JP5098122B2 - Method for producing erythritol by continuous culture - Google Patents

Method for producing erythritol by continuous culture Download PDF

Info

Publication number
JP5098122B2
JP5098122B2 JP2001131893A JP2001131893A JP5098122B2 JP 5098122 B2 JP5098122 B2 JP 5098122B2 JP 2001131893 A JP2001131893 A JP 2001131893A JP 2001131893 A JP2001131893 A JP 2001131893A JP 5098122 B2 JP5098122 B2 JP 5098122B2
Authority
JP
Japan
Prior art keywords
culture
medium
carbon source
concentration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001131893A
Other languages
Japanese (ja)
Other versions
JP2002320498A (en
Inventor
有裕 滝
孝典 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001131893A priority Critical patent/JP5098122B2/en
Publication of JP2002320498A publication Critical patent/JP2002320498A/en
Application granted granted Critical
Publication of JP5098122B2 publication Critical patent/JP5098122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エリスリトール生産能を有する微生物を連続的に培養してエリスリトールを製造する方法に関する。
【0002】
【従来の技術】
エリスリトールの製造方法としては、回分培養によるもの、例えばオーレオバシデュウム属(Aureobasidium)によるもの(特開昭63−9831号公報)、モニリエラ属(Moniliella)によるもの(特開昭60−110295号公報、特開平10−215887)、トリコスポロノイデス・オエドセファリス(Trichosporonoides oedocephalis)(特開平9−251765号公報)、トリコスポロノイデス・メガチリエンシス(Trichosporonoides megachiliensis)(特開平10−96号公報)などが知られている。
【0003】
また、エリスリトールの生産性を上げるため、連続培養による生産、例えばオーレオバシデュウム属(特公平7−34749号公報)、オーレオバシデュウム属及びカンジダ属(Candida)によるもの(特開平5−137585号公報)が知られている。これらの連続培養を実施する上での制御方法としては、培養槽内の培養液の溶存酸素濃度を0.2ppm以上に維持し、菌体量を40〜200g/Lに維持する方法(特公平7−34749号公報)及び供給する培地の炭素源と窒素源の濃度比により菌体の窒素含有率を制御し、その窒素含量を2.5〜4.5%に維持する方法(特開平5−137585号公報)が用いられている。
【0004】
【発明が解決しようとする課題】
これら培養槽内の菌体濃度を一定に保つ方法では、単位菌体当たりのエリスリトール生産性が変化した場合、培養槽から出てくる培養液の糖組成と液量が変化し、培養後の精製工程の運転管理が難しくなる。また、菌体内の窒素含量により連続培養を制御する方法では、オンラインで窒素含量を測定することが困難であり自動化に関し問題がある。
【0005】
これらの問題を解決する方法として、コンピューターによって培養槽内の炭素源濃度を常に低レベルに維持するように制御する微生物の好気的培養方法(特開平5−76346号公報)がある。これは、培養槽内の炭素源が枯渇するときに生ずるpHの上昇又は溶存酸素濃度の上昇をセンサーにより検出し、コンピューターを介してフィード液のフィード速度を算出する方法である。
【0006】
ところが、微生物によるエリスリトールの生産において、培養液中のpHはエリスリトールとともに生成する有機酸などにより低下するが、効率的にエリスリトールを生産するためにはpH値を一定に保つ必要があり、水酸化ナトリウム等のアルカリによりコントロールを行っている。即ち、pH値を一定に維持する必要性が強い培養条件下では、pH値がほぼ一定に保たれているため、pHを指標に炭素源の投入速度をコントロールする連続培養法の実施はできない。
【0007】
また、溶存酸素濃度は培養液中の炭素源濃度と比例関係になく、上記公報に記載があるようにセンサーの信頼性が低いうえ、通気攪拌状態により大きく変動してしまう。このため、溶存酸素濃度を指標とする培養の制御は、実用には適さない。さらに上記方法は、炭素源が枯渇してからフィードを行うため培養槽内の炭素源濃度が常に一定とはならず、抜き出した培養液の組成も一定とはならないため精製工程が煩雑となる。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、培養中の運転制御方法が容易であり、工業的に効率よくエリスリトールを生産する方法及びそのための装置を見いだし、本発明を完成するに至った。
【0009】
即ち、本発明の要旨は、炭素源及び窒素源を含有する培地を連続的に培養槽に添加する微生物の連続培養によるエリスリトールの製造方法において、(1)培養槽内の培養液量及び培養液の炭素源濃度を測定し、(2)測定された培養液量及び炭素源濃度の測定値に基づき培養槽に投入される新規培地の投入速度及び培養槽から抜き出される培養液の抜き出し速度を算出し、(3)算出された新規培地の投入速度及び培養液の抜き出し速度に基づき新規培地の投入量及び培養液の抜き出し量を制御することにより、培養槽内の培養液量及び培養液中の炭素源濃度を一定値に保ち、かつ、(4)新規培地中の、炭素源中の炭素と窒素源中の窒素の比(C/N比)を一定値に設定すること、
を特徴とする連続培養によるエリスリトールの製造方法に存する。
【0010】
さらには、(1)培養槽内の培養液量測定装置、(2)培養槽内の培養液の炭素源濃度測定装置、(3)コンピューター及び(4)培地の投入速度並びに培養液の抜き出し速度の制御装置から構成される装置であり、(1)の装置及び(2)の装置で測定された各データが、(3)のコンピューターに自動的に入力されるように接続してあり、入力された当該データに基づき(3)コンピューターが設定した培地の投入速度及び培養液の抜き出し速度を、(4)の装置に伝送するように接続してあり、(4)の装置が伝送された当該速度に基づき培地の投入量及び培養液の抜き出し量を制御することを特徴とするエリスリトールの製造方法を実施するための装置に存する。
【0011】
【発明の実施の形態】
本発明で使用される微生物は、エリスリトール生産能を有する微生物であれば特に限定されないが、例えば以下に示す微生物が使用される。
【0012】
特公昭63−9831号公報に記載されるオーレオバシディウム属(Aureobasidium)に属する微生物。特公平4−635号公報、特開平9−154589号公報、特開平9−252765号公報、特開平10−96号公報、特開平10−94398号公報、特開平10−215887号公報又は特開平11−32754号公報に記載されるトリコスポロノイデス属(Trichosporonoides)に属する微生物。特開昭60−110295号公報、特開平9−154589号公報又は特開平10−215887号公報に記載されるモニリエラ属(Moniliella)に属する微生物。特開平9−154590号公報又は特開平10−215887号公報に記載されるイエロビア属(Yarrowia)、ウスチラゴ属(Ustillago)、フィロバヂウム属(Filobasidium)又はトリゴノプシス属(Trigonopsis)に属する微生物。特公昭47−41549号公報に記載されるトリゴノプシス属(Trigonopsis)又はカンジダ属(Candida)に属する微生物。特公昭51−21072号公報に記載されるカンジダ属(Candida)、トルロプシス属(Torulopsis)、ハンゼヌラ属(Hansenula)、ピヒア属(Pichia)又はデバリオミセス属(Debaryomyces)に属する微生物。
【0013】
バイオテクノロジー・レターズ(Biotechnol.lett.,7(4),119−234(1985))に記載されるハンゼニアスポラ属(Hanseniaspor)、サッカロミセス属(Saccharomyces)、クロエケラ属(Kloeckera)、クリュベロミセズ属(Kluyveromyces)又はトルラスポラ属(Torulaspora)に属する微生物。アスペルギルス属(Aspergillus)に属する微生物(S.A.Barer, J.Chem.Soc.,2538−2586(1958))。エクスペリメンタル・マイコロジー(Gaby.E.,Experimental Mycology,4,160−170(1980))に記載されるユーペニシリウム属(Eupenicillium)、モナスカス属(Monascus)、ペニシリウム属(Penicillium)、ベルチシリウム属(Verticillium)に属する微生物。チゴピヒア属(Zygopichia)(現在はヤマダジマ属(Yamadazyma)に分類される)に属する微生物(鈴木、発酵と工業、35(6)、(1977))。ロドトルラ属(Rhodotorula)に属する微生物(J.Gen,Microbiol.,18,269(1958))。
【0014】
本発明に使用される微生物として、好ましくはトリコスポロノイデス属に属する微生物、特に好ましくはトリコスポロノイデス・メガチリエンシスSN−G42株(FERM BP−1430、旧名:オーレオバイデウム・SN−G42株)が挙げられる。
【0015】
本発明で微生物を培養する培地の栄養成分は、一般的に炭素源、窒素源、無機塩類等からなる。炭素源としては、例えばグルコース、フラクトース、シュークロース等の糖類及びこれらの糖類を含む澱粉糖化液、甘藷糖蜜、甜菜糖蜜等の糖質等を使用することができ、特にこれらに限定されるものではないが、トリコスポロノイデス属に属する微生物を使用する場合は、グルコースの使用が好ましい。
【0016】
窒素源としては、菌体が利用可能な無機窒素化合物又は有機窒素化合物が使用され、例えば酵母エキス、ペプトン、コーンスチープリカー、アンモニア、アンモニウム塩、尿素、各種アミノ酸等が使用されるが、特にこれらに限定されない。
【0017】
無機塩類としては、例えばリン酸、マグネシウム、カリウム、カルシウム、鉄等の無機塩類が使用されるが特にこれらに限定されるものではない。また、ビタミン、ヌクレオチド等の微生物の生育を補助する成分を必要に応じ添加する。連続培養時、これらの栄養成分は炭素源と混合しあるいは炭素源と別ラインで培養槽に供給される。
【0018】
更に、通気攪拌条件下で培養を行う場合は、消泡剤、pH調整剤、緩衝液を添加することが好ましい。消泡剤としては、無機系、有機系の消泡剤が使用され、例えばポリビニルアルコール、ソルビタン脂肪酸エステル、シリコン系の化合物等が挙げられ、pH調整剤としては水酸化ナトリウム、水酸化カリウム、硫酸、塩酸、硝酸等が挙げられ、緩衝剤としては乳酸ナトリウム、各種リン酸塩等が挙げられるが、これらに限定されるものではない。
【0019】
本発明では、上記に挙げられる必要な栄養分を含む培地で培養を開始し、培養液中の炭素源濃度が予め設定された炭素濃度に達した時点で、新規培地の投入を開始する。新規培地の投入のために設定される炭素源濃度は、使用する微生物により異なるが通常5〜200g/Lの範囲であり、トリコスポロノイデス属に属する微生物を使用する場合は5〜100g/Lの範囲に設定することが好ましい。また、連続培養時の培養液中の炭素源濃度は、使用する微生物により異なるが通常1〜100g/Lの範囲に維持され、トリコスポロノイデス属に属する微生物を使用する場合は5〜50g/Lの範囲で維持することが好ましい。新規培地はポンプあるいは圧力差などを利用し培養槽に投入される。
【0020】
培養槽内の炭素源濃度は、生産菌の活性の指標となる。つまり、生産菌の活性あるいはエリスリトール生産性が低下した場合、培養槽内の炭素源濃度の上昇、エリスリトール濃度の減少が起こる。ここで炭素源濃度を一定に保つようにコントロールすると、炭素源の投入速度が遅くなるため滞留時間が延長し、培養槽内のエリスリトール濃度の減少を抑えられ、連続培養期間中の培養液中の糖組成をほぼ一定にすることができる。従って、精製工程の運転条件をコンスタントに実施することが可能となる。また、炭素源濃度の設定は、使用する炭素源が精製工程でエリスリトールと分離可能な場合は、エリスリトールの生成速度が増すため高めの濃度設定を行い、分離困難な場合は出来るだけ低濃度に設定する。
【0021】
培養槽内の炭素源濃度の測定は、例えば一定量を培養槽からオートサンプラーなどにより抜き取り、高速液体クロマトグラフィーあるいは酵素センサー等の分析装置に供し炭素源濃度を算出する。また、炭素源濃度のコントロールは、算出された炭素源濃度の値をコンピューターに伝送し、該コンピューターによる処理の後、ポンプの速度あるいは調節バルブの調節が自動的に行われ、炭素源の供給速度及び培養液抜き出し速度を調節することによって実施される。
【0022】
培養槽内の培養液量は、培養条件を安定に維持するために一定に維持する必要がある。培養液量は、通常の培養槽に設置されている液面計、例えば差圧・圧力式液面計、超音波式液面計、電子天秤等によって測定される。また、培養液量のコントロールは、測定された培養液量の値をコンピューターに伝送し、該コンピューターによる処理の後、ポンプの速度あるいは調節バルブの調節が自動的に行われ、培養液抜き出し速度を調節することによって実施される。培養槽内の炭素源濃度のコントロール並びに培養液量のコントロールは同一のコンピューターを用いて、同時に調節されることが好ましく、これら測定から調節までの一連の流れは自動的に行われる。該コンピューターは独立したものに限られず、分析装置、計量機及び流量制御装置から選ばれる1種以上に組み込むことも可能である。
【0023】
投入する窒素源は、炭素源と別経路での投入が好ましいが、炭素源と反応しないものであれば炭素源と混合し投入することもできる。炭素源と窒素源を別経路で投入する場合、炭素源と窒素源の投入量比を維持するため、培養槽内の培養液炭素源濃度に連動して変動する新規培地の炭素源投入量にあわせて、随時窒素源の投入量を変動させる必要がある。窒素源の投入量はコンピューターを介して炭素源との比率(C/N比)が一定になるように、窒素源の投入速度をポンプの速度あるいは調節バルブにて調節する。C/N比は40〜400、好ましくは80〜250の範囲内の一定値に設定される。設定されるC/N比は、使用する生産菌により異なるため、予め予備実験を通してエリスリトールの生産性との関係を求めておけばよい。また、どのC/N比を設定するかは、実際に本発明法にてエリスリトールを製造する場所に於けるコスト試算を行い決定する。
【0024】
培養液中に生産されたエリスリトールを採取する方法は、公知の方法(特公平7−34748号公報等)に従って行えばよい。例えば、培養液から遠心分離や濾過等により微生物菌体を除去した後、清澄液をイオン交換樹脂、活性炭により脱塩・脱色し、エリスリトールを結晶化させ、乾燥後取得することができる。
【0025】
本発明の装置は、換言すれば(1)培養槽内の培養液量測定装置、(2)培養槽内の培養液の炭素源濃度測定装置、(3)コンピューター、(4)培地の投入速度及び培養液の抜き出し速度の制御装置から構成される装置であり、(1)の装置及び(2)の装置で測定された各データが、(3)のコンピューターに自動的に入力されるように接続してあり、入力された当該データに基づき(3)コンピュータが設定した培地の投入速度及び培養液の抜き出し速度を、(4)の装置に伝送するように接続されている装置である。
【0026】
【実施例】
以下に本発明の実施例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、各実施例において使用した装置は図3に示す。これは、図2に示す装置において、炭素源、窒素源及び培養槽内の培養液の重量を測定する計測機として電子天秤、流量制御装置としてポンプ、そして炭素源濃度測定装置として酵素センサーを使用したものである。
【0027】
実施例1
グルコース30%(W/V)、酵母エキス1%を含む培地50mLを500mL容三角フラスコに入れ綿栓し、120℃、20分間滅菌後、常法により斜面培地よりトリコスポロノイデス・メガチリエンシスSN―G42(FERM BP−1430)を接種した。これを温度35℃で3日間振盪培養した(得られた種培養液を以下「種培養液1」という)。グルコース30%(W/V)、コーンスチープリカー3.7%を含む培地1.5Lを3L発酵槽に入れ、120℃、20分間滅菌後上記種培養液1を接種し、35℃で2日間通気攪拌培養した(得られた種培養液を以下「種培養液2」という)。次いで、グルコース40%、コーンスチープリカー0.8%を含む本培養培地1.5Lに上記種培養液2を接種し、通気量0.5vvm、攪拌速度500rpm、圧力0.5kg/cmで培養した。培養開始後、グルコース濃度が20g/Lになった時点から新規培地の供給を開始し連続培養を開始した。連続培養時の供給培地はグルコース40%、窒素源量がC/N比で167とした。運転条件は、本培養と同一条件で行い、培養槽内のグルコース濃度が10g/Lに維持されるように設定した。その結果、連続区間中の得られた培養液中のエリスリトール濃度を高速液体クロマトグラフィーの測定値にもとづき算出したところ、エリスリトール収率は55%、生成速度は2.2g/L/hrであった。
結果として、培養槽内のグルコース濃度をグルコースセンサーで管理することにより、グルコース濃度を全自動で10g/Lに維持することができ、また、連続培養550時間中の平均グルコース投入速度は4g/L/hrであった。
【0028】
実施例2
実施例1と同様に種培養と本培養を行い、グルコースが20g/Lになった時点で連続培養を開始した。連続培養時の供給培地の窒素源量をC/N比で93とし、その他の条件は実施例1と同様に設定した。連続培養中に得られた培養液のエリスリトール濃度を高速液体クロマトグラフィーの測定値にもとづき算出した結果、エリスリトール収率は47%、生成速度は3.6g/L/hrであった。
なお、平均のグルコース投入速度は7.8g/L/hrであった。
【0029】
【発明の効果】
本発明は、培養中の運転制御が容易であり、工業的に効率よくエリスリトールを生産することができる。
【0030】
【図面の簡単な説明】
【図1】C/N比とエリスリトール収率及び生成速度の関係を示す図である。
【図2】本発明の装置の一例を示す図である。
【図3】実施例1及び2に使用の装置を示す図である。
【図4】実施例1の培養経過を示す図である。
【符号の説明】
1 培養槽
2 培養液
3 抜き取り培養液
4 炭素源
5 窒素源
6 炭素源濃度測定装置
7 コンピューター
8 攪拌機
9 計量機
10 流量制御装置
11 電子天秤
12 ポンプ
13 酵素センサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing erythritol by continuously culturing a microorganism having erythritol-producing ability.
[0002]
[Prior art]
As the production method of erythritol, those by batch culture, for example, by Aureobasidium (JP 63-9831 A), by Moniliella (JP 60-110295) JP, 10-215887), Trichosporonoides oedocephalis (JP 9-251765), Trichosporonides megachiliensis (JP 10-96). Etc. are known.
[0003]
Further, in order to increase the productivity of erythritol, production by continuous culture, for example, those by the genus Aureobasiduum (Japanese Patent Publication No. 7-34749), genus Aureobasiduum and Candida (Japanese Patent Application Laid-Open No. Hei 5) -137585). As a control method in carrying out these continuous cultures, a method of maintaining the dissolved oxygen concentration of the culture solution in the culture tank at 0.2 ppm or more and maintaining the amount of bacterial cells at 40 to 200 g / L 7-34749) and a method of controlling the nitrogen content of the cells by the concentration ratio of the carbon source and the nitrogen source of the medium to be supplied and maintaining the nitrogen content at 2.5 to 4.5% (JP-A-5 -137585).
[0004]
[Problems to be solved by the invention]
In these methods of keeping the cell concentration in the culture tank constant, when the erythritol productivity per unit cell changes, the sugar composition and the volume of the culture solution coming out of the culture tank change, and purification after culture Operation management of the process becomes difficult. In addition, in the method of controlling continuous culture based on the nitrogen content in the cells, it is difficult to measure the nitrogen content online, and there is a problem regarding automation.
[0005]
As a method for solving these problems, there is a method for aerobic culturing of microorganisms (JP-A-5-76346) in which a carbon source concentration in a culture tank is controlled to be always kept at a low level by a computer. This is a method of detecting a rise in pH or a rise in dissolved oxygen concentration that occurs when the carbon source in the culture tank is depleted by a sensor and calculating the feed rate of the feed solution via a computer.
[0006]
However, in the production of erythritol by microorganisms, the pH in the culture solution is lowered by an organic acid generated together with erythritol. However, in order to efficiently produce erythritol, it is necessary to keep the pH value constant. Control is performed with alkali such as. That is, under culture conditions where there is a strong need to maintain a constant pH value, the pH value is maintained almost constant, and therefore, a continuous culture method in which the input rate of the carbon source is controlled using pH as an index cannot be performed.
[0007]
In addition, the dissolved oxygen concentration is not proportional to the carbon source concentration in the culture solution, and as described in the above publication, the reliability of the sensor is low, and the concentration varies greatly depending on the aeration and stirring state. For this reason, culture control using dissolved oxygen concentration as an index is not suitable for practical use. Furthermore, since the above method feeds after the carbon source is depleted, the concentration of the carbon source in the culture tank is not always constant, and the composition of the extracted culture solution is not constant, and the purification process becomes complicated.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a method and an apparatus for producing erythritol that are easy to control operation during culture and that are industrially efficient, and the present invention. It came to complete.
[0009]
That is, the gist of the present invention is that in the method for producing erythritol by continuous culture of microorganisms, wherein a medium containing a carbon source and a nitrogen source is continuously added to the culture tank, (1) the amount of the culture solution and the culture solution in the culture tank (2) Based on the measured amount of the culture solution and the measured value of the carbon source concentration, the rate of introduction of the new medium to be introduced into the culture tank and the rate of extraction of the culture medium withdrawn from the culture tank (3) By controlling the amount of the new medium input and the amount of the culture medium extracted based on the calculated new medium input speed and the culture medium extraction speed, the amount of the culture medium in the culture tank and the culture medium coercive Chi, and the concentration of the carbon source at a constant value of, (4) be set in the new medium, the ratio of nitrogen in the carbon and nitrogen sources in the carbon source (C / N ratio) at a constant value,
In the method for producing erythritol by continuous culture.
[0010]
Furthermore, (1) an apparatus for measuring the amount of culture medium in the culture tank, (2) an apparatus for measuring the concentration of carbon source in the culture liquid in the culture tank, (3) a computer and (4) the rate of loading the medium and the rate of extracting the culture medium It is a device composed of the control devices of (1) and (1) and each data measured by the device of (2) is connected so as to be automatically input to the computer of (3) Based on the data, (3) the medium input speed and the culture medium extraction speed set by the computer are connected so as to be transmitted to the apparatus (4), and the apparatus (4) is transmitted. It exists in the apparatus for implementing the manufacturing method of erythritol characterized by controlling the input amount of a culture medium, and the extraction amount of a culture solution based on speed | rate.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The microorganism used in the present invention is not particularly limited as long as it is an erythritol-producing microorganism. For example, the following microorganisms are used.
[0012]
A microorganism belonging to the genus Aureobasidium described in Japanese Patent Publication No. 63-9831. JP-B-4-635, JP-A-9-154589, JP-A-9-252765, JP-A-10-96, JP-A-10-94398, JP-A-10-215887, or JP-A-10-215888. A microorganism belonging to the genus Trichosporonoides described in JP-A-11-32754. Microorganisms belonging to the genus Moniliella described in JP-A-60-110295, JP-A-9-154589 or JP-A-10-215887. Microorganisms belonging to the genus Yellowia, Ustilago, Filobasidium or Trigonopsis described in JP-A-9-154590 or JP-A-10-215887. Microorganisms belonging to the genus Trigonopsis or Candida described in JP-B-47-41549. A microorganism belonging to the genus Candida, Torulopsis, Hansenula, Pichia or Debaryomyces described in Japanese Patent Publication No. 51-21072.
[0013]
Biotechnol.lett., 7 (4), 119-234 (1985)), Hansenia spora, Saccharomyces, Kloeckera, Kluyvereso ) Or a microorganism belonging to the genus Torulaspora. A microorganism belonging to the genus Aspergillus (SA Barer, J. Chem. Soc., 2538-2586 (1958)). The genus Eupenicillium, Monascus, Penicillium, and Verticillium described in Experimental Mycology (Gaby. E., Experimental Mycology, 4, 160-170 (1980)) A microorganism belonging to Verticillium). Microorganisms (Suzuki, Fermentation & Industry, 35 (6), (1977)) belonging to the genus Zygopicia (currently classified as Yamadazyma). A microorganism belonging to the genus Rhodotorula (J. Gen, Microbiol., 18, 269 (1958)).
[0014]
The microorganism used in the present invention is preferably a microorganism belonging to the genus Trichosporonoides, particularly preferably Trichosporonoides megatiliensis strain SN-G42 (FERM BP-1430, former name: Aureobiide SN- G42 strain).
[0015]
The nutrient components of the culture medium for culturing microorganisms in the present invention generally comprise a carbon source, a nitrogen source, inorganic salts, and the like. As the carbon source, for example, saccharides such as glucose, fructose, sucrose, starch saccharified solution containing these saccharides, sugar cane molasses, sugar beet molasses, etc. can be used. However, when microorganisms belonging to the genus Trichosporonides are used, the use of glucose is preferred.
[0016]
As the nitrogen source, inorganic nitrogen compounds or organic nitrogen compounds that can be used by bacterial cells are used, for example, yeast extract, peptone, corn steep liquor, ammonia, ammonium salt, urea, various amino acids, etc. It is not limited to.
[0017]
As the inorganic salts, for example, inorganic salts such as phosphoric acid, magnesium, potassium, calcium, iron and the like are used, but are not particularly limited thereto. In addition, components that assist the growth of microorganisms such as vitamins and nucleotides are added as necessary. At the time of continuous culture, these nutrient components are mixed with the carbon source or supplied to the culture tank on a separate line from the carbon source.
[0018]
Furthermore, when culture | cultivating on aeration stirring conditions, it is preferable to add an antifoamer, a pH adjuster, and a buffer solution. As the antifoaming agent, an inorganic or organic defoaming agent is used, and examples thereof include polyvinyl alcohol, sorbitan fatty acid ester, silicon compounds, etc., and pH adjusting agents include sodium hydroxide, potassium hydroxide, sulfuric acid. Hydrochloric acid, nitric acid, and the like, and examples of the buffer include, but are not limited to, sodium lactate, various phosphates, and the like.
[0019]
In the present invention, culturing is started in a medium containing the necessary nutrients listed above, and the introduction of a new medium is started when the carbon source concentration in the culture solution reaches a preset carbon concentration. The carbon source concentration set for charging the new medium varies depending on the microorganism to be used, but is usually in the range of 5 to 200 g / L, and in the case of using a microorganism belonging to the genus Trichosporonides, 5 to 100 g / L. It is preferable to set in the range. Moreover, although the carbon source concentration in the culture solution at the time of continuous culture varies depending on the microorganism to be used, it is usually maintained in the range of 1 to 100 g / L, and 5 to 50 g / in the case of using a microorganism belonging to the genus Trichosporonides. It is preferable to maintain in the range of L. The new medium is put into the culture tank using a pump or a pressure difference.
[0020]
The carbon source concentration in the culture tank is an indicator of the activity of the producing bacteria. That is, when the activity of the producing bacteria or erythritol productivity is lowered, the carbon source concentration in the culture tank is increased and the erythritol concentration is decreased. Here, if the carbon source concentration is controlled to be constant, the carbon source input rate is slowed down, so that the residence time is extended, and the decrease in the erythritol concentration in the culture tank can be suppressed. The sugar composition can be made almost constant. Therefore, it becomes possible to carry out the operating conditions of the purification process constantly. In addition, if the carbon source used can be separated from erythritol during the purification process, the carbon source concentration should be set to a higher concentration because the rate of erythritol production increases, and if it is difficult to separate, the carbon source concentration should be set as low as possible. To do.
[0021]
For measuring the carbon source concentration in the culture tank, for example, a certain amount is extracted from the culture tank by an autosampler or the like, and is supplied to an analyzer such as high performance liquid chromatography or an enzyme sensor to calculate the carbon source concentration. In addition, the control of the carbon source concentration transmits the calculated value of the carbon source concentration to a computer, and after the processing by the computer, the pump speed or the adjustment valve is automatically adjusted, and the supply rate of the carbon source. And by adjusting the culture medium withdrawal rate.
[0022]
The amount of the culture solution in the culture tank needs to be kept constant in order to stably maintain the culture conditions. The amount of the culture solution is measured by a level gauge installed in a normal culture tank, for example, a differential pressure / pressure type level gauge, an ultrasonic level gauge, an electronic balance, or the like. In addition, the control of the culture medium volume is transmitted to a computer, and after the processing by the computer, the pump speed or the adjustment valve is automatically adjusted to control the culture medium extraction speed. It is implemented by adjusting. The control of the carbon source concentration in the culture tank and the control of the amount of the culture solution are preferably adjusted simultaneously using the same computer, and a series of flow from the measurement to the adjustment is automatically performed. The computer is not limited to an independent computer, and can be incorporated into one or more types selected from an analyzer, a meter, and a flow rate controller.
[0023]
The nitrogen source to be input is preferably input by a route different from that of the carbon source, but can be mixed with the carbon source and input as long as it does not react with the carbon source. When the carbon source and nitrogen source are input by different routes, the carbon source input amount of the new medium that fluctuates in conjunction with the concentration of the carbon source in the culture tank is maintained in order to maintain the input ratio of the carbon source and the nitrogen source. In addition, it is necessary to change the input amount of the nitrogen source at any time. The input rate of the nitrogen source is adjusted by a pump speed or a control valve so that the ratio (C / N ratio) to the carbon source becomes constant via a computer. The C / N ratio is set to a constant value in the range of 40 to 400, preferably 80 to 250. Since the C / N ratio to be set varies depending on the production bacteria to be used, a relationship with the productivity of erythritol may be obtained in advance through preliminary experiments. Which C / N ratio is to be set is determined by cost estimation at a place where erythritol is actually produced by the method of the present invention.
[0024]
A method of collecting erythritol produced in the culture solution may be performed according to a known method (Japanese Patent Publication No. 7-34748). For example, after removing microbial cells from the culture solution by centrifugation or filtration, the clarified solution is desalted and decolorized with an ion exchange resin and activated carbon to crystallize erythritol, and can be obtained after drying.
[0025]
In other words, the apparatus of the present invention includes (1) an apparatus for measuring the amount of the culture solution in the culture tank, (2) an apparatus for measuring the concentration of the carbon source in the culture solution in the culture tank, (3) a computer, and (4) the rate of charging the medium. And an apparatus for controlling the extraction speed of the culture solution so that each data measured by the apparatus (1) and the apparatus (2) is automatically input to the computer (3). Based on the input data, (3) the apparatus is connected to transmit the medium input speed and the culture medium extraction speed set by the computer to the apparatus (4).
[0026]
【Example】
EXAMPLES Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. The apparatus used in each example is shown in FIG. In the apparatus shown in FIG. 2, an electronic balance is used as a measuring instrument for measuring the weight of a carbon source, a nitrogen source, and a culture solution in a culture tank, a pump is used as a flow control device, and an enzyme sensor is used as a carbon source concentration measuring device. It is a thing.
[0027]
Example 1
Place 50 mL of medium containing 30% glucose (W / V) and 1% yeast extract into a 500 mL Erlenmeyer flask, plug it in a cotton cap, sterilize at 120 ° C. for 20 minutes, and then use Trichosporonoides megatiliensis from the slant medium by a conventional method. SN-G42 (FERM BP-1430) was inoculated. This was cultured with shaking at a temperature of 35 ° C. for 3 days (the obtained seed culture solution is hereinafter referred to as “seed culture solution 1”). Place 1.5 L of medium containing 30% glucose (W / V) and 3.7% corn steep liquor in a 3 L fermenter, sterilize at 120 ° C. for 20 minutes, and then inoculate the above seed culture solution 1 and leave at 35 ° C. for 2 days. The culture was performed with aeration and agitation (the obtained seed culture solution was hereinafter referred to as “seed culture solution 2”). Next, 1.5 L of the main culture medium containing 40% glucose and 0.8% corn steep liquor is inoculated with the seed culture solution 2 and cultured at an aeration rate of 0.5 vvm, a stirring speed of 500 rpm, and a pressure of 0.5 kg / cm 2 . did. After the start of culture, supply of a new medium was started from the time when the glucose concentration reached 20 g / L, and continuous culture was started. The supply medium during continuous culture was glucose 40% and the nitrogen source amount was 167 in C / N ratio. The operating conditions were the same as in the main culture, and were set so that the glucose concentration in the culture tank was maintained at 10 g / L. As a result, when the erythritol concentration in the obtained culture broth in the continuous section was calculated based on the measured value of high performance liquid chromatography, the erythritol yield was 55% and the production rate was 2.2 g / L / hr. .
As a result, by controlling the glucose concentration in the culture tank with the glucose sensor, the glucose concentration can be maintained at 10 g / L fully automatically, and the average glucose input rate during 550 hours of continuous culture is 4 g / L. / Hr.
[0028]
Example 2
Seed culture and main culture were performed in the same manner as in Example 1, and continuous culture was started when glucose reached 20 g / L. The amount of nitrogen source in the feed medium during continuous culture was 93 in terms of C / N ratio, and other conditions were set in the same manner as in Example 1. As a result of calculating the erythritol concentration of the culture broth obtained during the continuous culture based on the measured value of the high performance liquid chromatography, the erythritol yield was 47% and the production rate was 3.6 g / L / hr.
The average glucose input rate was 7.8 g / L / hr.
[0029]
【Effect of the invention】
In the present invention, operation control during culture is easy, and erythritol can be produced industrially efficiently.
[0030]
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between C / N ratio, erythritol yield and production rate.
FIG. 2 is a diagram showing an example of an apparatus according to the present invention.
FIG. 3 is a view showing an apparatus used in Examples 1 and 2. FIG.
4 is a diagram showing the course of culture in Example 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Culture tank 2 Culture solution 3 Extraction culture solution 4 Carbon source 5 Nitrogen source 6 Carbon source concentration measuring device 7 Computer 8 Stirrer 9 Weighing device 10 Flow control device 11 Electronic balance 12 Pump 13 Enzyme sensor

Claims (5)

炭素源及び窒素源を含有する培地を連続的に培養槽に添加する微生物の連続培養によるエリスリトールの製造方法において、(1)培養槽内の培養液量及び培養液の炭素源濃度を測定し、(2)測定された培養液量及び炭素源濃度の測定値に基づき培養槽に投入される新規培地の投入速度及び培養槽から抜き出される培養液の抜き出し速度を算出し、(3)算出された新規培地の投入速度及び培養液の抜き出し速度に基づき新規培地の投入量及び培養液の抜き出し量を制御することにより、培養槽内の培養液量及び培養液中の炭素源濃度を一定値に保ち、かつ、(4)新規培地中の、炭素源中の炭素と窒素源中の窒素の比(C/N比)を一定値に設定すること、を特徴とする連続培養によるエリスリトールの製造方法。In the method for producing erythritol by continuous culture of microorganisms, wherein a medium containing a carbon source and a nitrogen source is continuously added to the culture tank, (1) measuring the amount of the culture solution in the culture tank and the concentration of the carbon source in the culture solution; (2) Based on the measured amount of the culture solution and the measured value of the carbon source concentration, calculate the input rate of the new medium introduced into the culture vessel and the extraction rate of the culture solution extracted from the culture vessel, and (3) calculated By controlling the amount of new medium input and the amount of culture medium extracted based on the rate of addition of the new medium and the rate of extraction of the culture medium, the amount of the culture medium in the culture tank and the concentration of the carbon source in the culture medium are kept constant. coercive Chi, and (4) in fresh medium, erythritol by continuous culture by setting the ratio of nitrogen in the carbon and nitrogen sources in the carbon source (C / N ratio) at a constant value, and wherein production Method. 培養液中の炭素源濃度が1〜100g/Lであることを特徴とする請求項1に記載の連続培養によるエリスリトールの製造方法。 The method for producing erythritol by continuous culture according to claim 1, wherein the carbon source concentration in the culture solution is 1 to 100 g / L. 新規培地中の窒素源量が、炭素源中の炭素と窒素源中の窒素比(C/N比)で40〜400であることを特徴とする請求項1又は請求項2記載の連続培養によるエリスリトールの製造方法。Nitrogen source content in a new medium, continuous according to claim 1 or claim 2, characterized in that a 40 to 400 in the ratio of nitrogen in the carbon and nitrogen sources in the carbon source (C / N ratio) A method for producing erythritol by culturing. 微生物がオーレオバシディウム属、トリコスポロノイデス属、モニリエラ属、イエロビア属、ウスチラゴ属、フィロバヂウム属、トリゴノプシス属、カンジダ属、トルロプシス属、ハンゼヌラ属、ピヒア属、デバリオミセス属、ハンゼニアスポラ属、サッカロミセス属、クロエケラ属、クリュベロミセズ属、トルラスポラ属、アスペルギルス属、ユーペニシリウム属、モナスカス属、ペニシリウム属、ベルチシリウム属、チゴピヒア属、ヤマダジマ属、ロドトルラ属に属する微生物であることを特徴とする請求項1〜請求項3の何れか一項に記載の製造方法。Microorganisms are Aureobasidium, Trichosporonides, Moniliella, Yellowia, Ustilago, Philobadium, Trigonopsis, Candida, Tolropsis, Hansenula, Pichia, Devariomyces, Hanzenia spora, Saccharomyces Claims 1 to claim characterized in that the microorganism belongs to the genus, Chloequera, Cluveromyces, Torlaspola, Aspergillus, Eupenicillium, Monascus, Penicillium, Verticillium, Tigopihia, Yamadajima, Rhodotorra Item 4. The manufacturing method according to any one of Items 3 to 3. (1)培養槽内の培養液量測定装置、(2)培養槽内の培養液の炭素源濃度測定装置、(3)コンピューター及び(4)培地の投入速度並びに培養液の抜き出し速度の制御装置から構成される装置であり、(1)の装置及び(2)の装置で測定された各データが、(3)のコンピューターに自動的に入力されるように接続してあり、入力された当該データに基づき(3)コンピュータが設定した培地の投入速度及び培養液の抜き出し速度を(4)の装置に伝送するように接続してあり、(4)の装置が伝送された当該速度に基づき培地の投入量及び培養液の抜き出し量を制御することを特徴とする請求項1〜請求項4の何れか一項に記載のエリスリトールの製造方法を実施するための装置。(1) Apparatus for measuring the amount of culture solution in the culture tank, (2) Apparatus for measuring the concentration of carbon source in the culture medium in the culture tank, (3) Computer and (4) Control device for the rate of medium input and culture medium extraction Connected to the computer of (3) so that each data measured by the device of (1) and the device of (2) is automatically input to the computer. Based on the data, (3) the medium input speed and the culture medium extraction speed set by the computer are connected so as to be transmitted to the apparatus of (4), and the medium of (4) is based on the transmitted speed. The apparatus for implementing the manufacturing method of erythritol as described in any one of Claims 1-4 characterized by controlling the input amount and the extraction amount of a culture solution.
JP2001131893A 2001-04-27 2001-04-27 Method for producing erythritol by continuous culture Expired - Lifetime JP5098122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001131893A JP5098122B2 (en) 2001-04-27 2001-04-27 Method for producing erythritol by continuous culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001131893A JP5098122B2 (en) 2001-04-27 2001-04-27 Method for producing erythritol by continuous culture

Publications (2)

Publication Number Publication Date
JP2002320498A JP2002320498A (en) 2002-11-05
JP5098122B2 true JP5098122B2 (en) 2012-12-12

Family

ID=18979999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001131893A Expired - Lifetime JP5098122B2 (en) 2001-04-27 2001-04-27 Method for producing erythritol by continuous culture

Country Status (1)

Country Link
JP (1) JP5098122B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007005299A1 (en) * 2005-06-30 2007-01-11 Cargill, Incorporated A process for producing erythritol
CN109504733A (en) * 2018-12-18 2019-03-22 浙江华康药业股份有限公司 A kind of preparation method of antierythrite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734749B2 (en) * 1988-02-03 1995-04-19 日本碍子株式会社 Method for producing erythritol
JP2932791B2 (en) * 1990-11-30 1999-08-09 味の素株式会社 Method and apparatus for controlling carbon source concentration in microbial aerobic culture
JPH05137585A (en) * 1991-11-21 1993-06-01 Mitsubishi Kasei Corp Method for continuously culturing erythritol
FR2780414B1 (en) * 1998-06-24 2001-06-08 Roquette Freres PROCESS FOR PRODUCING ERYTHRITOL BY REPEATED DISCONTINUOUS FEED FERMENTATION

Also Published As

Publication number Publication date
JP2002320498A (en) 2002-11-05

Similar Documents

Publication Publication Date Title
Herrero End-product inhibition in anaerobic fermentations
US5912113A (en) Method and apparatus for controlling carbon source concentration in aerobic cultivation of a microorganism
US4316956A (en) Fermentation process
Anastassiadis et al. Gluconic acid production
JP5337773B2 (en) Production of lactic acid from pentose-containing substrates
US4444882A (en) Process and apparatus for controlling cultivation of microorganisms
US4935360A (en) Process for the microbial anaerobic production of acetic acid
US4808526A (en) Continuous process for ethanol production by bacterial fermentation
US7479381B1 (en) Production of itaconic acid by Pseudozyma antarctica
Silveira et al. Production of glucose–fructose oxidoreductase and ethanol by Zymomonas mobilis ATCC 29191 in medium containing corn steep liquor as a source of vitamins
US4605620A (en) Process for fermenting carbohydrate- and phosphate-containing liquid media
JP5098122B2 (en) Method for producing erythritol by continuous culture
CN102021214A (en) Oxygen consumption rate-based vitamin B12 fermentation production control process
US4816399A (en) Continuous process for ethanol production by bacterial fermentation
JP3958089B2 (en) Continuous culture of anaerobic bacteria
Anastassiadis et al. Process optimization of continuous gluconic acid fermentation by isolated yeast‐like strains of Aureobasidium pullulans
EP0199499B1 (en) Continuous process for ethanol production by bacterial fermentation
CN109593796B (en) Fermentation process for increasing 2-keto-D-gluconic acid production rate of strains
JPH0630592B2 (en) Method for producing and collecting a polyol mixture on an industrial scale by fermentation of sugars
JPH05137585A (en) Method for continuously culturing erythritol
Huth et al. The proton extrusion of growing yeast cultures as an on‐line parameter in fermentation processes: Ammonia assimilation and proton extrusion are correlated by an 1: 1 stoichiometry in nitrogen‐limited fed‐batch fermentations
US9096874B2 (en) Method for producing lactic acid under pressure that exceeds normal atmospheric pressure
JP2001069999A (en) Production of erythritol
US4808527A (en) Continuous process for ethanol production by bacterial fermentation
Giridhar et al. Computer coupled substrate feeding strategies for efficient conversion of D-sorbitol to L-sorbose in fed-batch culture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term