JP5098196B2 - Water cooling engine heat pump - Google Patents

Water cooling engine heat pump Download PDF

Info

Publication number
JP5098196B2
JP5098196B2 JP2006085594A JP2006085594A JP5098196B2 JP 5098196 B2 JP5098196 B2 JP 5098196B2 JP 2006085594 A JP2006085594 A JP 2006085594A JP 2006085594 A JP2006085594 A JP 2006085594A JP 5098196 B2 JP5098196 B2 JP 5098196B2
Authority
JP
Japan
Prior art keywords
temperature
cooling water
port
valve
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006085594A
Other languages
Japanese (ja)
Other versions
JP2006308277A (en
Inventor
道彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2006085594A priority Critical patent/JP5098196B2/en
Publication of JP2006308277A publication Critical patent/JP2006308277A/en
Application granted granted Critical
Publication of JP5098196B2 publication Critical patent/JP5098196B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Supercharger (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、空調機等の室外機として使用される水冷エンジンヒートポンプに関する。   The present invention relates to a water-cooled engine heat pump used as an outdoor unit such as an air conditioner.

水冷エンジンによりコンプレッサを駆動する水冷エンジンヒートポンプは、暖房運転時にエンジンの廃熱を利用して冷媒を加熱できるという利点がある。しかし、冷却水より冷媒に熱を与えすぎると、冷却水が低温になり過ぎ、エンジンが過冷状態になる場合がある。その結果、エンジンの耐久性の低下、不安定な燃焼状態、ロス馬力の増加等の問題を生ずる。この解決策として、次の文献が知られている。
第2519409号特許公報
A water-cooled engine heat pump that drives a compressor by a water-cooled engine has an advantage that the refrigerant can be heated using waste heat of the engine during heating operation. However, if heat is applied to the refrigerant too much than the cooling water, the cooling water may become too cold and the engine may be overcooled. As a result, problems such as a decrease in engine durability, an unstable combustion state, and an increase in loss horsepower are caused. The following documents are known as solutions for this.
Japanese Patent No. 2519409

この文献では、エンジン冷却水温度が所定値よりも低い低温運転状態において、廃熱回収器での熱交換を停止させるサーモスタットを設けるようにしている。
この従来の廃熱回収装置では、エンジン冷却水温度が所定値よりも低い場合、エンジンの廃熱は利用されていない。このためエンジンの始動からしばらくの間は冷却水温度が所定値に達せず、冷却水の熱が利用されず低温暖房での立ち上がりまでに時間がかかるという問題があった。
In this document, a thermostat for stopping heat exchange in the waste heat recovery unit is provided in a low-temperature operation state where the engine coolant temperature is lower than a predetermined value.
In this conventional waste heat recovery device, when the engine coolant temperature is lower than a predetermined value, the waste heat of the engine is not utilized. For this reason, there has been a problem that the cooling water temperature does not reach a predetermined value for a while from the start of the engine, and the heat of the cooling water is not used and it takes time to start up in low temperature heating.

本願発明は、上記の問題を解消するもので、冷却水の持つ熱をエンジン始動時から用い、低温暖房での立ち上がりを早くできる水冷エンジンヒートポンプを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a water-cooled engine heat pump that solves the above-mentioned problems and that can use the heat of cooling water from the start of the engine and can quickly start up in low-temperature heating.

課題を解決するための手段及び作用、効果Means, actions and effects for solving the problems

本発明の水冷エンジンヒートポンプは、まず、水冷式のエンジンと該エンジンにより駆動される冷媒圧縮用のコンプレッサと冷媒用熱交換機と該エンジンの熱を冷媒に伝えるための廃熱回収装置とをもち、前記廃熱回収装置は前記エンジンを冷却するための冷却水回路と該コンプレッサにより圧縮される冷媒を循環する冷媒回路と該冷却水回路及び該冷媒回路に連結され該冷却水の熱を該冷媒に伝える廃熱回収器と該冷却水回路を循環する冷却水の温度が所定値よりも低い低温運転状態において該廃熱回収器への冷却水の送水を停止する停止手段とを持つ水冷エンジンヒートポンプであって、前記冷却水回路は、前記停止手段をバイパスして前記廃熱回収器に前記エンジンを通過した冷却水を送水するバイパス回路を有する。 The water-cooled engine heat pump of the present invention first has a water-cooled engine, a refrigerant compression compressor driven by the engine, a refrigerant heat exchanger, and a waste heat recovery device for transferring heat of the engine to the refrigerant. The waste heat recovery device is connected to a cooling water circuit for cooling the engine, a refrigerant circuit for circulating a refrigerant compressed by the compressor, the cooling water circuit, and the refrigerant circuit, and the heat of the cooling water is used as the refrigerant. A water-cooled engine heat pump having a waste heat recovery device for transmitting and a stop means for stopping the supply of the cooling water to the waste heat recovery device in a low temperature operation state where the temperature of the cooling water circulating through the cooling water circuit is lower than a predetermined value there, the cooling water circuit, that have a bypass circuit for water cooling water passing through the engine to the waste heat recovery unit to bypass the stop means.

本発明の水冷エンジンヒートポンプでは、バイパス回路が設けられているので、エンジンを始動して暖房の立ち上がり時、冷却水温度が低い場合でも、冷却水の熱が冷媒に受け渡される。このため、冷媒低圧(コンプレッサ吸入側の冷媒圧力)が低下することを防止できる。冷媒低圧が低下しすぎたときにコンプレッサを高回転で回すとシステムが低圧異常停止となる。これを避けるためにコンプレッサを低回転で回す必要があり、そのためエンジンを最低回転数で回すことになる。この冷媒低圧が低下しすぎたときの動作を冷媒低圧回避という。冷媒低圧回避の状態となると、エンジンを最低回転数で回すことになるため冷却水温度の上昇が遅くなる。本発明では、上記のように、冷媒低圧が低下することを防止できるので、冷媒低圧回避にならず、エンジン回転数を上昇できる。エンジン回転数が上がると燃料消費量が増え、冷却水の温度が早く上昇する。冷却水の温度が上昇すると冷却水から冷媒に伝わる熱量が増加し、暖房能力が増大する。このため暖房低温時の立ち上がりがよい。   In the water-cooled engine heat pump of the present invention, since the bypass circuit is provided, the heat of the cooling water is transferred to the refrigerant even when the cooling water temperature is low when the engine is started and the heating is started. For this reason, it is possible to prevent the refrigerant low pressure (compressor suction side refrigerant pressure) from decreasing. If the compressor is rotated at a high speed when the refrigerant low pressure is too low, the system will stop abnormally at a low pressure. In order to avoid this, it is necessary to rotate the compressor at a low speed, so that the engine is rotated at the minimum speed. The operation when the refrigerant low pressure is excessively reduced is referred to as refrigerant low pressure avoidance. When the refrigerant is in a state of avoiding the low pressure, the engine is rotated at the minimum number of revolutions, so the rise in the coolant temperature is delayed. In the present invention, as described above, since the refrigerant low pressure can be prevented from being lowered, the refrigerant low pressure is not avoided, and the engine speed can be increased. As the engine speed increases, fuel consumption increases and the temperature of the cooling water rises quickly. When the temperature of the cooling water rises, the amount of heat transferred from the cooling water to the refrigerant increases, and the heating capacity increases. For this reason, the rise at the time of heating low temperature is good.

本発明の水冷エンジンヒートポンプは水冷式のエンジンとこのエンジンにより駆動される冷媒圧縮用のコンプレッサと冷媒用熱交換機とこのエンジンの熱を冷媒に伝えるための廃熱回収装置とをもつ。   The water-cooled engine heat pump of the present invention has a water-cooled engine, a refrigerant compression compressor driven by the engine, a refrigerant heat exchanger, and a waste heat recovery device for transferring the heat of the engine to the refrigerant.

水冷式のエンジンは水冷式の内燃機関、具体的には水冷式のディーゼルエンジン、水冷式のガソリンエンジン、水冷式のガスエンジン等が用いられる。この内燃機関は、冷媒のガス圧が所定値以下の場合には回転速度が低く抑えられるように制御されている。水冷式エンジンはエンジンのシリンダブロックを冷却するばかりでなく、排気ガスの熱を冷却水に取り込む排気ガス熱交換器及び/又はマニフォールド冷却装置を冷却するものでも良い。   As the water-cooled engine, a water-cooled internal combustion engine, specifically, a water-cooled diesel engine, a water-cooled gasoline engine, a water-cooled gas engine, or the like is used. The internal combustion engine is controlled so that the rotation speed is kept low when the gas pressure of the refrigerant is equal to or lower than a predetermined value. The water-cooled engine may not only cool the cylinder block of the engine but also cool an exhaust gas heat exchanger and / or a manifold cooling device that takes the heat of the exhaust gas into the cooling water.

冷媒圧縮用のコンプレッサは、ヒートポンプの心臓部にあたるもので、冷媒を断熱圧縮することにより冷媒のガス圧が増大すると共に冷媒の温度が高くなる。冷媒用熱交換機は暖房すべき部屋等に冷媒の熱を伝えるものである。暖房時にはコンプレッサで断熱圧縮され高温となった冷媒の熱が暖房する部屋内の空気あるいは部屋の空気等を暖房する水等に放熱される。   The compressor for compressing the refrigerant corresponds to the heart of the heat pump. By adiabatically compressing the refrigerant, the gas pressure of the refrigerant increases and the temperature of the refrigerant increases. The heat exchanger for refrigerant transfers heat of the refrigerant to a room to be heated. During heating, the heat of the refrigerant that is adiabatically compressed by the compressor and becomes high temperature is radiated to the air in the room to be heated or the water to heat the air in the room.

廃熱回収器は水冷式の内燃機関の冷却水の熱を冷媒に伝えるものである。この廃熱回収器により、冷却水の熱が冷媒に伝えられ、冷却水の温度は低下する。逆に熱をもらう冷媒の温度は高くなる。   The waste heat recovery unit transfers the heat of the cooling water of the water-cooled internal combustion engine to the refrigerant. By this waste heat recovery device, the heat of the cooling water is transmitted to the refrigerant, and the temperature of the cooling water is lowered. Conversely, the temperature of the refrigerant that receives heat increases.

なお、冷媒用熱交換機は特定の部屋等の暖房あるいは暖房と冷房に使用される室内用熱交換機として使用するものでもよい。   The refrigerant heat exchanger may be used as an indoor heat exchanger used for heating a specific room or the like and for heating and cooling.

この冷媒用熱交換機と別に外部の熱源と冷媒との間で熱の交換を行う外部熱交換機を持つものでもよい。   In addition to the refrigerant heat exchanger, an external heat exchanger that exchanges heat between an external heat source and the refrigerant may be used.

本発明の水冷エンジンヒートポンプの廃熱回収装置は、エンジンを冷却するための冷却水回路と、コンプレッサにより圧縮される冷媒を循環する冷媒回路と、冷却水回路及び冷媒回路に連結される前記した廃熱回収器と、冷却水回路を循環する冷却水の温度が所定値よりも低い低温運転状態において廃熱回収器への冷却水の送水を停止する停止手段とを持つ。さらに、冷却水回路は停止手段をバイパスして廃熱回収器に冷却水を送水するバイパス回路を持つ。   The waste heat recovery apparatus for a water-cooled engine heat pump according to the present invention includes a cooling water circuit for cooling an engine, a refrigerant circuit for circulating a refrigerant compressed by a compressor, and the above-described waste connected to the cooling water circuit and the refrigerant circuit. A heat recovery unit, and a stop unit for stopping the water supply to the waste heat recovery unit in a low temperature operation state where the temperature of the cooling water circulating in the cooling water circuit is lower than a predetermined value. Furthermore, the cooling water circuit has a bypass circuit that bypasses the stopping means and sends the cooling water to the waste heat recovery device.

停止手段は従来の水冷エンジンヒートポンプに設けられているものと同じもので、冷却水の温度が低い場合には、廃熱回収器に流れる冷却水を停止させるものである。これにより冷却水から冷媒に伝達される熱が無くなり、廃熱回収器の機能が停止する。すなわち、停止手段は廃熱回収器の機能を停止させ、冷却水の温度がエンジンの駆動により暖められるのを待つ機能を果たしている。   The stopping means is the same as that provided in the conventional water-cooled engine heat pump, and stops the cooling water flowing through the waste heat recovery unit when the temperature of the cooling water is low. As a result, heat transferred from the cooling water to the refrigerant is eliminated, and the function of the waste heat recovery unit is stopped. That is, the stop means stops the function of the waste heat recovery unit and functions to wait for the temperature of the cooling water to be warmed by driving the engine.

停止手段としては、従来と同じように、冷却水の温度が所定の低い温度の時に廃熱回収器に流れる冷却通路を閉じるサーモスタット弁、冷却水センサを持つ電磁弁等の開閉弁を使用することができる。   As a means for stopping, as in the past, use a switching valve such as a thermostat valve that closes the cooling passage that flows to the waste heat recovery unit when the temperature of the cooling water is a predetermined low temperature, or an electromagnetic valve that has a cooling water sensor. Can do.

本発明の水冷エンジンヒートポンプの廃熱回収装置は、この停止手段をバイパスするバイパス回路を持つ。このためバイパス回路により常にエンジンの冷却水は廃熱回収器に流れるようになっている。なお、冷却水の温度が所定値以上になった場合には停止手段が解除され、多量の冷却水が廃熱回収装置に流れ込む。当然にバイパス回路からも冷却水は廃熱回収器に流れる。   The waste heat recovery apparatus for the water-cooled engine heat pump of the present invention has a bypass circuit that bypasses the stopping means. For this reason, the engine cooling water always flows to the waste heat recovery device by the bypass circuit. When the temperature of the cooling water reaches a predetermined value or more, the stopping means is released and a large amount of cooling water flows into the waste heat recovery device. Of course, the cooling water also flows from the bypass circuit to the waste heat recovery unit.

なお、バイパス回路は冷却水の一部をバイパスさせるものが好ましい。このため多量の冷却水がバイパスされないように水量を規制する水路抵抗を持つものとするのが好ましい。これによってエンジンの冷却水が低温になり過ぎ、エンジンが過冷状態になることを抑制することが出きる。その場合、冷却水の温度が所定値よりも低い低温運転状態におけるバイパス回路を流れる流量が全体の流量に対し2〜50%であるように水路抵抗を設定することが好ましく、より好ましくは5〜30%、さらに好ましくは5〜15%であると良い。   The bypass circuit preferably bypasses a part of the cooling water. For this reason, it is preferable to have a channel resistance that regulates the amount of water so that a large amount of cooling water is not bypassed. As a result, the engine coolant can be prevented from becoming too cold and the engine from being overcooled. In that case, it is preferable to set the channel resistance so that the flow rate through the bypass circuit in the low temperature operation state in which the temperature of the cooling water is lower than a predetermined value is 2 to 50%, more preferably 5 to 5%. 30%, more preferably 5 to 15%.

本発明に係る停止手段は所定の低温で弁を開閉する低温弁とし、本発明に係る冷却水回路は、さらにラジエータとこのラジエータへの冷却水の送水の開閉を所定の低温より高い所定の高温で弁を開閉する高温弁とをもつものとすることができる。   The stopping means according to the present invention is a low-temperature valve that opens and closes the valve at a predetermined low temperature, and the cooling water circuit according to the present invention further opens and closes the radiator and the supply of cooling water to the radiator at a predetermined high temperature higher than the predetermined low temperature. And a high temperature valve for opening and closing the valve.

冷却水が所定の低温より低い場合は本発明の停止手段となる低温弁が閉じ、低温弁を介して冷却水が廃熱回収器に流れ込むことはない。しかしパイパス回路を介して冷却水の一部が廃熱回収器に流れ込む。冷却水が所定の低温より低い場合、冷却水は所定の高温より当然に低く、ラジエータには冷却水が流れ込まない。   When the cooling water is lower than a predetermined low temperature, the low temperature valve serving as the stopping means of the present invention is closed, and the cooling water does not flow into the waste heat recovery device via the low temperature valve. However, a part of the cooling water flows into the waste heat recovery device through the bypass circuit. When the cooling water is lower than the predetermined low temperature, the cooling water is naturally lower than the predetermined high temperature, and the cooling water does not flow into the radiator.

冷却水温度が所定の低温より高く所定の高温より低い場合、冷却水は廃熱回収器に低温弁及びバイパス回路の両方から流れ込む。この場合も冷却水はラジエータには流れこまない。   When the cooling water temperature is higher than the predetermined low temperature and lower than the predetermined high temperature, the cooling water flows into the waste heat recovery device from both the low temperature valve and the bypass circuit. In this case, the cooling water does not flow into the radiator.

冷却水温度が所定の高温より高い場合、低温弁及び高温弁は共に開く。この場合、廃熱回収器にはバイパス回路及び低温弁を介して冷却水が流れ込み、ラジエータには高温弁を介して冷却水が流れ込む。   When the cooling water temperature is higher than a predetermined high temperature, both the low temperature valve and the high temperature valve are opened. In this case, the cooling water flows into the waste heat recovery unit through the bypass circuit and the low temperature valve, and the cooling water flows into the radiator through the high temperature valve.

なお、本発明に係る低温弁及び高温弁はそれぞれ具体的な個々の開閉弁を意味するものではなく、低温弁は廃熱回収器に流れ込む冷却水を開閉する機能を持つ弁手段を言う。従って、低温弁は、実際は1個の開閉弁で構成される場合も、2個以上の複数の開閉弁で構成される場合もあり得る。同様に、高温弁はラジエータに流れ込む冷却水を開閉する機能を持つ弁手段を言い、高温弁も、実際は1個の開閉弁で構成される場合も、2個以上の複数の開閉弁で構成される場合もあり得る。さらに、低温弁は、冷却水が流れる通路を切り替える切替弁で構成される場合もあり得る。例えば、低温弁として、冷却水全量を吸入する全量吸入口(吸入口)と、第1の温度より低い温度で全量吸入口から吸入された冷却水の全量を排出する低温排出口(低温口)と、前記第1の温度以上である第2の温度以上の温度で全量吸入口から吸入された冷却水の全量を排出する高温排出口(高温口)を持つものが例示される。また、低温弁として、冷却水全量を排出する全量排出口(排出口)と、第1の温度より低い温度で全量排出口から排出する冷却水の全量を吸入する低温吸入口(低温口)と、前記第1の温度以上である第2の温度以上の温度で全量排出口から排出する冷却水の全量を吸入する高温吸入口(高温口)を持つものが例示される。これらの第1の温度、第2の温度は同一の温度であってもよい。この場合、その温度を境として冷却水が流れる通路(低温口側または高温口側)を完全に切り替えるものである。高温弁も、冷却水が流れる通路を切り替える切替弁で構成される場合もあり得る。高温弁の場合、第3の温度が低温弁の第1の温度に相当し、第4の温度が低温弁の第2の温度に相当することが異なる以外、低温弁と同様のものが例示される。第3の温度、第4の温度は、第1の温度、第2の温度のいずれの温度よりも高く設定されている。   The low-temperature valve and the high-temperature valve according to the present invention do not mean specific individual on-off valves, and the low-temperature valve means valve means having a function of opening and closing cooling water flowing into the waste heat recovery device. Therefore, the cryogenic valve may actually be constituted by one on-off valve or may be constituted by two or more plural on-off valves. Similarly, the high temperature valve means a valve means having a function of opening and closing cooling water flowing into the radiator, and the high temperature valve is actually composed of two or more plural on / off valves even if it is composed of one on / off valve. It may be possible. Furthermore, the low temperature valve may be configured by a switching valve that switches a passage through which cooling water flows. For example, as a low-temperature valve, a full-volume intake port (suction port) that sucks the entire amount of cooling water, and a low-temperature discharge port (low-temperature port) that discharges the entire amount of cooling water drawn from the full-volume intake port at a temperature lower than the first temperature. And what has a high temperature discharge port (high temperature port) which discharges the whole quantity of the cooling water suck | inhaled from the whole amount suction port at the temperature more than 2nd temperature which is more than said 1st temperature is illustrated. Further, as a low temperature valve, a total discharge port (discharge port) that discharges the entire amount of cooling water, a low temperature intake port (cold port) that sucks the entire amount of cooling water discharged from the full discharge port at a temperature lower than the first temperature, and Examples include a high-temperature suction port (high-temperature port) that sucks the entire amount of cooling water discharged from the entire discharge port at a temperature equal to or higher than the second temperature that is equal to or higher than the first temperature. The first temperature and the second temperature may be the same temperature. In this case, the passage (cooling port side or high temperature port side) through which the cooling water flows is completely switched with the temperature as a boundary. A high temperature valve may also be comprised with the switching valve which switches the channel | path through which cooling water flows. In the case of a high temperature valve, the same thing as a low temperature valve is illustrated except that the third temperature corresponds to the first temperature of the low temperature valve and the fourth temperature corresponds to the second temperature of the low temperature valve. The The third temperature and the fourth temperature are set higher than any of the first temperature and the second temperature.

係る開閉弁としては、従来から知られているサーモスタット弁、温度センサを備えた電磁弁等を採用することができる。   As such an on-off valve, a conventionally known thermostat valve, an electromagnetic valve provided with a temperature sensor, or the like can be employed.

具体的な冷却水回路は、図1〜図8に示すものとすることができる。   A specific cooling water circuit can be shown in FIGS.

図1に示す冷却水回路は、エンジン2の冷却水吐出口25と低温弁61の全量吸入口610とを結ぶ供給通路11と、この低温弁61の低温排出口614とエンジン2の冷却水吸入口26とを結ぶ回収通路12と、低温弁61の高温排出口615と高温弁62の全量吸入口620とを結ぶ第二供給通路110と、廃熱回収器64を通り高温弁62の低温排出口624と回収通路12とを結ぶ廃熱回収通路13と、ラジエータ63を通り高温弁62の高温排出口625と回収通路12とを結ぶラジエータ通路14と、供給通路11と廃熱回収器64の供給口641とを結ぶバイパス通路15とで構成されている。   The cooling water circuit shown in FIG. 1 includes a supply passage 11 that connects the cooling water discharge port 25 of the engine 2 and the total amount suction port 610 of the low temperature valve 61, the low temperature discharge port 614 of the low temperature valve 61, and the cooling water suction of the engine 2. The recovery passage 12 connecting the port 26, the second supply passage 110 connecting the high temperature discharge port 615 of the low temperature valve 61 and the full amount suction port 620 of the high temperature valve 62, and the low temperature exhaust of the high temperature valve 62 through the waste heat recovery device 64. The waste heat recovery passage 13 connecting the outlet 624 and the recovery passage 12, the radiator passage 14 passing through the radiator 63 and connecting the high temperature outlet 62 625 of the high temperature valve 62 and the recovery passage 12, the supply passage 11 and the waste heat recovery device 64. The bypass passage 15 is connected to the supply port 641.

低温弁61は、冷却水を吸入する全量吸入口610と、第1の温度より低い温度で全量吸入口610から吸入された冷却水の全量を排出する低温排出口614と、第1の温度より高い第2の温度以上の温度で全量吸入口610から吸入された冷却水の全量を排出する高温排出口615とを備えており、高温弁62は、冷却水を吸入する全量吸入口620と、第3の温度より低い温度で全量吸入口620から吸入された冷却水の全量を排出する低温排出口624と、第3の温度より高い第4の温度以上の温度で全量吸入口620から吸入された冷却水の全量を排出する高温排出口625とを備えている。ここで第3および第4の温度(所定の高温)は、第1および第2の温度(所定の低温)より高く設定されている。すなわち第3の温度は第2の温度より高く設定されている。   The low-temperature valve 61 includes a full-volume intake port 610 for sucking cooling water, a low-temperature discharge port 614 for discharging the total amount of cooling water drawn from the full-volume intake port 610 at a temperature lower than the first temperature, and a first temperature. A high-temperature discharge port 615 that discharges the entire amount of cooling water sucked from the entire amount intake port 610 at a temperature equal to or higher than the high second temperature, and the high-temperature valve 62 includes a total amount intake port 620 that intakes cooling water, A low temperature discharge port 624 that discharges the entire amount of cooling water sucked from the whole amount suction port 620 at a temperature lower than the third temperature, and a full amount sucked from the full amount suction port 620 at a temperature that is higher than the third temperature and equal to or higher than the fourth temperature. And a high-temperature discharge port 625 for discharging the entire amount of cooling water. Here, the third and fourth temperatures (predetermined high temperature) are set higher than the first and second temperatures (predetermined low temperature). That is, the third temperature is set higher than the second temperature.

この冷却水回路は、エンジン2の水ポンプ65が稼働している場合には、冷却水の水温の如何に関わらず冷却水はバイパス通路15を通って廃熱回収器64に流れ込む。冷却水温度が所定の低温より高く所定の高温より低い場合(第2の温度より高く第3の温度より低い場合)は、供給通路11と第二供給通路110を通って、廃熱回収通路13に流れ込み、廃熱回収器64はバイパス通路15及び廃熱回収通路13の両通路から冷却水の供給を受ける。しかし、高温弁62でラジエータ通路14は閉ざされ、ラジエータ63には冷却水が流れない。冷却水の温度が所定値(第1温度)よりも低い場合には、低温弁61の吸入口610に吸入された冷却水の全量が低温口611から排出され、冷却水はバイパス通路(バイパス回路)15だけを通って廃熱回収器64に流れ込む。すなわち、バイパス通路15がない場合、廃熱回収器64への冷却水の送水は停止される。したがって、低温弁61は、冷却水の温度が所定値(第1温度)よりも低い低温運転状態において廃熱回収器64への冷却水の送水は停止する停止手段となっている。   In the cooling water circuit, when the water pump 65 of the engine 2 is operating, the cooling water flows into the waste heat recovery device 64 through the bypass passage 15 regardless of the temperature of the cooling water. When the cooling water temperature is higher than a predetermined low temperature and lower than a predetermined high temperature (when higher than the second temperature and lower than the third temperature), the waste heat recovery passage 13 passes through the supply passage 11 and the second supply passage 110. The waste heat recovery unit 64 receives cooling water from both the bypass passage 15 and the waste heat recovery passage 13. However, the radiator passage 14 is closed by the high temperature valve 62, and the cooling water does not flow through the radiator 63. When the temperature of the cooling water is lower than a predetermined value (first temperature), the entire amount of the cooling water sucked into the suction port 610 of the low temperature valve 61 is discharged from the low temperature port 611 and the cooling water is bypassed (bypass circuit). ) It flows into the waste heat recovery unit 64 through only 15. That is, when there is no bypass passage 15, the water supply to the waste heat recovery device 64 is stopped. Therefore, the low-temperature valve 61 serves as a stopping means for stopping the water supply to the waste heat recovery unit 64 in a low-temperature operation state where the temperature of the cooling water is lower than a predetermined value (first temperature).

図2に示す冷却水回路は、エンジン2の冷却水吐出口25と低温弁61の全量吸入口610とを結ぶ供給通路11と、低温弁61の低温排出口614とエンジン2の冷却水吸入口26とを結ぶ回収通路12と、廃熱回収器64を通り低温弁61の高温排出口615と高温弁62の低温吸入口621とを結ぶ廃熱回収通路13と、ラジエータ63を通り低温弁61の高温排出口615と高温弁62の高温吸入口622とを結ぶラジエータ通路14と、高温弁62の全量排出口623と回収通路12とを結ぶ第二回収通路120と、供給通路11と廃熱回収器64の供給口641とを結ぶ第一バイパス通路15と廃熱回収器64の流出口642と回収通路12及び第二回収通路120のいずれか一方とを結ぶ第二バイパス通路150とからなる。   The cooling water circuit shown in FIG. 2 includes a supply passage 11 that connects the cooling water discharge port 25 of the engine 2 and the total amount suction port 610 of the low temperature valve 61, a low temperature discharge port 614 of the low temperature valve 61, and a cooling water suction port of the engine 2. 26, the waste heat recovery passage 13 connecting the high temperature exhaust port 615 of the low temperature valve 61 and the low temperature intake port 621 of the high temperature valve 62 through the waste heat recovery device 64, and the low temperature valve 61 passing through the radiator 63. The radiator passage 14 connecting the high temperature discharge port 615 and the high temperature suction port 622 of the high temperature valve 62, the second recovery passage 120 connecting the total amount discharge port 623 of the high temperature valve 62 and the recovery passage 12, the supply passage 11 and the waste heat. The first bypass passage 15 connecting the supply port 641 of the recovery device 64, the outlet 642 of the waste heat recovery device 64, and the second bypass passage 150 connecting either the recovery passage 12 or the second recovery passage 120. .

低温弁61は、冷却水を吸入する全量吸入口610と、第1の温度より低い温度で全量吸入口610から吸入された冷却水の全量を排出する低温排出口614と、第1の温度より高い第2の温度以上の温度で全量吸入口610から吸入された冷却水の全量を排出する高温排出口615とを備えており、高温弁62は、冷却水を排出する全量排出口623と、第3の温度より低い温度で全量排出口623から排出する冷却水の全量を吸入する低温吸入口621と、第3の温度以上である第4の温度以上の温度で全量排出口623から排出する冷却水の全量を吸入する高温吸入口622とを備えている。ここで第3および第4の温度(所定の高温)は、第1および第2の温度(所定の低温)より高く設定されている。すなわち第3の温度は第2の温度より高く設定されている。   The low-temperature valve 61 includes a full-volume intake port 610 for sucking cooling water, a low-temperature discharge port 614 for discharging the total amount of cooling water drawn from the full-volume intake port 610 at a temperature lower than the first temperature, and a first temperature. A high-temperature discharge port 615 that discharges the entire amount of cooling water sucked from the entire amount intake port 610 at a temperature equal to or higher than the high second temperature, and the high-temperature valve 62 includes a total amount discharge port 623 that discharges the cooling water, A low-temperature suction port 621 that sucks the entire amount of cooling water discharged from the full amount discharge port 623 at a temperature lower than the third temperature, and a full amount discharge from the full amount discharge port 623 at a temperature equal to or higher than the fourth temperature that is equal to or higher than the third temperature. And a high-temperature suction port 622 for sucking the entire amount of cooling water. Here, the third and fourth temperatures (predetermined high temperature) are set higher than the first and second temperatures (predetermined low temperature). That is, the third temperature is set higher than the second temperature.

図2の冷却水回路は図1の冷却水回路と低温弁61及び高温弁62の使用態様が異なる。しかし、冷却水の温度により廃熱回収器64、ラジエータ63に流れる冷却水の流れは図1の冷却水回路と同じである。すなわち、この冷却水回路は、エンジン2の水ポンプ65が稼働している場合には、冷却水の水温の如何に関わらず冷却水は第一バイパス通路(バイパス回路)15を通って廃熱回収器64に流れ込む。冷却水温度が所定の低温より高く所定の高温より低い場合(第2の温度より高く第3の温度より低い場合)は、供給通路11と廃熱回収通路13を通って、廃熱回収器64に流れ込む。しかし、高温弁62でラジエータ通路14は閉ざされ、ラジエータ63には冷却水が流れない。冷却水の温度が所定値(第1温度)よりも低い場合には、低温弁61の全量吸入口610に吸入された冷却水の全量が低温排出口614から排出され、冷却水はバイパス通路15だけを通って廃熱回収器64に流れ込む。すなわち、バイパス通路15がない場合、廃熱回収器64への冷却水の送水は停止される。したがって、低温弁61は、冷却水の温度が所定値(第1温度)よりも低い低温運転状態において廃熱回収器64への冷却水の送水は停止する停止手段となっている。   The cooling water circuit of FIG. 2 differs from the cooling water circuit of FIG. 1 in the usage mode of the low temperature valve 61 and the high temperature valve 62. However, the flow of the cooling water flowing to the waste heat recovery unit 64 and the radiator 63 depending on the temperature of the cooling water is the same as that of the cooling water circuit of FIG. That is, in the cooling water circuit, when the water pump 65 of the engine 2 is operating, the cooling water passes through the first bypass passage (bypass circuit) 15 to recover waste heat regardless of the temperature of the cooling water. Flows into the vessel 64. When the cooling water temperature is higher than a predetermined low temperature and lower than a predetermined high temperature (when higher than the second temperature and lower than the third temperature), the waste heat recovery device 64 passes through the supply passage 11 and the waste heat recovery passage 13. Flow into. However, the radiator passage 14 is closed by the high temperature valve 62, and the cooling water does not flow through the radiator 63. When the temperature of the cooling water is lower than a predetermined value (first temperature), the entire amount of cooling water sucked into the entire amount suction port 610 of the low temperature valve 61 is discharged from the low temperature discharge port 614, and the cooling water is bypassed by the bypass passage 15. Only into the waste heat recovery unit 64. That is, when there is no bypass passage 15, the water supply to the waste heat recovery device 64 is stopped. Therefore, the low-temperature valve 61 serves as a stopping means for stopping the water supply to the waste heat recovery unit 64 in a low-temperature operation state where the temperature of the cooling water is lower than a predetermined value (first temperature).

図3の冷却水回路は、エンジン2の冷却水吐出口25と高温弁62の全量吸入口620とを結ぶ供給通路11と、高温弁62の低温排出口624と低温弁61の全量吸入口610とを結ぶ第二供給通路110と、低温弁61の低温排出口614とエンジン2の冷却水吸入口26とを結ぶ回収通路12と、廃熱回収器64を通り低温弁61の高温排出口615と回収通路12とを結ぶ廃熱回収通路13と、ラジエータ63を通り高温弁62の高温排出口625と回収通路12とを結ぶラジエータ通路14と、供給通路11と廃熱回収器64の供給口641とを結ぶバイパス通路15とで構成されている。   The cooling water circuit of FIG. 3 includes a supply passage 11 that connects the cooling water discharge port 25 of the engine 2 and the full amount intake port 620 of the high temperature valve 62, the low temperature discharge port 624 of the high temperature valve 62, and the full amount intake port 610 of the low temperature valve 61. , A recovery passage 12 connecting the low-temperature discharge port 614 of the low-temperature valve 61 and the cooling water intake port 26 of the engine 2, and the high-temperature discharge port 615 of the low-temperature valve 61 through the waste heat recovery device 64. Waste heat recovery passage 13 connecting the recovery passage 12 and the radiator passage 14 passing through the radiator 63 and connecting the high temperature discharge port 625 of the high temperature valve 62 and the recovery passage 12, and the supply passage 11 and the supply port of the waste heat recovery device 64 641 and a bypass passage 15 connecting to 641.

低温弁61は、冷却水を吸入する全量吸入口610と、第1の温度より低い温度で全量吸入口610から吸入された冷却水の全量を排出する低温排出口614と、第1の温度以上である第2の温度以上の温度で全量吸入口611から吸入された冷却水の全量を排出する高温排出口615とを備えており、高温弁62は、冷却水を吸入する全量吸入口620と、第3の温度より低い温度で全量吸入口620から吸入された冷却水の全量を排出する低温排出口624と、第3の温度以上である第4の温度以上の温度で全量吸入口620から吸入された冷却水の全量を排出する高温排出口625とを備えている。   The low-temperature valve 61 includes a total amount suction port 610 for sucking cooling water, a low temperature discharge port 614 for discharging the total amount of cooling water sucked from the full amount suction port 610 at a temperature lower than the first temperature, and a temperature equal to or higher than the first temperature. And a high temperature discharge port 615 that discharges the entire amount of cooling water sucked from the whole amount suction port 611 at a temperature equal to or higher than the second temperature, and the high temperature valve 62 includes a full amount suction port 620 that sucks the cooling water, and The low-temperature discharge port 624 that discharges the entire amount of cooling water sucked from the full amount intake port 620 at a temperature lower than the third temperature, and the full amount intake port 620 at a temperature equal to or higher than the fourth temperature that is equal to or higher than the third temperature. And a high-temperature discharge port 625 for discharging the entire amount of the sucked cooling water.

図3の冷却水回路は、図1及び図2の冷却水回路と低温弁61及び高温弁62の使用態様が異なる。しかし、冷却水の温度により廃熱回収器64、ラジエータ63に流れる冷却水の流れは図1及び図2の冷却水回路と同じである。すなわち、この冷却水回路は、エンジン2の水ポンプ65が稼働している場合には、冷却水の水温の如何に関わらず冷却水はバイパス通路(バイパス回路)15を通って廃熱回収器64に流れ込む。冷却水温度が所定の低温より高く所定の高温より低い場合(第2の温度より高く第3の温度より低い場合)は、供給通路11と第二供給通路110を通って、廃熱回収通路13に流れ込み、廃熱回収器64はバイパス通路15及び廃熱回収通路13の両通路から冷却水の供給を受ける。しかし、高温弁62でラジエータ通路14は閉ざされ、ラジエータ63には冷却水が流れない。冷却水の温度が所定値(第1温度)よりも低い場合には、低温弁61の全量吸入口610に吸入された冷却水の全量が低温排出口614から排出され、冷却水はバイパス通路15だけを通って廃熱回収器64に流れ込む。すなわち、バイパス通路15がない場合、廃熱回収器64への冷却水の送水は停止される。したがって、低温弁61は、冷却水の温度が所定値(第1温度)よりも低い低温運転状態において廃熱回収器64への冷却水の送水は停止する停止手段となっている。   The cooling water circuit of FIG. 3 differs from the cooling water circuit of FIGS. 1 and 2 in the usage mode of the low temperature valve 61 and the high temperature valve 62. However, the flow of the cooling water flowing through the waste heat recovery device 64 and the radiator 63 depending on the temperature of the cooling water is the same as that of the cooling water circuit of FIGS. That is, in the cooling water circuit, when the water pump 65 of the engine 2 is operating, the cooling water passes through the bypass passage (bypass circuit) 15 and the waste heat recovery unit 64 regardless of the temperature of the cooling water. Flow into. When the cooling water temperature is higher than a predetermined low temperature and lower than a predetermined high temperature (when higher than the second temperature and lower than the third temperature), the waste heat recovery passage 13 passes through the supply passage 11 and the second supply passage 110. The waste heat recovery unit 64 receives cooling water from both the bypass passage 15 and the waste heat recovery passage 13. However, the radiator passage 14 is closed by the high temperature valve 62, and the cooling water does not flow through the radiator 63. When the temperature of the cooling water is lower than a predetermined value (first temperature), the entire amount of cooling water sucked into the entire amount suction port 610 of the low temperature valve 61 is discharged from the low temperature discharge port 614, and the cooling water is bypassed by the bypass passage 15. Only into the waste heat recovery unit 64. That is, when there is no bypass passage 15, the water supply to the waste heat recovery device 64 is stopped. Therefore, the low-temperature valve 61 serves as a stopping means for stopping the water supply to the waste heat recovery unit 64 in a low-temperature operation state where the temperature of the cooling water is lower than a predetermined value (first temperature).

図4に示す冷却水回路は、エンジン2の冷却水吐出口25と高温弁62の全量吸入口620とを結ぶ供給通路11と、高温弁62の低温排出口624と低温弁61の低温吸入口611とを結ぶ第二供給通路110と、低温弁61の全量排出口613とエンジン2の冷却水吸入口26とを結ぶ回収通路12と、廃熱回収器64を通り第二供給通路110と低温弁61の高温吸入口612とを結ぶ廃熱回収通路13と、ラジエータ63を通り高温弁62の高温排出口625と低温弁61の高温吸入口612とを結ぶラジエータ通路14と、供給通路11と第二供給通路110とを結ぶ第一バイパス通路15と、廃熱回収器64の下流側の廃熱回収通路13と回収通路12とを結ぶ第二バイパス通路150とから構成されている。   The cooling water circuit shown in FIG. 4 includes a supply passage 11 that connects the cooling water discharge port 25 of the engine 2 and the full amount suction port 620 of the high temperature valve 62, a low temperature discharge port 624 of the high temperature valve 62, and a low temperature suction port of the low temperature valve 61. 611, the second supply passage 110 connecting 611, the recovery passage 12 connecting the total amount discharge port 613 of the low temperature valve 61 and the cooling water intake port 26 of the engine 2, the waste heat recovery device 64 and the second supply passage 110 and the low temperature. A waste heat recovery passage 13 connecting the high-temperature suction port 612 of the valve 61, a radiator passage 14 passing through the radiator 63 and connecting the high-temperature discharge port 625 of the high-temperature valve 62 and the high-temperature suction port 612 of the low-temperature valve 61, and the supply passage 11 The first bypass passage 15 is connected to the second supply passage 110, and the second bypass passage 150 is connected to the waste heat recovery passage 13 and the recovery passage 12 on the downstream side of the waste heat recovery device 64.

低温弁61は、冷却水を排出する全量排出口613と、第1の温度より低い温度で全量排出口613から排出する冷却水の全量を吸入する低温吸入口611と、第1の温度以上である第2の温度以上の温度で全量排出口613から排出する冷却水の全量を吸入する高温吸入口612とを備えており、高温弁62は、冷却水を吸入する全量吸入口620と、第3の温度より低い温度で全量吸入口620から吸入された冷却水の全量を排出する低温排出口624と、第3の温度以上である第4の温度以上の温度で全量吸入口620から吸入された冷却水の全量を排出する高温排出口625とを備えている。   The low temperature valve 61 includes a total amount discharge port 613 that discharges cooling water, a low temperature intake port 611 that sucks the entire amount of cooling water discharged from the full amount discharge port 613 at a temperature lower than the first temperature, and a temperature higher than the first temperature. A high temperature suction port 612 that sucks the entire amount of cooling water discharged from the full amount discharge port 613 at a temperature equal to or higher than a second temperature, and the high temperature valve 62 includes a full amount suction port 620 for sucking cooling water, A low temperature discharge port 624 that discharges the entire amount of cooling water sucked from the full amount suction port 620 at a temperature lower than the temperature 3, and a full amount sucked from the full amount suction port 620 at a temperature equal to or higher than the fourth temperature that is equal to or higher than the third temperature. And a high-temperature discharge port 625 for discharging the entire amount of cooling water.

図4の冷却水回路は、図1〜図3の冷却水回路と低温弁61及び高温弁62の使用態様が異なる。しかし、冷却水の温度により廃熱回収器64、ラジエータ63に流れる冷却水の流れは図1〜図3の冷却水回路と同じである。すなわち、この冷却水回路は、エンジン2の水ポンプ65が稼働している場合には、冷却水の水温の如何に関わらず冷却水は第一バイパス通路15と第二バイパス通路(バイパス回路)150を通って廃熱回収器64を流れる。冷却水温度が所定の低温より高く所定の高温より低い場合(第2の温度より高く第3の温度より低い場合)は、供給通路11と廃熱回収通路13を通って、廃熱回収器64に流れ込む。しかし、高温弁62でラジエータ通路14は閉ざされ、ラジエータ63には冷却水が流れない。冷却水の温度が所定値(第1温度)よりも低い場合には、低温弁61の高温吸入口612は遮断されており、廃熱回収通路13に流れ込んだ冷却水は第二バイパス通路150だけを通って回収通路12に送られる。すなわち、第二バイパス通路150がない場合、廃熱回収器64への冷却水の送水は停止される。したがって、低温弁61は、冷却水の温度が所定値(第1温度)よりも低い低温運転状態において廃熱回収器64への冷却水の送水は停止する停止手段となっている。   The cooling water circuit of FIG. 4 differs from the cooling water circuit of FIGS. 1 to 3 in the usage mode of the low temperature valve 61 and the high temperature valve 62. However, the flow of the cooling water flowing through the waste heat recovery device 64 and the radiator 63 depending on the temperature of the cooling water is the same as the cooling water circuit of FIGS. That is, in the cooling water circuit, when the water pump 65 of the engine 2 is operating, the cooling water is supplied to the first bypass passage 15 and the second bypass passage (bypass circuit) 150 regardless of the coolant temperature. Through the waste heat recovery unit 64. When the cooling water temperature is higher than a predetermined low temperature and lower than a predetermined high temperature (when higher than the second temperature and lower than the third temperature), the waste heat recovery device 64 passes through the supply passage 11 and the waste heat recovery passage 13. Flow into. However, the radiator passage 14 is closed by the high temperature valve 62, and the cooling water does not flow through the radiator 63. When the temperature of the cooling water is lower than a predetermined value (first temperature), the high-temperature intake port 612 of the low-temperature valve 61 is blocked, and only the second bypass passage 150 flows into the waste heat recovery passage 13. It is sent to the recovery passageway 12 through. That is, when there is no second bypass passage 150, the cooling water supply to the waste heat recovery unit 64 is stopped. Therefore, the low-temperature valve 61 serves as a stopping means for stopping the water supply to the waste heat recovery unit 64 in a low-temperature operation state where the temperature of the cooling water is lower than a predetermined value (first temperature).

図5に示す冷却水回路は、エンジン2の冷却水吐出口25と低温弁61の低温吸入口611とを結ぶ供給通路11と、低温弁61の全量排出口613とエンジン2の冷却水吸入口26とを結ぶ回収通路12と、廃熱回収器64を通り供給通路11と高温弁62の低温吸入口621とを結ぶ廃熱回収通路13と、ラジエータ63を通り供給通路11と高温弁62の高温吸入口622とを結ぶラジエータ通路14と、高温弁62の全量排出口623と低温弁61の高温吸入口612とを結ぶ第二回収通路120と、廃熱回収器64の下流側の廃熱回収通路13と回収通路12とを結ぶバイパス通路15とから構成されている。   The cooling water circuit shown in FIG. 5 includes a supply passage 11 that connects the cooling water discharge port 25 of the engine 2 and the low temperature suction port 611 of the low temperature valve 61, the full amount discharge port 613 of the low temperature valve 61, and the cooling water suction port of the engine 2. 26, the waste heat recovery passage 13 connecting the supply passage 11 and the low temperature inlet 621 of the high temperature valve 62 through the waste heat recovery device 64, and the supply passage 11 and the high temperature valve 62 through the radiator 63. The radiator passage 14 connecting the high temperature intake port 622, the second recovery passage 120 connecting the total amount discharge port 623 of the high temperature valve 62 and the high temperature intake port 612 of the low temperature valve 61, and the waste heat downstream of the waste heat recovery device 64. The bypass passage 15 connects the recovery passage 13 and the recovery passage 12.

低温弁61は、冷却水を排出する全量排出口613と、第1の温度より低い温度で全量排出口613から排出する冷却水の全量を吸入する低温吸入口611と、第1の温度以上である第2の温度以上の温度で全量排出口613から排出する冷却水の全量を吸入する高温吸入口612とを備えており、高温弁62は、冷却水を排出する全量排出口623と、第3の温度より低い温度で全量排出口623から排出する冷却水の全量を吸入する低温吸入口621と、第3の温度以上である第4の温度以上の温度で全量排出口623から排出する冷却水の全量を吸入する高温吸入口622とを備えている。   The low temperature valve 61 includes a total amount discharge port 613 that discharges cooling water, a low temperature intake port 611 that sucks the entire amount of cooling water discharged from the full amount discharge port 613 at a temperature lower than the first temperature, and a temperature higher than the first temperature. A high temperature suction port 612 that sucks the entire amount of cooling water discharged from the total amount discharge port 613 at a temperature equal to or higher than a second temperature, and the high temperature valve 62 includes a total amount discharge port 623 for discharging the cooling water, A low-temperature suction port 621 for sucking the entire amount of cooling water discharged from the total amount discharge port 623 at a temperature lower than the temperature 3, and cooling discharged from the full amount discharge port 623 at a temperature equal to or higher than the fourth temperature which is equal to or higher than the third temperature. And a high-temperature suction port 622 for sucking the entire amount of water.

図5の冷却水回路は、図1〜図4の冷却水回路と低温弁61及び高温弁62の使用態様が異なる。しかし、冷却水の温度により廃熱回収器64、ラジエータ63に流れる冷却水の流れは図1〜図4の冷却水回路と同じである。すなわち、この冷却水回路は、エンジン2の水ポンプ65が稼働している場合には、冷却水の水温の如何に関わらず、廃熱回収器64を通過した冷却水はバイパス通路(バイパス回路)15を通って流れる。冷却水温度が所定の低温より高く所定の高温より低い場合(第2の温度より高く第3の温度より低い場合)は、廃熱回収器64を通過した冷却水は廃熱回収通路13と第二回収通路120を通っても流れる。しかし、高温弁62でラジエータ通路14は閉ざされ、ラジエータ63には冷却水が流れない。冷却水の温度が所定値(第1温度)よりも低い場合には、低温弁61の高温吸入口612は遮断されており、廃熱回収通路13に流れ込んだ冷却水はバイパス通路15だけを通って回収通路12に送られる。すなわち、バイパス通路15がない場合、廃熱回収器64への冷却水の送水は停止される。したがって、低温弁61は、冷却水の温度が所定値(第1温度)よりも低い低温運転状態において廃熱回収器64への冷却水の送水は停止する停止手段となっている。   The cooling water circuit of FIG. 5 differs from the cooling water circuit of FIGS. 1 to 4 in the usage mode of the low temperature valve 61 and the high temperature valve 62. However, the flow of the cooling water flowing through the waste heat recovery device 64 and the radiator 63 depending on the temperature of the cooling water is the same as the cooling water circuit of FIGS. That is, in the cooling water circuit, when the water pump 65 of the engine 2 is operating, the cooling water that has passed through the waste heat recovery device 64 is bypassed regardless of the temperature of the cooling water (bypass circuit). Flows through 15. When the cooling water temperature is higher than a predetermined low temperature and lower than a predetermined high temperature (when it is higher than the second temperature and lower than the third temperature), the cooling water that has passed through the waste heat recovery unit 64 passes through the waste heat recovery passage 13 and the It also flows through the second collection passage 120. However, the radiator passage 14 is closed by the high temperature valve 62, and the cooling water does not flow through the radiator 63. When the temperature of the cooling water is lower than a predetermined value (first temperature), the high temperature inlet 612 of the low temperature valve 61 is shut off, and the cooling water flowing into the waste heat recovery passage 13 passes only the bypass passage 15. To the recovery passageway 12. That is, when there is no bypass passage 15, the water supply to the waste heat recovery device 64 is stopped. Therefore, the low-temperature valve 61 serves as a stopping means for stopping the water supply to the waste heat recovery unit 64 in a low-temperature operation state where the temperature of the cooling water is lower than a predetermined value (first temperature).

図6に示す冷却水回路は、エンジン2の冷却水吐出口25と低温弁61の低温吸入口611とを結ぶ供給通路11と、供給通路11と高温弁62の全量吸入口620とを結ぶ第二供給通路110と、低温弁61の全量排出口613とエンジン2の冷却水吸入口26とを結ぶ回収通路12と、廃熱回収器64を通り高温弁62の低温排出口624と低温弁61の高温吸入口612とを結ぶ廃熱回収通路13と、ラジエータ63を通り高温弁62の高温排出口625と低温弁61の高温吸入口612とを結ぶラジエータ通路14と、供給通路11と廃熱回収器64の上流側の廃熱回収通路13とを結ぶ第一バイパス通路15と廃熱回収器64の下流側の廃熱回収通路15と回収通路12とを結ぶ第二バイパス通路150とから構成されている。   The cooling water circuit shown in FIG. 6 includes a supply passage 11 connecting the cooling water discharge port 25 of the engine 2 and the low temperature intake port 611 of the low temperature valve 61, and a first connection port 620 connecting the supply passage 11 and the full amount intake port 620 of the high temperature valve 62. The two supply passages 110, the recovery passage 12 connecting the entire discharge port 613 of the low temperature valve 61 and the cooling water intake port 26 of the engine 2, the low temperature discharge port 624 of the high temperature valve 62 and the low temperature valve 61 passing through the waste heat recovery device 64. The waste heat recovery passage 13 connecting the high temperature suction port 612, the radiator passage 14 passing through the radiator 63 and connecting the high temperature discharge port 625 of the high temperature valve 62 and the high temperature suction port 612 of the low temperature valve 61, and the supply passage 11 and the waste heat. The first bypass passage 15 connecting the waste heat recovery passage 13 upstream of the recovery device 64 and the second bypass passage 150 connecting the recovery heat passage 15 and the waste heat recovery passage 15 downstream of the waste heat recovery device 64. Has been.

低温弁61は、冷却水を排出する全量排出口613と、第1の温度より低い温度で全量排出口613から排出する冷却水の全量を吸入する低温吸入口611と、第1の温度以上である第2の温度以上の温度で全量排出口613から排出する冷却水の全量を吸入する高温吸入口612とを備えており、高温弁62は、冷却水を吸入する全量吸入口620と、第3の温度より低い温度で全量吸入口620から吸入された冷却水の全量を排出する低温排出口624と、第3の温度以上である第4の温度以上の温度で全量吸入口620から吸入された冷却水の全量を排出する高温排出口625とを備えている。   The low temperature valve 61 includes a total amount discharge port 613 that discharges cooling water, a low temperature intake port 611 that sucks the entire amount of cooling water discharged from the full amount discharge port 613 at a temperature lower than the first temperature, and a temperature higher than the first temperature. A high temperature suction port 612 that sucks the entire amount of cooling water discharged from the full amount discharge port 613 at a temperature equal to or higher than a second temperature, and the high temperature valve 62 includes a full amount suction port 620 for sucking cooling water, A low temperature discharge port 624 that discharges the entire amount of cooling water sucked from the full amount suction port 620 at a temperature lower than the temperature 3, and a full amount sucked from the full amount suction port 620 at a temperature equal to or higher than the fourth temperature that is equal to or higher than the third temperature. And a high-temperature discharge port 625 for discharging the entire amount of cooling water.

図6の冷却水回路は、図1〜図5の冷却水回路と低温弁61及び高温弁62の使用態様が異なる。しかし、冷却水の温度により廃熱回収器64、ラジエータ63に流れる冷却水の流れは図1〜図5の冷却水回路と同じである。すなわち、この冷却水回路は、エンジン2の水ポンプ65が稼働している場合には、冷却水の水温の如何に関わらず冷却水は第一バイパス通路15と第二バイパス通路(バイパス回路)150を通って廃熱回収器64を流れる。冷却水温度が所定の低温より高く所定の高温より低い場合(第2の温度より高く第3の温度より低い場合)は、第二供給通路110と廃熱回収通路13を通って、廃熱回収器64に流れ込む。しかし、高温弁62でラジエータ通路14は閉ざされ、ラジエータ63には冷却水が流れない。冷却水の温度が所定値(第1温度)よりも低い場合には、低温弁61の高温吸入口612は遮断されており、廃熱回収通路13に流れ込んだ冷却水は第二バイパス通路150だけを通って回収通路12に送られる。すなわち、第二バイパス通路150がない場合、廃熱回収器64への冷却水の送水は停止される。したがって、低温弁61は、冷却水の温度が所定値(第1温度)よりも低い低温運転状態において廃熱回収器64への冷却水の送水は停止する停止手段となっている。   The cooling water circuit of FIG. 6 differs from the cooling water circuit of FIGS. 1 to 5 in the usage mode of the low temperature valve 61 and the high temperature valve 62. However, the flow of the cooling water flowing through the waste heat recovery device 64 and the radiator 63 depending on the temperature of the cooling water is the same as the cooling water circuit of FIGS. That is, in the cooling water circuit, when the water pump 65 of the engine 2 is operating, the cooling water is supplied to the first bypass passage 15 and the second bypass passage (bypass circuit) 150 regardless of the coolant temperature. Through the waste heat recovery unit 64. When the cooling water temperature is higher than a predetermined low temperature and lower than a predetermined high temperature (when it is higher than the second temperature and lower than the third temperature), it passes through the second supply passage 110 and the waste heat recovery passage 13 to recover waste heat. Flows into the vessel 64. However, the radiator passage 14 is closed by the high temperature valve 62, and the cooling water does not flow through the radiator 63. When the temperature of the cooling water is lower than a predetermined value (first temperature), the high-temperature intake port 612 of the low-temperature valve 61 is blocked, and only the second bypass passage 150 flows into the waste heat recovery passage 13. It is sent to the recovery passageway 12 through. That is, when there is no second bypass passage 150, the cooling water supply to the waste heat recovery unit 64 is stopped. Therefore, the low-temperature valve 61 serves as a stopping means for stopping the water supply to the waste heat recovery unit 64 in a low-temperature operation state where the temperature of the cooling water is lower than a predetermined value (first temperature).

図7に示す冷却水回路は、エンジン2の冷却水吐出口25と低温弁61の低温吸入口611とを結ぶ供給通路11と、低温弁61の全量排出口613と高温弁62の低温吸入口621とを結ぶ第二回収通路120と、高温弁62の全量排出口623とエンジン2の冷却水吸入口26とを結ぶ回収通路12と、廃熱回収器64を通り供給通路11と低温弁61の高温吸入口612とを結ぶ廃熱回収通路13と、ラジエータ63を通り供給通路11と高温弁62の高温吸入口622とを結ぶラジエータ通路14と、廃熱回収器64の下流側の廃熱回収通路13と回収通路12とを結ぶバイパス通路15とから構成されている。   The cooling water circuit shown in FIG. 7 includes a supply passage 11 that connects the cooling water discharge port 25 of the engine 2 and the low temperature suction port 611 of the low temperature valve 61, the total amount discharge port 613 of the low temperature valve 61, and the low temperature suction port of the high temperature valve 62. A second recovery passage 120 that connects 621, a recovery passage 12 that connects the total amount discharge port 623 of the high temperature valve 62 and the cooling water intake port 26 of the engine 2, a waste heat recovery device 64, and the supply passage 11 and the low temperature valve 61. Waste heat recovery passage 13 connecting the high temperature suction port 612, the radiator passage 14 passing through the radiator 63 and connecting the supply passage 11 and the high temperature suction port 622 of the high temperature valve 62, and waste heat downstream of the waste heat recovery device 64. The bypass passage 15 connects the recovery passage 13 and the recovery passage 12.

低温弁61は、冷却水を排出する全量排出口613と、第1の温度より低い温度で全量排出口613から排出する冷却水の全量を吸入する低温吸入口611と、第1の温度以上である第2の温度以上の温度で全量排出口613から排出する冷却水の全量を吸入する高温吸入口612とを備えており、高温弁62は、冷却水を排出する全量排出口623と、第3の温度より低い温度で全量排出口623から排出する冷却水の全量を吸入する低温吸入口621と、第3の温度以上である第4の温度以上の温度で全量排出口623から排出する冷却水の全量を吸入する高温吸入口622とを備えている。   The low temperature valve 61 includes a total amount discharge port 613 that discharges cooling water, a low temperature intake port 611 that sucks the entire amount of cooling water discharged from the full amount discharge port 613 at a temperature lower than the first temperature, and a temperature higher than the first temperature. A high temperature suction port 612 that sucks the entire amount of cooling water discharged from the total amount discharge port 613 at a temperature equal to or higher than a second temperature, and the high temperature valve 62 includes a total amount discharge port 623 for discharging the cooling water, A low-temperature suction port 621 for sucking the entire amount of cooling water discharged from the total amount discharge port 623 at a temperature lower than the temperature 3, and cooling discharged from the full amount discharge port 623 at a temperature equal to or higher than the fourth temperature which is equal to or higher than the third temperature. And a high-temperature suction port 622 for sucking the entire amount of water.

図7の冷却水回路は、図1〜図6の冷却水回路と低温弁61及び高温弁62の使用態様が異なる。しかし、冷却水の温度により廃熱回収器64、ラジエータ63に流れる冷却水の流れは図1〜図6の冷却水回路と同じである。すなわち、この冷却水回路は、エンジン2の水ポンプ65が稼働している場合には、冷却水の水温の如何に関わらず冷却水は供給通路11、バイパス通路(バイパス回路)15を通って廃熱回収器64を流れる。冷却水温度が所定の低温より高く所定の高温より低い場合(第2の温度より高く第3の温度より低い場合)は、供給通路11と廃熱回収通路13、第二回収通路120を通って、廃熱回収器64を流れる。しかし、高温弁62でラジエータ通路14は閉ざされ、ラジエータ63には冷却水が流れない。冷却水の温度が所定値(第1温度)よりも低い場合には、低温弁61の高温吸入口612は遮断されており、廃熱回収通路13に流れ込んだ冷却水はバイパス通路15だけを通って回収通路12に送られる。すなわち、バイパス通路15がない場合、廃熱回収器64への冷却水の送水は停止される。したがって、低温弁61は、冷却水の温度が所定値(第1温度)よりも低い低温運転状態において廃熱回収器64への冷却水の送水は停止する停止手段となっている。   The cooling water circuit of FIG. 7 differs from the cooling water circuit of FIGS. 1 to 6 in the usage mode of the low temperature valve 61 and the high temperature valve 62. However, the flow of the cooling water flowing through the waste heat recovery device 64 and the radiator 63 depending on the temperature of the cooling water is the same as the cooling water circuit of FIGS. That is, in the cooling water circuit, when the water pump 65 of the engine 2 is operating, the cooling water is discarded through the supply passage 11 and the bypass passage (bypass circuit) 15 regardless of the temperature of the cooling water. It flows through the heat recovery unit 64. When the cooling water temperature is higher than a predetermined low temperature and lower than a predetermined high temperature (when it is higher than the second temperature and lower than the third temperature), it passes through the supply passage 11, the waste heat recovery passage 13, and the second recovery passage 120. And flows through the waste heat recovery unit 64. However, the radiator passage 14 is closed by the high temperature valve 62, and the cooling water does not flow through the radiator 63. When the temperature of the cooling water is lower than a predetermined value (first temperature), the high temperature inlet 612 of the low temperature valve 61 is shut off, and the cooling water flowing into the waste heat recovery passage 13 passes only the bypass passage 15. To the recovery passageway 12. That is, when there is no bypass passage 15, the water supply to the waste heat recovery device 64 is stopped. Therefore, the low-temperature valve 61 serves as a stopping means for stopping the water supply to the waste heat recovery unit 64 in a low-temperature operation state where the temperature of the cooling water is lower than a predetermined value (first temperature).

図8に示す冷却水回路は、エンジン2の冷却水吐出口25と低温弁61の全量吸入口610とを結ぶ供給通路11と、低温弁61の低温排出口614とエンジン2の冷却水吸入口26とを結ぶ回収通路12と、廃熱回収器64を通り供給通路11と高温弁62の低温吸入口621とを結ぶ廃熱回収通路13と、ラジエータ63を通り供給通路11と高温弁62の高温吸入口622とを結ぶラジエータ通路14と、高温弁62の全量排出口623と回収通路12とを結ぶ第二回収通路120と、供給通路11と廃熱回収器64の上流側の廃熱回収通路13とを結ぶ第一バイパス通路15と、廃熱回収器64の下流側の廃熱回収通路13と回収通路12とを結ぶ第二バイパス通路150とから構成されている。   The cooling water circuit shown in FIG. 8 includes a supply passage 11 that connects the cooling water discharge port 25 of the engine 2 and the total amount suction port 610 of the low temperature valve 61, a low temperature discharge port 614 of the low temperature valve 61, and a cooling water suction port of the engine 2. 26, the waste heat recovery passage 13 connecting the supply passage 11 and the low temperature inlet 621 of the high temperature valve 62 through the waste heat recovery device 64, and the supply passage 11 and the high temperature valve 62 through the radiator 63. The radiator passage 14 connecting the high temperature suction port 622, the second recovery passage 120 connecting the total discharge port 623 of the high temperature valve 62 and the recovery passage 12, the waste heat recovery upstream of the supply passage 11 and the waste heat recovery unit 64. The first bypass passage 15 connecting the passage 13 and the second bypass passage 150 connecting the waste heat recovery passage 13 and the recovery passage 12 on the downstream side of the waste heat recovery device 64 are configured.

低温弁61は、冷却水を吸入する全量吸入口610と、第1の温度より低い温度で全量吸入口610から吸入された冷却水の全量を排出する低温排出口614と、第1の温度以上である第2の温度以上の温度で全量吸入口610から吸入された冷却水の全量を排出する高温排出口615とを備えており、高温弁62は、冷却水を排出する全量排出口623と、第3の温度より低い温度で全量排出口623から排出する冷却水の全量を吸入する低温吸入口621と、第3の温度以上である第4の温度以上の温度で全量排出口623から排出する冷却水の全量を吸入する高温吸入口622とを備えている。   The low-temperature valve 61 includes a total amount suction port 610 for sucking cooling water, a low temperature discharge port 614 for discharging the total amount of cooling water sucked from the full amount suction port 610 at a temperature lower than the first temperature, and a temperature equal to or higher than the first temperature. A high temperature discharge port 615 that discharges the entire amount of cooling water sucked from the entire amount suction port 610 at a temperature equal to or higher than the second temperature, and the high temperature valve 62 includes a total amount discharge port 623 that discharges the cooling water, The low temperature suction port 621 for sucking the entire amount of cooling water discharged from the total amount discharge port 623 at a temperature lower than the third temperature, and the full amount discharge from the total amount discharge port 623 at a temperature equal to or higher than the fourth temperature which is equal to or higher than the third temperature. And a high-temperature suction port 622 for sucking the entire amount of cooling water.

図8の冷却水回路は、図1〜図7の冷却水回路と低温弁61及び高温弁62の使用態様が異なる。しかし、冷却水の温度により廃熱回収器64、ラジエータ63に流れる冷却水の流れは図1〜図7の冷却水回路と同じである。すなわち、この冷却水回路は、エンジン2の水ポンプ65が稼働している場合には、冷却水の水温の如何に関わらず冷却水は供給通路11、第一バイパス通路(バイパス回路)15を通って廃熱回収器64に流れ込む。冷却水温度が所定の低温より高く所定の高温より低い場合(第2の温度より高く第3の温度より低い場合)は、供給通路11と廃熱回収通路13を通って廃熱回収器64を流れる。しかし、高温弁62でラジエータ通路14は閉ざされ、ラジエータ63には冷却水が流れない。冷却水の温度が所定値(第1温度)よりも低い場合には、低温弁61の高温排出口615は遮断されており、冷却水はバイパス通路15だけを通って廃熱回収器64に流れ込む。すなわち、バイパス通路15がない場合、廃熱回収器64への冷却水の送水は停止される。したがって、低温弁61は、冷却水の温度が所定値(第1温度)よりも低い低温運転状態において廃熱回収器64への冷却水の送水は停止する停止手段となっている。   The cooling water circuit of FIG. 8 differs from the cooling water circuit of FIGS. 1 to 7 in the usage mode of the low temperature valve 61 and the high temperature valve 62. However, the flow of the cooling water flowing through the waste heat recovery device 64 and the radiator 63 depending on the temperature of the cooling water is the same as the cooling water circuit of FIGS. That is, in the cooling water circuit, when the water pump 65 of the engine 2 is operating, the cooling water passes through the supply passage 11 and the first bypass passage (bypass circuit) 15 regardless of the temperature of the cooling water. And flows into the waste heat recovery unit 64. When the cooling water temperature is higher than a predetermined low temperature and lower than a predetermined high temperature (when it is higher than the second temperature and lower than the third temperature), the waste heat recovery device 64 is passed through the supply passage 11 and the waste heat recovery passage 13. Flowing. However, the radiator passage 14 is closed by the high temperature valve 62, and the cooling water does not flow through the radiator 63. When the temperature of the cooling water is lower than the predetermined value (first temperature), the high temperature discharge port 615 of the low temperature valve 61 is shut off, and the cooling water flows into the waste heat recovery device 64 only through the bypass passage 15. . That is, when there is no bypass passage 15, the water supply to the waste heat recovery device 64 is stopped. Therefore, the low-temperature valve 61 serves as a stopping means for stopping the water supply to the waste heat recovery unit 64 in a low-temperature operation state where the temperature of the cooling water is lower than a predetermined value (first temperature).

以下、本発明の水冷エンジンヒートポンプの実施例を説明する。   Examples of the water-cooled engine heat pump of the present invention will be described below.

本実施例の水冷エンジンヒートポンプの基本構成図を図9に示す。この水冷エンジンヒートポンプは、水冷式ガスエンジン2とこのエンジン2を冷却する冷却水回路1と、このエンジン2で駆動される2台のコンプレッサ3とコンプレッサ3により圧縮された冷媒が流れる冷媒回路4とからなる。   A basic configuration diagram of the water-cooled engine heat pump of the present embodiment is shown in FIG. The water-cooled engine heat pump includes a water-cooled gas engine 2, a cooling water circuit 1 that cools the engine 2, two compressors 3 driven by the engine 2, and a refrigerant circuit 4 through which refrigerant compressed by the compressor 3 flows. Consists of.

ガスエンジン2はシリンダ容積950ccの天然ガスを燃料とするもので、出力プーリー21、マニホールド冷却装置22,排気ガス熱交換機23及び排気管24とを備えている。このガスエンジン2は、後で説明する冷媒回路4の冷媒の温度が低い場合にガスエンジン2の回転数を低くするような制御部を持つ。   The gas engine 2 uses natural gas having a cylinder volume of 950 cc as a fuel, and includes an output pulley 21, a manifold cooling device 22, an exhaust gas heat exchanger 23, and an exhaust pipe 24. The gas engine 2 has a control unit that lowers the rotational speed of the gas engine 2 when the temperature of the refrigerant in the refrigerant circuit 4 described later is low.

冷却水回路1は低温弁61と高温弁62とラジエータ63と廃熱回収器64とウオータポンプ65とブレッシャキャップ67とリザーブ68及びマニホールド冷却装置22、排気ガス熱交換器23とを結ぶものである。低温弁61は、冷却水を吸入する全量吸入口610と、第1の温度より低い温度で全量吸入口610から吸入された冷却水の全量を排出する低温排出口614と、第1の温度より高い第2の温度以上の温度で全量吸入口610から吸入された冷却水の全量を排出する高温排出口615とを備えている。高温弁62は、冷却水を吸入する全量吸入口620と、第3の温度より低い温度で全量吸入口620から吸入された冷却水の全量を排出する低温排出口624と、第3の温度より高い第4の温度以上の温度で全量吸入口620から吸入された冷却水の全量を排出する高温排出口625とを備えている。回路としては、ガスエンジン2の冷却水吐出口25と低温弁61の全量吸入口610とを結ぶ供給通路11と、この低温弁61の低温排出口614とガスエンジン2の冷却水吸入口(図示せず)とを結ぶ回収通路12と、低温弁61の高温排出口615と高温弁62の全量吸入口620とを結ぶ第二供給通路110と、廃熱回収器64を通り高温弁62の低温排出口624と、回収通路12とを結ぶ廃熱回収通路13と、ラジエータ63を通り高温弁62の高温排出口625と回収通路12を結ぶラジエータ通路14と、ブレッシャキャップ67を介して回収通路12とリザーブ68とを結ぶリザーブ通路18と、供給通路11と廃熱回収器64の供給口641とを結ぶバイパス通路15とからなる。バイパス通路15には水路抵抗16が設けられている。水路抵抗16は、冷却水の温度が所定値(第1の温度)よりも低い低温運転状態において、バイパス回路15を流れる流量が全体の流量(エンジン2の冷却水吐出口25から送出される流量)に対し10%であるように設定されている。   The cooling water circuit 1 connects the low temperature valve 61, the high temperature valve 62, the radiator 63, the waste heat recovery device 64, the water pump 65, the pressure cap 67, the reserve 68, the manifold cooling device 22, and the exhaust gas heat exchanger 23. . The low-temperature valve 61 includes a full-volume intake port 610 for sucking cooling water, a low-temperature discharge port 614 for discharging the total amount of cooling water drawn from the full-volume intake port 610 at a temperature lower than the first temperature, and a first temperature. And a high-temperature discharge port 615 that discharges the entire amount of cooling water sucked from the whole amount suction port 610 at a temperature equal to or higher than the second high temperature. The high temperature valve 62 includes a total amount suction port 620 for sucking cooling water, a low temperature discharge port 624 for discharging the entire amount of cooling water sucked from the full amount suction port 620 at a temperature lower than the third temperature, and a third temperature. And a high-temperature discharge port 625 for discharging the entire amount of cooling water sucked from the entire amount suction port 620 at a temperature equal to or higher than the high fourth temperature. As a circuit, the supply passage 11 connecting the cooling water discharge port 25 of the gas engine 2 and the total amount suction port 610 of the low temperature valve 61, the low temperature discharge port 614 of the low temperature valve 61, and the cooling water suction port of the gas engine 2 (see FIG. (Not shown), the second supply passage 110 connecting the high-temperature discharge port 615 of the low-temperature valve 61 and the full-volume intake port 620 of the high-temperature valve 62, and the low temperature of the high-temperature valve 62 through the waste heat recovery device 64. The waste heat recovery passage 13 connecting the exhaust port 624 and the recovery passage 12, the radiator passage 14 connecting the high temperature exhaust port 625 of the high temperature valve 62 and the recovery passage 12 through the radiator 63, and the recovery passage 12 via the pressure cap 67. And the reserve passage 18 connecting the reserve 68 and the bypass passage 15 connecting the supply passage 11 and the supply port 641 of the waste heat recovery device 64. A water passage resistance 16 is provided in the bypass passage 15. The channel resistance 16 is configured so that the flow rate flowing through the bypass circuit 15 is the total flow rate (the flow rate sent from the cooling water discharge port 25 of the engine 2) in a low temperature operation state where the temperature of the cooling water is lower than a predetermined value (first temperature). ) To 10%.

低温弁61及び高温弁62は共にサーモスタット弁で、サーモスタットが冷却水の温度により加熱又は冷却されて熱膨張あるいは熱収縮して弁を駆動するものである。第1の温度は60℃、第2の温度は65℃、第3の温度は70℃、第4の温度は75℃にそれぞれ設定されている。つまり、第3および第4の温度(所定の高温)は、第1および第2の温度(所定の低温)より高く設定されている。すなわち第3の温度は第2の温度より高く設定されている。   The low-temperature valve 61 and the high-temperature valve 62 are both thermostat valves, and the thermostat is heated or cooled by the temperature of the cooling water to thermally expand or contract to drive the valves. The first temperature is set to 60 ° C., the second temperature is set to 65 ° C., the third temperature is set to 70 ° C., and the fourth temperature is set to 75 ° C. That is, the third and fourth temperatures (predetermined high temperature) are set higher than the first and second temperatures (predetermined low temperature). That is, the third temperature is set higher than the second temperature.

低温弁61は60℃より低い冷却水温度でその全量吸入口610と低温排出口614とを開き連通し、全量吸入口610と高温排出口615とを閉じる。この状態で全量吸入口610から吸入された冷却水の全量は低温排出口614に流れる。そして冷却水温度が60℃以上になると、逆に、その全量吸入口610と低温排出口614とを閉じ始め、全量吸入口610と高温排出口615とを開き初めて連通させる。この状態では全量吸入口610から吸入された冷却水は低温排出口614に流れるとともに高温排出口615にも流れる。さらに65℃以上で、その全量吸入口610と低温排出口614とを全て閉じ、全量吸入口610と高温排出口615とを全開とする。この状態では全量吸入口610から吸入された冷却水の全量は高温排出口615に流れる。   The low temperature valve 61 opens and communicates the full amount suction port 610 and the low temperature discharge port 614 at a cooling water temperature lower than 60 ° C., and closes the full amount suction port 610 and the high temperature discharge port 615. In this state, the entire amount of cooling water sucked from the entire amount suction port 610 flows to the low temperature discharge port 614. When the cooling water temperature reaches 60 ° C. or higher, conversely, the full amount suction port 610 and the low temperature discharge port 614 begin to close, and the full amount suction port 610 and the high temperature discharge port 615 are opened to establish communication. In this state, the cooling water sucked from the entire amount suction port 610 flows to the low temperature discharge port 614 and also flows to the high temperature discharge port 615. Further, at 65 ° C. or higher, all the full amount inlet 610 and the low temperature outlet 614 are closed, and the full amount inlet 610 and the high temperature outlet 615 are fully opened. In this state, the entire amount of cooling water sucked from the entire amount suction port 610 flows to the high temperature discharge port 615.

低温弁61は60℃〜65℃でそれらの低温排出口614及び高温排出口615を開閉する。高温弁62は70℃〜75℃でそれらの低温排出口624及び高温排出口625を開閉する。   The low temperature valve 61 opens and closes the low temperature outlet 614 and the high temperature outlet 615 at 60 ° C. to 65 ° C. The high temperature valve 62 opens and closes the low temperature outlet 624 and the high temperature outlet 625 at 70 to 75 ° C.

ラジエータ63は冷却水の熱を大気に放熱するためのもので、水冷式エンジンに通常用いられているものである。廃熱回収器64は冷却水と冷媒間で熱交換を行う液−液熱交換器である。ウオータポンプ65はエンジンにより駆動されるポンプで冷却水を循環駆動する。ブレッシャキャップ67は冷却水の蒸気圧を規制するものであり、リザーブ68は冷却水の補給を行う装置である。   The radiator 63 is for radiating the heat of the cooling water to the atmosphere, and is usually used in a water-cooled engine. The waste heat recovery unit 64 is a liquid-liquid heat exchanger that performs heat exchange between the cooling water and the refrigerant. The water pump 65 is a pump driven by the engine and circulates and drives the cooling water. The pressure cap 67 regulates the vapor pressure of the cooling water, and the reserve 68 is a device that replenishes the cooling water.

なお、回収通路12には、ウオータポンプ65、排気ガス熱交換器23及びマニホールド冷却装置22が設けられ、冷却水の送水、エンジン廃熱の冷却水による回収がなされる。   In the recovery passage 12, a water pump 65, an exhaust gas heat exchanger 23, and a manifold cooling device 22 are provided, and cooling water is supplied and engine waste heat is recovered by the cooling water.

なお、本実施例の冷却水回路1は図1に示す冷却水回路と基本構造が同じものである。   The cooling water circuit 1 of the present embodiment has the same basic structure as the cooling water circuit shown in FIG.

本実施例の冷却水回路1の冷却水の流れを冷却水の温度との関係で説明する。   The flow of the cooling water in the cooling water circuit 1 of this embodiment will be described in relation to the temperature of the cooling water.

水冷エンジン2を始動するとエンジン2によりウオータポンプ65が駆動され冷却水が供給通路11から供給され、最後に回収通路12に戻って冷却水回路1を流れる。   When the water-cooled engine 2 is started, the water pump 65 is driven by the engine 2 to supply cooling water from the supply passage 11, and finally returns to the recovery passage 12 and flows through the cooling water circuit 1.

冷却水が60℃より低い場合、低温弁61はその全量吸入口610と低温排出口614とを開いて連通している。このため、供給通路11の冷却水は低温弁61を通って直ちに回収通路12に戻る。なお、一部の冷却水が供給通路11からバイパス通路15を通り回収通路12に戻る。このため廃熱回収器64にはバイパス通路15を介して流れる冷却水が供給される。回収通路12では、排気ガス熱交換器23及びマニホールド冷却装置22を通り、排気ガスにより加熱され、さらにガスエンジン2のシリンダブロック(図示せず)をとおり、加熱される。   When the cooling water is lower than 60 ° C., the low-temperature valve 61 communicates with the entire intake port 610 and the low-temperature discharge port 614 opened. For this reason, the cooling water in the supply passage 11 immediately returns to the recovery passage 12 through the low temperature valve 61. A part of the cooling water returns from the supply passage 11 to the recovery passage 12 through the bypass passage 15. For this reason, the cooling water flowing through the bypass passage 15 is supplied to the waste heat recovery unit 64. The recovery passage 12 is heated by exhaust gas through the exhaust gas heat exchanger 23 and the manifold cooling device 22, and further through the cylinder block (not shown) of the gas engine 2.

なお、冷却水が60℃より低いため、低温弁61の高温排出口615は開いていない。このため供給通路11から第二供給通路110へ冷却水は供給されない。また、高温弁62はその閾温度が70℃〜75℃であるため、その高温排出口625は閉じている。このためバイパス通路15から供給される冷却水もラジエータ63には供給されない。従って、冷却水温度が60℃以下では、ラジエータ63には冷却水が送られず、廃熱回収器64にはバイパス通路15を介して冷却水が送られ、大部分の冷却水は供給通路11から回収通路12に流れて循環する。回収通路12を流れる冷却水は、排気ガス熱交換器23、マニマニホールド冷却装置22及びシリンダブロックにより加熱される。   Since the cooling water is lower than 60 ° C., the high temperature outlet 615 of the low temperature valve 61 is not open. For this reason, the cooling water is not supplied from the supply passage 11 to the second supply passage 110. Moreover, since the threshold temperature of the high temperature valve 62 is 70 ° C. to 75 ° C., the high temperature outlet 625 is closed. For this reason, the cooling water supplied from the bypass passage 15 is also not supplied to the radiator 63. Therefore, when the cooling water temperature is 60 ° C. or lower, the cooling water is not sent to the radiator 63, the cooling water is sent to the waste heat recovery device 64 via the bypass passage 15, and most of the cooling water is supplied to the supply passage 11. And then circulates in the recovery passageway 12. The cooling water flowing through the recovery passage 12 is heated by the exhaust gas heat exchanger 23, the manifold manifold cooling device 22, and the cylinder block.

冷却水温度が60℃以上になると低温弁61の低温排出口614が閉じ始め高温排出口615が開き始める。冷却水温度が65℃以上になると、低温弁61の低温排出口614が全閉し、高温排出口615が全開する。低温排出口614が閉じることにより、供給通路11から直接回収通路12に戻る冷却水は無くなる。そして、低温弁61の高温排出口615を通って、冷却水は供給通路11から第二供給通路110に流れる。高温弁62では低温排出口624が開口し、高温排出口625が閉じている。このため第二供給通路110の冷却水は高温弁62の低温排出口624を通り、廃熱回収器64を通る廃熱回収通路13に流れる。そして、最後に回収通路12に戻る。この場合も、一部の冷却水はバイパス通路15より廃熱回収器64に流れる。すなわち、全ての冷却水が廃熱回収器64を通ることになる。   When the cooling water temperature reaches 60 ° C. or higher, the low temperature discharge port 614 of the low temperature valve 61 starts to close and the high temperature discharge port 615 starts to open. When the cooling water temperature is 65 ° C. or higher, the low temperature discharge port 614 of the low temperature valve 61 is fully closed and the high temperature discharge port 615 is fully opened. When the low temperature discharge port 614 is closed, there is no cooling water that returns directly from the supply passage 11 to the recovery passage 12. Then, the cooling water flows from the supply passage 11 to the second supply passage 110 through the high temperature discharge port 615 of the low temperature valve 61. In the high temperature valve 62, the low temperature discharge port 624 is opened, and the high temperature discharge port 625 is closed. For this reason, the cooling water in the second supply passage 110 passes through the low temperature outlet 624 of the high temperature valve 62 and flows into the waste heat recovery passage 13 passing through the waste heat recovery device 64. Finally, it returns to the collection passage 12. Also in this case, a part of the cooling water flows from the bypass passage 15 to the waste heat recovery unit 64. That is, all the cooling water passes through the waste heat recovery device 64.

冷却水温度が70℃以上になると、高温弁62の低温排出口624が閉じ始め、高温排出口625が開き始める。このため供給通路11の冷却水は低温弁61の高温排出口615を通って第二供給通路110に流れ、そこから高温弁62の高温排出口625を通って、ラジエータ通路14に入り、ラジエータ63内を冷却水が流れる。ラジエータ64による放熱のため冷却水は冷却されてその温度が低下する。温度が低くなった冷却水は回収通路12に戻る。冷却水温度が75℃以上では、高温弁62の低温排出口624が全閉し、高温排出口625が全開する。このため第二供給通路110に供給された冷却水は、すべてラジエータ通路14に入り、廃熱回収通路13には流れない。   When the cooling water temperature reaches 70 ° C. or higher, the low temperature discharge port 624 of the high temperature valve 62 starts to close and the high temperature discharge port 625 starts to open. For this reason, the cooling water in the supply passage 11 flows into the second supply passage 110 through the high temperature outlet 615 of the low temperature valve 61, then enters the radiator passage 14 through the high temperature outlet 625 of the high temperature valve 62, and enters the radiator 63. Cooling water flows inside. Due to heat radiation by the radiator 64, the cooling water is cooled and its temperature is lowered. The cooling water whose temperature has decreased returns to the recovery passageway 12. When the cooling water temperature is 75 ° C. or higher, the low temperature discharge port 624 of the high temperature valve 62 is fully closed and the high temperature discharge port 625 is fully opened. Therefore, all the cooling water supplied to the second supply passage 110 enters the radiator passage 14 and does not flow to the waste heat recovery passage 13.

冷媒回路4はエンジン2により駆動される2台のコンプレッサ3とオイルセパレータ71と四方切替弁72と室内機熱交換器73と室内機膨張弁74と室外機膨張弁75と室外機熱交換器76とアキュムレータ77とサブ液弁78及び廃熱回収器64とを持つ。2台のコンプレッサ3は並列に配置され、エンジン2の出力プーリー21に架装された駆動ベルト31により駆動され、冷媒ガスを断熱圧縮して高温高圧の冷媒ガスとするものである。   The refrigerant circuit 4 includes two compressors 3 driven by the engine 2, an oil separator 71, a four-way switching valve 72, an indoor unit heat exchanger 73, an indoor unit expansion valve 74, an outdoor unit expansion valve 75, and an outdoor unit heat exchanger 76. And an accumulator 77, a sub liquid valve 78 and a waste heat recovery unit 64. The two compressors 3 are arranged in parallel and are driven by a driving belt 31 mounted on the output pulley 21 of the engine 2 to adiabatically compress the refrigerant gas into a high-temperature and high-pressure refrigerant gas.

冷媒回路4は、それぞれのコンプレッサ3の吐出口31と四方弁72の流入口720とを結ぶ供給通路41と、四方弁72の流出口723とコンプレッサ3の吸入口32とを結ぶ回収通路42と、四方弁72の第1開口721と第2開口722とを両端として室内機熱交換器73、室内機膨張弁74、室外機膨張弁75及び室外機熱交換器76を直列で結ぶ熱交換通路43と、廃熱回収器64を通り熱交換通路43と回収通路42を結ぶ廃熱回収通路44を持つ。   The refrigerant circuit 4 includes a supply passage 41 that connects the discharge port 31 of each compressor 3 and the inlet 720 of the four-way valve 72, and a recovery passage 42 that connects the outlet 723 of the four-way valve 72 and the suction port 32 of the compressor 3. The heat exchanger passage connecting the indoor unit heat exchanger 73, the indoor unit expansion valve 74, the outdoor unit expansion valve 75, and the outdoor unit heat exchanger 76 in series with the first opening 721 and the second opening 722 of the four-way valve 72 as both ends. 43 and a waste heat recovery passage 44 connecting the heat exchange passage 43 and the recovery passage 42 through the waste heat recovery device 64.

供給通路41にはオイルセパレータ71が設けられ、分離されたオイルはオイル回収通路45を介して回収通路42に戻される。回収通路42にはアキュムレータ77が設けられている。このアキュムレータ77は液状の冷媒を貯留すると共に気体状の冷媒をコンプレッサ3に戻すものである。   An oil separator 71 is provided in the supply passage 41, and the separated oil is returned to the recovery passage 42 via the oil recovery passage 45. An accumulator 77 is provided in the collection passage 42. The accumulator 77 stores liquid refrigerant and returns gaseous refrigerant to the compressor 3.

熱交換通路43は四方弁72の第1開口721とスピンドルバルブ78を介して室内機交換機73とを結ぶ第1熱交換通路部431と、室内機膨張弁74、スピンドルバルブ78、室外機膨張弁75を介して室内機熱交換器73と室外機熱交換器76とを結ぶ第2熱交換通路部432と、室外機熱交換器76と四方弁72の第2開口722とを結ぶ第3熱交換通路部433とからなる。室内機膨張弁74は第2熱交換通路部432を室内機熱交換器73から室外機熱交換器76に冷媒が流れる時に膨張弁として機能する。逆に、室外機膨張弁75は第2熱交換通路部432を室外機熱交換器76から室内機熱交換器73に冷媒が流れる時に膨張弁として機能する。   The heat exchange passage 43 includes a first heat exchange passage portion 431 connecting the first opening 721 of the four-way valve 72 and the indoor unit exchanger 73 via the spindle valve 78, an indoor unit expansion valve 74, a spindle valve 78, and an outdoor unit expansion valve. 75, a second heat exchange passage 432 that connects the indoor unit heat exchanger 73 and the outdoor unit heat exchanger 76, and a third heat that connects the outdoor unit heat exchanger 76 and the second opening 722 of the four-way valve 72. And an exchange passage portion 433. The indoor unit expansion valve 74 functions as an expansion valve when the refrigerant flows from the indoor unit heat exchanger 73 to the outdoor unit heat exchanger 76 through the second heat exchange passage portion 432. Conversely, the outdoor unit expansion valve 75 functions as an expansion valve when the refrigerant flows from the outdoor unit heat exchanger 76 to the indoor unit heat exchanger 73 through the second heat exchange passage 432.

廃熱回収通路44は、サブ液弁79を介して第2熱交換通路部432と廃熱回収器64とを結ぶ第1廃熱回収通路部441と、廃熱回収器64と回収通路42とを結ぶ第2廃熱回収通路部442とからなる。サブ液弁79は廃熱回収通路44に流れる液状の冷媒の流量を制御する弁である。ここでは、外気温度が冷媒の温度より低い場合、サブ液弁79の流量を増やし、高い場合はサブ液弁79の流量を減らすように調整されている。   The waste heat recovery passage 44 includes a first waste heat recovery passage portion 441 that connects the second heat exchange passage portion 432 and the waste heat recovery device 64 via the sub liquid valve 79, the waste heat recovery device 64, and the recovery passage 42. And a second waste heat recovery passage portion 442 connecting the two. The sub liquid valve 79 is a valve that controls the flow rate of the liquid refrigerant flowing in the waste heat recovery passage 44. Here, when the outside air temperature is lower than the refrigerant temperature, the flow rate of the sub liquid valve 79 is increased, and when it is higher, the flow rate of the sub liquid valve 79 is decreased.

この水冷エンジンヒートポンプの室内機熱交換器73及び室内機膨張弁74は通常空調すべき室内に配置され、エンジン2、コンプレッサ3等の他の部分は室外に配置される。本実施例の水冷エンジンヒートポンプは以上説明した構成を持つ。   The indoor unit heat exchanger 73 and the indoor unit expansion valve 74 of the water-cooled engine heat pump are normally disposed in a room to be air-conditioned, and other parts such as the engine 2 and the compressor 3 are disposed outside the room. The water-cooled engine heat pump of the present embodiment has the configuration described above.

次にこの水冷エンジンヒートポンプの機能を説明する。   Next, the function of this water-cooled engine heat pump will be described.

この水冷ヒートポンプを暖房に使用する場合、四方弁72の弁を、四方弁72の流入口720と第1開口721とを連通させると共に、四方弁72の第2開口722と流出口723とを連通させるように切り替える。これによりコンプレッサ3で断熱圧縮された高圧の冷媒は、供給通路41のオイルセパレータ71を通り、四方弁72を介して第1熱交換通路部431に流れ、室内機熱交換器73に入る。この室内機熱交換器73で冷媒の熱は室内の空気に伝達され、冷媒の温度が下がる。逆に室内の空気は加熱されて暖房される。室内機熱交換器73を出た冷媒は室内機膨張弁74を通って、断熱膨張させられ、冷媒の温度が冷却されて一部が液化すると共に冷媒の温度は低くなる。一部が液化した冷媒は第2熱交換通路部432を通って室外機熱交換器76に入る。この室外機熱交換器76で外気の熱を冷媒に伝える。これにより冷媒は加熱され液状の冷媒は気化して気体となる。気体となった冷媒は四方弁72を介して回収通路42に入り、アキュムレータ77で気液分離されてガス状の冷媒のみがコンブレッサ3に戻る。また、第2熱交換通路部432に流れる液状の冷媒は廃熱回収通路44に流れる。すなわち、第2熱交換通路部432の液状の冷媒の一部が、サブ液弁79を通って廃熱回収器64に入り、回収通路42に流れる。廃熱回収器64では液状の冷媒が加熱されて気化しガス状の冷媒となる。   When this water-cooled heat pump is used for heating, the inlet of the four-way valve 72 communicates with the inlet 720 of the four-way valve 72 and the first opening 721, and the second opening 722 of the four-way valve 72 communicates with the outlet 723. Switch to let As a result, the high-pressure refrigerant adiabatically compressed by the compressor 3 passes through the oil separator 71 of the supply passage 41, flows to the first heat exchange passage portion 431 through the four-way valve 72, and enters the indoor unit heat exchanger 73. In the indoor unit heat exchanger 73, the heat of the refrigerant is transmitted to the indoor air, and the temperature of the refrigerant decreases. Conversely, the indoor air is heated and heated. The refrigerant exiting the indoor unit heat exchanger 73 passes through the indoor unit expansion valve 74 and is adiabatically expanded, whereby the temperature of the refrigerant is cooled and partially liquefied, and the temperature of the refrigerant decreases. The partially liquefied refrigerant enters the outdoor unit heat exchanger 76 through the second heat exchange passage 432. The outdoor unit heat exchanger 76 transfers the heat of the outside air to the refrigerant. As a result, the refrigerant is heated and the liquid refrigerant is vaporized into a gas. The refrigerant that has become gas enters the recovery passageway 42 via the four-way valve 72, is separated into gas and liquid by the accumulator 77, and only the gaseous refrigerant returns to the compressor 3. Further, the liquid refrigerant flowing in the second heat exchange passage portion 432 flows in the waste heat recovery passage 44. That is, a part of the liquid refrigerant in the second heat exchange passage portion 432 enters the waste heat recovery device 64 through the sub liquid valve 79 and flows into the recovery passage 42. In the waste heat recovery device 64, the liquid refrigerant is heated and vaporized to become a gaseous refrigerant.

廃熱回収器64で回収される熱量は冷却水温度で大きく変動する。この実施例では、冷却水温度が60℃より低い温度では低温弁61により冷却水は供給通路11から第二供給通路110に供給されない。このため廃熱回収器64にはバイパス通路15を通る冷却水のみが供給される。冷却水温度が60℃以上になると低温弁61の高温排出口615が開き始め、冷却水は供給通路11から第二供給通路110に供給され始める。冷却水温度が65℃以上で70℃より低い温度では全ての冷却水が廃熱回収器64を通る。冷却水温度が70℃以上では第二供給通路110の冷却水は高温弁62の高温排出口625を通ってラジエータ63に流れ始め、廃熱回収器64に流れる冷却水は減少し始める。冷却水温度が75℃以上では、廃熱回収器64に流れる冷却水はバイパス通路15を流れる冷却水のみとなる。   The amount of heat recovered by the waste heat recovery device 64 varies greatly with the cooling water temperature. In this embodiment, when the cooling water temperature is lower than 60 ° C., the cooling water is not supplied from the supply passage 11 to the second supply passage 110 by the low temperature valve 61. Therefore, only the cooling water passing through the bypass passage 15 is supplied to the waste heat recovery unit 64. When the cooling water temperature becomes 60 ° C. or higher, the high temperature outlet 615 of the low temperature valve 61 starts to open, and the cooling water starts to be supplied from the supply passage 11 to the second supply passage 110. When the cooling water temperature is 65 ° C. or higher and lower than 70 ° C., all the cooling water passes through the waste heat recovery device 64. When the cooling water temperature is 70 ° C. or higher, the cooling water in the second supply passage 110 starts to flow to the radiator 63 through the high temperature discharge port 625 of the high temperature valve 62, and the cooling water flowing to the waste heat recovery unit 64 starts to decrease. When the cooling water temperature is 75 ° C. or higher, the cooling water flowing through the waste heat recovery device 64 is only the cooling water flowing through the bypass passage 15.

暖房運転では室外機熱交換器76及び廃熱回収器64で外気及び冷却水から冷媒に取り入れた熱が室内機熱交換器73で室内の空気を加熱するのに使用される。   In the heating operation, the heat taken into the refrigerant from the outside air and the cooling water by the outdoor unit heat exchanger 76 and the waste heat recovery unit 64 is used to heat the indoor air by the indoor unit heat exchanger 73.

次に冷房に使用する場合を説明する。まず四方弁72の弁を、四方弁72の流入口720と第2開口722とを連通させると共に、四方弁72の第1開口721と流出口723とを連通させるように切り替える。これによりコンプレッサ3で断熱圧縮された高温高圧の冷媒は、供給通路41から四方弁72を介して第3熱交換通路部433に流れ、室外機熱交換器76に入る。この室外機熱交換器76で冷媒の熱は室外の空気に伝達され、冷媒の温度が下がる。室外機熱交換器76を出た冷媒は室外機膨張弁75を通って、断熱膨張させられ、冷媒の温度が冷却されて一部が液化すると共に冷媒の温度は低くなる。一部が液化した冷媒は第2熱交換通路部432を通って室内機熱交換器73に入る。この室内機熱交換器73で室内の空気を冷却し、冷媒は逆に加熱され、液状の冷媒は気化して気体となる。気体となった冷媒は四方弁72を介して回収通路42に入り、アキュムレータ77で気液分離されてガス状の冷媒のみがコンブレッサ3に戻る。また、第2熱交換通路部432に流れるガス状の冷媒はサブ液弁79により阻止され廃熱回収通路44には流れない。   Next, the case where it uses for cooling is demonstrated. First, the valve of the four-way valve 72 is switched so that the inlet 720 and the second opening 722 of the four-way valve 72 communicate with each other and the first opening 721 and the outlet 723 of the four-way valve 72 communicate with each other. Accordingly, the high-temperature and high-pressure refrigerant adiabatically compressed by the compressor 3 flows from the supply passage 41 through the four-way valve 72 to the third heat exchange passage portion 433 and enters the outdoor unit heat exchanger 76. In the outdoor unit heat exchanger 76, the heat of the refrigerant is transmitted to the outdoor air, and the temperature of the refrigerant decreases. The refrigerant leaving the outdoor unit heat exchanger 76 passes through the outdoor unit expansion valve 75 and is adiabatically expanded, whereby the temperature of the refrigerant is cooled and partially liquefied, and the temperature of the refrigerant is lowered. The partially liquefied refrigerant passes through the second heat exchange passage 432 and enters the indoor unit heat exchanger 73. The indoor unit heat exchanger 73 cools the indoor air, the refrigerant is heated in reverse, and the liquid refrigerant is vaporized into a gas. The refrigerant that has become gas enters the recovery passageway 42 via the four-way valve 72, is separated into gas and liquid by the accumulator 77, and only the gaseous refrigerant returns to the compressor 3. Further, the gaseous refrigerant flowing in the second heat exchange passage portion 432 is blocked by the sub liquid valve 79 and does not flow into the waste heat recovery passage 44.

本冷却回路では、常に廃熱回収器64に冷却水が流れている。外気温の低い状態での冷房運転においては、室内機熱交換器73の温度が下がりすぎると室内機熱交換器73の凍結防止のために、ON−OFF制御を行って断続運転しなければならない。しかし、サブ液弁79を開くことで、冷媒回路4の低圧側に熱を与えることができ、室内機熱交換器73が凍結するのを防止できるので、連続運転が可能となる。   In this cooling circuit, cooling water always flows through the waste heat recovery unit 64. In the cooling operation in a state where the outside air temperature is low, if the temperature of the indoor unit heat exchanger 73 is too low, the indoor unit heat exchanger 73 must be intermittently operated by performing ON-OFF control to prevent the indoor unit heat exchanger 73 from freezing. . However, by opening the sub liquid valve 79, heat can be applied to the low pressure side of the refrigerant circuit 4, and the indoor unit heat exchanger 73 can be prevented from freezing, so that continuous operation is possible.

冷房運転では、室外機熱交換器76で冷媒の熱が外気に伝達され、室内機熱交換器73で室内の熱が冷媒に伝達され、室内の温度が低下する。   In the cooling operation, the heat of the refrigerant is transmitted to the outside air by the outdoor unit heat exchanger 76, the indoor heat is transmitted to the refrigerant by the indoor unit heat exchanger 73, and the indoor temperature is lowered.

次に、本実施例の水冷エンジンヒートポンプを、外気温が−5℃で、室外機熱交換器76による熱の汲み上げが十分にできない状態で、暖房のためにエンジンを起動したときの、エンジン始動後の経過時間0〜10分間のエンジン回転数、冷却水温度及び冷媒低圧の試験結果を説明する。   Next, the water-cooled engine heat pump of this embodiment is started when the engine is started for heating in a state where the outside air temperature is −5 ° C. and the outdoor unit heat exchanger 76 cannot sufficiently pump the heat. The test results of the engine speed, the coolant temperature, and the refrigerant low pressure during the subsequent elapsed time of 0 to 10 minutes will be described.

なお、比較のために、実施例の水冷エンジンヒートポンプでバイパス通路15のみを閉鎖した比較例の水冷エンジンヒートポンプを作り、同じ外気温が−5℃で、室外機熱交換器76による熱の汲み上げが十分にできない状態で、暖房のためにエンジンを起動したときの、時間経過0〜10分間のエンジン回転数、冷却水温度及び冷媒低圧の試験結果を求めた。   For comparison, a water-cooled engine heat pump of a comparative example in which only the bypass passage 15 is closed with the water-cooled engine heat pump of the embodiment is made, and the same outside air temperature is −5 ° C., and heat is pumped up by the outdoor unit heat exchanger 76. The test results of the engine speed, the coolant temperature, and the refrigerant low pressure during the elapsed time 0 to 10 minutes when the engine was started for heating in a state where it was not sufficiently obtained were obtained.

得られ結果を表1、図10、図11及び図12に示す。なお、バイパスなしは比較例の水冷エンジンヒートポンプの値であり、バイパスありは本実施例の水冷エンジンヒートポンプの値を示す。図10は起動後の経過時間とエンジン回転数との関係を示す線図であり、図11は起動後の経過時間と冷却水水温との関係を示す線図であり、図12は起動後の経過時間と冷媒低圧の関係を示す線図である。   The obtained results are shown in Table 1, FIG. 10, FIG. 11 and FIG. In addition, the value without a bypass is the value of the water-cooled engine heat pump of a comparative example, and the value with a bypass shows the value of the water-cooled engine heat pump of a present Example. 10 is a diagram showing the relationship between the elapsed time after startup and the engine speed, FIG. 11 is a diagram showing the relationship between the elapsed time after startup and the coolant temperature, and FIG. It is a diagram which shows the relationship between elapsed time and a refrigerant | coolant low pressure.

実施例及び比較例の水冷エンジンヒートポンプも共に、エンジンを起動すると1分後にエンジン回転数は1000回転/分となり、冷媒低圧はいずれも、0.65Mpaから0.3Mpaに低下した。冷却水温度は、実施例のものが−5℃から0℃に、比較例のものが−5℃から5℃に変化し、比較例の水冷エンジンヒートポンプの冷却水温度がより高くなっている。   In both the water-cooled engine heat pumps of the example and the comparative example, when the engine was started, the engine speed was 1000 rpm after 1 minute, and both refrigerant low pressures were reduced from 0.65 Mpa to 0.3 Mpa. The cooling water temperature is changed from −5 ° C. to 0 ° C. in the example and from −5 ° C. to 5 ° C. in the comparative example, and the cooling water temperature of the water-cooled engine heat pump of the comparative example is higher.

Figure 0005098196
Figure 0005098196

経過時間2分になると、実施例ではエンジン回転数が1100回転/分と上がり始め、実施例では2分から9分までエンジンの回転数は増加を続け、9分後に2300回転/分と一定となった。此に対して比較例では、2分から6分まで1000回転/分と低速回転を維持し、6分経過後回転数の増加が見られ10分経過時のエンジン回転数は1800回転/分であった。   When the elapsed time reaches 2 minutes, the engine speed starts to increase to 1100 rpm in the embodiment, and the engine speed continues to increase from 2 to 9 minutes in the embodiment, and becomes constant at 2300 rpm after 9 minutes. It was. On the other hand, in the comparative example, the low speed rotation was maintained at 1000 rpm from 2 minutes to 6 minutes, and the increase in the engine speed was observed after 6 minutes, and the engine speed after 10 minutes was 1800 rpm. It was.

冷却水温度は、実施例では、0分から5分まで、初期は冷却水の温度上昇速度が遅く後半には急速な温度上昇を示し、5分後に60℃となりその後60℃を維持した。   In the examples, the cooling water temperature was from 0 minutes to 5 minutes, the temperature rising speed of the cooling water was slow at the initial stage, and a rapid temperature increase was shown in the second half. The temperature became 60 ° C. after 5 minutes, and then maintained at 60 ° C.

これに対して、比較例では0分から7分までほぼ一定の温度上昇を示し、7分後に60℃となりその後60℃を維持した。   On the other hand, the comparative example showed a substantially constant temperature increase from 0 minutes to 7 minutes, became 60 ° C. after 7 minutes, and then maintained 60 ° C.

実施例と比較例を比較すると、0分から3分までは、実施例の冷却水の温度が比較例の冷却水の温度より低く、3分経過後に、両者は25℃と等しくなり、その後3分から7分までは、実施例の冷却水の温度が比較例の冷却水の温度より高かった。   Comparing the example and the comparative example, from 0 to 3 minutes, the temperature of the cooling water of the example is lower than the temperature of the cooling water of the comparative example, and after 3 minutes, both are equal to 25 ° C., and then from 3 minutes Up to 7 minutes, the temperature of the cooling water of the example was higher than the temperature of the cooling water of the comparative example.

冷媒低圧では、実施例及び比較例共に、1分経過した後さらに冷媒低圧は低下して最低とよりも高く、10分経過時には、実施例の冷媒低圧は0.66Mpaに対して、比較例の冷媒低圧は0.5Mpaにすぎない。   In the refrigerant low pressure, in both the example and the comparative example, the refrigerant low pressure is further lowered after 1 minute and is higher than the minimum, and when 10 minutes have elapsed, the refrigerant low pressure in the example is 0.66 Mpa, compared with that in the comparative example. The refrigerant low pressure is only 0.5 Mpa.

冷媒低圧が高くなるとエンジンの回転数を高めることができる。図10の実施例のエンジン回転数の増加は、図12の実施例の冷媒低圧の圧力増加と対応している。   When the refrigerant low pressure increases, the engine speed can be increased. The increase in engine speed in the embodiment of FIG. 10 corresponds to the increase in refrigerant low pressure in the embodiment of FIG.

冷媒低圧では2分経過後、実施例の冷媒低圧は比較例の冷媒低圧より低い。このことは、エンジンで駆動されるコンプレッサ3に送られる冷媒のガス圧が、実施例では高く、比較例では低いことを意味する。すなわち、実施例ではより高圧の冷媒ガスがコンプレッサに送られ、しかもエンジンの回転数が高いため、より多量の冷媒ガスがコンプレッサで断熱圧縮される。このためより多量の高温高圧の冷媒が室内機熱交換器73に送られ、エンジン起動後より短時間で室内機熱交換器73より温風が得られることになる。   At the refrigerant low pressure, after 2 minutes, the refrigerant low pressure in the example is lower than the refrigerant low pressure in the comparative example. This means that the gas pressure of the refrigerant sent to the compressor 3 driven by the engine is high in the embodiment and low in the comparative example. That is, in the embodiment, a higher-pressure refrigerant gas is sent to the compressor and the engine speed is high, so that a larger amount of the refrigerant gas is adiabatically compressed by the compressor. Therefore, a larger amount of high-temperature and high-pressure refrigerant is sent to the indoor unit heat exchanger 73, and warm air is obtained from the indoor unit heat exchanger 73 in a short time after the engine is started.

なお、エンジン起動後、3分以内の冷却水温度が低いのは、バイパス通路15を通って流れる冷却水が廃熱回収器64でおよそ−20℃の冷媒に熱を渡すためである。実施例では、エンジンの起動に伴う冷却水温度の上昇がバイパス通路での冷媒による冷却のため比較例よりも一時的に低くなる。しかし、図10よりも明らかなように、実施例のエンジン回転数は比較例のものより高い。すなわち、単位時間あたりより多くの燃料を実施例のものは消費し、単位時間あたり実施例の冷却水はより多くの熱量をエンジンから供給されている。   The reason for the low coolant temperature within 3 minutes after the engine is started is that the coolant flowing through the bypass passage 15 passes heat to the refrigerant at approximately −20 ° C. in the waste heat recovery unit 64. In the embodiment, the rise in the coolant temperature accompanying the start-up of the engine is temporarily lower than in the comparative example because of cooling by the refrigerant in the bypass passage. However, as is clear from FIG. 10, the engine speed of the example is higher than that of the comparative example. That is, the fuel of the embodiment consumes more fuel per unit time, and the cooling water of the embodiment per unit time is supplied with a larger amount of heat from the engine.

実施例のものでは冷却水により多くの熱量がエンジンより供給されるため冷媒低圧が高く、より多量の冷媒ガスがコンプレッサで断熱圧縮される。このためより多量の高温高圧の冷媒が室内機熱交換器73に送られ、エンジン起動後より短時間で室内機熱交換器73より温風が得られることになる。   In the embodiment, since a large amount of heat is supplied from the engine to the cooling water, the refrigerant low pressure is high, and a larger amount of refrigerant gas is adiabatically compressed by the compressor. Therefore, a larger amount of high-temperature and high-pressure refrigerant is sent to the indoor unit heat exchanger 73, and warm air is obtained from the indoor unit heat exchanger 73 in a short time after the engine is started.

従って、本実施例の水冷エンジンヒートポンプに示したように、外気温度が低く、室外機熱交換器76による吸熱が期待できない場合、エンジン駆動によるエンジン廃熱回収が高くなり、より短時間に室内機熱交換器73による加温が可能となる。   Therefore, as shown in the water-cooled engine heat pump of the present embodiment, when the outside air temperature is low and heat absorption by the outdoor unit heat exchanger 76 cannot be expected, the engine waste heat recovery by the engine drive becomes high, and the indoor unit is shortened in a shorter time. Heating by the heat exchanger 73 becomes possible.

本実施例では、特定の冷却水回路及び冷媒回路について説明したが、この実施例のものに限られることはなく、従来から知られている冷却水回路にバイパス通路を設けたり、あるいは従来から知られている冷媒回路を採用することもできる。   In the present embodiment, the specific cooling water circuit and the refrigerant circuit have been described. However, the present invention is not limited to this embodiment, and a conventionally known cooling water circuit is provided with a bypass passage or is conventionally known. The refrigerant circuit currently used can also be employ | adopted.

本発明に係る冷却水回路を示す。1 shows a cooling water circuit according to the present invention. 本発明に係る他の冷却水回路を示す。3 shows another cooling water circuit according to the present invention. 本発明に係る他の冷却水回路を示す。3 shows another cooling water circuit according to the present invention. 本発明に係る他の冷却水回路を示す。3 shows another cooling water circuit according to the present invention. 本発明に係る他の冷却水回路を示す。3 shows another cooling water circuit according to the present invention. 本発明に係る他の冷却水回路を示す。3 shows another cooling water circuit according to the present invention. 本発明に係る他の冷却水回路を示す。3 shows another cooling water circuit according to the present invention. 本発明に係る他の冷却水回路を示す。3 shows another cooling water circuit according to the present invention. 本発明の実施例の水冷エンジンヒートポンプの基本構成図である。It is a basic lineblock diagram of the water cooling engine heat pump of the example of the present invention. 本発明の実施例の水冷エンジンヒートポンプ及び比較例の水冷エンジンヒートポンプのエンジン起動後の経過時間とエンジン回転数との関係を示す線図である。It is a diagram which shows the relationship between the elapsed time after engine starting of the water cooling engine heat pump of the Example of this invention, and the water cooling engine heat pump of a comparative example, and an engine speed. 本発明の実施例の水冷エンジンヒートポンプ及び比較例の水冷エンジンヒートポンプのエンジン起動後の経過時間と冷却水水温との関係を示す線図である。It is a diagram which shows the relationship between the elapsed time after engine starting of the water cooling engine heat pump of the Example of this invention, and the water cooling engine heat pump of a comparative example, and cooling water temperature. 本発明の実施例の水冷エンジンヒートポンプ及び比較例の水冷エンジンヒートポンプのエンジン起動後の経過時間と冷媒低圧との関係を示す線図である。It is a diagram which shows the relationship between the elapsed time after engine starting of the water cooling engine heat pump of the Example of this invention, and the water cooling engine heat pump of a comparative example, and a refrigerant | coolant low pressure.

符号の説明Explanation of symbols

1:冷却水回路 2:ガスエンジン 3:コンプレッサ
4:冷媒回路 11:供給通路 12:回収通路
13:廃熱回収通路 14:ラジエータ通路
15:バイパス通路(バイパス回路)
16:水路抵抗 25:冷却水吐出口 26:冷却水吸入口
110:第二供給通路 120:第二回収通路
150:第二バイパス通路(バイパス回路) 61:低温弁
610:全量吸入口 611:低温吸入口 612:高温吸入口
613:全量排出口 614:低温排出口 615:高温排出口
62:高温弁 620:全量吸入口 621:低温吸入口
622:高温吸入口 623:全量排出口 624:低温排出口
625:高温排出口 63:ラジエータ 64:廃熱回収器
65:ウオータポンプ 73:室内機熱交換器 74:室内機膨張弁
75:室外機膨張弁 76:室外機熱交換器 77:アキュムレータ
79:サブ液弁
1: Cooling water circuit 2: Gas engine 3: Compressor 4: Refrigerant circuit 11: Supply passage 12: Recovery passage 13: Waste heat recovery passage 14: Radiator passage 15: Bypass passage (bypass circuit)
16: Water channel resistance 25: Cooling water discharge port 26: Cooling water suction port 110: Second supply passage 120: Second recovery passage 150: Second bypass passage (bypass circuit) 61: Low temperature valve 610: Full amount suction port 611: Low temperature Suction port 612: High temperature suction port 613: Total discharge port 614: Low temperature discharge port 615: High temperature discharge port 62: High temperature valve 620: Full volume suction port 621: Low temperature suction port 622: High temperature suction port 623: Full volume discharge port 624: Low temperature discharge port Outlet 625: High temperature outlet 63: Radiator 64: Waste heat recovery device 65: Water pump 73: Indoor unit heat exchanger 74: Indoor unit expansion valve 75: Outdoor unit expansion valve 76: Outdoor unit heat exchanger 77: Accumulator 79: Sub liquid valve

Claims (9)

水冷式のエンジンと該エンジンにより駆動される冷媒圧縮用のコンプレッサと冷媒用熱交換機と該エンジンの熱を冷媒に伝えるための廃熱回収装置とをもち、
前記廃熱回収装置は前記エンジンを冷却するための冷却水回路と該コンプレッサにより圧縮される冷媒を循環する冷媒回路と該冷却水回路及び該冷媒回路に連結され該冷却水の熱を該冷媒に伝える廃熱回収器と該冷却水回路を循環する冷却水の温度が所定値よりも低い低温運転状態において該廃熱回収器への冷却水の送水を停止する停止手段とを持つ水冷エンジンヒートポンプであって、
前記冷却水回路は、前記停止手段をバイパスして前記廃熱回収器に前記エンジンを通過した冷却水を送水するバイパス回路を有し、
前記停止手段は所定の低温で弁を開閉する低温弁であり、前記冷却水回路はさらにラジエータと該ラジエータへの前記冷却水の送水の開閉を該所定の低温より高い所定の高温で弁を開閉する高温弁とをもち、
前記低温弁は、冷却水を吸入する吸入口と、第1の温度より低い温度で前記吸入口から吸入された冷却水の全量を排出する低温口と、前記第1の温度以上である第2の温度以上の温度で前記吸入口から吸入された冷却水の全量を排出する高温口と、を備えており、
前記高温弁は、冷却水を吸入する吸入口と、第3の温度より低い温度で前記吸入口から吸入された冷却水の全量を排出する低温口と、前記第3の温度以上である第4の温度以上の温度で前記吸入口から吸入された冷却水の全量を排出する高温口と、を備えており、
前記冷却水回路は前記エンジンの冷却水吐出口と前記低温弁の吸入口とを結ぶ供給通路と、該低温弁の低温口と該エンジンの冷却水吸入口とを結ぶ回収通路と、該低温弁の高温口と前記高温弁の吸入口とを結ぶ第二供給通路と、前記廃熱回収器を通り該高温弁の低温口と該回収通路とを結ぶ廃熱回収通路と、前記ラジエータを通り該高温弁の高温口と該回収通路とを結ぶラジエータ通路とを持ち、前記バイパス回路は該供給通路と該廃熱回収器の供給口とを結ぶバイパス通路である水冷エンジンヒートポンプ。
A water-cooled engine, a refrigerant compression compressor driven by the engine, a refrigerant heat exchanger, and a waste heat recovery device for transferring heat of the engine to the refrigerant,
The waste heat recovery device is connected to a cooling water circuit for cooling the engine, a refrigerant circuit for circulating a refrigerant compressed by the compressor, the cooling water circuit, and the refrigerant circuit, and the heat of the cooling water is used as the refrigerant. A water-cooled engine heat pump having a waste heat recovery device for transmitting and a stop means for stopping the supply of the cooling water to the waste heat recovery device in a low temperature operation state where the temperature of the cooling water circulating through the cooling water circuit is lower than a predetermined value There,
The cooling water circuit has a bypass circuit that bypasses the stopping means and sends the cooling water that has passed through the engine to the waste heat recovery unit,
The stopping means is a low-temperature valve that opens and closes the valve at a predetermined low temperature, and the cooling water circuit further opens and closes the radiator and the supply of the cooling water to the radiator at a predetermined high temperature higher than the predetermined low temperature. With a high temperature valve that
The low temperature valve includes a suction port for sucking cooling water, a low temperature port for discharging the entire amount of cooling water sucked from the suction port at a temperature lower than the first temperature, and a second temperature that is equal to or higher than the first temperature. A high temperature outlet that discharges the entire amount of cooling water sucked from the inlet at a temperature equal to or higher than the temperature of
The high temperature valve has a suction port for sucking cooling water, a low temperature port for discharging the entire amount of cooling water sucked from the suction port at a temperature lower than a third temperature, and a fourth temperature not lower than the third temperature. A high temperature outlet that discharges the entire amount of cooling water sucked from the inlet at a temperature equal to or higher than the temperature of
The cooling water circuit includes a supply passage that connects a cooling water discharge port of the engine and a suction port of the low temperature valve, a recovery passage that connects a low temperature port of the low temperature valve and a cooling water suction port of the engine, and the low temperature valve A second supply passage connecting the high temperature port and the suction port of the high temperature valve, a waste heat recovery passage connecting the low temperature port of the high temperature valve and the recovery passage through the waste heat recovery device, and passing through the radiator. having a radiator passage connecting the high-temperature outlet and said recovery passage of the high temperature valve, the bypass circuit is a bypass passage der Ru water cooling engine heat pump connecting the said supply passage and said waste heat recovery unit of the supply port.
水冷式のエンジンと該エンジンにより駆動される冷媒圧縮用のコンプレッサと冷媒用熱交換機と該エンジンの熱を冷媒に伝えるための廃熱回収装置とをもち、
前記廃熱回収装置は前記エンジンを冷却するための冷却水回路と該コンプレッサにより圧縮される冷媒を循環する冷媒回路と該冷却水回路及び該冷媒回路に連結され該冷却水の熱を該冷媒に伝える廃熱回収器と該冷却水回路を循環する冷却水の温度が所定値よりも低い低温運転状態において該廃熱回収器への冷却水の送水を停止する停止手段とを持つ水冷エンジンヒートポンプであって、
前記冷却水回路は、前記停止手段をバイパスして前記廃熱回収器に前記エンジンを通過した冷却水を送水するバイパス回路を有し、
前記停止手段は所定の低温で弁を開閉する低温弁であり、前記冷却水回路はさらにラジエータと該ラジエータへの前記冷却水の送水の開閉を該所定の低温より高い所定の高温で弁を開閉する高温弁とをもち、
前記低温弁は、冷却水を吸入する吸入口と、第1の温度より低い温度で前記吸入口から吸入された冷却水の全量を排出する低温口と、前記第1の温度以上である第2の温度以上の温度で前記吸入口から吸入された冷却水の全量を排出する高温口と、を備えており、
前記高温弁は、冷却水を排出する排出口と、第3の温度より低い温度で前記排出口から排出する冷却水の全量を吸入する低温口と、前記第3の温度以上である第4の温度以上の温度で前記排出口から排出する冷却水の全量を吸入する高温口と、を備えており、
前記冷却水回路は前記エンジンの冷却水吐出口と前記低温弁の吸入口とを結ぶ供給通路と、前記低温弁の低温口と前記エンジンの冷却水吸入口とを結ぶ回収通路と、前記廃熱回収器を通り該低温弁の高温口と前記高温弁の低温口とを結ぶ廃熱回収通路と、前記ラジエータを通り該低温弁の高温口と該高温弁の高温口とを結ぶラジエータ通路と、該高温弁の排出口と該回収通路とを結ぶ第二回収通路とを持ち、前記バイパス回路は該供給通路と該廃熱回収器の供給口とを結ぶ第一バイパス通路と該廃熱回収器の流出口と該回収通路及び該第二回収通路のいずれか一方とを結ぶ第二バイパス通路とからなる水冷エンジンヒートポンプ。
A water-cooled engine, a refrigerant compression compressor driven by the engine, a refrigerant heat exchanger, and a waste heat recovery device for transferring heat of the engine to the refrigerant,
The waste heat recovery device is connected to a cooling water circuit for cooling the engine, a refrigerant circuit for circulating a refrigerant compressed by the compressor, the cooling water circuit, and the refrigerant circuit, and the heat of the cooling water is used as the refrigerant. A water-cooled engine heat pump having a waste heat recovery device for transmitting and a stop means for stopping the supply of the cooling water to the waste heat recovery device in a low temperature operation state where the temperature of the cooling water circulating through the cooling water circuit is lower than a predetermined value There,
The cooling water circuit has a bypass circuit that bypasses the stopping means and sends the cooling water that has passed through the engine to the waste heat recovery unit,
The stopping means is a low-temperature valve that opens and closes the valve at a predetermined low temperature, and the cooling water circuit further opens and closes the radiator and the supply of the cooling water to the radiator at a predetermined high temperature higher than the predetermined low temperature. With a high temperature valve that
The low temperature valve includes a suction port for sucking cooling water, a low temperature port for discharging the entire amount of cooling water sucked from the suction port at a temperature lower than the first temperature, and a second temperature that is equal to or higher than the first temperature. A high temperature outlet that discharges the entire amount of cooling water sucked from the inlet at a temperature equal to or higher than the temperature of
The high temperature valve includes a discharge port for discharging cooling water, a low temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature lower than a third temperature, and a fourth temperature that is equal to or higher than the third temperature. A high-temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature equal to or higher than the temperature,
The cooling water circuit includes a supply passage connecting the cooling water discharge port of the engine and the suction port of the low temperature valve, a recovery passage connecting the low temperature port of the low temperature valve and the cooling water suction port of the engine, and the waste heat. A waste heat recovery passage connecting the high temperature port of the low temperature valve and the low temperature port of the high temperature valve through a recovery device, a radiator passage connecting the high temperature port of the low temperature valve and the high temperature port of the high temperature valve through the radiator, A second recovery passage connecting the discharge port of the high temperature valve and the recovery passage, and the bypass circuit includes a first bypass passage connecting the supply passage and a supply port of the waste heat recovery device, and the waste heat recovery device outlet and the collection passage and said second recovery either and Ru water cooling engine heat pump name and a second bypass passage which connects the passageway.
水冷式のエンジンと該エンジンにより駆動される冷媒圧縮用のコンプレッサと冷媒用熱交換機と該エンジンの熱を冷媒に伝えるための廃熱回収装置とをもち、
前記廃熱回収装置は前記エンジンを冷却するための冷却水回路と該コンプレッサにより圧縮される冷媒を循環する冷媒回路と該冷却水回路及び該冷媒回路に連結され該冷却水の熱を該冷媒に伝える廃熱回収器と該冷却水回路を循環する冷却水の温度が所定値よりも低い低温運転状態において該廃熱回収器への冷却水の送水を停止する停止手段とを持つ水冷エンジンヒートポンプであって、
前記冷却水回路は、前記停止手段をバイパスして前記廃熱回収器に前記エンジンを通過した冷却水を送水するバイパス回路を有し、
前記停止手段は所定の低温で弁を開閉する低温弁であり、前記冷却水回路はさらにラジエータと該ラジエータへの前記冷却水の送水の開閉を該所定の低温より高い所定の高温で弁を開閉する高温弁とをもち、
前記低温弁は、冷却水を吸入する吸入口と、第1の温度より低い温度で前記吸入口から吸入された冷却水の全量を排出する低温口と、前記第1の温度以上である第2の温度以上の温度で前記吸入口から吸入された冷却水の全量を排出する高温口と、を備えており、
前記高温弁は、冷却水を吸入する吸入口と、第3の温度より低い温度で前記吸入口から吸入された冷却水の全量を排出する低温口と、前記第3の温度以上である第4の温度以上の温度で前記吸入口から吸入された冷却水の全量を排出する高温口と、を備えており、
前記冷却水回路は前記エンジンの冷却水吐出口と前記高温弁の吸入口とを結ぶ供給通路と、該高温弁の低温口と該低温弁の吸入口とを結ぶ第二供給通路と、該低温弁の低温口と該エンジンの冷却水吸入口とを結ぶ回収通路と、前記廃熱回収器を通り該低温弁の高温口と該回収通路とを結ぶ廃熱回収通路と、前記ラジエータを通り該高温弁の高温口と該回収通路とを結ぶラジエータ通路とを持ち、前記バイパス回路は該供給通路と該廃熱回収器の供給口とを結ぶバイパス通路である水冷エンジンヒートポンプ。
A water-cooled engine, a refrigerant compression compressor driven by the engine, a refrigerant heat exchanger, and a waste heat recovery device for transferring heat of the engine to the refrigerant,
The waste heat recovery device is connected to a cooling water circuit for cooling the engine, a refrigerant circuit for circulating a refrigerant compressed by the compressor, the cooling water circuit, and the refrigerant circuit, and the heat of the cooling water is used as the refrigerant. A water-cooled engine heat pump having a waste heat recovery device for transmitting and a stop means for stopping the supply of the cooling water to the waste heat recovery device in a low temperature operation state where the temperature of the cooling water circulating through the cooling water circuit is lower than a predetermined value There,
The cooling water circuit has a bypass circuit that bypasses the stopping means and sends the cooling water that has passed through the engine to the waste heat recovery unit,
The stopping means is a low-temperature valve that opens and closes the valve at a predetermined low temperature, and the cooling water circuit further opens and closes the radiator and the supply of the cooling water to the radiator at a predetermined high temperature higher than the predetermined low temperature. With a high temperature valve that
The low temperature valve includes a suction port for sucking cooling water, a low temperature port for discharging the entire amount of cooling water sucked from the suction port at a temperature lower than the first temperature, and a second temperature that is equal to or higher than the first temperature. A high temperature outlet that discharges the entire amount of cooling water sucked from the inlet at a temperature equal to or higher than the temperature of
The high temperature valve has a suction port for sucking cooling water, a low temperature port for discharging the entire amount of cooling water sucked from the suction port at a temperature lower than a third temperature, and a fourth temperature not lower than the third temperature. A high temperature outlet that discharges the entire amount of cooling water sucked from the inlet at a temperature equal to or higher than the temperature of
The cooling water circuit includes a supply passage connecting the cooling water discharge port of the engine and the suction port of the high temperature valve, a second supply passage connecting the low temperature port of the high temperature valve and the suction port of the low temperature valve, and the low temperature A recovery passage connecting the low temperature port of the valve and the cooling water intake port of the engine, a waste heat recovery passage connecting the high temperature port of the low temperature valve and the recovery passage through the waste heat recovery unit, and passing through the radiator having a radiator passage connecting the high-temperature outlet and said recovery passage of the high temperature valve, the bypass circuit is a bypass passage der Ru water cooling engine heat pump connecting the said supply passage and said waste heat recovery unit of the supply port.
水冷式のエンジンと該エンジンにより駆動される冷媒圧縮用のコンプレッサと冷媒用熱交換機と該エンジンの熱を冷媒に伝えるための廃熱回収装置とをもち、
前記廃熱回収装置は前記エンジンを冷却するための冷却水回路と該コンプレッサにより圧縮される冷媒を循環する冷媒回路と該冷却水回路及び該冷媒回路に連結され該冷却水の熱を該冷媒に伝える廃熱回収器と該冷却水回路を循環する冷却水の温度が所定値よりも低い低温運転状態において該廃熱回収器への冷却水の送水を停止する停止手段とを持つ水冷エンジンヒートポンプであって、
前記冷却水回路は、前記停止手段をバイパスして前記廃熱回収器に前記エンジンを通過した冷却水を送水するバイパス回路を有し、
前記停止手段は所定の低温で弁を開閉する低温弁であり、前記冷却水回路はさらにラジエータと該ラジエータへの前記冷却水の送水の開閉を該所定の低温より高い所定の高温で弁を開閉する高温弁とをもち、
前記低温弁は、冷却水を排出する排出口と、第1の温度より低い温度で前記排出口から排出する冷却水の全量を吸入する低温口と、前記第1の温度以上である第2の温度以上の温度で前記排出口から排出する冷却水の全量を吸入する高温口と、を備えており、
前記高温弁は、冷却水を吸入する吸入口と、第3の温度より低い温度で前記吸入口から吸入された冷却水の全量を排出する低温口と、前記第3の温度以上である第4の温度以上の温度で前記吸入口から吸入された冷却水の全量を排出する高温口と、を備えており、
前記冷却水回路は前記エンジンの冷却水吐出口と前記高温弁の吸入口とを結ぶ供給通路と、該高温弁の低温口と該低温弁の低温口とを結ぶ第二供給通路と、該低温弁の排出口と該エンジンの冷却水吸入口とを結ぶ回収通路と、前記廃熱回収器を通り該第二供給通路と該低温弁の高温口とを結ぶ廃熱回収通路と、前記ラジエータを通り該高温弁の高温口と該低温弁の高温口とを結ぶラジエータ通路とを持ち、前記バイパス回路は該供給通路と該第二供給通路とを結ぶ第一バイパス通路と該廃熱回収器の下流側の該廃熱回収通路と該回収通路とを結ぶ第二バイパス通路とからなる水冷エンジンヒートポンプ。
A water-cooled engine, a refrigerant compression compressor driven by the engine, a refrigerant heat exchanger, and a waste heat recovery device for transferring heat of the engine to the refrigerant,
The waste heat recovery device is connected to a cooling water circuit for cooling the engine, a refrigerant circuit for circulating a refrigerant compressed by the compressor, the cooling water circuit, and the refrigerant circuit, and the heat of the cooling water is used as the refrigerant. A water-cooled engine heat pump having a waste heat recovery device for transmitting and a stop means for stopping the supply of the cooling water to the waste heat recovery device in a low temperature operation state where the temperature of the cooling water circulating through the cooling water circuit is lower than a predetermined value There,
The cooling water circuit has a bypass circuit that bypasses the stopping means and sends the cooling water that has passed through the engine to the waste heat recovery unit,
The stopping means is a low-temperature valve that opens and closes the valve at a predetermined low temperature, and the cooling water circuit further opens and closes the radiator and the supply of the cooling water to the radiator at a predetermined high temperature higher than the predetermined low temperature. With a high temperature valve that
The low temperature valve includes a discharge port for discharging cooling water, a low temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature lower than the first temperature, and a second temperature that is equal to or higher than the first temperature. A high-temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature equal to or higher than the temperature,
The high temperature valve has a suction port for sucking cooling water, a low temperature port for discharging the entire amount of cooling water sucked from the suction port at a temperature lower than a third temperature, and a fourth temperature not lower than the third temperature. A high temperature outlet that discharges the entire amount of cooling water sucked from the inlet at a temperature equal to or higher than the temperature of
The cooling water circuit includes a supply passage that connects a cooling water discharge port of the engine and a suction port of the high temperature valve, a second supply passage that connects a low temperature port of the high temperature valve and a low temperature port of the low temperature valve, and the low temperature A recovery passage connecting the exhaust port of the valve and the cooling water intake port of the engine, a waste heat recovery passage connecting the second supply passage and the high temperature port of the low temperature valve through the waste heat recovery device, and the radiator And a radiator passage connecting the high temperature port of the high temperature valve and the high temperature port of the low temperature valve, and the bypass circuit includes a first bypass passage connecting the supply passage and the second supply passage, and a waste heat recovery unit. downstream of the waste heat recovery passage and said return passage and Ru water cooling engine heat pump name and a second bypass passage which connects the.
水冷式のエンジンと該エンジンにより駆動される冷媒圧縮用のコンプレッサと冷媒用熱交換機と該エンジンの熱を冷媒に伝えるための廃熱回収装置とをもち、
前記廃熱回収装置は前記エンジンを冷却するための冷却水回路と該コンプレッサにより圧縮される冷媒を循環する冷媒回路と該冷却水回路及び該冷媒回路に連結され該冷却水の熱を該冷媒に伝える廃熱回収器と該冷却水回路を循環する冷却水の温度が所定値よりも低い低温運転状態において該廃熱回収器への冷却水の送水を停止する停止手段とを持つ水冷エンジンヒートポンプであって、
前記冷却水回路は、前記停止手段をバイパスして前記廃熱回収器に前記エンジンを通過した冷却水を送水するバイパス回路を有し、
前記停止手段は所定の低温で弁を開閉する低温弁であり、前記冷却水回路はさらにラジエータと該ラジエータへの前記冷却水の送水の開閉を該所定の低温より高い所定の高温で弁を開閉する高温弁とをもち、
前記低温弁は、冷却水を排出する排出口と、第1の温度より低い温度で前記排出口から排出する冷却水の全量を吸入する低温口と、前記第1の温度以上である第2の温度以上の温度で前記排出口から排出する冷却水の全量を吸入する高温口と、を備えており、
前記高温弁は、冷却水を排出する排出口と、第3の温度より低い温度で前記排出口から排出する冷却水の全量を吸入する低温口と、前記第3の温度以上である第4の温度以上の温度で前記排出口から排出する冷却水の全量を吸入する高温口と、を備えており、
前記冷却水回路は前記エンジンの冷却水吐出口と前記低温弁の低温口とを結ぶ供給通路と、該低温弁の排出口と該エンジンの冷却水吸入口とを結ぶ回収通路と、前記廃熱回収器を通り該供給通路と前記高温弁の低温口とを結ぶ廃熱回収通路と、前記ラジエータを通り該供給通路と該高温弁の高温口とを結ぶラジエータ通路と、該高温弁の排出口と該低温弁の高温口とを結ぶ第二回収通路とを持ち、前記バイパス回路は該廃熱回収器の下流側の該廃熱回収通路と該回収通路とを結ぶバイパス通路である水冷エンジンヒートポンプ。
A water-cooled engine, a refrigerant compression compressor driven by the engine, a refrigerant heat exchanger, and a waste heat recovery device for transferring heat of the engine to the refrigerant,
The waste heat recovery device is connected to a cooling water circuit for cooling the engine, a refrigerant circuit for circulating a refrigerant compressed by the compressor, the cooling water circuit, and the refrigerant circuit, and the heat of the cooling water is used as the refrigerant. A water-cooled engine heat pump having a waste heat recovery device for transmitting and a stop means for stopping the supply of the cooling water to the waste heat recovery device in a low temperature operation state where the temperature of the cooling water circulating through the cooling water circuit is lower than a predetermined value There,
The cooling water circuit has a bypass circuit that bypasses the stopping means and sends the cooling water that has passed through the engine to the waste heat recovery unit,
The stopping means is a low-temperature valve that opens and closes the valve at a predetermined low temperature, and the cooling water circuit further opens and closes the radiator and the supply of the cooling water to the radiator at a predetermined high temperature higher than the predetermined low temperature. With a high temperature valve that
The low temperature valve includes a discharge port for discharging cooling water, a low temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature lower than the first temperature, and a second temperature that is equal to or higher than the first temperature. A high-temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature equal to or higher than the temperature,
The high temperature valve includes a discharge port for discharging cooling water, a low temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature lower than a third temperature, and a fourth temperature that is equal to or higher than the third temperature. A high-temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature equal to or higher than the temperature,
The cooling water circuit includes a supply passage connecting the cooling water discharge port of the engine and the low temperature port of the low temperature valve, a recovery passage connecting the discharge port of the low temperature valve and the cooling water suction port of the engine, and the waste heat. A waste heat recovery passage connecting the supply passage and the low temperature port of the high temperature valve through the recovery unit, a radiator passage connecting the supply passage and the high temperature port of the high temperature valve through the radiator, and an exhaust port of the high temperature valve having a second recovery passage connecting the high-temperature outlet of the low temperature valve, the bypass circuit is Ru bypass der connecting the downstream waste heat recovery passage and said collecting passage of the waste heat recovery device water-cooling Engine heat pump.
水冷式のエンジンと該エンジンにより駆動される冷媒圧縮用のコンプレッサと冷媒用熱交換機と該エンジンの熱を冷媒に伝えるための廃熱回収装置とをもち、
前記廃熱回収装置は前記エンジンを冷却するための冷却水回路と該コンプレッサにより圧縮される冷媒を循環する冷媒回路と該冷却水回路及び該冷媒回路に連結され該冷却水の熱を該冷媒に伝える廃熱回収器と該冷却水回路を循環する冷却水の温度が所定値よりも低い低温運転状態において該廃熱回収器への冷却水の送水を停止する停止手段とを持つ水冷エンジンヒートポンプであって、
前記冷却水回路は、前記停止手段をバイパスして前記廃熱回収器に前記エンジンを通過した冷却水を送水するバイパス回路を有し、
前記停止手段は所定の低温で弁を開閉する低温弁であり、前記冷却水回路はさらにラジエータと該ラジエータへの前記冷却水の送水の開閉を該所定の低温より高い所定の高温で弁を開閉する高温弁とをもち、
前記低温弁は、冷却水を排出する排出口と、第1の温度より低い温度で前記排出口から排出する冷却水の全量を吸入する低温口と、前記第1の温度以上である第2の温度以上の温度で前記排出口から排出する冷却水の全量を吸入する高温口と、を備えており、
前記高温弁は、冷却水を吸入する吸入口と、第3の温度より低い温度で前記吸入口から吸入された冷却水の全量を排出する低温口と、前記第3の温度以上である第4の温度以上の温度で前記吸入口から吸入された冷却水の全量を排出する高温口と、を備えており、
前記冷却水回路は前記エンジンの冷却水吐出口と前記低温弁の低温口とを結ぶ供給通路と、前記供給通路と前記高温弁の吸入口とを結ぶ第二供給通路と、該低温弁の排出口と該エンジンの冷却水吸入口とを結ぶ回収通路と、前記廃熱回収器を通り該高温弁の低温口と該低温弁の高温口とを結ぶ廃熱回収通路と、前記ラジエータを通り該高温弁の高温口と該低温弁の高温口とを結ぶラジエータ通路とを持ち、前記バイパス回路は該供給通路と該廃熱回収器の上流側の該廃熱回収通路とを結ぶ第一バイパス通路と該廃熱回収器の下流側の該廃熱回収通路と該回収通路とを結ぶ第二バイパス通路とからなる水冷エンジンヒートポンプ。
A water-cooled engine, a refrigerant compression compressor driven by the engine, a refrigerant heat exchanger, and a waste heat recovery device for transferring heat of the engine to the refrigerant,
The waste heat recovery device is connected to a cooling water circuit for cooling the engine, a refrigerant circuit for circulating a refrigerant compressed by the compressor, the cooling water circuit, and the refrigerant circuit, and the heat of the cooling water is used as the refrigerant. A water-cooled engine heat pump having a waste heat recovery device for transmitting and a stop means for stopping the supply of the cooling water to the waste heat recovery device in a low temperature operation state where the temperature of the cooling water circulating through the cooling water circuit is lower than a predetermined value There,
The cooling water circuit has a bypass circuit that bypasses the stopping means and sends the cooling water that has passed through the engine to the waste heat recovery unit,
The stopping means is a low-temperature valve that opens and closes the valve at a predetermined low temperature, and the cooling water circuit further opens and closes the radiator and the supply of the cooling water to the radiator at a predetermined high temperature higher than the predetermined low temperature. With a high temperature valve that
The low temperature valve includes a discharge port for discharging cooling water, a low temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature lower than the first temperature, and a second temperature that is equal to or higher than the first temperature. A high-temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature equal to or higher than the temperature,
The high temperature valve has a suction port for sucking cooling water, a low temperature port for discharging the entire amount of cooling water sucked from the suction port at a temperature lower than a third temperature, and a fourth temperature not lower than the third temperature. A high temperature outlet that discharges the entire amount of cooling water sucked from the inlet at a temperature equal to or higher than the temperature of
The cooling water circuit includes a supply passage that connects a cooling water discharge port of the engine and a low temperature port of the low temperature valve, a second supply passage that connects the supply passage and a suction port of the high temperature valve, and a discharge of the low temperature valve. A recovery passage connecting the outlet and the cooling water intake port of the engine, a waste heat recovery passage connecting the low temperature port of the high temperature valve and the high temperature port of the low temperature valve through the waste heat recovery unit, and passing through the radiator A first bypass passage connecting a high temperature port of the high temperature valve and a radiator passage connecting the high temperature port of the low temperature valve, the bypass circuit connecting the supply passage and the waste heat recovery passage upstream of the waste heat recovery unit; a waste heat recovery device downstream of the waste heat recovery passage and said return passage and Ru water cooling engine heat pump name and a second bypass passage which connects the.
水冷式のエンジンと該エンジンにより駆動される冷媒圧縮用のコンプレッサと冷媒用熱交換機と該エンジンの熱を冷媒に伝えるための廃熱回収装置とをもち、
前記廃熱回収装置は前記エンジンを冷却するための冷却水回路と該コンプレッサにより圧縮される冷媒を循環する冷媒回路と該冷却水回路及び該冷媒回路に連結され該冷却水の熱を該冷媒に伝える廃熱回収器と該冷却水回路を循環する冷却水の温度が所定値よりも低い低温運転状態において該廃熱回収器への冷却水の送水を停止する停止手段とを持つ水冷エンジンヒートポンプであって、
前記冷却水回路は、前記停止手段をバイパスして前記廃熱回収器に前記エンジンを通過した冷却水を送水するバイパス回路を有し、
前記停止手段は所定の低温で弁を開閉する低温弁であり、前記冷却水回路はさらにラジエータと該ラジエータへの前記冷却水の送水の開閉を該所定の低温より高い所定の高温で弁を開閉する高温弁とをもち、
前記低温弁は、冷却水を排出する排出口と、第1の温度より低い温度で前記排出口から排出する冷却水の全量を吸入する低温口と、前記第1の温度以上である第2の温度以上の温度で前記排出口から排出する冷却水の全量を吸入する高温口と、を備えており、
前記高温弁は、冷却水を排出する排出口と、第3の温度より低い温度で前記排出口から排出する冷却水の全量を吸入する低温口と、前記第3の温度以上である第4の温度以上の温度で前記排出口から排出する冷却水の全量を吸入する高温口と、を備えており、
前記冷却水回路は前記エンジンの冷却水吐出口と前記低温弁の低温口とを結ぶ供給通路と、該低温弁の排出口と前記高温弁の低温口とを結ぶ第二回収通路と、該高温弁の排出口と該エンジンの冷却水吸入口とを結ぶ回収通路と、前記廃熱回収器を通り該供給通路と該低温弁の高温口とを結ぶ廃熱回収通路と、前記ラジエータを通り該供給通路と該高温弁の高温口とを結ぶラジエータ通路とを持ち、前記バイパス回路は該廃熱回収器の下流側の該廃熱回収通路と該回収通路とを結ぶバイパス通路である水冷エンジンヒートポンプ。
A water-cooled engine, a refrigerant compression compressor driven by the engine, a refrigerant heat exchanger, and a waste heat recovery device for transferring heat of the engine to the refrigerant,
The waste heat recovery device is connected to a cooling water circuit for cooling the engine, a refrigerant circuit for circulating a refrigerant compressed by the compressor, the cooling water circuit, and the refrigerant circuit, and the heat of the cooling water is used as the refrigerant. A water-cooled engine heat pump having a waste heat recovery device for transmitting and a stop means for stopping the supply of the cooling water to the waste heat recovery device in a low temperature operation state where the temperature of the cooling water circulating through the cooling water circuit is lower than a predetermined value There,
The cooling water circuit has a bypass circuit that bypasses the stopping means and sends the cooling water that has passed through the engine to the waste heat recovery unit,
The stopping means is a low-temperature valve that opens and closes the valve at a predetermined low temperature, and the cooling water circuit further opens and closes the radiator and the supply of the cooling water to the radiator at a predetermined high temperature higher than the predetermined low temperature. With a high temperature valve that
The low temperature valve includes a discharge port for discharging cooling water, a low temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature lower than the first temperature, and a second temperature that is equal to or higher than the first temperature. A high-temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature equal to or higher than the temperature,
The high temperature valve includes a discharge port for discharging cooling water, a low temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature lower than a third temperature, and a fourth temperature that is equal to or higher than the third temperature. A high-temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature equal to or higher than the temperature,
The cooling water circuit includes a supply passage connecting the cooling water discharge port of the engine and the low temperature port of the low temperature valve, a second recovery passage connecting the discharge port of the low temperature valve and the low temperature port of the high temperature valve, and the high temperature A recovery passage connecting the exhaust port of the valve and the cooling water intake port of the engine, a waste heat recovery passage connecting the supply passage and the high temperature port of the low temperature valve through the waste heat recovery unit, and passing through the radiator. having a radiator passage connecting the hot port of the supply passage and the high temperature valve, the bypass circuit is Ru bypass der connecting the waste heat recovery passage and said collecting passage downstream of the waste heat recovery device water-cooling Engine heat pump.
水冷式のエンジンと該エンジンにより駆動される冷媒圧縮用のコンプレッサと冷媒用熱交換機と該エンジンの熱を冷媒に伝えるための廃熱回収装置とをもち、
前記廃熱回収装置は前記エンジンを冷却するための冷却水回路と該コンプレッサにより圧縮される冷媒を循環する冷媒回路と該冷却水回路及び該冷媒回路に連結され該冷却水の熱を該冷媒に伝える廃熱回収器と該冷却水回路を循環する冷却水の温度が所定値よりも低い低温運転状態において該廃熱回収器への冷却水の送水を停止する停止手段とを持つ水冷エンジンヒートポンプであって、
前記冷却水回路は、前記停止手段をバイパスして前記廃熱回収器に前記エンジンを通過した冷却水を送水するバイパス回路を有し、
前記停止手段は所定の低温で弁を開閉する低温弁であり、前記冷却水回路はさらにラジエータと該ラジエータへの前記冷却水の送水の開閉を該所定の低温より高い所定の高温で弁を開閉する高温弁とをもち、
前記低温弁は、冷却水を吸入する吸入口と、第1の温度より低い温度で前記吸入口から吸入された冷却水の全量を排出する低温口と、前記第1の温度以上である第2の温度以上の温度で前記吸入口から吸入された冷却水の全量を排出する高温口と、を備えており、
前記高温弁は、冷却水を排出する排出口と、第3の温度より低い温度で前記排出口から排出する冷却水の全量を吸入する低温口と、前記第3の温度以上である第4の温度以上の温度で前記排出口から排出する冷却水の全量を吸入する高温口と、を備えており、
前記冷却水回路は前記エンジンの冷却水吐出口と前記低温弁の吸入口とを結ぶ供給通路と、該低温弁の低温口と該エンジンの冷却水吸入口とを結ぶ回収通路と、前記廃熱回収器を通り該供給通路と該高温弁の低温口とを結ぶ廃熱回収通路と、前記ラジエータを通り該供給通路と該高温弁の高温口とを結ぶラジエータ通路と、該高温弁の排出口と該回収通路とを結ぶ第二回収通路とを持ち、前記バイパス回路は該供給通路と廃熱回収器の上流側の該廃熱回収通路とを結ぶ第一バイパス通路と該廃熱回収器該の下流側の該廃熱回収通路と該回収通路とを結ぶ第二バイパス通路とからなる水冷エンジンヒートポンプ。
A water-cooled engine, a refrigerant compression compressor driven by the engine, a refrigerant heat exchanger, and a waste heat recovery device for transferring heat of the engine to the refrigerant,
The waste heat recovery device is connected to a cooling water circuit for cooling the engine, a refrigerant circuit for circulating a refrigerant compressed by the compressor, the cooling water circuit, and the refrigerant circuit, and the heat of the cooling water is used as the refrigerant. A water-cooled engine heat pump having a waste heat recovery device for transmitting and a stop means for stopping the supply of the cooling water to the waste heat recovery device in a low temperature operation state where the temperature of the cooling water circulating through the cooling water circuit is lower than a predetermined value There,
The cooling water circuit has a bypass circuit that bypasses the stopping means and sends the cooling water that has passed through the engine to the waste heat recovery unit,
The stopping means is a low-temperature valve that opens and closes the valve at a predetermined low temperature, and the cooling water circuit further opens and closes the radiator and the supply of the cooling water to the radiator at a predetermined high temperature higher than the predetermined low temperature. With a high temperature valve that
The low temperature valve includes a suction port for sucking cooling water, a low temperature port for discharging the entire amount of cooling water sucked from the suction port at a temperature lower than the first temperature, and a second temperature that is equal to or higher than the first temperature. A high temperature outlet that discharges the entire amount of cooling water sucked from the inlet at a temperature equal to or higher than the temperature of
The high temperature valve includes a discharge port for discharging cooling water, a low temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature lower than a third temperature, and a fourth temperature that is equal to or higher than the third temperature. A high-temperature port for sucking the entire amount of cooling water discharged from the discharge port at a temperature equal to or higher than the temperature,
The cooling water circuit includes a supply passage that connects a cooling water discharge port of the engine and a suction port of the low temperature valve, a recovery passage that connects a low temperature port of the low temperature valve and the cooling water suction port of the engine, and the waste heat. A waste heat recovery passage connecting the supply passage and the low temperature port of the high temperature valve through the recovery unit, a radiator passage connecting the supply passage and the high temperature port of the high temperature valve through the radiator, and an exhaust port of the high temperature valve And a second recovery passage that connects the recovery passage, and the bypass circuit includes a first bypass passage that connects the supply passage and the waste heat recovery passage on the upstream side of the waste heat recovery device, and the waste heat recovery device, downstream of the waste heat recovery passage and said return passage and Ru water cooling engine heat pump name and a second bypass passage connecting the.
前記バイパス回路には、該バイパス回路を流れる水量を規制する水路抵抗が設けられている請求項1〜8の何れか1項に記載の水冷エンジンヒートポンプ。  The water-cooled engine heat pump according to any one of claims 1 to 8, wherein the bypass circuit is provided with a channel resistance that regulates an amount of water flowing through the bypass circuit.
JP2006085594A 2005-03-29 2006-03-27 Water cooling engine heat pump Expired - Fee Related JP5098196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085594A JP5098196B2 (en) 2005-03-29 2006-03-27 Water cooling engine heat pump

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005093657 2005-03-29
JP2005093657 2005-03-29
JP2006085594A JP5098196B2 (en) 2005-03-29 2006-03-27 Water cooling engine heat pump

Publications (2)

Publication Number Publication Date
JP2006308277A JP2006308277A (en) 2006-11-09
JP5098196B2 true JP5098196B2 (en) 2012-12-12

Family

ID=37475354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085594A Expired - Fee Related JP5098196B2 (en) 2005-03-29 2006-03-27 Water cooling engine heat pump

Country Status (1)

Country Link
JP (1) JP5098196B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109393B2 (en) * 2007-02-13 2012-12-26 トヨタ自動車株式会社 Waste heat recovery device and engine
JP2012090358A (en) 2008-06-16 2012-05-10 Norio Akamatsu Electric field effect power generator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310431Y2 (en) * 1980-12-06 1988-03-28
JPH0143493Y2 (en) * 1984-10-05 1989-12-18
JP2519409B2 (en) * 1985-10-08 1996-07-31 ヤンマーディーゼル 株式会社 Waste heat recovery system for engine heat pump
JPH05248707A (en) * 1992-03-03 1993-09-24 Matsushita Electric Ind Co Ltd Heat recoverying device with parallel heat exchanger
JPH11294894A (en) * 1998-04-16 1999-10-29 Mitsubishi Heavy Ind Ltd Outdoor unit and air conditioner
JP2001280735A (en) * 2000-03-30 2001-10-10 Tokyo Gas Co Ltd Engine-driven heat pump type air-conditioning device having hot water supplying device
JP2005016805A (en) * 2003-06-25 2005-01-20 Aisin Seiki Co Ltd Air-conditioner

Also Published As

Publication number Publication date
JP2006308277A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
WO2020103271A1 (en) Heat pump system
KR100737356B1 (en) Heat pump for a water-cooled engines
CN111854216B (en) Air conditioning system
CN113597511A (en) Compressor system and control method thereof
US9816734B2 (en) Air conditioner and method for controlling an air conditioner
CN208765303U (en) Air-conditioning system
JP5098196B2 (en) Water cooling engine heat pump
WO2023273495A1 (en) Refrigerating system and refrigerator
JP2018169105A (en) Air conditioning device
JPS6343663B2 (en)
JP2006284058A (en) Air conditioner and its control method
JP2969801B2 (en) Engine-driven air conditioner
JP2002235968A (en) Air conditioner
JP2004316986A (en) Refrigeration cycle device
WO2023171575A1 (en) Gas compressor and gas compression system
JPH0233102Y2 (en)
JP3675977B2 (en) Air conditioner
JP2002168534A (en) Heat pump system of air conditioner
JP3626927B2 (en) Gas heat pump type air conditioner
KR20220020656A (en) Gas engine heatpump
JP2012137209A (en) Engine-driven air conditioner
KR102004480B1 (en) Gas heat-pump system
JPH0233101Y2 (en)
JPH0160743B2 (en)
CN115978827A (en) System for preventing liquid from being carried during starting of compressor and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5098196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees