration increase characteristics with respect to the braking operation amount Bs (the relationship between the braking operation amount and the vehicle deceleration). It is determined so that it can be maintained substantially constant. In other words, the braking effectiveness coefficient, the effective braking radius, the wheel cylinder pressure receiving area, etc. are taken into consideration so that the amount of increase in the braking force with respect to the amount of increase in the correction coefficient is substantially equal to the amount of decrease in the braking force with respect to the amount of decrease in the correction coefficient. The correction coefficient Kjh # is set.
なお、修正係数が「1」のときには補助圧力基準値そのものが補助圧力目標値として演算され、修正係数が「0」のときには補助加圧が行われないこと(補助圧力=0)を意味する(以下の修正係数について同じ)。 When the correction coefficient is “1”, the auxiliary pressure reference value itself is calculated as the auxiliary pressure target value, and when the correction coefficient is “0”, it means that auxiliary pressurization is not performed (auxiliary pressure = 0) ( Same for the following correction factors):
このように、前輪配分比率Jhの大きさに基づいて修正係数Kjhf、Kjhrを設定することによって、前後輪間の制動力配分が理想配分に近づき、後輪の制動力を有効に利用することが可能となる。 Thus, by setting the correction coefficients Kjhf and Kjhr based on the size of the front wheel distribution ratio Jh, the braking force distribution between the front and rear wheels approaches the ideal distribution, and the braking force of the rear wheels can be used effectively. It becomes possible.
次に、修正係数Khk#について説明する。車両の左右方向で接地荷重に差があると、制動時に車両が偏向し易くなる場合がある。そのため、偏荷重Hkに基づいて修正係数Khk#が、図7に示すように設定される。即ち、偏荷重Hkが所定値Hkaより小さいときには前輪及び後輪の修正係数Khkf、Khkrが「1」とされる。一方、所定値Hka以上では、偏荷重Hkの増加に応じて前輪修正係数Khkfが「1」から増大していき、後輪修正係数Khkrが「1」から減少していく。 Next, the correction coefficient Khk # will be described. If there is a difference in ground load between the left and right directions of the vehicle, the vehicle may be easily deflected during braking. Therefore, the correction coefficient Khk # is set as shown in FIG. 7 based on the offset load Hk. That is, when the eccentric load Hk is smaller than the predetermined value Hka, the correction coefficients Khkf and Khkr for the front wheels and the rear wheels are set to “1”. On the other hand, at the predetermined value Hka or more, the front wheel correction coefficient Khkf increases from “1” and the rear wheel correction coefficient Khkr decreases from “1” as the offset load Hk increases.
この場合、前輪、後輪修正係数Khkf,Khkrの「1」からの増大量及び減少量は、制動操作量Bsに対する車両の減速度の増大特性(制動操作量と車両減速度との関係)が概ね一定に維持され得るように決定される。即ち、ブレーキ効力係数、制動有効半径、ホイールシリンダ受圧面積等が考慮され、修正係数の増大量に対する制動力の増大量と、修正係数の減少量に対する制動力の減少量とが概ね一致するように、修正係数Khk#は設定される。 In this case, the increase amount and the decrease amount of the front wheel and rear wheel correction coefficients Khkf and Khkr from “1” are the vehicle deceleration increase characteristics (relationship between the braking operation amount and the vehicle deceleration) with respect to the braking operation amount Bs. It is determined so that it can be maintained substantially constant. In other words, the braking effectiveness coefficient, the effective braking radius, the wheel cylinder pressure receiving area, etc. are taken into consideration so that the amount of increase in the braking force with respect to the amount of increase in the correction coefficient is substantially equal to the amount of decrease in the braking force with respect to the amount of decrease in the correction coefficient. The correction coefficient Khk # is set.
このように、偏荷重Hkが増加するほど、修正係数Khk#によって前後輪間の制動力配分において前輪比率が高まり後輪比率が低下する。そのため、後輪コーナリングフォースが確保される。この結果、制動時における車両安定性(方向安定性)が確保される。 Thus, the front wheel ratio increases and the rear wheel ratio decreases in the braking force distribution between the front and rear wheels by the correction coefficient Khk # as the offset load Hk increases. Therefore, a rear wheel cornering force is secured. As a result, vehicle stability (direction stability) during braking is ensured.
次に、修正係数Khg#について説明する。車両の重心高Hgが高くなると、車両の旋回時や制動時の荷重移動が大きくなる。特に旋回制動時に、旋回内側後輪の接地荷重が減少し、後輪コーナリングフォースの確保が困難となる場合がある。そのため、重心高Hgに基づいて修正係数Khg#が、図8に示すように設定される。即ち、重心高Hgが所定値Hgaより小さいときには前輪及び後輪の修正係数Khgf、Khgrが「1」とされる。一方、所定値Hga以上では、重心高Hgの増加に応じて前輪修正係数Khgfが「1」から増大していき、後輪修正係数Khgrが「1」から減少していく。 Next, the correction coefficient Khg # will be described. When the height of the center of gravity Hg of the vehicle increases, load movement during turning or braking of the vehicle increases. In particular, during cornering braking, the ground contact load on the inner rear wheel may decrease, and it may be difficult to secure the rear wheel cornering force. Therefore, the correction coefficient Khg # is set as shown in FIG. 8 based on the center of gravity height Hg. That is, when the center-of-gravity height Hg is smaller than the predetermined value Hga, the correction coefficients Khgf and Khgr for the front wheels and the rear wheels are set to “1”. On the other hand, above the predetermined value Hga, the front wheel correction coefficient Khgf increases from “1” and the rear wheel correction coefficient Khgr decreases from “1” as the center of gravity height Hg increases.
この場合、前輪、後輪修正係数Khgf,Khgrの「1」からの増大量及び減少量は、制動操作量Bsに対する車両の減速度の増大特性(制動操作量と車両減速度との関係)が概ね一定に維持され得るように決定される。即ち、ブレーキ効力係数、制動有効半径、ホイールシリンダ受圧面積等が考慮され、修正係数の増大量に対する制動力の増大量と、修正係数の減少量に対する制動力の減少量とが概ね一致するように、修正係数Khg#は設定される。 In this case, the increase amount and the decrease amount of the front wheel and rear wheel correction coefficients Khgf, Khgr from “1” are the vehicle deceleration increase characteristics with respect to the braking operation amount Bs (the relationship between the braking operation amount and the vehicle deceleration). It is determined so that it can be maintained substantially constant. In other words, the braking effectiveness coefficient, the effective braking radius, the wheel cylinder pressure receiving area, etc. are taken into consideration so that the amount of increase in the braking force with respect to the amount of increase in the correction coefficient is substantially equal to the amount of decrease in the braking force with respect to the amount of decrease in the correction coefficient. The correction coefficient Khg # is set.
このように、重心高Hgが増加するほど、修正係数Khg#によって前後輪間の制動力配分において前輪比率が高まり後輪比率が低下する。そのため、後輪コーナリングフォースが確保され、制動時の車両安定性(方向安定性)が向上する。 Thus, as the center of gravity height Hg increases, the front wheel ratio increases in the braking force distribution between the front and rear wheels by the correction coefficient Khg #, and the rear wheel ratio decreases. Therefore, a rear wheel cornering force is secured, and vehicle stability (direction stability) during braking is improved.
2.走行状態量に基づく修正値(修正係数)Kdc#の演算
走行状態量とは、車両の走行状態を表す値であり、例えば、車体の速度(車速)Vx、又は、車両の旋回運動を表す状態量(旋回状態量)Tcである。修正値(修正係数)Kdc#は、車体速度Vx、及び、旋回状態量Tcのうちの少なくともいずれか1つに基づいて演算される。
2. Calculation of Correction Value (Correction Coefficient) Kdc # Based on Traveling State Amount The traveling state amount is a value that represents the traveling state of the vehicle, for example, a vehicle body speed (vehicle speed) Vx or a state that represents a turning motion of the vehicle. This is the amount (turning state amount) Tc. The correction value (correction coefficient) Kdc # is calculated based on at least one of the vehicle body speed Vx and the turning state amount Tc.
ここで、車体速度Vxは、車輪速度センサWS**の検出結果に基づいて求められる。また、旋回状態量Tcは、横加速度センサ、ヨーレイトセンサ、ステアリングホイール操作角度センサ、操向車輪(左右前輪)の舵角センサ等の検出結果の少なくともいずれか1つに基づいて求められる。 Here, the vehicle body speed Vx is obtained based on the detection result of the wheel speed sensor WS **. The turning state amount Tc is obtained based on at least one of detection results of a lateral acceleration sensor, a yaw rate sensor, a steering wheel operation angle sensor, a steering angle sensor for steered wheels (left and right front wheels), and the like.
例えば、Kdc#=Kvx#・Ktc#と表すことができる。ここで、Kvx#は車体速度Vxに基づく修正係数、Ktc#は旋回状態量Tcに基づく修正係数である。そして、Kdc#を求めるに際し、Kvx#、及び、Ktc#のうちのいずれか1つを省略することができる。 For example, it can be expressed as Kdc # = Kvx # · Ktc #. Here, Kvx # is a correction coefficient based on the vehicle body speed Vx, and Ktc # is a correction coefficient based on the turning state amount Tc. In obtaining Kdc #, any one of Kvx # and Ktc # can be omitted.
先ず、修正係数Kvx#について説明する。車体速度が高い場合には、車両の方向安定性が重要となる。したがって、車体速度Vxに基づいて修正係数Kvx#が、図9に示すように設定される。即ち、車体速度Vxが所定値Vxaより小さいときに前輪及び後輪の修正係数Kvxf、Kvxrが「1」とされる。一方、所定値Vxa以上では、車体速度Vxの増加に応じて前輪修正係数Kvxfが「1」から増大していき、後輪修正係数Kvxrが「1」から減少していく。 First, the correction coefficient Kvx # will be described. When the vehicle speed is high, the directional stability of the vehicle is important. Therefore, the correction coefficient Kvx # is set as shown in FIG. 9 based on the vehicle body speed Vx. That is, when the vehicle body speed Vx is smaller than the predetermined value Vxa, the front wheel and rear wheel correction coefficients Kvxf and Kvxr are set to “1”. On the other hand, at the predetermined value Vxa or more, the front wheel correction coefficient Kvxf increases from “1” and the rear wheel correction coefficient Kvxr decreases from “1” as the vehicle body speed Vx increases.
この場合、前輪、後輪修正係数Kvxf,Kvxrの「1」からの増大量及び減少量は、制動操作量Bsに対する車両の減速度の増大特性(制動操作量と車両減速度との関係)が概ね一定に維持され得るように決定される。即ち、ブレーキ効力係数、制動有効半径、ホイールシリンダ受圧面積等が考慮され、修正係数の増大量に対する制動力の増大量と、修正係数の減少量に対する制動力の減少量とが概ね一致するように、修正係数Kvx#は設定される。 In this case, the increase amount and the decrease amount of the front wheel and rear wheel correction coefficients Kvxf, Kvxr from “1” are the vehicle deceleration increase characteristics (relationship between the braking operation amount and the vehicle deceleration) with respect to the braking operation amount Bs. It is determined so that it can be maintained substantially constant. In other words, the braking effectiveness coefficient, the effective braking radius, the wheel cylinder pressure receiving area, etc. are taken into consideration so that the amount of increase in the braking force with respect to the amount of increase in the correction coefficient is substantially equal to the amount of decrease in the braking force with respect to the amount of decrease in the correction coefficient. The correction coefficient Kvx # is set.
なお、所定値Vxa以上における車体速度Vxの増加に対する後輪修正係数Kvxrの減少勾配を大きくすることで、車体速度Vxが所定値Vxb(>Vxa)以上のときに、後輪修正係数Kvxrが「0」とされてもよい(図9中のKvxr’を参照)。 Note that by increasing the decreasing gradient of the rear wheel correction coefficient Kvxr with respect to the increase in the vehicle body speed Vx above the predetermined value Vxa, the rear wheel correction coefficient Kvxr becomes “when the vehicle speed Vx is equal to or higher than the predetermined value Vxb (> Vxa). 0 ”(see Kvxr ′ in FIG. 9).
このように、車体速度Vxが高くなるほど、修正係数Kvx#によって前後輪間の制動力配分において前輪比率が高まり後輪比率が低下する。そのため、外乱等によって車体に僅かなスリップ角が生じたとしても、後輪コーナリングフォースが確保されるため、車両安定性(方向安定性)が確保される。 Thus, as the vehicle body speed Vx increases, the front wheel ratio increases and the rear wheel ratio decreases in the braking force distribution between the front and rear wheels by the correction coefficient Kvx #. Therefore, even if a slight slip angle occurs in the vehicle body due to disturbance or the like, the rear wheel cornering force is ensured, so that vehicle stability (direction stability) is ensured.
車体速度Vxは制動によって時々刻々と変化する状態量であるが、車体速度Vxに代えて制動開始時点の車体速度Vxoに基づいて前輪及び後輪の修正係数Kvxf、Kvxrを設定することができ、これによっても同様の効果が得られる。 The vehicle body speed Vx is a state quantity that changes every moment due to braking, but the correction coefficients Kvxf and Kvxr for the front wheels and the rear wheels can be set based on the vehicle body speed Vxo at the start of braking instead of the vehicle body speed Vx. This also provides the same effect.
次に、修正係数Ktc#について説明する。車両の旋回時には左右方向に荷重移動が生じ、旋回内輪側の接地荷重が減少する。また、制動時には前後方向の荷重移動が生じるため、旋回内側の後輪の接地荷重が特に減少し、後輪コーナリングフォースの確保が困難となる場合がある。そこで、車両の旋回状態量Tcに基づいて修正係数Ktc#が、図10に示すように設定される。即ち、旋回状態量Tcが所定値Tcaより小さいときに前輪及び後輪の修正係数Ktcf、Ktcrが「1」とされる。一方、所定値Tca以上では、旋回状態量Tcの増加に応じて前輪修正係数Ktcfが「1」から増大していき、後輪修正係数Ktcrが「1」から減少していく。 Next, the correction coefficient Ktc # will be described. When the vehicle turns, load movement occurs in the left-right direction, and the ground load on the turning inner ring side decreases. Further, since the load is moved in the front-rear direction during braking, the ground contact load on the rear wheel inside the turn is particularly reduced, and it may be difficult to ensure the rear wheel cornering force. Accordingly, the correction coefficient Ktc # is set as shown in FIG. 10 based on the turning state amount Tc of the vehicle. That is, when the turning state amount Tc is smaller than the predetermined value Tca, the correction coefficients Ktcf and Ktcr for the front wheels and the rear wheels are set to “1”. On the other hand, above the predetermined value Tca, the front wheel correction coefficient Ktcf increases from “1” and the rear wheel correction coefficient Ktcr decreases from “1” as the turning state amount Tc increases.
この場合、前輪、後輪修正係数Ktcf,Ktcrの「1」からの増大量及び減少量は、制動操作量Bsに対する車両の減速度の増大特性(制動操作量と車両減速度との関係)が概ね一定に維持され得るように決定される。即ち、ブレーキ効力係数、制動有効半径、ホイールシリンダ受圧面積等が考慮され、修正係数の増大量に対する制動力の増大量と、修正係数の減少量に対する制動力の減少量とが概ね一致するように、修正係数Ktc#は設定される。 In this case, the increase amount and the decrease amount of the front and rear wheel correction coefficients Ktcf and Ktcr from “1” are the vehicle deceleration increase characteristics (relationship between the braking operation amount and the vehicle deceleration) with respect to the braking operation amount Bs. It is determined so that it can be maintained substantially constant. In other words, the braking effectiveness coefficient, the effective braking radius, the wheel cylinder pressure receiving area, etc. are taken into consideration so that the amount of increase in the braking force with respect to the amount of increase in the correction coefficient is substantially equal to the amount of decrease in the braking force with respect to the amount of decrease in the correction coefficient. The correction coefficient Ktc # is set.
なお、所定値Tca以上における旋回状態量Tcの増加に対する後輪修正係数Ktcrの減少勾配を大きくすることで、旋回状態量Tcが所定値Tcb(>Tca)以上のときに、後輪修正係数Ktcrが「0」とされてもよい(図10中のKtcr’を参照)。 It should be noted that the rear wheel correction coefficient Ktcr when the turning state quantity Tc is equal to or greater than the predetermined value Tcb (> Tca) by increasing the decreasing gradient of the rear wheel correction coefficient Ktcr with respect to the increase in the turning state quantity Tc at the predetermined value Tca or more. May be set to “0” (see Ktcr ′ in FIG. 10).
このように、旋回状態量Tcが大きくなるほど、修正係数Ktc#によって前後輪間の制動力配分において前輪比率が高まり後輪比率が低下する。そのため、後輪コーナリングフォースが確保されるため車両安定性が確保される。 Thus, as the turning state amount Tc increases, the front wheel ratio increases in the braking force distribution between the front and rear wheels by the correction coefficient Ktc #, and the rear wheel ratio decreases. As a result, the rear wheel cornering force is secured, so that vehicle stability is secured.
旋回状態量Tcは制動によって時々刻々と変化する状態量であるが、旋回状態量Tcに代えて制動開始時点の旋回状態量Tcoに基づいて前輪及び後輪の修正係数Ktcf、Ktcrを設定することができ、これによっても同様の効果が得られる。 The turning state quantity Tc is a state quantity that changes every moment due to braking, but the correction coefficients Ktcf and Ktcr for the front wheels and the rear wheels are set based on the turning state quantity Tco at the start of braking instead of the turning state quantity Tc. This also provides the same effect.
前輪及び後輪の修正係数Ktcf、Ktcrは、旋回状態量Tc、或いは、Tcoに応じて各車輪の接地荷重を推定し、これに基づいて設定することができる。この場合、制動操作量Bsに基づいて車体減速度の目標値が決定され、これを実現するための総制動力が演算される。そして、総制動力が各車輪の接地荷重に基づいて配分される。接地荷重の推定は、横加速度センサGYによる検出結果、或いは、ステアリングホイール角δswを基に推定される横加速度Gy、及び、車両の基準諸元に基づいて行われる。この場合であっても、前輪及び後輪の修正係数Ktcf、Ktcrは旋回状態量Tc、或いは、Tcoに基づいて演算される。 The correction coefficients Ktcf and Ktcr for the front wheels and the rear wheels can be set based on the ground contact load of each wheel estimated according to the turning state amount Tc or Tco. In this case, a target value of the vehicle body deceleration is determined based on the braking operation amount Bs, and a total braking force for realizing this is calculated. The total braking force is distributed based on the ground load of each wheel. The ground load is estimated based on the detection result of the lateral acceleration sensor GY, the lateral acceleration Gy estimated based on the steering wheel angle δsw, and the vehicle reference specifications. Even in this case, the correction coefficients Ktcf and Ktcr for the front wheels and the rear wheels are calculated based on the turning state amount Tc or Tco.
3.車輪状態量に基づく修正値(修正係数)Kpy#の演算
車輪状態量Py**とは、各車輪の滑り易さを表す値であり、各車輪の滑り易さを表す車輪状態量Py**のうちの少なくとも1つに基づいて修正係数Kpy#が設定される。また、車両の安定性は後輪コーナリングフォースに拠る所が大きいため、後輪の車輪状態量Pyr(後輪の滑り易くなっている車輪の状態量、あるいは、後2輪の車輪状態量の平均値)に基づいて修正係数Kpy#を設定することができる。なお、後輪状態量Pyrは、各車輪の車輪状態量Py**から演算される。
3. Calculation of Correction Value (Correction Coefficient) Kpy # Based on Wheel State Quantity The wheel state quantity Py ** is a value that represents the slipperiness of each wheel, and the wheel state quantity Py ** that represents the slipperiness of each wheel. The correction coefficient Kpy # is set based on at least one of the above. Further, since the stability of the vehicle largely depends on the rear wheel cornering force, the rear wheel wheel state quantity Pyr (the rear wheel's slippery wheel state quantity or the average of the rear two wheel state quantities) The correction coefficient Kpy # can be set based on the value. The rear wheel state quantity Pyr is calculated from the wheel state quantity Py ** of each wheel.
ここで、車輪状態量Py**は、例えば、車体速度と車輪速度との差から求められる車輪スリップ速度Sl**であり、車輪スリップ速度を車体速度で除した車輪スリップ率Sr**を用いることもできる。また、公知の路面μ勾配(例えば、特開2001―133390号公報、US6522968号公報)、車輪グリップ度(例えば、特開2003―312465号公報、US6895317号公報)を用いて演算することもできる。 Here, the wheel state quantity Py ** is, for example, a wheel slip speed S1 ** obtained from a difference between the vehicle body speed and the wheel speed, and a wheel slip rate Sr ** obtained by dividing the wheel slip speed by the vehicle body speed is used. You can also. The calculation can also be performed using a known road surface μ gradient (for example, Japanese Patent Application Laid-Open No. 2001-133390, US Pat. No. 6,522,968) and a wheel grip degree (for example, Japanese Patent Application Laid-Open No. 2003-31465, US Pat. No. 6,895,317).
車輪状態量Py**(或いは、後輪状態量Pyr)が高い場合(つまり、車輪が滑り易くなっているとき)には、車両の方向安定性が重要となる。したがって、各車輪のうちの少なくとも1つの車輪の車輪状態量Py**(或いは、後輪状態量Pyr)に基づいて修正係数Kpy#が、図11に示すように設定される。即ち、車輪状態量Py**(或いは、後輪状態量Pyr)が所定値Pya(Pyra)より小さいときに前輪及び後輪の修正係数Kpyf、Kpyrが「1」される。一方、所定値Pya(Pyra)以上では、車輪状態量Py**(或いは、後輪状態量Pyr)の増加に応じて前輪修正係数Kpyfが「1」から増大していき、後輪修正係数Kpyrが「1」から減少していく。 When the wheel state quantity Py ** (or the rear wheel state quantity Pyr) is high (that is, when the wheel is slippery), the directional stability of the vehicle is important. Therefore, the correction coefficient Kpy # is set as shown in FIG. 11 based on the wheel state quantity Py ** (or the rear wheel state quantity Pyr) of at least one of the wheels. That is, when the wheel state amount Py ** (or the rear wheel state amount Pyr) is smaller than the predetermined value Pya (Pyra), the front wheel and rear wheel correction coefficients Kpyf and Kpyr are set to “1”. On the other hand, above the predetermined value Pya (Pyra), the front wheel correction coefficient Kpyf increases from “1” as the wheel state quantity Py ** (or rear wheel state quantity Pyr) increases, and the rear wheel correction coefficient Kpyr. Decreases from “1”.
この場合、前輪、後輪修正係数Kpyf,Kpyrの「1」からの増大量及び減少量は、制動操作量Bsに対する車両の減速度の増大特性(制動操作量と車両減速度との関係)が概ね一定に維持され得る決定される。即ち、ブレーキ効力係数、制動有効半径、ホイールシリンダ受圧面積等が考慮され、修正係数の増大量に対する制動力の増大量と、修正係数の減少量に対する制動力の減少量とが概ね一致するように、修正係数Kpy#は設定される。 In this case, the increase amount and the decrease amount of the front wheel and rear wheel correction coefficients Kpyf and Kpyr from “1” are the vehicle deceleration increase characteristics (relationship between the braking operation amount and the vehicle deceleration) with respect to the braking operation amount Bs. It is determined that it can be kept substantially constant. In other words, the braking effectiveness coefficient, the effective braking radius, the wheel cylinder pressure receiving area, etc. are taken into consideration so that the amount of increase in the braking force with respect to the amount of increase in the correction coefficient is substantially equal to the amount of decrease in the braking force with respect to the amount of decrease in the correction coefficient. The correction coefficient Kpy # is set.
なお、所定値Pya(Pyra)以上における車輪状態量Py**の増加に対する後輪修正係数Kpyrの減少勾配を大きくすることで、車輪状態量Py**が所定値Pyb(>Pya)以上のときに、後輪修正係数Kpyrが「0」とされてもよい(図11中のKpyr’を参照)。 When the wheel state quantity Py ** is greater than or equal to the predetermined value Pyb (> Pya) by increasing the decreasing gradient of the rear wheel correction coefficient Kpyr with respect to the increase in the wheel state quantity Py ** above the predetermined value Pya (Pyra). Alternatively, the rear wheel correction coefficient Kpyr may be set to “0” (see Kpyr ′ in FIG. 11).
このように、車輪が滑り易くなったときほど、修正係数Kpy#によって前後輪間の制動力配分において前輪比率が高まり後輪比率が低下する。そのため、外乱等によって車体に僅かなスリップ角が生じたとしても、後輪コーナリングフォースが確保されるため車両安定性(方向安定性)が確保される。以上、このように補助圧力目標値SP#tを決定する手段が、前記「目標量決定手段」に対応する。 Thus, as the wheel becomes slippery, the front wheel ratio increases and the rear wheel ratio decreases in the braking force distribution between the front and rear wheels by the correction coefficient Kpy #. Therefore, even if a slight slip angle is generated in the vehicle body due to disturbance or the like, the rear wheel cornering force is ensured, so that vehicle stability (direction stability) is ensured. As described above, the means for determining the auxiliary pressure target value SP # t in this way corresponds to the “target amount determination means”.
《駆動手段》
再び、図3を参照すると、駆動手段は、第1圧力発生手段(マスタシリンダMC)が発生する圧力に補助圧力を加えて各車輪のホイールシリンダ圧力Pw**を制御するように、第2圧力発生手段(電気モータ/ポンプ)、前輪及び後輪系統の圧力調整手段(リニアソレノイド弁LV#)を駆動し制御する。すなわち、補助圧力目標値演算において演算される補助圧力目標値SPft、SPrtに基づいて電気モータMの回転、前輪及び後輪系統のリニアソレノイド弁LV#の開閉を制御する。
<Drive means>
Referring again to FIG. 3, the driving means applies the auxiliary pressure to the pressure generated by the first pressure generating means (master cylinder MC) to control the wheel cylinder pressure Pw ** of each wheel. Drives and controls the generating means (electric motor / pump) and the pressure adjusting means (linear solenoid valve LV #) of the front and rear wheel systems. That is, based on the auxiliary pressure target values SPft and SPrt calculated in the auxiliary pressure target value calculation, the rotation of the electric motor M and the opening and closing of the linear solenoid valves LV # of the front and rear wheel systems are controlled.
補助圧力目標値SPft、SPrtに基づいて、これを供給できるポンプ回転数に電気モータMが制御される。検出手段BSの検出結果(例えば、マスタシリンダ圧力Pm#)と補助圧力目標値SPft、SPrtに基づいて前輪及び後輪の各系統の圧力目標値が演算される。そして、これらに基づいてリニアソレノイド弁LV#を駆動する電流値が決定され、リニアソレノイド弁LV#が制御される。 Based on the auxiliary pressure target values SPft and SPrt, the electric motor M is controlled to a pump rotational speed capable of supplying the auxiliary pressure target values SPft and SPrt. Based on the detection result of the detection means BS (for example, the master cylinder pressure Pm #) and the auxiliary pressure target values SPft and SPrt, the pressure target values of the front and rear wheel systems are calculated. Based on these, the current value for driving the linear solenoid valve LV # is determined, and the linear solenoid valve LV # is controlled.
前輪及び後輪の各系統に圧力センサP**が備えられるときには、圧力センサP**によって検出された実際の圧力が該圧力目標値と一致するようにフィードバック制御が行われる。圧力センサP**は省略することも可能であり、このときには、車輪の動き(車輪速度の変化の経緯)、ソレノイド弁の作動状態等をもとに圧力の推定を行うことができる。 When each of the front wheel and rear wheel systems is provided with a pressure sensor P **, feedback control is performed so that the actual pressure detected by the pressure sensor P ** matches the target pressure value. The pressure sensor P ** can be omitted. At this time, the pressure can be estimated based on the movement of the wheel (the process of the change in the wheel speed), the operating state of the solenoid valve, and the like.
(第2実施形態)
次に、第2実施形態に係る車両用制動制御装置の全体構成について説明する。この全体構成を示す図12、及び図13に示すように、第2実施形態は、「ダイアゴナル配管」を備えている点においてのみ、「前後配管」を備えた上記第1実施形態と異なる。即ち、第2実施形態では、マスタシリンダMCの2つの液圧発生室には、左前輪と右後輪に係わる第1系統の制動配管(第1の液圧配管)と、右前輪と左後輪に係わる第2系統の制動配管(第2の液圧配管)とが接続されている。
(Second Embodiment)
Next, the overall configuration of the vehicle brake control device according to the second embodiment will be described. As shown in FIGS. 12 and 13 showing the overall configuration, the second embodiment is different from the first embodiment having “front and rear pipes” only in that “diagonal pipes” are provided. That is, in the second embodiment, the two hydraulic pressure generation chambers of the master cylinder MC include the first system brake pipe (first hydraulic pipe) related to the left front wheel and the right rear wheel, the right front wheel, and the left rear. A second system braking pipe (second hydraulic pipe) related to the wheel is connected.
《制動制御の構成》
次に、図14を参照しながら、第2実施形態に係る車両用制動制御装置による制動制御の構成について説明する。
〈補助圧力基準値SP#oの演算〉
上述したように「前後配管」を有する上記第1実施形態の場合は、制動操作量Bsに対して前輪及び後輪で異なる補助圧力基準値が設定されるが、「ダイアゴナル配管」を有する第2実施形態の場合には、図15に示すように、第1及び第2系統で同一の特性を用いて補助圧力基準値SP1o、SP2oが演算される。この場合、補助圧力基準値SP#oは、制動操作量Bsの「0」からの増加に応じて「0」から比例的(線形的)に増大する。
《Brake control configuration》
Next, the configuration of the braking control by the vehicle braking control apparatus according to the second embodiment will be described with reference to FIG.
<Calculation of auxiliary pressure reference value SP # o>
In the case of the first embodiment having “front and rear piping” as described above, different auxiliary pressure reference values are set for the front wheel and the rear wheel with respect to the braking operation amount Bs, but the second having “diagonal piping”. In the case of the embodiment, as shown in FIG. 15, the auxiliary pressure reference values SP1o and SP2o are calculated using the same characteristics in the first and second systems. In this case, the auxiliary pressure reference value SP # o increases proportionally (linearly) from “0” as the braking operation amount Bs increases from “0”.
なお、補助圧力基準値SP#oは、制動操作量Bsの「0」からの増大に応じて「下に凸」の特性をもって「0」から増大するように設定されてもよい。又は、「下に凸」の特性を近似して、制動操作量Bsの「0」からの増大に応じて傾きが増加する複数の直線によって「0」から増大するようにも設定されてもよい。 The auxiliary pressure reference value SP # o may be set so as to increase from “0” with a “convex downward” characteristic in response to an increase in the braking operation amount Bs from “0”. Alternatively, it may be set so as to increase from “0” by approximating the characteristic of “convex downward” and by a plurality of straight lines whose inclination increases as the braking operation amount Bs increases from “0”. .
補助圧力の設定においては、任意の制動操作量を補助圧力付与の起点(開始点)とすることができる。ここで、「0」を含む微小の制動操作量(「0」、或いは「0」近傍の微小値)を補助圧力付与の起点とすることが望ましい。補助圧力の付与によって、ブレーキペダルBPの操作特性が変化するが、「0」を含む微小の制動操作量を補助圧力付与の起点とすることで、運転者への違和感を抑制することができる。 In setting the auxiliary pressure, an arbitrary amount of braking operation can be set as the starting point (starting point) for applying the auxiliary pressure. Here, it is desirable that a minute braking operation amount including “0” (“0” or a minute value in the vicinity of “0”) is used as a starting point for applying the auxiliary pressure. Although the operation characteristic of the brake pedal BP is changed by the application of the auxiliary pressure, a sense of discomfort to the driver can be suppressed by using a small amount of braking operation including “0” as the starting point of the application of the auxiliary pressure.
また、マスタシリンダMCがバキュームブースタVBを備え、バキュームブースタVBがジャンプイン特性(バキュームブースタの助勢力がゼロからステップ的に増大する特性。ジャンピング特性ともいう。)を有する場合、ジャンプインに相当する制動操作量を補助圧力付与の起点とすることもできる。バキュームブースタのジャンプインと補助圧力付与の起点を合わせることで、運転者への違和感を更に抑制することができる。 Further, when the master cylinder MC includes a vacuum booster VB and the vacuum booster VB has a jump-in characteristic (a characteristic in which the assisting force of the vacuum booster increases stepwise from zero, also referred to as a jumping characteristic), this corresponds to a jump-in. The amount of braking operation can also be used as the starting point for applying auxiliary pressure. By combining the jump-in of the vacuum booster and the starting point of the application of the auxiliary pressure, it is possible to further suppress a sense of discomfort to the driver.
〈補助圧力目標値SP#tの演算〉
ダイアゴナル配管の場合において、制動配管間の圧力差を発生させることが必要となるのは、車両が旋回走行しているときである。したがって、旋回状態量検出手段TCの検出結果に基づいて旋回状態量Tcが演算され、これに基づいて修正値(修正係数)Ktc#が演算される。
<Calculation of auxiliary pressure target value SP # t>
In the case of diagonal piping, it is necessary to generate a pressure difference between braking piping when the vehicle is turning. Therefore, the turning state amount Tc is calculated based on the detection result of the turning state amount detecting means TC, and the correction value (correction coefficient) Ktc # is calculated based on this.
また、旋回走行によって発生する荷重移動に伴い、車輪の滑り易さ(車輪状態量)も変化するので、車輪速度検出手段WS**の検出結果に基づいて車輪状態量Py**が演算され、これに基づいて修正値(修正係数)Kpy#が演算されてもよい。この第2実施形態では、この修正値(修正係数)に基づく修正は、旋回時においてのみ行われる。 In addition, the slippage of the wheel (wheel state quantity) also changes with the movement of the load generated by turning, so the wheel state quantity Py ** is calculated based on the detection result of the wheel speed detection means WS **. Based on this, a correction value (correction coefficient) Kpy # may be calculated. In the second embodiment, the correction based on the correction value (correction coefficient) is performed only during turning.
〈修正値(修正係数)の演算〉
1.走行状態量に基づく修正値(修正係数)Kdc#の演算
ダイアゴナル配管の場合の走行状態量とは、車両の旋回運動を表す状態量(旋回状態量)Tcである。修正値(修正係数)Kdc#は旋回状態量Tcに基づいて演算される。
<Calculation of correction value (correction coefficient)>
1. Calculation of Correction Value (Correction Coefficient) Kdc # Based on Traveling State Quantity The traveling state quantity in the case of diagonal piping is a state quantity (turning state quantity) Tc representing the turning motion of the vehicle. The correction value (correction coefficient) Kdc # is calculated based on the turning state amount Tc.
車両の旋回時には左右方向に荷重移動が生じ、旋回内輪側の接地荷重が減少する。また、制動時には前後方向の荷重移動が生じるため、旋回内側の後輪の接地荷重が特に減少し、後輪コーナリングフォースの確保が困難となる場合がある。後輪コーナリングフォースが確保できないと、車両は旋回内側方向へ巻き込むこととなる。 When the vehicle turns, load movement occurs in the left-right direction, and the ground load on the turning inner ring side decreases. Further, since the load is moved in the front-rear direction during braking, the ground contact load on the rear wheel inside the turn is particularly reduced, and it may be difficult to ensure the rear wheel cornering force. If the rear-wheel cornering force cannot be secured, the vehicle will be caught in the direction of turning inside.
そこで、車両の旋回状態量Tcに基づいて修正係数Ktc#(=Kdc#)が、図16に示すように設定される。即ち、旋回状態量Tcが所定値Tccより小さいときに修正係数Ktcs、Ktcuが「1」とされる。ここで、Ktcsは旋回外側前輪を含む制動配管系統の修正係数であり、Ktcuは旋回内側前輪を含む制動配管系統の修正係数である。旋回状態量が所定値Tcc以上では、旋回状態量Tcの増加に応じて修正係数Ktcsが「1」から増大していき、修正係数Ktcuが「1」から減少していく。 Accordingly, the correction coefficient Ktc # (= Kdc #) is set as shown in FIG. 16 based on the turning state amount Tc of the vehicle. That is, when the turning state amount Tc is smaller than the predetermined value Tcc, the correction coefficients Ktcs and Ktcu are set to “1”. Here, Ktcs is a correction coefficient of the brake piping system including the turning outer front wheel, and Ktcu is a correction coefficient of the braking piping system including the turning inner front wheel. When the turning state amount is equal to or greater than the predetermined value Tcc, the correction coefficient Ktcs increases from “1” and the correction coefficient Ktcu decreases from “1” as the turning state amount Tc increases.
修正係数Ktcuの減少量は修正係数Ktcsの増加量をよりも小さくすることができる。旋回内側前輪を含む制動配管系統の前輪では、旋回による荷重移動で接地荷重が減少するが制動による荷重移動で接地荷重が増加する。また、同じ系統の後輪では、旋回による荷重移動で接地荷重が増加するが制動による荷重移動で接地荷重が減少する。そのため、接地荷重に対する制動力の割合である制動負荷を各車輪で概ね均等に保ち、コーナリングフォースを均等に確保するために、旋回内側前輪を含む制動配管系統では補助圧力の減少量を大きくする必要はない。 The decrease amount of the correction coefficient Ktcu can make the increase amount of the correction coefficient Ktcs smaller. In the front wheels of the brake piping system including the turning inner front wheel, the ground load decreases due to load movement due to turning, but the ground load increases due to load movement due to braking. Further, in the rear wheel of the same system, the ground load increases due to load movement due to turning, but the ground load decreases due to load movement due to braking. Therefore, in order to keep the braking load, which is the ratio of the braking force to the ground load, approximately evenly at each wheel and to ensure the cornering force evenly, it is necessary to increase the amount of decrease in the auxiliary pressure in the brake piping system including the front wheels on the inside of the turn. There is no.
一方、旋回外側前輪を含む制動配管系統の後輪(旋回内側後輪)では、接地荷重が最も減少するため、増減圧手段(図12を参照)によりいわゆるABS制御、或いは、電子制動配分(EBD制御)が行われ、車輪スリップ速度に基づいて制動圧力の上昇が制限される。即ち、旋回内側後輪に作用する制動力が小さくなる。 On the other hand, since the ground contact load is reduced most in the rear wheel (turning inner rear wheel) including the front turning outer wheel, so-called ABS control or electronic braking distribution (EBD) is performed by the pressure increasing / decreasing means (see FIG. 12). Control) is performed, and the increase in braking pressure is limited based on the wheel slip speed. That is, the braking force that acts on the inner wheel on the inside of the turn is reduced.
そこで、旋回外側前輪を含む制動配管系統では補助圧力の増加量を大きくし、旋回外側前輪の制動力を増加させる。これにより、制動操作量と車体の減速度との関係を略一定とすることができる。また、前輪における制動力差によって、旋回外向きに作用するヨーイングモーメントが発生し得るため、前述の車両の巻き込みを抑制することが可能となる。 Therefore, in the brake piping system including the turning outer front wheel, the amount of increase in the auxiliary pressure is increased to increase the braking force of the turning outer front wheel. Thereby, the relationship between the amount of braking operation and the deceleration of a vehicle body can be made substantially constant. Further, since the yawing moment acting on the outside of the turn can be generated due to the braking force difference between the front wheels, it is possible to suppress the above-described vehicle entrainment.
2.車輪状態量に基づく修正値(修正係数)Kpy#の演算
旋回に伴う荷重移動の結果として、各車輪の滑り易さを表す車輪状態量Py**が変化する。そこで、前述の旋回状態量Tcに代えて、各車輪の車輪状態量Py**を用いて修正係数を設定することができる。
2. Calculation of Correction Value (Correction Coefficient) Kpy # Based on Wheel State Quantity As a result of load movement accompanying turning, a wheel state quantity Py ** representing the slipperiness of each wheel changes. Therefore, the correction coefficient can be set using the wheel state amount Py ** of each wheel instead of the turning state amount Tc described above.
また、車両の安定性は後輪コーナリングフォースに拠る所が大きいため、後輪の車輪状態量Pyr(後輪の滑り易くなっている車輪の状態量、あるいは、後2輪の車輪状態量の平均値)に基づいて修正係数Kpy#を設定することができる。なお、後輪状態量Pyrは、各車輪の車輪状態量Py**から演算する。 Further, since the stability of the vehicle largely depends on the rear wheel cornering force, the rear wheel wheel state quantity Pyr (the rear wheel's slippery wheel state quantity or the average of the rear two wheel state quantities) The correction coefficient Kpy # can be set based on the value. The rear wheel state quantity Pyr is calculated from the wheel state quantity Py ** of each wheel.
この車輪状態量に基づく修正値(修正係数)Kpy#は、図17に示すように設定される。即ち、車輪状態量Py**(或いは、後輪状態量Pyr)が所定値Pyc(或いは、Pyrc)より小さいときに修正係数Kpys、Kpyuが「1」とされる。ここで、Kpysは旋回外側前輪を含む制動配管系統の修正係数であり、Kpyuは旋回内側前輪を含む制動配管系統の修正係数である。車輪状態量Py**(或いは、後輪状態量Pyr)が所定値Pyc(或いは、Pyrc)以上のときには、車輪状態量Py**(或いは、後輪状態量Pyr)の増加に応じて修正係数Kpysが「1」から増大していき、修正係数Kpyuが「1」から減少していく。このような修正値(修正係数)Kpy#の設定により、旋回状態量に基づく修正と同様の効果を得ることができる。 The correction value (correction coefficient) Kpy # based on this wheel state quantity is set as shown in FIG. That is, when the wheel state quantity Py ** (or the rear wheel state quantity Pyr) is smaller than the predetermined value Pyc (or Pyrc), the correction coefficients Kpys and Kpyu are set to “1”. Here, Kpys is a correction coefficient of the brake piping system including the turning outer front wheel, and Kpyu is a correction coefficient of the braking piping system including the turning inner front wheel. When the wheel state quantity Py ** (or the rear wheel state quantity Pyr) is equal to or greater than the predetermined value Pyc (or Pyrc), the correction coefficient is increased according to the increase in the wheel state quantity Py ** (or the rear wheel state quantity Pyr). Kpys increases from “1”, and the correction coefficient Kpyu decreases from “1”. By setting such a correction value (correction coefficient) Kpy #, the same effect as the correction based on the turning state amount can be obtained.
《効果》
以下、本発明の第1、第2実施形態に係る車両用制動制御装置の効果について述べる。制動操作量Bsに対する各車輪のホイールシリンダ圧力Pw**の関係は、図18に示すようになる。即ち、運転者の制動操作に応じてマスタシリンダMC(第1圧力発生手段)は、特性Pw1**で表される制動圧力を発生する。この制動圧力Pw1**に対して、ポンプ/電気モータ(第2圧力発生手段)が発生しリニアソレノイド弁LV#(圧力調整手段)によって調整された補助圧力Pw2**が加えられ、ホイールシリンダの圧力特性は、特性Pw**(=Pw1**+Pw2**)で表されるようになる。
"effect"
Hereinafter, effects of the vehicle brake control device according to the first and second embodiments of the present invention will be described. The relationship of the wheel cylinder pressure Pw ** of each wheel with respect to the braking operation amount Bs is as shown in FIG. That is, the master cylinder MC (first pressure generating means) generates a braking pressure represented by the characteristic Pw1 ** in accordance with the driver's braking operation. To this braking pressure Pw1 **, a pump / electric motor (second pressure generating means) is generated, and an auxiliary pressure Pw2 ** adjusted by a linear solenoid valve LV # (pressure adjusting means) is applied. The pressure characteristic is represented by the characteristic Pw ** (= Pw1 ** + Pw2 **).
補助加圧は、車両状態量、走行状態量、及び、車輪状態量のうちの少なくとも1つに基づいて修正され、領域A(図18中の圧力特性Pw1**と限界圧力特性とで囲まれた領域)の範囲内で制御することが可能となる。 The auxiliary pressurization is corrected based on at least one of the vehicle state quantity, the running state quantity, and the wheel state quantity, and is surrounded by the region A (the pressure characteristic Pw1 ** and the limit pressure characteristic in FIG. 18). Control within the range of the (region)).
図18中では、補助圧力の基準値に対する修正が点C(制動操作量Bsが値Bscのとき)において行われている。一方側の制動配管系統の補助圧力を増加すると共に、他方側の制動配管系統の補助圧力を減少する。この修正によって、上述のように、車両の方向安定性を確保できるとともに制動操作と車体減速度の関係を概ね一定とすることができる。 In FIG. 18, the correction to the reference value of the auxiliary pressure is performed at a point C (when the braking operation amount Bs is the value Bsc). While increasing the auxiliary pressure of the brake piping system on one side, the auxiliary pressure of the brake piping system on the other side is decreased. By this correction, as described above, the directional stability of the vehicle can be ensured and the relationship between the braking operation and the vehicle body deceleration can be made substantially constant.
補助圧力の修正は、同時点において実行されることが好ましいが、必ずしも修正時点を一致させる必要はない。一方側の修正のみをまずは行い、基準値からの増加分と減少分との差が所定の圧力(又は、制動圧力から換算される制動力差の所定値)を超えたときに他方側の修正を開始こともできる。 Although the correction of the auxiliary pressure is preferably performed at the same time, it is not always necessary to match the correction time points. Only the correction on one side is performed first, and the correction on the other side when the difference between the increase and decrease from the reference value exceeds the predetermined pressure (or the predetermined value of the braking force difference converted from the braking pressure) You can also start.
通常ブレーキ時(本発明においては、車両諸元が基準諸元であり、車速が所定値以下であり、概ね直進走行時であり、車輪の滑りが僅かであってグリップに余裕があるとき)にも、補助圧力が発生させられる。したがって、通常ブレーキ時ではないとき(車両諸元が基準諸元から外れているとき、或いは、車速が所定値より高くなったとき、或いは、旋回走行時、或いは、車輪の滑りが大きくなってグリップに余裕がなくなったとき)に、通常ブレーキ時において発生される制動圧力よりも高い制動圧力を用いる装置に対して、ホイールシリンダとの接続をABS制御弁(図1、図12における増減圧手段に相当)によって遮断することなく制動圧力を制御可能な領域Aを拡大することができる。 During normal braking (in the present invention, when the vehicle specifications are the reference specifications, the vehicle speed is below a predetermined value, the vehicle is running straight ahead, and there is little slippage of the wheels and there is a margin in the grip) Also, an auxiliary pressure is generated. Therefore, when it is not during normal braking (when the vehicle specifications deviate from the reference specifications, or when the vehicle speed becomes higher than a predetermined value, during turning, or when the wheel slips greatly, the grip For the device using a braking pressure higher than the braking pressure generated at the time of normal braking, the ABS cylinder is connected to the ABS control valve (the pressure increasing / decreasing means in FIGS. 1 and 12). The region A in which the braking pressure can be controlled without being interrupted can be enlarged.
運転者の操作に応じたブレーキペダルの操作特性(ブレーキペダルストロークと操作力との関係)は、ブレーキキャリパ、ブレーキパッド、制動配管等の剛性に依存する。本実施形態では、2系統の制動配管間の制動力調整が、補助圧力の調整の範囲内で行われ、マスタシリンダからホイールシリンダへの接続が、可能な限りABS制御弁によって遮断されることがない。そのため、ブレーキペダルの操作特性を変化させることなく、制動力制御を行うことが可能となる。 The operation characteristics of the brake pedal (the relationship between the brake pedal stroke and the operation force) according to the driver's operation depend on the rigidity of the brake caliper, the brake pad, the brake pipe, and the like. In this embodiment, the braking force adjustment between the two systems of braking piping is performed within the range of adjustment of the auxiliary pressure, and the connection from the master cylinder to the wheel cylinder is blocked by the ABS control valve as much as possible. Absent. Therefore, it is possible to perform the braking force control without changing the operation characteristics of the brake pedal.
補助圧力の設定においては、任意の制動操作量を補助圧力付与の起点とすることができる。しかし、「0」を含む微小の制動操作量(「0」、或いは「0」近傍の微小値)を補助圧力付与の起点とすることが望ましい。補助圧力を付与する際のブレーキ効きの繋がりを向上させるためである。 In setting the auxiliary pressure, an arbitrary amount of braking operation can be set as the starting point for applying the auxiliary pressure. However, it is desirable that a minute braking operation amount including “0” (“0” or a minute value in the vicinity of “0”) be a starting point for applying the auxiliary pressure. This is to improve the connection of braking effect when the auxiliary pressure is applied.
更に、上記ジャンプイン特性を有するバキュームブースタが備えられている場合、ジャンプインに相当する制動操作量を補助圧力付与の起点とすることもできる。バキュームブースタによる助勢力の付与と補助圧力の付与との繋がりを向上するためである。 Furthermore, when a vacuum booster having the jump-in characteristic is provided, the braking operation amount corresponding to the jump-in can be set as the starting point for applying the auxiliary pressure. This is to improve the connection between the application of the assisting force and the application of the auxiliary pressure by the vacuum booster.
図19は、上記第1、第2実施形態が適用された場合における作動例として、旋回状態量Tcに基づいて2つの制動配管系統の補助圧力が調整される場合の一例を示したタイムチャートである。以下、第1実施形態が適用された場合についてのみ説明するが、第2実施形態が適用された場合についても同様である。 FIG. 19 is a time chart showing an example of the case where the auxiliary pressures of the two brake piping systems are adjusted based on the turning state amount Tc as an example of operation when the first and second embodiments are applied. is there. Hereinafter, only the case where the first embodiment is applied will be described, but the same applies to the case where the second embodiment is applied.
旋回状態量Tc=Tc1で車両が旋回している状態において時刻t0にて制動操作が開始される。なお、値Tc1は、値Tcb(図10を参照)よりも大きいものとする。時刻t1にて制動操作量Bsが値Bs1(微小値)に達すると、補助圧力の調整が開始される。 In a state where the vehicle is turning with the turning state amount Tc = Tc1, the braking operation is started at time t0. Note that the value Tc1 is greater than the value Tcb (see FIG. 10). When the braking operation amount Bs reaches the value Bs1 (minute value) at time t1, the adjustment of the auxiliary pressure is started.
これにより、前輪系統の補助圧力が増加修正されるとともに、後輪系統の補助圧力が減少修正される。ここで、補助圧力の修正開始(時刻t1)からの短期間に亘って修正量が徐々に増大しているのは、修正量の時間変化速度に制限が設けられていることに基づく。 As a result, the auxiliary pressure of the front wheel system is corrected and increased, and the auxiliary pressure of the rear wheel system is corrected and decreased. Here, the reason why the correction amount gradually increases over a short period from the start of the correction of the auxiliary pressure (time t1) is based on the fact that there is a limit on the time change rate of the correction amount.
補助圧力の調整は、旋回状態量Tcに基づいて行われる。このため、車速の減少に起因して旋回状態量Tcが減少するに従って補助圧力の修正量も減少していく(時刻t2〜t3)。ここで、旋回状態量Tcは、時刻t2にて値Tcbとなり、時刻t3にて値Tc2(=Tca)となっている(図10を参照)。そして、旋回状態量Tcが値Tc2以下になると、補助圧力の調整が終了する。 The auxiliary pressure is adjusted based on the turning state amount Tc. For this reason, the correction amount of the auxiliary pressure decreases as the turning state amount Tc decreases due to the decrease in the vehicle speed (time t2 to t3). Here, the turning state amount Tc becomes the value Tcb at time t2, and becomes the value Tc2 (= Tca) at time t3 (see FIG. 10). Then, when the turning state amount Tc becomes equal to or less than the value Tc2, the adjustment of the auxiliary pressure is finished.
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記の実施例では、マスタシリンダ(第1圧力発生手段)が発生する制動圧力が、概ね制動操作量Bsに比例する特性としている。しかし、図20に示すように、制動圧力の特性Pw1**を、制動操作量Bsの増加に従って傾き(増加勾配)が増加する特性とすれば、補助圧力による調整の範囲を拡大することができる。 The present invention is not limited to the above embodiment, and various modifications can be employed within the scope of the present invention. For example, in the above embodiment, the braking pressure generated by the master cylinder (first pressure generating means) has a characteristic that is approximately proportional to the braking operation amount Bs. However, as shown in FIG. 20, if the braking pressure characteristic Pw1 ** is a characteristic in which the slope (increasing slope) increases as the braking operation amount Bs increases, the range of adjustment by the auxiliary pressure can be expanded. .
なお、図20では、点D(制動操作量Bsが値Bsdのとき)において傾き(制動操作量Bsに対する制動液圧Pw1**の増加勾配)が増加する2つの直線で構成される特性が採用されているが、制動操作量Bsの増加に従って傾きが増加する3つ以上の直線で構成される特性、或いは、曲線で構成される特性が採用されてもよい。 In FIG. 20, a characteristic constituted by two straight lines in which the slope (increasing gradient of the braking hydraulic pressure Pw1 ** with respect to the braking operation amount Bs) increases at the point D (when the braking operation amount Bs is the value Bsd) is adopted. However, a characteristic constituted by three or more straight lines whose inclination increases as the braking operation amount Bs increases, or a characteristic constituted by a curve may be employed.
制動操作量Bsの増加に従って傾きが増加する制動圧力の特性は、例えば、特開2000−203409で開示されているように、マスタシリンダの機械的な構造に基づいて実現できる。また、特開2002−347590で開示されているように、ブレーキペダルを支持するリンク機構、或いは、特開平10−250565で開示されているように、負圧式倍力装置(バキュームブースタ)の構造に基づいて実現できる。 The characteristic of the braking pressure in which the inclination increases as the braking operation amount Bs increases can be realized based on the mechanical structure of the master cylinder as disclosed in, for example, Japanese Patent Laid-Open No. 2000-203409. Further, as disclosed in Japanese Patent Laid-Open No. 2002-347590, the structure of a link mechanism for supporting a brake pedal or a negative pressure booster (vacuum booster) as disclosed in Japanese Patent Laid-Open No. 10-250565 is used. Can be realized based on.
マスタシリンダ(第1圧力発生手段)が発生する制動圧力の特性Pw1**に対して、ポンプ/電気モータ(第2圧力発生手段)が発生しリニアソレノイド弁(圧力調整手段)によって調整された補助圧力Pw2**が加えられて、ホイールシリンダの圧力の特性は、特性Pw**(=Pw1**+Pw2**)で表されるようになる。制動圧力の特性Pw1**は制動操作量Bsの増加に従って傾きが増加するため、領域Bで示すように補助圧力Pw2**の制御範囲は拡大される。特に、補助圧力を基準値よりも低下するように修正する場合に有効である。 Auxiliary pressure generated by the pump / electric motor (second pressure generating means) and adjusted by the linear solenoid valve (pressure adjusting means) with respect to the braking pressure characteristic Pw1 ** generated by the master cylinder (first pressure generating means) The pressure Pw2 ** is applied, and the characteristic of the pressure of the wheel cylinder is represented by the characteristic Pw ** (= Pw1 ** + Pw2 **). Since the slope of the braking pressure characteristic Pw1 ** increases as the braking operation amount Bs increases, the control range of the auxiliary pressure Pw2 ** is expanded as indicated by the region B. This is particularly effective when the auxiliary pressure is corrected to be lower than the reference value.
電源等の問題によって補助圧力が十分には得られない場合であっても、運転者がブレーキペダルを踏み込むと、傾きが大きい領域となって車体減速に必要な制動圧力を確保することができる。 Even when the auxiliary pressure cannot be sufficiently obtained due to a problem with the power source or the like, when the driver depresses the brake pedal, the braking pressure necessary for vehicle deceleration can be ensured in a region with a large inclination.
以上の説明では、補助圧力の修正値を修正係数とし、これを基準値に乗じることで補助圧力の調整が行われているが、修正係数に代えて圧力の次元において修正値(修正圧力)を演算し、これを基準値に対して増減することで補助圧力の調整が行われてもよい。 In the above description, the correction value of the auxiliary pressure is used as the correction coefficient, and the auxiliary pressure is adjusted by multiplying the correction value by the reference value. However, instead of the correction coefficient, the correction value (correction pressure) is used in the pressure dimension. The auxiliary pressure may be adjusted by calculating and increasing / decreasing this with respect to the reference value.
MC…マスタシリンダ、VB…バキューム式ブースタ、HP#…ポンプ、M…モータ、PM#…マスタシリンダ圧力センサ、LV#…リニアソレノイド弁、WC**…ホイールシリンダ MC ... Master cylinder, VB ... Vacuum booster, HP # ... Pump, M ... Motor, PM # ... Master cylinder pressure sensor, LV # ... Linear solenoid valve, WC ** ... Wheel cylinder
Claims (7)
前記車両の運転者による制動操作量に応じた液圧量をそれぞれ発生する2つの液圧発生室を有する第1の液圧発生装置と、
前記2つの液圧発生室のうちの一方を前記4つの車輪制動装置のうちの左右前輪に対応する2つと液圧的に接続する前輪の液圧配管と、
前記2つの液圧発生室のうちの他方を前記4つの車輪制動装置のうちの左右後輪に対応する2つと液圧的に接続する後輪の液圧配管と、
前記前輪、後輪の液圧配管のそれぞれにおいて前記第1の液圧発生装置により発生された前記液圧量に加算される補助液圧を発生する動力駆動の第2の液圧発生装置と、
前記制動操作量を検出する検出手段と、
前記検出された制動操作量のみに基づいて、前記前輪の液圧配管における前輪の補助液圧基準量及び前記後輪の液圧配管における後輪の補助液圧基準量を決定する基準量決定手段と、
前記車両の荷重状態を表す状態量、前記車両の走行状態を表す状態量、及び前記車輪の滑り易さを表す状態量のうちの少なくとも1つを取得する取得手段と、
前記決定された前輪、後輪の補助液圧基準量と前記取得された状態量とに基づいて、前記前輪の液圧配管における前輪の補助液圧目標量を前記前輪の補助液圧基準量以上の範囲内の値に決定するとともに、同時に、前記後輪の液圧配管における後輪の補助液圧目標量を前記後輪の補助液圧基準量以下の範囲内の値に決定する目標量決定手段と、
前記前輪、後輪の液圧配管のそれぞれにおける前記補助液圧を、前記決定された前輪、後輪の補助液圧目標量にそれぞれ一致するように調整する調圧手段と、
を備えた車両用制動制御装置。 Four wheel braking devices that respectively apply braking torque corresponding to the braking hydraulic pressure supplied to the wheel cylinders of the four front, rear, left, and right wheels of the vehicle to the corresponding wheels;
A first hydraulic pressure generating device having two hydraulic pressure generating chambers each generating a hydraulic pressure amount corresponding to a braking operation amount by a driver of the vehicle;
Hydraulic piping for front wheels that hydraulically connects one of the two hydraulic pressure generating chambers to two corresponding to the left and right front wheels of the four wheel braking devices;
A hydraulic piping for a rear wheel that hydraulically connects the other of the two hydraulic pressure generating chambers to two corresponding to the left and right rear wheels of the four wheel braking devices;
A power-driven second hydraulic pressure generating device that generates auxiliary hydraulic pressure added to the hydraulic pressure amount generated by the first hydraulic pressure generating device in each of the hydraulic piping of the front wheel and the rear wheel;
Detecting means for detecting the amount of braking operation;
Based on only the detected braking operation amount, reference amount determination means for determining the auxiliary hydraulic pressure reference amount for the front wheel in the hydraulic piping for the front wheel and the auxiliary hydraulic pressure reference amount for the rear wheel in the hydraulic piping for the rear wheel. When,
Obtaining means for obtaining at least one of a state quantity representing a load state of the vehicle, a state quantity representing a running state of the vehicle, and a state quantity representing the slipperiness of the wheels;
Based on the determined auxiliary hydraulic pressure reference amount of the front and rear wheels and the acquired state quantity, the auxiliary hydraulic pressure target amount of the front wheel in the hydraulic piping of the front wheel is greater than or equal to the auxiliary hydraulic pressure reference amount of the front wheel. and determines a value in the range of, at the same time, the target amount determination for determining the auxiliary hydraulic target amount of the rear wheels in the liquid pressure line of the rear wheel to a value in the range of less auxiliary hydraulic reference amount of the rear wheel Means,
Pressure adjusting means for adjusting the auxiliary hydraulic pressure in each of the hydraulic piping of the front wheel and the rear wheel so as to match the determined auxiliary hydraulic pressure target amount of the front wheel and the rear wheel, respectively;
A vehicle braking control apparatus comprising:
前記車両の運転者による制動操作量に応じた液圧量をそれぞれ発生する2つの液圧発生室を有する第1の液圧発生装置と、
前記2つの液圧発生室のうちの一方を前記4つの車輪制動装置のうちの左前輪及び右後輪に対応する2つと液圧的に接続する第1の液圧配管と、
前記2つの液圧発生室のうちの他方を前記4つの車輪制動装置のうちの右前輪及び左後輪に対応する2つと液圧的に接続する第2の液圧配管と、
前記第1、第2の液圧配管のそれぞれにおいて前記第1の液圧発生装置により発生された前記液圧量に加算される補助液圧を発生する動力駆動の第2の液圧発生装置と、
前記制動操作量を検出する検出手段と、
前記検出された制動操作量のみに基づいて、前記第1の液圧配管における第1の補助液圧基準量及び前記第2の液圧配管における第2の補助液圧基準量を決定する基準量決定手段と、
前記車両の旋回状態を表す状態量、及び前記車輪の滑り易さを表す状態量のうちの少なくとも1つを取得する取得手段と、
前記車両の旋回状態において前記決定された第1、第2の補助液圧基準量と前記取得された状態量とに基づいて、前記第1、第2の液圧配管のうち旋回外側前輪及び旋回内側後輪に対応する一方の液圧配管における第1の補助液圧目標量を前記第1、第2の補助液圧基準量のうち前記一方の液圧配管に対応する一方の補助液圧基準量以上の範囲内の値に決定するとともに、同時に、前記第1、第2の液圧配管のうちの他方の液圧配管における第2の補助液圧目標量を前記第1、第2の補助液圧基準量のうちの他方の補助液圧基準量以下の範囲内の値に決定する目標量決定手段と、
前記一方、他方の液圧配管のそれぞれにおける前記補助液圧を、前記決定された第1、第2の補助液圧目標量にそれぞれ一致するように調整する調圧手段と、
を備えた車両用制動制御装置。 Four wheel braking devices that respectively apply braking torque corresponding to the braking hydraulic pressure supplied to the wheel cylinders of the four front, rear, left, and right wheels of the vehicle to the corresponding wheels;
A first hydraulic pressure generating device having two hydraulic pressure generating chambers each generating a hydraulic pressure amount corresponding to a braking operation amount by a driver of the vehicle;
A first hydraulic pipe that hydraulically connects one of the two hydraulic pressure generating chambers to two corresponding to the left front wheel and the right rear wheel of the four wheel braking devices;
A second hydraulic pipe that hydraulically connects the other of the two hydraulic pressure generating chambers to two corresponding to the right front wheel and the left rear wheel of the four wheel braking devices;
A power-driven second hydraulic pressure generator for generating an auxiliary hydraulic pressure to be added to the hydraulic pressure amount generated by the first hydraulic pressure generator in each of the first and second hydraulic pressure pipes; ,
Detecting means for detecting the amount of braking operation;
A reference amount for determining a first auxiliary hydraulic pressure reference amount in the first hydraulic piping and a second auxiliary hydraulic pressure reference amount in the second hydraulic piping based only on the detected braking operation amount. A determination means;
Obtaining means for obtaining at least one of a state quantity representing a turning state of the vehicle and a state quantity representing the slipperiness of the wheels;
Based on the determined first and second auxiliary hydraulic pressure reference amounts and the acquired state amount in the turning state of the vehicle, the turning outer front wheel and the turning of the first and second hydraulic pipes The first auxiliary hydraulic pressure target amount in one hydraulic pressure pipe corresponding to the inner rear wheel is set as one auxiliary hydraulic pressure reference corresponding to the one hydraulic pressure pipe among the first and second auxiliary hydraulic pressure reference amounts. and determines a value in the range of more than an amount, at the same time, the first and the other liquid-pressure first in line 2 of the auxiliary hydraulic target amount the first of the second liquid pressure pipe, a second auxiliary Target amount determination means for determining a value within a range equal to or less than the other auxiliary hydraulic pressure reference amount of the hydraulic pressure reference amount;
Pressure adjusting means for adjusting the auxiliary hydraulic pressure in each of the one and the other hydraulic pipings so as to match the determined first and second auxiliary hydraulic pressure target amounts, respectively;
A vehicle braking control apparatus comprising:
前記取得手段は、
前記荷重状態を表す状態量として、前記車両の静的な積載状態を表す値を取得するように構成された車両用制動制御装置。 The vehicle brake control device according to claim 1,
The acquisition means includes
A vehicle braking control device configured to acquire a value representing a static loading state of the vehicle as a state quantity representing the load state.
前記取得手段は、
前記走行状態を表す状態量として、前記車両の車体速度、及び前記車両の旋回状態を表す値の少なくとも1つを取得するように構成された車両用制動制御装置。 The vehicle brake control device according to claim 1,
The acquisition means includes
A vehicle braking control device configured to acquire at least one of a vehicle body speed of the vehicle and a value representing a turning state of the vehicle as a state quantity representing the traveling state.
前記取得手段は、
前記車輪の滑り易さを表す状態量として、前記車輪のスリップ速度を取得するように構成された車両用制動制御装置。 In the vehicle brake control device according to claim 1 or 2,
The acquisition means includes
A braking control device for a vehicle configured to acquire a slip speed of the wheel as a state quantity indicating the slipperiness of the wheel.
前記目標量決定手段は、
前記前輪、後輪の補助液圧目標量、又は前記第1、第2の補助液圧目標量を、前記制動操作量がゼロ又はゼロ近傍の微小値よりも大きい範囲に亘ってゼロよりも大きい値になるように決定するよう構成された車両用制動制御装置。 In the vehicle brake control device according to claim 1 or 2,
The target amount determining means includes
The auxiliary hydraulic pressure target amount of the front wheel, the rear wheel, or the first and second auxiliary hydraulic pressure target amounts is larger than zero over a range where the braking operation amount is zero or larger than a minute value near zero. A vehicle braking control device configured to determine a value.
前記基準量決定手段は、
前記前輪の補助液圧基準量を、前記制動操作量の増加に応じて増加するとともに前記制動操作量の増加に応じて増加勾配が大きくなるように決定し、
前記後輪の補助液圧基準量を、前記制動操作量の増加に応じて増加するとともに前記制動操作量の増加に応じて増加勾配が小さくなるように決定するように構成された車両用制動制御装置。 The vehicle brake control device according to claim 1,
The reference amount determination means includes
The auxiliary hydraulic pressure reference amount of the front wheel is determined so as to increase with an increase in the braking operation amount and an increase gradient with an increase in the braking operation amount,
Brake control for a vehicle configured to determine the auxiliary hydraulic pressure reference amount of the rear wheel so as to increase as the braking operation amount increases and to decrease the increase gradient as the braking operation amount increases. apparatus.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007106642A JP5098408B2 (en) | 2007-04-16 | 2007-04-16 | Brake control device for vehicle |
US12/100,217 US8332113B2 (en) | 2007-04-16 | 2008-04-09 | Brake control apparatus for vehicle |
DE102008001131A DE102008001131A1 (en) | 2007-04-16 | 2008-04-11 | Brake control device for a vehicle |
DE102008064752.7A DE102008064752B3 (en) | 2007-04-16 | 2008-04-11 | Brake control device for a vehicle |
CN 200810089382 CN101289084B (en) | 2007-04-16 | 2008-04-15 | Brake control apparatus for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007106642A JP5098408B2 (en) | 2007-04-16 | 2007-04-16 | Brake control device for vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008260496A JP2008260496A (en) | 2008-10-30 |
JP5098408B2 true JP5098408B2 (en) | 2012-12-12 |
Family
ID=39983299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007106642A Expired - Fee Related JP5098408B2 (en) | 2007-04-16 | 2007-04-16 | Brake control device for vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5098408B2 (en) |
CN (1) | CN101289084B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112011102481T5 (en) * | 2010-09-02 | 2013-06-06 | Kelsey-Hayes Company | Speed control strategy |
JP5692533B2 (en) * | 2012-03-29 | 2015-04-01 | 株式会社アドヴィックス | Brake control device for vehicle |
JP5738237B2 (en) | 2012-07-04 | 2015-06-17 | 株式会社アドヴィックス | Braking device for vehicle |
CN103542973B (en) * | 2012-07-13 | 2016-01-27 | 葛在 | A kind of method of testing vehicle braking ability and device |
US9296368B2 (en) * | 2013-10-30 | 2016-03-29 | GM Global Technology Operations LLC | Determining effective brake pedal position |
CN106527400A (en) * | 2016-11-25 | 2017-03-22 | 合肥工业大学 | In-loop simulation platform and simulation method for real time hardware of body electronic stability system |
CN109552286B (en) | 2017-09-25 | 2021-06-11 | 株式会社爱德克斯 | Brake control device |
DE112018005520T5 (en) * | 2017-09-27 | 2020-07-09 | Hitachi Automotive Systems, Ltd. | Braking device and vehicle control device |
CN110356379A (en) * | 2018-03-26 | 2019-10-22 | 北汽福田汽车股份有限公司 | Braking force distribution method, apparatus and vehicle for vehicle |
JP7139652B2 (en) * | 2018-03-30 | 2022-09-21 | 株式会社アドヴィックス | vehicle braking controller |
JP7032275B2 (en) * | 2018-09-21 | 2022-03-08 | トヨタ自動車株式会社 | Vehicle braking control device |
CN109532809B (en) * | 2018-11-24 | 2020-05-22 | 洛阳智能农业装备研究院有限公司 | Tractor electric control braking method based on acceleration sensor |
JP7310169B2 (en) * | 2019-02-25 | 2023-07-19 | 株式会社アドヴィックス | vehicle braking controller |
DE102019134466A1 (en) * | 2019-12-16 | 2021-06-17 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | System architecture of an electronic braking system |
JP7472498B2 (en) * | 2020-01-17 | 2024-04-23 | 株式会社アドヴィックス | Brake Control Device |
CN112572383B (en) * | 2020-12-29 | 2024-07-23 | 武汉格罗夫氢能汽车有限公司 | Electronic stability control system and control method for fuel cell hydrogen energy automobile |
CN112660089B (en) * | 2020-12-31 | 2022-09-09 | 拿森汽车科技(杭州)有限公司 | Master cylinder pressure estimation and control method and device, and computer storage medium |
JP2022117642A (en) * | 2021-02-01 | 2022-08-12 | 本田技研工業株式会社 | Vehicle control device |
CN118238792B (en) * | 2024-05-28 | 2024-10-18 | 中国第一汽车股份有限公司 | Master cylinder pressure processing method and device, redundant braking system and vehicle |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2904069A (en) * | 1954-10-02 | 1959-09-15 | Teves Kg Alfred | Pressure regulator for harmonic pressure distribution |
JP3416913B2 (en) * | 1994-06-14 | 2003-06-16 | アイシン精機株式会社 | Braking device for electric vehicles |
JPH10119744A (en) * | 1996-10-22 | 1998-05-12 | Nippon Abs Ltd | Vehicular braking device |
JPH10217928A (en) * | 1997-02-06 | 1998-08-18 | Mazda Motor Corp | Posture control device for vehicle |
JP4379958B2 (en) * | 1999-07-27 | 2009-12-09 | マツダ株式会社 | Automotive braking system |
JP2002242719A (en) * | 2001-02-20 | 2002-08-28 | Honda Motor Co Ltd | Control device for hybrid vehicle |
-
2007
- 2007-04-16 JP JP2007106642A patent/JP5098408B2/en not_active Expired - Fee Related
-
2008
- 2008-04-15 CN CN 200810089382 patent/CN101289084B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101289084B (en) | 2013-01-02 |
JP2008260496A (en) | 2008-10-30 |
CN101289084A (en) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5098408B2 (en) | Brake control device for vehicle | |
US7337873B2 (en) | Steering control apparatus for a vehicle | |
US8332113B2 (en) | Brake control apparatus for vehicle | |
EP1424263B1 (en) | Vehicle steering control device | |
JP3626665B2 (en) | Vehicle attitude control device | |
JP3610738B2 (en) | Vehicle behavior control device with wheel slip control device | |
US20050205339A1 (en) | Steering control apparatus for a vehicle | |
WO2020241637A1 (en) | Brake system, braking force distribution device, and electric brake device | |
JP2009241721A (en) | Wheel lateral force estimating device of vehicle | |
WO2005047073A1 (en) | Vehicle motion-realizing method and device | |
JP5655447B2 (en) | Control method of rollover suppression control device | |
JP5636825B2 (en) | Vehicle weight estimation device | |
WO2019077973A1 (en) | Brake system for vehicle | |
JP5209589B2 (en) | Brake hydraulic pressure control device for vehicles | |
JPH05105055A (en) | Travel controller at braking | |
JP5332700B2 (en) | Steering control device for vehicle | |
JP2001233229A (en) | Vehicle attitude control device | |
JP5446685B2 (en) | Vehicle motion control device | |
JP2009046091A (en) | Braking force control device, driving force control device, and braking and driving force control device | |
JP5067001B2 (en) | Brake control device for vehicle | |
JP3697738B2 (en) | Vehicle stability control device | |
JP4284210B2 (en) | Vehicle steering control device | |
JP2020060434A (en) | Vehicle center-of-gravity position estimation device | |
JP4284211B2 (en) | Vehicle steering control device | |
JP5333119B2 (en) | Vehicle motion control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120828 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120910 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5098408 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |