JP5097712B2 - High-strength thin steel sheet having excellent plating characteristics and elongation characteristics - Google Patents

High-strength thin steel sheet having excellent plating characteristics and elongation characteristics Download PDF

Info

Publication number
JP5097712B2
JP5097712B2 JP2008544248A JP2008544248A JP5097712B2 JP 5097712 B2 JP5097712 B2 JP 5097712B2 JP 2008544248 A JP2008544248 A JP 2008544248A JP 2008544248 A JP2008544248 A JP 2008544248A JP 5097712 B2 JP5097712 B2 JP 5097712B2
Authority
JP
Japan
Prior art keywords
less
steel
strength
steel sheet
precipitates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008544248A
Other languages
Japanese (ja)
Other versions
JP2009518540A (en
Inventor
ハン,サン−ホ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2009518540A publication Critical patent/JP2009518540A/en
Application granted granted Critical
Publication of JP5097712B2 publication Critical patent/JP5097712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車内板用に主に用いられている薄鋼板に関するものである。より詳細には440MPa以上の引張強度を確保し、優れたメッキ特性及び伸び特性を有する深加工用薄鋼板及びその製造方法に関するものである。   The present invention relates to a thin steel plate mainly used for an automobile inner plate. More specifically, the present invention relates to a deep-working thin steel sheet having a tensile strength of 440 MPa or more and having excellent plating characteristics and elongation characteristics, and a method for producing the same.

最近、自動車内板用の鋼板に主に用いられる深加工用高強度鋼板は優れた成形性のため、その適用用途が急激に増加している。このような深加工用高強度鋼板は高い強度のみではなく、伸び特性が非常に優れて加工時成形不良の発生可能性が著しく低いためである。   Recently, high-strength steel plates for deep processing, which are mainly used for steel plates for automobile inner plates, have rapidly increased their applications because of their excellent formability. This is because such a deep-working high-strength steel sheet not only has high strength but also has excellent elongation characteristics and the possibility of forming defects during processing is extremely low.

このような特性は、最近、自動車業界における顧客の要求及び嗜好の変化に積極的に対応するため、より高い強度及び優れた成形性を有する鋼板を要求していることと密接に関わっている。しかし、自動車用鋼板の高強度化は成形性の悪化を齎すため、強度及び成形性を同時に満たすことは非常に困難で、より高次元の製造技術が必要である。   Such properties are closely related to the recent demand for steel sheets with higher strength and superior formability to actively respond to changing customer demands and preferences in the automotive industry. However, increasing the strength of steel sheets for automobiles leads to deterioration of formability, so it is very difficult to satisfy both strength and formability at the same time, and higher-dimensional manufacturing techniques are required.

一方、自動車用鋼板は環境的な側面で鋼板表面にメッキを行い表面がきれいな鋼板が要求されている。しかし、鋼板の高強度化のため添加される不純物元素により表面がきれいな鋼板表面を確保することが困難であるということは既によく知られている。   On the other hand, steel plates for automobiles are required to have a clean surface by plating the steel plate surface from an environmental aspect. However, it is already well known that it is difficult to ensure a clean steel plate surface due to impurity elements added for increasing the strength of the steel plate.

一般的に、鋼板の強度及び成形性を向上させるためには、鋼中の不純物を最小化した高純度鋼で強度向上元素(Mn、P、Si等の固溶強化元素)及び加工性向上元素(Ti、Nb等の炭窒化物形成元素)を添加することにより製造することが普通である。しかし、鉄鋼材料の特性上、強度と成形性を同時に確保することが簡単でない上、強度向上のために添加する強度向上元素(Mn、Si等)は焼鈍過程でMn、Si系酸化物がメッキ表面に溶出してメッキ鋼板の表面特性の低下を齎すため、表面がきれいなメッキ鋼板を製造することに多くの困難があった。結局、強度向上のため添加される合金元素は加工性及びメッキ特性を阻害する要素として作用することが普通である。   Generally, in order to improve the strength and formability of a steel sheet, it is a high-purity steel in which impurities in the steel are minimized and is a strength improving element (solid solution strengthening element such as Mn, P, Si, etc.) and a workability improving element. Usually, it is produced by adding (carbonitride-forming elements such as Ti and Nb). However, due to the characteristics of steel materials, it is not easy to ensure strength and formability at the same time, and strength-enhancing elements (Mn, Si, etc.) added to improve strength are plated with Mn and Si-based oxides during the annealing process. There are many difficulties in producing a plated steel sheet with a clean surface because it elutes on the surface to reduce the surface properties of the plated steel sheet. After all, the alloy element added for improving the strength usually acts as an element that hinders workability and plating characteristics.

通常深加工用薄鋼板を製造するためには良好な成形性確保のため製鋼工程でC、Nのような侵入型の固溶元素の量を50ppm以下に低め、別途で炭窒化物形成元素であるTi、Nb等を単独または複合添加した極低炭素IF(Interstitial Free)鋼を用いて製造することが普通である。   Usually, in order to produce a thin steel sheet for deep working, the amount of interstitial solid solution elements such as C and N is reduced to 50 ppm or less in the steel making process in order to ensure good formability, and it is a carbonitride forming element separately. It is common to use an extremely low carbon IF (Interstitial Free) steel to which Ti, Nb or the like is added alone or in combination.

上記のようにメッキ特性に優れた高強度及び高加工用鋼板を製造するために日本の高炉社を中心に開発された深加工用薄鋼板の製造方法に対する従来技術がある。上記IF鋼を用いた深加工用薄鋼板の製造方法に対する親特許としては現日本NSCの前身である八幡で世界最初に出願したTi添加鋼を始め米国Armco社のNb添加鋼、NSCの改良Ti添加鋼、KSCのTi−Nb複合添加鋼等がある。上記親特許の他にも成分、組成方法及び製造条件において、その限定条件が多少相違な数多くの関連特許が全世界的に出願されていることが既によく知られている。   As described above, there is a conventional technique for a manufacturing method of a deep-working thin steel sheet developed mainly by a Japanese blast furnace company in order to manufacture a steel sheet for high strength and high workability having excellent plating characteristics. The parent patent for the method of manufacturing the thin steel sheet for deep processing using the IF steel mentioned above is the world's first Ti-added steel in Yawata, the predecessor of the current NSC, including the Nb-added steel of Armco, USA, and the improved Ti addition of NSC Steel, KSC Ti-Nb composite added steel, etc. In addition to the above parent patents, it is well known that many related patents have been filed worldwide, with some limitations on the components, composition method and production conditions.

また、これらの共通点は、極低炭素鋼に加工性確保のためTiまたはNb等の炭窒化物形成元素を0.01〜0.07%添加し製造することが一般的である。しかし、この場合、結晶粒界を強化させる役割をする侵入型の固溶元素が鋼中に存在しないため、2次加工脆性が発生する上、加工特性も大きく改善されないという問題点がある。   In addition, these common points are generally produced by adding 0.01 to 0.07% of a carbonitride-forming element such as Ti or Nb to ultra-low carbon steel to ensure workability. However, in this case, since there is no interstitial solid solution element that strengthens the grain boundaries in the steel, there is a problem that secondary work brittleness occurs and the work characteristics are not greatly improved.

一方、強度向上のため添加する固溶強化元素(P、Mn、Si等)により粒界強度はさらに弱くなるが、これを改善するための従来技術には、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5がある。上記従来技術は約5〜10ppm程度のBを添加して上記の問題点を改善している。しかし、Mn、Si及びBの添加により焼鈍時鋼板表面にMn、Si系酸化物が溶出されることによりメッキ鋼板の特性を著しく低下させ表面がきれいなメッキ製品を製造することに多くの困難がある。   On the other hand, the grain boundary strength is further weakened by the solid solution strengthening elements (P, Mn, Si, etc.) added to improve the strength, but conventional techniques for improving this include Patent Document 1, Patent Document 2, Patent. There are Literature 3, Patent Literature 4, and Patent Literature 5. The above prior art improves the above problems by adding about 5 to 10 ppm of B. However, Mn, Si and B are added to the surface of the steel sheet during annealing, so that Mn and Si-based oxides are eluted, so that the characteristics of the plated steel sheet are remarkably deteriorated and it is difficult to produce a plated product with a clean surface. .

日本公開特許公報平5−009587号Japanese Published Patent Publication No. 5-009587 日本公開特許公報平5−279798号Japanese Published Patent Publication No. 5-279798 日本公開特許公報平5−214487号Japanese Published Patent Publication No. 5-214487 日本公開特許公報平6−057373号Japanese Published Patent Publication No. Hei 6-057373 日本公開特許公報平7−179946号Japanese Published Patent Publication No. Hei 7-179946

本発明は、上記の従来の問題点を改善するためのもので、合金元素を適切に制御することにより、引張強度440MPa以上の高強度を有しながらメッキ特性及び伸び特性に優れた深加工用高強度薄鋼板及び製造方法を提供することにその目的がある。   The present invention is for improving the above-described conventional problems. By appropriately controlling the alloy elements, the present invention has a high strength for deep machining that has excellent strength in plating and elongation while having high strength of 440 MPa or more. The purpose is to provide a thin steel sheet and a manufacturing method.

上記目的を達成するための本発明は、質量%で、C:0.01%以下、Si:0.3%以下、Mn:0.03〜0.2%、P:0.15%以下、S:0.003〜0.015%、Sol.Al:0.1〜0.4%、N:0.01%以下、Ti:0.003〜0.01%、Nb:0.003〜0.04%、B:0.0002〜0.002%、Mo:0.05%以下、Cu:0.005〜0.2%、Cr:0.05〜0.5%、Sb:0.02〜0.1%、残りのFe及びその他不可避な不純物からなり、そしてMnS、CuS、(Mn,Cu)S析出物を含み、上記析出物のうち20nm以下の大きさを有するMnS、CuS、(Mn,Cu)S析出物を75%以上含むメッキ特性及び伸び特性に優れた高強度薄鋼板に関するものである。 The present invention for achieving the above object is, in mass% , C: 0.01% or less, Si: 0.3% or less, Mn: 0.03-0.2%, P: 0.15% or less, S: 0.003 to 0.015%, Sol. Al: 0.1-0.4%, N: 0.01% or less, Ti: 0.003-0.01%, Nb: 0.003-0.04%, B: 0.0002-0.002 %, Mo: 0.05% or less, Cu: 0.005 to 0.2%, Cr: 0.05 to 0.5%, Sb: 0.02 to 0.1%, remaining Fe and other inevitable Plating comprising 75% or more of MnS, CuS, (Mn, Cu) S precipitates comprising impurities and containing MnS, CuS, (Mn, Cu) S precipitates, and having a size of 20 nm or less among the above precipitates The present invention relates to a high-strength thin steel sheet having excellent characteristics and elongation characteristics.

また、本発明は質量%で、C:0.01%以下、Si:0.3%以下、Mn:0.03〜0.2%、P:0.15%以下、S:0.003〜0.015%、Sol.Al:0.1〜0.4%、N:0.01%以下、Ti:0.003〜
0.01%、Nb:0.003〜0.04%、B:0.0002〜0.002%、Mo:0.05%以下、Cu:0.005〜0.2%、Cr:0.05〜0.5%、Sb:0.02〜0.1%、残りのFe及びその他不可避な不純物からなる鋼スラブを再加熱し、オーステナイト単相域である880℃以上で熱間仕上げ圧延を終了した後、700℃以下で巻取し、65%以下の圧下率で冷間圧延した後、780〜830℃の温度範囲で連続焼鈍するメッキ特性及び伸び特性に優れた高強度薄鋼板の製造方法に関するものである。
Moreover, this invention is the mass% , C: 0.01% or less, Si: 0.3% or less, Mn: 0.03-0.2%, P: 0.15% or less, S: 0.003- 0.015%, Sol. Al: 0.1-0.4%, N: 0.01% or less, Ti: 0.003-
0.01%, Nb: 0.003-0.04%, B: 0.0002-0.002%, Mo: 0.05% or less, Cu: 0.005-0.2%, Cr: 0.00. Re-heat steel slab consisting of 05-0.5%, Sb: 0.02-0.1%, remaining Fe and other inevitable impurities, and hot finish rolling at 880 ° C. or higher which is an austenite single phase region After completion, the steel sheet is wound at 700 ° C. or less, cold-rolled at a rolling reduction of 65% or less, and then continuously annealed in a temperature range of 780 to 830 ° C. It is about the method.

本発明によると、薄鋼板は引張強度440MPa以上の高強度及び優れた伸び特性を確保することができる。また、酸化物の表面溶出を抑え表面欠陥のないメッキ特性に優れた高強度薄鋼板を提供することができる効果がある。   According to the present invention, the thin steel plate can ensure high strength with a tensile strength of 440 MPa or more and excellent elongation characteristics. In addition, there is an effect that it is possible to provide a high-strength thin steel sheet that suppresses the surface elution of oxide and is excellent in plating characteristics without surface defects.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者は、Si、Mnの添加による表面欠陥の問題を解決するための方法を研究している中、Sbを適切に添加すると酸化物が鋼板表面に濃化され粗大化されることを抑えることができることを究明した。即ち、Sbを添加することにより酸化物が粒界に移動することを妨害しSi、Mnによる表面欠陥の発生可能性を著しく改善しSi及びMnを添加しても優れたメッキ特性を確保することができる。   While the present inventor is studying a method for solving the problem of surface defects due to the addition of Si and Mn, when Sb is appropriately added, the oxide is suppressed from being concentrated and coarsened on the steel sheet surface. I found out that I can do it. That is, adding Sb prevents the oxide from moving to the grain boundary, significantly improves the possibility of surface defects due to Si and Mn, and ensures excellent plating characteristics even when Si and Mn are added. Can do.

また、本発明はSol.Alを適切に制御することにより、比較的低い焼鈍温度でも深加工性を安定的に確保することができることに特徴がある。即ち、本発明でSol.Alは炭窒化物であるTi、Nb系析出物の形成挙動に影響を与え析出物の大きさを粗大化することにより{111}系列の集合組織を発達させ通常のIF鋼に比べTi、Nbを少量添加してもより良好な加工性を確保することができる。   The present invention also relates to Sol. It is characterized in that deep workability can be stably secured even at a relatively low annealing temperature by appropriately controlling Al. That is, Sol. Al affects the formation behavior of Ti and Nb-based precipitates, which are carbonitrides, and coarsens the size of the precipitates to develop a {111} series texture and Ti and Nb compared to normal IF steel. Even if a small amount is added, better processability can be secured.

従って、本発明は鋼板にSol.Alを適切に添加することにより深加工性を向上させ成形性に優れた鋼板を確保することができる。先ず、本発明の鋼成分の組成範囲を説明する。   Therefore, the present invention provides a steel plate with Sol. By appropriately adding Al, it is possible to improve the deep workability and secure a steel sheet having excellent formability. First, the composition range of the steel component of the present invention will be described.

C:0.01%以下が好ましい。上記Cは侵入型の固溶元素で、冷延及び焼鈍時鋼板の集合組織の形成過程で加工性に有利な{111}集合組織の形成を阻害する。また、上記Cを多量に含有するようになると炭窒化物の形成元素であるTi、Nbの添加量を高めなくてはならず、これにより経済的に不利であるため、上記Cの含量は0.01%以下に制限することが好ましい。   C: 0.01% or less is preferable. C is an interstitial solid solution element that inhibits the formation of {111} texture that is advantageous for workability in the process of forming the texture of the steel sheet during cold rolling and annealing. In addition, when a large amount of C is contained, the amount of Ti and Nb, which are carbonitride forming elements, must be increased, which is economically disadvantageous. Therefore, the C content is 0%. It is preferable to limit to 0.01% or less.

Si:0.3%以下が好ましい。上記Siは固溶強化元素で、強度向上の側面では有利であるが、焼鈍時表面にSi系酸化物が溶出しメッキ表面特性を劣化させるため、出来るだけ少なく添加することが好ましいが、本発明で目標とする強度を確保するために上記Siの含量は0.3%以下に制限することが好ましい。   Si: 0.3% or less is preferable. The Si is a solid solution strengthening element, which is advantageous in terms of strength improvement. However, since Si-based oxides are eluted on the surface during annealing to deteriorate the plating surface characteristics, it is preferable to add as little as possible. In order to secure the target strength, the Si content is preferably limited to 0.3% or less.

Mn:0.03〜0.2%が好ましい。上記Mnは鋼中の固溶SをMnSで析出し固溶Sによる赤熱脆性(Hot Shortness)を防ぐ元素として知られている。本発明ではMnとSの含量を有機的に制御し非常に微細なMnSが析出されることができるようにMnの含量を0.03〜0.2%に管理することにより強度及び面内異方性を大きく改善している。その含量が0.03%未満であると、上記の効果を確保することが困難である反面、0.2%を越えると粗大なMnS析出物が形成され耐時効性が劣悪になる可能性が高いため、上記Mnの含量は0.03〜0.2%に制限することが好ましい。   Mn: 0.03 to 0.2% is preferable. The Mn is known as an element that precipitates solute S in steel as MnS and prevents hot shortness due to the solute S. In the present invention, the Mn and S contents are controlled organically, and the Mn content is controlled to 0.03 to 0.2% so that very fine MnS can be precipitated. The direction has been greatly improved. If the content is less than 0.03%, it is difficult to ensure the above effects, whereas if it exceeds 0.2%, coarse MnS precipitates may be formed and the aging resistance may be deteriorated. Since it is high, the Mn content is preferably limited to 0.03 to 0.2%.

P:0.15%以下が好ましい。上記PはMnと共に強度上昇のために添加する代表的な固溶強化元素で、本発明鋼であるTi−Nb系成分系では強度上昇のみではなく、結晶粒の微細化及び粒界偏析等によりr値に有利な{111}集合組織が発達される。0.15%を超えると伸び率の急激な下落と共に脆性が大きく増加するため、上記Pの含量は0.15%に制限することが好ましい。   P: 0.15% or less is preferable. The above-mentioned P is a typical solid solution strengthening element added to increase the strength together with Mn. In the Ti-Nb-based component system which is the steel of the present invention, not only the increase in strength but also due to grain refinement and grain boundary segregation, etc. A {111} texture is developed that favors the r value. If it exceeds 0.15%, the brittleness greatly increases as the elongation decreases rapidly, so the P content is preferably limited to 0.15%.

S:0.003〜0.015%が好ましい。上記Sの含量が0.003%未満である場合、MnS、CuS、(Mn,Cu)S析出物量が少ない上、析出物が非常に粗大になり強度及び耐時効性を阻害する可能性が高い。一方、0.015%を越えると固溶Sの含量が多くなり延性及び成形性を大きく阻害し、赤熱脆性の恐れがあるため、上記Sの含量は0.003〜0.015%に制限することが好ましい。   S: 0.003 to 0.015% is preferable. If the S content is less than 0.003%, the amount of MnS, CuS, (Mn, Cu) S precipitates is small, and the precipitates are very coarse, which is likely to impair strength and aging resistance. . On the other hand, if it exceeds 0.015%, the content of solute S increases, which greatly impairs ductility and formability, and there is a risk of red heat embrittlement. Therefore, the S content is limited to 0.003 to 0.015%. It is preferable.

Sol.Al:0.1〜0.4%が好ましい。上記Sol.Alは鋼中の溶存酸素量を十分に低い状態で維持しながら比較的低い焼鈍温度でも深加工性を安定的に確保することができるようにする役割をする。即ち、本発明で上記Sol.Alは(Ti,Nb)C析出物の大きさを粗大化し、Pの再結晶の抑制作用を妨害する役割をすることにより再結晶を促進させる上、{111}系列の集合組織を発達させる。また、本発明で上記Sol.Alは炭窒化物であるTi、Nb系析出物の形成挙動に影響を与え析出物の大きさを粗大化することにより通常のIF鋼に比べTi、Nbを少量添加してもより良好な加工性を確保することができる。その含量が0.1%未満である場合、上記効果を確保することができない反面、0.4%を超える場合、費用上昇及び連鋳の操業性を低下させるため、上記Sol.Alの含量は0.1〜0.4%に制限することが好ましい。   Sol. Al: 0.1 to 0.4% is preferable. Sol. Al plays a role of ensuring stable deep workability even at a relatively low annealing temperature while maintaining the amount of dissolved oxygen in the steel sufficiently low. That is, the Sol. Al coarsens the size of (Ti, Nb) C precipitates and promotes recrystallization by acting to inhibit the recrystallization suppression effect of P, and develops a {111} series texture. In the present invention, the Sol. Al affects the formation behavior of Ti and Nb-based precipitates, which are carbonitrides, and roughens the size of the precipitates so that better processing can be achieved even if a small amount of Ti and Nb is added compared to normal IF steel. Sex can be secured. When the content is less than 0.1%, the above effect cannot be ensured. On the other hand, when the content exceeds 0.4%, the cost increases and the operability of continuous casting decreases. The content of Al is preferably limited to 0.1 to 0.4%.

N:0.01%以下が好ましい。上記Nは固溶状態で存在する場合、加工性を大きく低下させ、0.01%を超えると析出物で固定するためのTi及びNb添加量を増加させなければならないため、その含量を0.01%以下に制限することが好ましい。   N: 0.01% or less is preferable. When the N is present in a solid solution state, the workability is greatly reduced, and if it exceeds 0.01%, the addition amount of Ti and Nb for fixing with precipitates must be increased. It is preferable to limit it to 01% or less.

Ti:0.003〜0.01%が好ましい。上記Tiの含量が0.003%未満である場合、AlNで析出されず残存している窒素を効果的に析出させることができないため、加工時時効現象が発生し、加工表面が劣位する可能性高い。一方、0.01%を超える場合、メッキ時Ti系酸化物が表層に溶出されメッキ表面特性を劣位させるため、上記Tiの含量は0.003〜0.01%に制限することが好ましい。   Ti: 0.003 to 0.01% is preferable. If the Ti content is less than 0.003%, the remaining nitrogen that is not precipitated by AlN cannot be effectively precipitated, so that an aging phenomenon may occur and the processing surface may be inferior. high. On the other hand, when it exceeds 0.01%, Ti-based oxide is eluted in the surface layer during plating and deteriorates the plating surface characteristics. Therefore, the Ti content is preferably limited to 0.003 to 0.01%.

Nb:0.003〜0.04%が好ましい。上記Nbの含量が0.003%未満である場合、鋼中に存在する固溶元素(Mn、Si等)を効果的に制御することが出来ず加工性が劣位されることができる反面、0.04%を超える場合、製造原価の上昇のみではなく未析出の固溶Nbにより加工性が返って劣位されることができる。従って、上記Nbの含量は0.003〜0.04%に制限することが好ましい。   Nb: 0.003 to 0.04% is preferable. If the Nb content is less than 0.003%, the solid solution elements (Mn, Si, etc.) present in the steel cannot be effectively controlled and the workability can be deteriorated. When it exceeds 0.04%, not only an increase in manufacturing cost but also unprocessed solid solution Nb can return workability and be inferior. Therefore, the Nb content is preferably limited to 0.003 to 0.04%.

B:0.0002〜0.002%が好ましい。上記Bは粒界強化元素で、点溶接部の疲労特性を向上させ、P粒界脆性を防ぐことができる有用な元素である。その含量が0.0002%未満である場合、上記の効果を確保することが困難である反面、0.002%を超えると加工性が急激に低下しメッキ鋼板の表面特性が劣化するため、上記Bの含量は0.0002〜0.002%に制限することが好ましい。   B: 0.0002 to 0.002% is preferable. B is a grain boundary strengthening element, and is a useful element that can improve fatigue characteristics of spot welds and prevent P grain boundary brittleness. When the content is less than 0.0002%, it is difficult to ensure the above effect, but when it exceeds 0.002%, the workability is drastically reduced and the surface properties of the plated steel sheet are deteriorated. The B content is preferably limited to 0.0002 to 0.002%.

Mo:0.05%以下が好ましい。上記Moは、耐2次加工脆性及びメッキ性を改善する元素で、その含量が0.05%を超える場合、上記の効果が大きく減少する上、経済的にも不利であるため、上記Moの含量は0.05%以下に制限することが好ましい。   Mo: 0.05% or less is preferable. The Mo is an element that improves the secondary work brittleness resistance and plating properties, and when the content exceeds 0.05%, the above effect is greatly reduced and economically disadvantageous. The content is preferably limited to 0.05% or less.

Cu:0.005〜0.2%が好ましい。上記Cuは鋼板の強度を増加させ、その含量が0.005%未満である場合、本発明で目標とする強度を確保することが困難である反面、0.2%を超える場合、返ってCu系析出物が粗大化され強度向上の側面でそれ程有利ではなく、製造原価も増加する。従って、上記Cuの含量は0.005〜0.2%に制限することが好ましい。   Cu: 0.005 to 0.2% is preferable. The Cu increases the strength of the steel sheet. When the content is less than 0.005%, it is difficult to ensure the target strength in the present invention. On the other hand, when the content exceeds 0.2%, Cu is returned. The system precipitates are coarsened and are not so advantageous in terms of improving the strength, and the manufacturing cost increases. Therefore, the Cu content is preferably limited to 0.005 to 0.2%.

Cr:0.05〜0.5%が好ましい。上記Crは焼鈍時Cr系炭化物(CrC)を形成し鋼中に存在する固溶Cを析出させることにより伸び特性を向上させる要素として作用する。この含量が0.05%未満である場合、十分なCrCを析出することができず加工性が劣位する反面、0.5%を超えると経済的な側面で不利であるため、上記Crの含量は0.05〜0.5%に制限することが好ましい。   Cr: 0.05 to 0.5% is preferable. The Cr acts as an element for improving elongation properties by forming Cr-based carbide (CrC) during annealing and precipitating solute C present in the steel. If this content is less than 0.05%, sufficient CrC cannot be precipitated and the workability is inferior. On the other hand, if it exceeds 0.5%, it is disadvantageous in terms of economy. Is preferably limited to 0.05 to 0.5%.

Sb:0.02〜0.1%が好ましい。上記Sbは本発明で非常に重要な成分で、優れたメッキ特性を確保するために添加する必要な成分である。上記Sbは焼鈍時Si、Mn酸化物が鋼板表面に溶出されることを妨害することによりメッキ特性を向上させる。   Sb: 0.02 to 0.1% is preferable. The Sb is a very important component in the present invention, and is a necessary component to be added in order to ensure excellent plating characteristics. The Sb improves plating characteristics by preventing Si and Mn oxides from being eluted on the steel sheet surface during annealing.

即ち、熱間圧延後、上記Sbは主に結晶粒界に偏析し結晶粒界を通じMn、Si酸化物の移動通路を遮断し表面欠陥を低下させることにより優れたメッキ特性を確保する。その含量が0.02%未満である場合、Mn、Si酸化物の通路抑制効果が殆どない反面、0.1%を超える場合、過剰のSbが固溶状態に存在し鋼の伸び特性を阻害するため、上記Sbの含量は0.02〜0.1%に制限することが好ましい。   That is, after hot rolling, the Sb segregates mainly at the crystal grain boundary, blocks the movement path of Mn and Si oxides through the crystal grain boundary, and ensures excellent plating characteristics. When the content is less than 0.02%, there is almost no effect of suppressing the passage of Mn and Si oxides. On the other hand, when the content exceeds 0.1%, excessive Sb exists in a solid solution state and inhibits the elongation characteristics of steel. Therefore, the Sb content is preferably limited to 0.02 to 0.1%.

本発明の鋼板は、MnS、CuS、(Mn,Cu)S析出物を含み、上記析出物のうち20nm以下の大きさを有するMnS、CuS、(Mn,Cu)S析出物を75%以上含む。析出物の大きさが20nmを超える場合、強度確保に大きく寄与できず、析出物の量が75%未満である場合も本発明で目標とする強度を確保することができない。従って、20nm以下の大きさを有する上記析出物を75%以上に制限することが好ましい。   The steel sheet of the present invention contains MnS, CuS, (Mn, Cu) S precipitates, and contains 75% or more of MnS, CuS, (Mn, Cu) S precipitates having a size of 20 nm or less among the above precipitates. . When the size of the precipitate exceeds 20 nm, the strength cannot be greatly ensured, and even when the amount of the precipitate is less than 75%, the target strength in the present invention cannot be ensured. Therefore, it is preferable to limit the precipitate having a size of 20 nm or less to 75% or more.

上記のように組成される鋼にさらに上記Ti、Al及びNが5.2≦(Ti/3.42N)+(Al/1.92N)≦21.1の関係及び上記Nb、Cr及びCが1.2≦(Nb/7.75C)+(Cr/4.3C)≦12.1の関係を満たし、上記Mn、Cu及びSが6.7≦(Mn/1.7S)+(Cu/1.96S)≦14.6の関係を満たすことができる。   In the steel having the above composition, Ti, Al, and N further have a relationship of 5.2 ≦ (Ti / 3.42N) + (Al / 1.92N) ≦ 21.1 and the Nb, Cr, and C 1.2 ≦ (Nb / 7.75C) + (Cr / 4.3C) ≦ 12.1 is satisfied, and Mn, Cu and S are 6.7 ≦ (Mn / 1.7S) + (Cu / 1.96S) ≦ 14.6 can be satisfied.

即ち、本発明では、優れた耐時効性、絞り性、伸び率及びメッキ特性を確保するために、上記Ti、Nbの関係式を提示しているが、以下で本発明の関係式について説明する。   That is, in the present invention, the relational expressions of Ti and Nb are presented in order to ensure excellent aging resistance, drawability, elongation, and plating characteristics. The relational expressions of the present invention will be described below. .

上記Ti、Al及びNが5.2≦(Ti/3.42N)+(Al/1.92N)≦21.1の関係を満たすことが好ましい。   It is preferable that Ti, Al and N satisfy the relationship of 5.2 ≦ (Ti / 3.42N) + (Al / 1.92N) ≦ 21.1.

鋼中に添加されるNは、通常TiN及びAlNで析出され鋼の加工性を向上させる。従って、Ti及びAlの含量が十分でないと固溶Nによる時効現象が発生する上、絞り性が低下される可能性が高い。しかし、鋼中の固溶Tiが一定量以上に多い場合は、加工時ストレッチング性が落ちメッキ特性も低下される可能性が高い。即ち、上記の関係式が5.2未満である場合、時効現象が発生される可能性が高く絞り性の低下を齎す反面、21.1を超える場合ストレッチング性が落ちメッキ特性が低下するため、上記関係式は5.2〜21.1に制限することが好ましい。   N added to the steel is usually precipitated with TiN and AlN to improve the workability of the steel. Therefore, if the contents of Ti and Al are not sufficient, an aging phenomenon due to solute N occurs, and there is a high possibility that the squeezability is reduced. However, when the solid solution Ti in the steel is more than a certain amount, there is a high possibility that the stretchability during processing is lowered and the plating characteristics are also lowered. That is, when the above relational expression is less than 5.2, an aging phenomenon is likely to occur and the drawability is deteriorated. On the other hand, when it exceeds 21.1, the stretchability is lowered and the plating characteristics are deteriorated. The above relational expression is preferably limited to 5.2 to 21.1.

上記Nb、Cr及びCが1.2≦(Nb/7.75C)+(Cr/4.3C)≦12.1の関係を満たすことが好ましい。   It is preferable that the Nb, Cr, and C satisfy the relationship of 1.2 ≦ (Nb / 7.75C) + (Cr / 4.3C) ≦ 12.1.

上記関係式は深加工性及びストレッチング性を安定的に確保するための経験式で、その値が1.2未満である場合、鋼中のCの掃気(scavenging)が不完全で絞り性が低下する反面、12.1を超える場合、鋼中の固溶Nb及びCr含量が増加し製造原価の上昇のみではなくストレッチング性が大きく低下するため、上記関係式は1.2〜12.1に制限することが好ましい。   The above relational expression is an empirical formula for stably ensuring deep workability and stretchability. When the value is less than 1.2, the scavenging of C in the steel is incomplete and the squeezability is reduced. On the other hand, if it exceeds 12.1, the solid solution Nb and Cr contents in the steel increase, and not only the manufacturing cost increases but also the stretchability greatly decreases. It is preferable to limit.

また、本発明ではMnS、CuS、(Mn,Cu)S析出物の大きさを制御するために、上記Mn、Cu、Sの関係式を提示しているが、以下で本発明の関係式に対して説明する。   In the present invention, in order to control the size of MnS, CuS, (Mn, Cu) S precipitates, the above relational expression of Mn, Cu, S is presented. The explanation is as follows.

上記Mn、Cu及びSが6.7≦(Mn/1.7S)+(Cu/1.96S)≦14.6の関係を満たすことが好ましい。   It is preferable that the Mn, Cu and S satisfy the relationship of 6.7 ≦ (Mn / 1.7S) + (Cu / 1.96S) ≦ 14.6.

上記関係式を満たす本発明の鋼板は20nm以下の大きさを有するMnS、CuS、(Mn,Cu)S析出物を75%以上含有するようになり本発明で目標とする強度を確保することができる。上記関係式の値が6.7未満である場合、析出効果が殆どなく本発明で目標とする強度を確保することが困難である反面、14.6を超える場合、粗大な析出物が多量に形成され強度向上を阻害するため、上記関係式は6.7〜14.6に制限することが好ましい。   The steel sheet of the present invention that satisfies the above relational expression contains 75% or more of MnS, CuS, (Mn, Cu) S precipitates having a size of 20 nm or less, and ensures the target strength in the present invention. it can. When the value of the above relational expression is less than 6.7, there is almost no precipitation effect, and it is difficult to ensure the target strength in the present invention, whereas when it exceeds 14.6, a large amount of coarse precipitates are present. The above relational expression is preferably limited to 6.7 to 14.6 in order to form and inhibit strength improvement.

以下、上記のように組成される鋼を有する薄鋼板の製造方法に対して詳細に説明する。   Hereinafter, it demonstrates in detail with respect to the manufacturing method of the thin steel plate which has steel comprised as mentioned above.

先ず、上記のように組成される鋼スラブを再加熱した後、オーステナイト単相域である880℃以上で熱間仕上げ圧延を終了する。   First, after the steel slab having the above composition is reheated, the hot finish rolling is finished at 880 ° C. or more which is an austenite single phase region.

熱間仕上げ圧延温度が880℃未満である場合、オーステナイト単相域ではない2相域である可能性が高いため、上記熱間仕上げ圧延温度は880℃以上に制限することが好ましい。   When the hot finish rolling temperature is less than 880 ° C, the hot finish rolling temperature is preferably limited to 880 ° C or higher because there is a high possibility that the hot finish rolling temperature is a two-phase region that is not an austenite single-phase region.

以後、700℃以下で巻取し、65%以下の冷間圧下率で冷間圧延する。上記巻取温度が700℃を超える場合、析出物が非常に粗大化され強度向上に殆ど寄与しないため、上記巻取温度は700℃以下に制限することが好ましい。   Thereafter, the film is wound at 700 ° C. or lower and cold-rolled at a cold reduction rate of 65% or lower. When the coiling temperature exceeds 700 ° C., the precipitate is very coarse and contributes little to improving the strength. Therefore, the coiling temperature is preferably limited to 700 ° C. or less.

また、上記の圧下率で冷間圧延を行うと加工性の評価指数であるr値を増加させることができる反面、65%を超える場合、現場作業時ロール(Roll)の負荷が高くて作業トラブルがよく発生するため、上記冷間圧下率は65%以下に制限することが好ましい。   In addition, when cold rolling is performed at the above rolling reduction, the r value, which is an evaluation index of workability, can be increased. On the other hand, when it exceeds 65%, the work roll trouble (Roll) is high and work troubles occur. Therefore, the cold rolling reduction is preferably limited to 65% or less.

次いで、上記冷延鋼板を780〜830℃温度範囲で連続焼鈍する。上記焼鈍温度が780℃未満である場合、伸び特性が低下される可能性が高く、830℃を超える場合は高温焼鈍により操業上ストリップの通板性等の問題が発生する危険性が非常に高い上、Si、Mn酸化物の表面溶出の可能性が高くなりメッキ特性を劣位させるため、上記焼鈍温度は780〜830℃に制限することが好ましい。   Next, the cold-rolled steel sheet is continuously annealed in a temperature range of 780 to 830 ° C. When the annealing temperature is less than 780 ° C., the elongation characteristics are likely to be deteriorated. When the annealing temperature exceeds 830 ° C., there is a very high risk of problems such as strip-through properties in operation due to high temperature annealing. In addition, the annealing temperature is preferably limited to 780 to 830 ° C. in order to increase the possibility of surface elution of Si and Mn oxides and deteriorate the plating characteristics.

また、連続焼鈍した本発明の鋼を通常の方法で合金化処理することができる。   Moreover, the steel of the present invention that has been continuously annealed can be alloyed by a conventional method.

以下、実施例を通じ本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail through examples.

[実施例]
下記表1のように組成される鋼スラブを1200℃で再加熱しAr変態点以上である910℃で仕上げ熱間圧延した。次いで、下記表2のような製造条件で巻取後に冷間圧延し、下記表2の連続焼鈍温度で10℃/秒の速度で均熱温度まで加熱し40秒間維持した。
[Example]
A steel slab composed as shown in Table 1 below was reheated at 1200 ° C. and finish hot rolled at 910 ° C., which is higher than the Ar 3 transformation point. Next, after rolling under the production conditions shown in Table 2 below, cold rolling was performed, and the steel was heated to a soaking temperature at a rate of 10 ° C./second at the continuous annealing temperature shown in Table 2 below and maintained for 40 seconds.

得られた焼鈍板は、機械的特性を調べるため、ASTM規格(ASTM E−8 stan−dard)による標準試片で加工した。試片は引張試験機(INSTRON社、Model 6025)を利用して降伏強度、引張強度、伸び率、塑性異方性指数(r値)、面内異方性指数(△r値)を測定した。 The obtained annealed plate was processed with a standard specimen according to the ASTM standard (ASTM E-8 stan-dard) in order to examine the mechanical properties. Coupons tensile tester (INSTRON Corporation, Model 6025) yield strength by utilizing tensile strength, elongation, plastic anisotropy index (r m values), measured in-plane anisotropy index (△ r value) did.

ここで、r=(r+2r45+r90)/4、△r=(r−2r45+r90)/2である。耐2次加工脆性(DBTT)の評価は、加工比1.9の条件で成形したコップを横にして錘を落下させ延性−脆性遷移温度(DBTT、Ductile−Brittle Transition Temperature)を測定する方式で評価した。 Here, r m = (r 0 + 2r 45 + r 90 ) / 4, Δr = (r 0 -2r 45 + r 90 ) / 2. Evaluation of secondary work brittleness resistance (DBTT) is a method of measuring a ductile-brittle transition temperature (DBTT) by dropping a weight on a side of a cup molded under a processing ratio of 1.9. evaluated.

また、メッキ特性は剥離幅(mm)を測定してパウダリングの等級により評価した。   The plating characteristics were evaluated by the powdering grade by measuring the peel width (mm).

表2は本発明鋼と比較鋼の機械的性質、耐2次加工脆性及びメッキ特性を示したものである。   Table 2 shows the mechanical properties, secondary work brittleness resistance and plating characteristics of the steels of the present invention and comparative steels.

Figure 0005097712

Figure 0005097712
上記表1及び2で示したように、本発明の成分範囲を満たす発明鋼(1〜5)を利用して本発明の製造方法により製造された発明材(1〜9)の場合、75%以上の20nm以下の微細析出物を形成して引張強度440MPa以上の高強度を確保し、伸び率34%以上、塑性異方性指数(r値)1.88以上等比較鋼対比伸び特性が2〜3%向上された。また、−40℃以下の耐2次加工脆性を確保し、剥離幅も4〜5mmで比較鋼対比優れたメッキ特性を確保した。
Figure 0005097712

Figure 0005097712
As shown in Tables 1 and 2 above, in the case of the inventive material (1-9) manufactured by the manufacturing method of the present invention using the inventive steel (1-5) satisfying the component range of the present invention, 75% The above fine precipitates of 20 nm or less are formed to ensure a high strength of a tensile strength of 440 MPa or more, an elongation of 34% or more, a plastic anisotropy index (r value) of 1.88 or more, etc. Improved by ~ 3%. Moreover, the secondary process brittleness resistance of -40 degrees C or less was ensured, and the peeling width was 4-5 mm, and the plating characteristic excellent in comparison steel was ensured.

しかし、本発明の成分範囲を満たさない比較鋼(1、2)を利用して製造された比較材(10〜13)の場合、固溶強化元素であるSi、Mnを多量に添加して本発明で目標とする引張強度は確保したが、本発明の成分範囲を満たさず劣位な伸び特性を示した。また、比較鋼はSb未添加鋼で、比較材(10〜13)は多量添加されたSiとMnから劣位なメッキ特性を示した。   However, in the case of the comparative materials (10 to 13) manufactured using the comparative steels (1 and 2) that do not satisfy the component range of the present invention, a large amount of Si and Mn which are solid solution strengthening elements are added. Although the target tensile strength was ensured by the invention, the composition range of the present invention was not satisfied and an inferior elongation characteristic was exhibited. Further, the comparative steel was Sb-unadded steel, and the comparative materials (10 to 13) showed inferior plating characteristics from Si and Mn added in a large amount.

Claims (2)

質量%で、C:0.01%以下、Si:0.3%以下、Mn:0.03〜0.2%、P:0.15%以下、S:0.003〜0.015%、Sol.Al:0.1〜0.4%、N:0.01%以下、Ti:0.003〜0.01%、Nb:0.003〜0.04%、B:0.0002〜0.002%、Mo:0.05%以下、Cu:0.005〜0.2%、Cr:0.05〜0.5%、Sb:0.02〜0.1%、そして残りのFe及びその他不可避な不純物からなり、MnS、CuS、(Mn,Cu)S析出物を含み、前記析出物のうち20nm以下の大きさを有するMnS、CuS、(Mn,Cu)S析出物を75%以上含み、
前記Ti、Al及びNが5.2≦(Ti/3.42N)+(Al/1.92N)≦21.1の関係を満たし、そして前記Nb、Cr及びCが1.2≦(Nb/7.75C)+(Cr/4.3C)≦12.1の関係を満たし、
前記Mn、Cu及びSが6.7≦(Mn/1.7S)+(Cu/1.96S)≦14.6の関係を満たすメッキ特性及び伸び特性に優れた高強度薄鋼板。
In mass%, C: 0.01% or less, Si: 0.3% or less, Mn: 0.03-0.2%, P: 0.15% or less, S: 0.003-0.015%, Sol. Al: 0.1-0.4%, N: 0.01% or less, Ti: 0.003-0.01%, Nb: 0.003-0.04%, B: 0.0002-0.002 %, Mo: 0.05% or less, Cu: 0.005 to 0.2%, Cr: 0.05 to 0.5%, Sb: 0.02 to 0.1%, and the remaining Fe and other inevitable Comprising MnS, CuS, (Mn, Cu) S precipitates, 75% or more of MnS, CuS, (Mn, Cu) S precipitates having a size of 20 nm or less among the precipitates,
The Ti, Al, and N satisfy the relationship of 5.2 ≦ (Ti / 3.42N) + (Al / 1.92N) ≦ 21.1, and the Nb, Cr, and C satisfy 1.2 ≦ (Nb / 7.75C) + (Cr / 4.3C) meet the relationship of ≦ 12.1,
A high-strength thin steel sheet having excellent plating characteristics and elongation characteristics in which Mn, Cu and S satisfy the relationship of 6.7 ≦ (Mn / 1.7S) + (Cu / 1.96S) ≦ 14.6 .
質量%で、C:0.01%以下、Si:0.3%以下、Mn:0.03〜0.2%、P:0.15%以下、S:0.003〜0.015%、Sol.Al:0.1〜0.4%、N:0.01%以下、Ti:0.003〜0.01%、Nb:0.003〜0.04%、B:0.0002〜0.002%、Mo:0.05%以下、Cu:0.005〜0.2%、Cr:0.05〜0.5%、Sb:0.02〜0.1%、残りのFe及びその他不可避な不純物からなる鋼スラブを再加熱し、オーステナイト単相域である880℃以上で熱間仕上げ圧延を終了した後、700℃以下で巻取し、65%以下の圧下率で冷間圧延した後、780〜830℃の温度範囲で連続焼鈍し、
前記Ti、Al及びNが5.2≦(Ti/3.42N)+(Al/1.92N)≦21.1の関係を満たし、そして前記Nb、Cr及びCが1.2≦(Nb/7.75C)+(Cr/4.3C)≦12.1の関係を満たし、
前記Mn、Cu及びSが6.7≦(Mn/1.7S)+(Cu/1.96S)≦14.6の関係を満たすメッキ特性及び伸び特性に優れた高強度薄鋼板の製造方法。
In mass%, C: 0.01% or less, Si: 0.3% or less, Mn: 0.03-0.2%, P: 0.15% or less, S: 0.003-0.015%, Sol. Al: 0.1-0.4%, N: 0.01% or less, Ti: 0.003-0.01%, Nb: 0.003-0.04%, B: 0.0002-0.002 %, Mo: 0.05% or less, Cu: 0.005 to 0.2%, Cr: 0.05 to 0.5%, Sb: 0.02 to 0.1%, remaining Fe and other inevitable After reheating the steel slab made of impurities and finishing the hot finish rolling at 880 ° C. or higher, which is an austenite single phase region, winding at 700 ° C. or lower and cold rolling at a rolling reduction of 65% or lower, Continuous annealing at a temperature range of 780 to 830 ° C,
The Ti, Al, and N satisfy the relationship of 5.2 ≦ (Ti / 3.42N) + (Al / 1.92N) ≦ 21.1, and the Nb, Cr, and C satisfy 1.2 ≦ (Nb / 7.75C) + (Cr / 4.3C) meet the relationship of ≦ 12.1,
The Mn, Cu and S is 6.7 ≦ (Mn / 1.7S) + (Cu / 1.96S) method of producing a high strength thin steel sheet excellent in coating properties and elongation properties satisfying the relationship ≦ 14.6 .
JP2008544248A 2005-12-07 2006-12-05 High-strength thin steel sheet having excellent plating characteristics and elongation characteristics Active JP5097712B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2005-0118741 2005-12-07
KR1020050118741A KR100711362B1 (en) 2005-12-07 2005-12-07 High strength thin steel sheet having excellent plating and elongation property and the method for manufacturing the same
PCT/KR2006/005208 WO2007066955A1 (en) 2005-12-07 2006-12-05 High strength thin steel sheet having excellent plating and elongation property and the method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2009518540A JP2009518540A (en) 2009-05-07
JP5097712B2 true JP5097712B2 (en) 2012-12-12

Family

ID=38123054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008544248A Active JP5097712B2 (en) 2005-12-07 2006-12-05 High-strength thin steel sheet having excellent plating characteristics and elongation characteristics

Country Status (5)

Country Link
EP (1) EP1960563B1 (en)
JP (1) JP5097712B2 (en)
KR (1) KR100711362B1 (en)
CN (1) CN101326301B (en)
WO (1) WO2007066955A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224653A (en) * 1990-12-26 1992-08-13 Sumitomo Metal Ind Ltd High tensile strength steel excellent in hydrogen induced cracking resistance
JP3049104B2 (en) * 1991-03-13 2000-06-05 川崎製鉄株式会社 Manufacturing method of high tensile cold rolled steel sheet for deep drawing
JPH06158175A (en) * 1992-11-17 1994-06-07 Kobe Steel Ltd Production of cold rolled steel sheet for ultradeep drawing
JP2653616B2 (en) * 1992-12-04 1997-09-17 新日本製鐵株式会社 Manufacturing method of high strength steel for large heat input welding with excellent low temperature toughness
JP3420370B2 (en) * 1995-03-16 2003-06-23 Jfeスチール株式会社 Thin steel sheet excellent in press formability and method for producing the same
TW415967B (en) * 1996-02-29 2000-12-21 Kawasaki Steel Co Steel, steel sheet having excellent workability and method of the same by electric furnace-vacuum degassing process
CA2310335C (en) * 1998-09-29 2009-05-19 Kawasaki Steel Corporation High strength thin steel sheet, high strength galvannealed steel sheet and manufacturing method thereof
JP3534023B2 (en) * 1999-11-05 2004-06-07 Jfeスチール株式会社 High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
DE60110586T2 (en) * 2000-05-31 2005-12-01 Jfe Steel Corp. COLD-ROLLED STEEL PLATE WITH EXCELLENT RECALTERING CHARACTERISTICS AND MANUFACTURING METHOD FOR SUCH STEEL PLATE
CN100336930C (en) * 2001-10-04 2007-09-12 新日本制铁株式会社 Steel sheet for container and method of producing the same
JP3924159B2 (en) * 2001-11-28 2007-06-06 新日本製鐵株式会社 High-strength thin steel sheet with excellent delayed fracture resistance after forming, its manufacturing method, and automotive strength parts made from high-strength thin steel sheet
JP4414883B2 (en) * 2002-06-28 2010-02-10 ポスコ High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
JP4507851B2 (en) * 2003-12-05 2010-07-21 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
KR101105132B1 (en) * 2003-12-23 2012-01-16 주식회사 포스코 Baking hardening cold rolled steel sheet having high strength, process for producing the same
JP4506438B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
WO2006118423A1 (en) * 2005-05-03 2006-11-09 Posco Cold rolled steel sheet having superior formability , process for producing the same

Also Published As

Publication number Publication date
CN101326301A (en) 2008-12-17
CN101326301B (en) 2011-06-08
EP1960563B1 (en) 2013-02-20
WO2007066955A1 (en) 2007-06-14
EP1960563A4 (en) 2010-09-22
EP1960563A1 (en) 2008-08-27
KR100711362B1 (en) 2007-04-27
JP2009518540A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP2018536764A (en) Ultra-high-strength steel sheet excellent in formability and hole expansibility and manufacturing method thereof
JP4507851B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
US20080251168A1 (en) Bake-Hardenable Cold Rolled Steel Sheet With Superior Strength and Aging Resistance, Gal-Vannealed Steel Sheet Using the Cold Rolled Steel Sheet and Method For Manufacturing the Cold Rolled Steel Sheet
KR20080061853A (en) High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same
JP4414883B2 (en) High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
JP5388577B2 (en) Steel plate for galvanization excellent in workability and manufacturing method thereof
JP5993570B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dip cold-rolled steel sheet, and cold-rolled steel sheet with excellent bake hardenability
JP4848423B2 (en) Deep drawing thin steel sheet having excellent secondary work brittleness resistance, fatigue characteristics and plating characteristics, and its manufacturing method
JPH03257124A (en) Production of cold rolled steel sheet for deep drawing having baking hardenability
JP2006342412A (en) Method for producing high tensile strength cold rolled deep-drawing steel sheet excellent in surface property
KR20050095537A (en) Cold rolled steel sheet and hot dipped steel sheet with superior strength and bake hardenability and method for manufacturing the steel sheets
EP1888799A1 (en) Cold rolled steel sheet having superior formability , process for producing the same
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
CN116648523A (en) High-strength steel sheet excellent in workability and method for producing same
JP5097712B2 (en) High-strength thin steel sheet having excellent plating characteristics and elongation characteristics
JP2864966B2 (en) Continuously annealed cold rolled steel sheet with excellent balance between deep drawability and deep draw resistance
JP5450618B2 (en) Bake hardened steel with excellent surface characteristics and secondary work brittleness resistance and method for producing the same
WO2006118424A1 (en) Cold rolled steel sheet having high yield ratio and less anisotropy, process for producing the same
WO2006118425A1 (en) Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same
JP2023507956A (en) High-strength steel sheet with excellent workability and its manufacturing method
CN116601320A (en) High-strength steel sheet excellent in workability and method for producing same
CN115418566A (en) Manufacturing method of low-cost high-P weathering steel
JPH1017983A (en) Cold rolled steel sheet excellent in press workability and chemical convertibility and alloyed galvanized steel sheet excellent in press workability and powdering resistance
KR20090131254A (en) High strength baking hardening type cold rolled steel sheet having excellent aging property and processibility, galvanized steel sheet and the method for manufacfuring thereof
MX2008007348A (en) High strength thin steel sheet having excellent plating and elongation property and the method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5097712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250