JP5097646B2 - Temperature compensated optical fiber Bragg grating - Google Patents

Temperature compensated optical fiber Bragg grating Download PDF

Info

Publication number
JP5097646B2
JP5097646B2 JP2008218412A JP2008218412A JP5097646B2 JP 5097646 B2 JP5097646 B2 JP 5097646B2 JP 2008218412 A JP2008218412 A JP 2008218412A JP 2008218412 A JP2008218412 A JP 2008218412A JP 5097646 B2 JP5097646 B2 JP 5097646B2
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
fbg
base material
types
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008218412A
Other languages
Japanese (ja)
Other versions
JP2010054715A (en
Inventor
賢治 西脇
明 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008218412A priority Critical patent/JP5097646B2/en
Publication of JP2010054715A publication Critical patent/JP2010054715A/en
Application granted granted Critical
Publication of JP5097646B2 publication Critical patent/JP5097646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

本発明は、光ファイバブラックグレーティング(以下、FBGと略記する。)に関し、特に、FBGの温度特性を安定させる構造を有し、光通信及び歪センサとして使用される温度補償型FBGに関する。   The present invention relates to an optical fiber black grating (hereinafter abbreviated as FBG), and more particularly to a temperature compensated FBG having a structure that stabilizes the temperature characteristics of the FBG and used as an optical communication and strain sensor.

FBGの中心波長は、温度変化に対応して変化する(0.01nm/℃)ため、正確に安定して中心波長を測定したい場合、温度感度を低減する必要がある。FBGの中心波長の温度補償方法としては、負の熱膨張係数を持つ基材に正の膨張係数を持つFBGを固定する方法が知られている(例えば、特許文献1,2参照。)。   Since the center wavelength of the FBG changes in response to a temperature change (0.01 nm / ° C.), it is necessary to reduce the temperature sensitivity when it is desired to measure the center wavelength accurately and stably. As a temperature compensation method for the center wavelength of the FBG, a method is known in which an FBG having a positive expansion coefficient is fixed to a substrate having a negative thermal expansion coefficient (see, for example, Patent Documents 1 and 2).

特許文献1には、光フィルタ素子と、該光フィルタ素子の波長温度依存性に対して逆の寸法温度依存性を有する補助材とを、該光フィルタ素子のフィルタ波長が目的の値となる温度において固定したことを特徴とする光フィルタが開示されている。   Patent Document 1 discloses an optical filter element and an auxiliary material having a dimensional temperature dependency opposite to the wavelength temperature dependency of the optical filter element, and a temperature at which the filter wavelength of the optical filter element is a target value. An optical filter characterized by being fixed in is disclosed.

特許文献2には、屈折率が周期的に変化するグレーティングが形成されている光ファイバが、負の熱膨張係数を有する繊維を含有する樹脂浸透フィルムで挟み込まれていることを特徴とする温度無依存光ファイバグレーティングが開示されている。   In Patent Document 2, an optical fiber in which a grating whose refractive index changes periodically is formed is sandwiched between resin-permeable films containing fibers having a negative thermal expansion coefficient. A dependent optical fiber grating is disclosed.

一般的な温度補償型FBGの構造を図1に示す。図中符号1は温度補償型FBG、2は光ファイバ、3はグレーティング部、4は負膨張基材、5は接着剤である。この温度補償型FBG1は、光ファイバ2の一部にグレーティング部3が形成され、該グレーティング部3を含む光ファイバ2が負膨張基材4に固定された構造になっている。通常、この種の温度補償型FBG1は、中心波長を調整するため張力を印加した状態で基材に固定される(0.013nm/gf)。   The structure of a general temperature compensation type FBG is shown in FIG. In the figure, reference numeral 1 denotes a temperature compensation type FBG, 2 denotes an optical fiber, 3 denotes a grating portion, 4 denotes a negative expansion base, and 5 denotes an adhesive. This temperature compensation type FBG 1 has a structure in which a grating portion 3 is formed in a part of an optical fiber 2 and the optical fiber 2 including the grating portion 3 is fixed to a negative expansion base 4. Normally, this type of temperature-compensated FBG1 is fixed to a substrate with a tension applied to adjust the center wavelength (0.013 nm / gf).

ここで、温度補償の原理について説明する。
温度が上がるとFBGの屈折率変化に伴い、0.01nm/℃のレートで中心波長が長波に変動しようとする。このとき、負膨張基材4は温度上昇に伴い縮むため、張力が0.013nm/gfのレートで緩むことを利用している。
特開2003−344671号公報 特開2004−109551号公報
Here, the principle of temperature compensation will be described.
As the temperature rises, the center wavelength tends to change to a long wave at a rate of 0.01 nm / ° C. with a change in the refractive index of the FBG. At this time, since the negative expansion base material 4 shrinks as the temperature rises, it is utilized that the tension is relaxed at a rate of 0.013 nm / gf.
JP 2003-344671 A JP 2004-109551 A

しかしながら、前述した特許文献1,2に開示された技術情報に従って実施を試みたところ、以下の問題点に遭遇した。
特許文献1には、実施例として、樹脂にガラス繊維と超高分子量ポリエチレン繊維であるダイニーマ(東洋紡績株式会社の登録商標)との混合物を混ぜた負膨張基材にFBGを固定した構造が開示されているが、この構造では、ヒステリシスがあるため、同じ温度でも精度良く温度補償することができない(後述する実施例の<予備実験1>参照。)。また、ヒートサイクルを行うにつれて、中心波長が短波長側にずれていく(後述する実施例の<予備実験2>参照。)現象が見られた。
However, when an attempt was made in accordance with the technical information disclosed in Patent Documents 1 and 2 described above, the following problems were encountered.
Patent Document 1 discloses, as an example, a structure in which FBG is fixed to a negative expansion base material in which a mixture of glass fiber and Dyneema (registered trademark of Toyobo Co., Ltd.), which is an ultrahigh molecular weight polyethylene fiber, is mixed with resin. However, in this structure, since there is hysteresis, temperature compensation cannot be performed accurately even at the same temperature (refer to <Preliminary Experiment 1> in an example described later). Further, as the heat cycle was performed, a phenomenon in which the center wavelength was shifted to the short wavelength side (see <Preliminary Experiment 2> in Examples described later) was observed.

特許文献2には、実施例として、超高分子量ポリエチレン繊維であるダイニーマ(東洋紡績株式会社の登録商標)を含む樹脂浸透フィルムでFBGを挟み、温度補償する構造が例示されている。しかし、この構造を実証した結果、繊維の負膨張度合いが強すぎて、温度補償度合いが悪い。すなわち、ダイニーマの線膨張係数が−10×10−6程度であり、一方、光ファイバの線膨張係数は0.5×10−6程度であることから、ヒステリシスがあるため、同じ温度でも精度よく温度補償することができない。 Patent Document 2 exemplifies a structure in which an FBG is sandwiched between resin penetration films containing Dyneema (registered trademark of Toyobo Co., Ltd.), which is an ultrahigh molecular weight polyethylene fiber, and temperature compensation is performed as an example. However, as a result of demonstrating this structure, the degree of negative expansion of the fiber is too strong and the degree of temperature compensation is poor. That is, the linear expansion coefficient of Dyneema is about −10 × 10 −6 , while the linear expansion coefficient of optical fiber is about 0.5 × 10 −6, so there is hysteresis, so even at the same temperature, the accuracy is high. The temperature cannot be compensated.

本発明は、前記事情に鑑みてなされ、高精度に温度補償することができる温度補償型FBGの提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a temperature-compensated FBG that can perform temperature compensation with high accuracy.

前記目的を達成するため、本発明は、光ファイバの一部にグレーティング部が形成され、該グレーティング部を含む光ファイバが基材に固定されたFBGにおいて、
異なる負の線膨張係数を有する2種類以上の負膨張繊維を組み合わせて含む基材にグレーティング部を含む光ファイバが固定されたことを特徴とする温度補償型FBGを提供する。
In order to achieve the above object, the present invention provides an FBG in which a grating portion is formed in a part of an optical fiber, and the optical fiber including the grating portion is fixed to a base material.
Provided is a temperature compensated FBG characterized in that an optical fiber including a grating portion is fixed to a base material including a combination of two or more types of negative expansion fibers having different negative linear expansion coefficients .

本発明の温度補償型FBGにおいて、負膨張繊維が2種類であり、これらの負膨張繊維の線膨張係数の差が5×10−6以下であることが好ましい。 In the temperature-compensated FBG of the present invention, there are two types of negative expansion fibers, and the difference in linear expansion coefficient between these negative expansion fibers is preferably 5 × 10 −6 or less.

本発明の温度補償型FBGにおいて、2種類の負膨張繊維の線膨張係数がそれぞれ−10×10−6、−6×10−6であることが好ましい。 In the temperature compensated FBG of the present invention, it is preferable that the linear expansion coefficients of the two types of negative expansion fibers are −10 × 10 −6 and −6 × 10 −6 , respectively.

本発明の温度補償型FBGにおいて、2種類の負膨張繊維が超高分子量ポリエチレン繊維とポリパラフェニレンベンゾビスオキサゾール繊維であることが好ましい。   In the temperature compensated FBG of the present invention, the two types of negative expansion fibers are preferably ultrahigh molecular weight polyethylene fibers and polyparaphenylene benzobisoxazole fibers.

本発明の温度補償型FBGにおいて、基材が2種類の負膨張繊維を樹脂で固定したFRP基材であることが好ましい。   In the temperature compensated FBG of the present invention, the base material is preferably an FRP base material in which two types of negative expansion fibers are fixed with a resin.

前記温度補償型FBGにおいて、2種類の負膨張繊維を固定する樹脂がビニルエステル樹脂であることが好ましい。   In the temperature-compensated FBG, it is preferable that the resin for fixing the two types of negative expansion fibers is a vinyl ester resin.

本発明の温度補償型FBGは、2種類以上の負膨張繊維を組み合わせて含む基材にグレーティング部を含む光ファイバが固定された構成としたので、2種類以上の負膨張繊維の配合を最適化することで、光ファイバの温度変化を高精度に補償することができ、温度補償性能に優れたFBGを提供できる。
本発明の温度補償型FBGは、従来技術での単独の負膨張繊維を配合した場合と異なり、ヒステリシスが無いため、同じ温度であれば同じ中心波長が得られ、信頼性の高いものとなる。
本発明の温度補償型FBGは、予め10サイクル程度のヒートサイクルを行っておけば、その後のヒートサイクルでも中心波長が変化することが無くなり、長期的な信頼性を確保することができる。
The temperature-compensated FBG of the present invention has a structure in which an optical fiber including a grating portion is fixed to a base material including a combination of two or more types of negative expansion fibers, so that the combination of two or more types of negative expansion fibers is optimized. By doing so, it is possible to compensate for the temperature change of the optical fiber with high accuracy, and it is possible to provide an FBG excellent in temperature compensation performance.
The temperature compensated FBG of the present invention has no hysteresis unlike the case of blending a single negative expansion fiber in the prior art, and therefore, the same center wavelength can be obtained at the same temperature and the reliability becomes high.
If the temperature-compensated FBG of the present invention is subjected to a heat cycle of about 10 cycles in advance, the center wavelength will not change even in the subsequent heat cycle, and long-term reliability can be ensured.

以下、図面を参照して本発明の実施形態を説明する。
図2は、本発明の温度補償型FBGの第1実施形態を示す側面図である。本実施形態の温度補償型FBG10Aは、光ファイバ2の一部にグレーティング部3が形成され、2種類以上の負膨張繊維を組み合わせて含むFRP基材11にグレーティング部3を含む光ファイバ2が載置され、FRP基材11の両端部で紫外線硬化型接着剤などの接着剤5によって固定された構成になっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a side view showing a first embodiment of the temperature compensated FBG according to the present invention. In the temperature compensated FBG 10A of the present embodiment, the grating portion 3 is formed in a part of the optical fiber 2, and the optical fiber 2 including the grating portion 3 is mounted on the FRP base material 11 including a combination of two or more types of negative expansion fibers. The FRP base material 11 is fixed at both ends by an adhesive 5 such as an ultraviolet curable adhesive.

本実施形態において、FRP基材11としては、負膨張繊維が2種類であり、これらの負膨張繊維の線膨張係数の差が5×10−6以下であることが好ましい。より具体的には、2種類の負膨張繊維の線膨張係数がそれぞれ−10×10−6、−6×10−6であることが好ましく、2種類の負膨張繊維が超高分子量ポリエチレン繊維とポリパラフェニレンベンゾビスオキサゾール繊維であることがより好ましい。 In this embodiment, as the FRP base material 11, there are two types of negative expansion fibers, and it is preferable that the difference between the linear expansion coefficients of these negative expansion fibers is 5 × 10 −6 or less. More specifically, the linear expansion coefficients of the two types of negative expansion fibers are preferably −10 × 10 −6 and −6 × 10 −6 , respectively, and the two types of negative expansion fibers are an ultrahigh molecular weight polyethylene fiber and More preferably, it is a polyparaphenylene benzobisoxazole fiber.

本実施形態において、FRP基材11は、前述した2種類の負膨張繊維を樹脂で固定してなるものであり、2種類の負膨張繊維を固定する樹脂としては、ビニルエステル樹脂であることが好ましい。このFRP基材11の寸法は、光ファイバ2(グレーティング部3)の温度補償を確実に行うことができる機械的強度が得られる範囲で適宜設定可能である。また、FRP基材11の形状も、光ファイバ2の温度補償を確実に行うことができれば、特に限定されない。   In the present embodiment, the FRP base material 11 is formed by fixing the above-described two types of negative expansion fibers with a resin, and the resin for fixing the two types of negative expansion fibers may be a vinyl ester resin. preferable. The dimensions of the FRP base material 11 can be appropriately set within a range in which the mechanical strength capable of reliably performing temperature compensation of the optical fiber 2 (grating portion 3) is obtained. Further, the shape of the FRP base material 11 is not particularly limited as long as the temperature compensation of the optical fiber 2 can be reliably performed.

本実施形態の温度補償型FBG10Aは、2種類の負膨張繊維を組み合わせて含むFRP基材11にグレーティング部3を含む光ファイバ3が固定された構成としたので、2種類の負膨張繊維の配合を最適化することで、光ファイバ2の温度変化を高精度に補償することができ、温度補償性能に優れたFBGを実現できる。
本実施形態の温度補償型FBG10Aは、従来技術での単独の負膨張繊維を配合した場合と異なり、ヒステリシスが無いため、同じ温度であれば同じ中心波長が得られ、信頼性の高いものとなる。
本実施形態の温度補償型FBG10Aは、予め10サイクル程度のヒートサイクルを行っておけば、その後のヒートサイクルでも中心波長が変化することが無くなり、長期的な信頼性を確保することができる。
Since the temperature compensation type FBG 10A of the present embodiment has a configuration in which the optical fiber 3 including the grating portion 3 is fixed to the FRP base material 11 including a combination of two types of negative expansion fibers, the combination of the two types of negative expansion fibers By optimizing, the temperature change of the optical fiber 2 can be compensated with high accuracy, and an FBG with excellent temperature compensation performance can be realized.
The temperature compensated FBG 10A of the present embodiment has no hysteresis unlike the case of blending a single negative expansion fiber in the prior art, so that the same center wavelength can be obtained at the same temperature, and the reliability is high. .
In the temperature compensated FBG 10A of the present embodiment, if a heat cycle of about 10 cycles is performed in advance, the center wavelength does not change even in the subsequent heat cycle, and long-term reliability can be ensured.

図3は、本発明の温度補償型FBGの第2実施形態を示す側面図である。本実施形態の温度補償型FBG10Bは、図2に示す第1実施形態の温度補償型FBG10Aと同様の構成要素を備えて構成されている。本実施形態の温度補償型FBG10Bは、FRP基材11の表面に光ファイバ2を載置し、その長手方向全域で固定したことを特徴としている。本実施形態の温度補償型FBG10Bは、前述した第1実施形態の温度補償型FBG10Aとほぼ同様の効果を得ることができ、さらに、FRP基材11と光ファイバ2との固着部分が大きくなるので、FRP基材11による温度補償効果をより確実に発揮することができる。   FIG. 3 is a side view showing a second embodiment of the temperature compensated FBG of the present invention. The temperature compensated FBG 10B of the present embodiment is configured to include the same components as the temperature compensated FBG 10A of the first embodiment shown in FIG. The temperature compensation type FBG 10B of the present embodiment is characterized in that the optical fiber 2 is placed on the surface of the FRP base material 11 and fixed in the entire longitudinal direction. The temperature compensated FBG 10B of the present embodiment can obtain substantially the same effect as the temperature compensated FBG 10A of the first embodiment described above, and further, the fixing portion between the FRP base material 11 and the optical fiber 2 becomes large. The temperature compensation effect by the FRP substrate 11 can be more reliably exhibited.

図4は、本発明の温度補償型FBGの第3実施形態を示す側面図である。本実施形態の温度補償型FBG10Cは、FRP基材の形状以外は、図2に示す第1実施形態の温度補償型FBG10Aと同様の構成要素を備えて構成されている。本実施形態の温度補償型FBG10Bは、円筒状のFRP基材11を用い、その円筒内に光ファイバ2のグレーティング部3とその両側部分を収容し、接着剤又は基材樹脂との溶着によってFRP基材11と光ファイバ2とを固定した構造になっている。本実施形態の温度補償型FBG10Bは、前述した第1実施形態の温度補償型FBG10Aとほぼ同様の効果を得ることができ、さらに、円筒状のFRP基材11内に光ファイバ2のグレーティング部3を収容し、固定しているので、機械的強度を高めることができる。   FIG. 4 is a side view showing a third embodiment of the temperature compensated FBG of the present invention. The temperature compensated FBG 10C of the present embodiment is configured to include the same components as the temperature compensated FBG 10A of the first embodiment shown in FIG. 2 except for the shape of the FRP base material. The temperature compensation type FBG 10B of the present embodiment uses a cylindrical FRP base material 11, and accommodates the grating part 3 and both side parts of the optical fiber 2 in the cylinder, and welds the adhesive part or base resin to the FRP. The base 11 and the optical fiber 2 are fixed. The temperature-compensated FBG 10B of this embodiment can obtain substantially the same effect as the temperature-compensated FBG 10A of the first embodiment described above, and furthermore, the grating portion 3 of the optical fiber 2 is provided in the cylindrical FRP base material 11. Is housed and fixed, so that the mechanical strength can be increased.

<予備実験1>
超高分子量ポリエチレン繊維であるダイニーマ(東洋紡績株式会社の登録商標、線膨張係数:−10×10−6、以下「ダイニーマ」と記す。)とガラス繊維(線膨張係数:8×10−6)の配合を変えて作製した3種類のFRP基材(A〜C)を作製した。FRP基材の各繊維の配合条件は、次の通りとした(質量比)。
A:ダイニーマ:ガラス繊維=9:1
B:ダイニーマ:ガラス繊維=8:2
C:ダイニーマ:ガラス繊維=7.5:2.5
<Preliminary experiment 1>
Dyneema (registered trademark of Toyobo Co., Ltd., linear expansion coefficient: −10 × 10 −6 , hereinafter referred to as “Dyneema”) and glass fiber (linear expansion coefficient: 8 × 10 −6 ), which are ultrahigh molecular weight polyethylene fibers Three types of FRP base materials (A to C) prepared by changing the formulation of were prepared. The blending conditions of each fiber of the FRP base material were as follows (mass ratio).
A: Dyneema: Glass fiber = 9: 1
B: Dyneema: Glass fiber = 8: 2
C: Dyneema: Glass fiber = 7.5: 2.5

前記の通り作製したA〜Cの各FRP基材に、それぞれグレーティング部を形成した光ファイバを載置し、一定の張力を印加した状態で紫外線硬化型接着剤により固定し(図1参照)、3種類のFBG(A〜C)を作製した。   An optical fiber having a grating part is placed on each of the FRP substrates A to C produced as described above, and fixed with an ultraviolet curable adhesive in a state where a certain tension is applied (see FIG. 1). Three types of FBGs (A to C) were prepared.

A〜Cの各FBGを温度調節可能な測定室内に入れ、各FBGの反射中心波長を測定しながら、測定室の温度を、−20℃〜80℃の範囲で50サイクル変化させ、測定温度−20℃〜80℃の範囲における各FBGの反射中心波長シフトを測定した。各温度での待ち時間は30分とした。その測定結果を図5に示す。なお、図5に示す結果は、各FBGとも−20℃の時の波長を基準とし、25サイクル目の中心波長変動値である。   Each of the FBGs A to C is placed in a temperature-controllable measurement chamber, and while measuring the reflection center wavelength of each FBG, the temperature of the measurement chamber is changed 50 cycles in the range of −20 ° C. to 80 ° C. The reflection center wavelength shift of each FBG in the range of 20 ° C. to 80 ° C. was measured. The waiting time at each temperature was 30 minutes. The measurement results are shown in FIG. The results shown in FIG. 5 are the center wavelength fluctuation values at the 25th cycle with reference to the wavelength at −20 ° C. for each FBG.

図5より、ダイニーマとガラス繊維の配合を変えることで、温度補償することが可能であるが、ヒステリシスがあるため、同じ温度でも精度よく温度補償することができない。この原因としては、ダイニーマの線膨張係数(−10×10−6)とガラス繊維の線膨張係数(8×10−6)の差が大きいため、温度変化によって二つの繊維間の引っ張りによる微小な変形(歪)が発生している為と考えられる。 From FIG. 5, it is possible to compensate for the temperature by changing the blending of the dyneema and the glass fiber, but because of the hysteresis, the temperature cannot be compensated accurately even at the same temperature. This is because the difference between the linear expansion coefficient of Dyneema (−10 × 10 −6 ) and the linear expansion coefficient of glass fiber (8 × 10 −6 ) is large. This is thought to be due to deformation (distortion).

<予備実験2>
予備実験1で作製したA〜Cの各FBGについて、同様に温度調節可能な測定室内に入れ、各FBGの反射中心波長を測定しながら、測定室の温度を、−20℃〜80℃の範囲で50サイクル変化させ、60℃における中心波長を基準として、中心波長のヒートサイクル回数依存度を調べた。その測定結果を図6に示す。
<Preliminary experiment 2>
About each FBG of A-C produced in the preliminary experiment 1, it puts in the measurement chamber which can be similarly temperature-controlled, and the temperature of a measurement chamber is the range of -20 degreeC-80 degreeC, measuring the reflection center wavelength of each FBG. Then, the dependence of the center wavelength on the number of heat cycles was examined using the center wavelength at 60 ° C. as a reference. The measurement results are shown in FIG.

図6より、ヒートサイクルを行うにつれて、中心波長が短波長側にずれていくことが多かった。この原因としては、ダイニーマの線膨張係数(−10×10−6)とガラス繊維の線膨張係数(8×10−6)の差が大きい為、ヒートサイクルによる熱履歴によって、二つの繊維間の引っ張りによる微小な変形(歪)が大きくなっている為と考えられる。このため、ダイニーマ+ガラス繊維の組み合わせでは、長期的な信頼性は望めない。 As shown in FIG. 6, as the heat cycle is performed, the center wavelength often shifts to the short wavelength side. This is because the difference between the linear expansion coefficient of Dyneema (−10 × 10 −6 ) and the linear expansion coefficient of glass fiber (8 × 10 −6 ) is large. This is thought to be because the minute deformation (distortion) due to pulling is increasing. For this reason, long-term reliability cannot be expected with the combination of Dyneema + glass fiber.

[実施例]
本発明に係る実施例として、図2に示す温度補償型FBGを作製した。
(1)ダイニーマ;線膨張係数−10×10−6
(2)ポリパラフェニレンベンゾビスオキサゾール繊維であるザイロン(東洋紡績株式会社の登録商標、線膨張係数:−6×10−6、以下「ザイロン」と記す)、
の2種類を用い、これらの繊維を一定方向に配列し、両者をビニルエステル樹脂により一体化してFRP基材を作製した。ここで、(1)と(2)の配合比率を変え、D〜Fの3種類のFRP基材を作製した。
FRP基材の各繊維の配合条件は、次の通りとした。
D:ダイニーマ:ザイロン=3:7
E:ダイニーマ:ザイロン=4:6
F:ダイニーマ:ザイロン=5:5
[Example]
As an example according to the present invention, a temperature compensated FBG shown in FIG. 2 was produced.
(1) Dyneema; coefficient of linear expansion −10 × 10 −6 ,
(2) Zylon (registered trademark of Toyobo Co., Ltd., linear expansion coefficient: −6 × 10 −6 , hereinafter referred to as “Zylon”), which is a polyparaphenylene benzobisoxazole fiber,
These fibers were arranged in a certain direction, and both were integrated with a vinyl ester resin to prepare an FRP base material. Here, the mixing ratio of (1) and (2) was changed, and three types of FRP base materials D to F were produced.
The blending conditions of each fiber of the FRP base material were as follows.
D: Dyneema: Zylon = 3: 7
E: Dyneema: Zylon = 4: 6
F: Dyneema: Zylon = 5: 5

前記の通り作製したD〜Fの各FRP基材に、それぞれグレーティング部を形成した光ファイバを載置し、一定の張力を印加した状態で紫外線硬化型接着剤により固定し(図2参照)、3種類のFBG(D〜F)を作製した。このとき、紫外線硬化型接着剤はFRP基材の両端に使用した。
FRP基材は細すぎると、FBGに印加された張力に負けて折れてしまうため、本実施例では外径3mm、長さ50mmとした。
Each optical fiber having a grating portion is placed on each of the D to F FRP substrates produced as described above, and fixed with an ultraviolet curable adhesive in a state where a certain tension is applied (see FIG. 2). Three types of FBGs (D to F) were prepared. At this time, the ultraviolet curable adhesive was used at both ends of the FRP substrate.
If the FRP substrate is too thin, it will be broken by the tension applied to the FBG, so in this example the outer diameter was 3 mm and the length was 50 mm.

D〜Fの各FBGを温度調節可能な測定室内に入れ、各FBGの反射中心波長を測定しながら、測定室の温度を、−20℃〜80℃の範囲で50サイクル変化させ、測定温度−20℃〜80℃の範囲における各FBGの反射中心波長シフトを測定した。各温度での待ち時間は30分とした。その測定結果を図7に示す。なお、図7に示す結果は、各FBGとも−20℃の時の波長を基準とし、25サイクル目の中心波長変動値である。   Each of the FBGs D to F is placed in a temperature-controllable measurement chamber, and while measuring the reflection center wavelength of each FBG, the temperature of the measurement chamber is changed 50 cycles in the range of −20 ° C. to 80 ° C. The reflection center wavelength shift of each FBG in the range of 20 ° C. to 80 ° C. was measured. The waiting time at each temperature was 30 minutes. The measurement results are shown in FIG. The results shown in FIG. 7 are the center wavelength fluctuation values of the 25th cycle with reference to the wavelength at −20 ° C. for each FBG.

図7より、ダイニーマとザイロンの配合を変えることで、FBGを高精度に温度補償できることが実証された。また、ダイニーマとガラス繊維を配合した場合と異なり、ヒステリシスが無く、安定した特性が得られている。この原因としては、ダイニーマとザイロンの線膨張差が小さい為、二つの繊維間の変形が小さいことが考えられる。   From FIG. 7, it was demonstrated that FBG can be temperature compensated with high accuracy by changing the combination of Dyneema and Zylon. Further, unlike the case where Dyneema and glass fiber are blended, there is no hysteresis and stable characteristics are obtained. The cause is considered to be that the deformation between the two fibers is small because the linear expansion difference between Dyneema and Zyron is small.

これらのD〜Fの各FBGについて、同様に温度調節可能な測定室内に入れ、各FBGの反射中心波長を測定しながら、測定室の温度を、−20℃〜80℃の範囲で50サイクル変化させ、60℃における中心波長を基準として、中心波長のヒートサイクル回数依存度を調べた。その測定結果を図8に示す。   Each of these FBGs F to F is similarly placed in a temperature-controllable measurement chamber, and while measuring the reflection center wavelength of each FBG, the temperature of the measurement chamber is changed by 50 cycles in the range of -20 ° C to 80 ° C. The dependence of the center wavelength on the number of heat cycles was examined using the center wavelength at 60 ° C. as a reference. The measurement results are shown in FIG.

図8より、10サイクル程度までは、中心波長が若干波長に変化するが、ダイニーマとガラス繊維の組み合わせで行った予備実験2の結果(図6)よりも変化が少ないことが分かった。D〜Fの各FBGにおいて中心波長が若干変化する原因としては、ダイニーマとザイロンと樹脂をFRPに加工する際の残留応力、光ファイバとFRP基材とを固定している紫外線硬化型接着剤中の残留応力が解放されることが考えられる。
この実験から、本実施例のFBGにおいては、予め10サイクル程度のヒートサイクルを行っておくことで、長期的な信頼性を確保することができることが分かった。
From FIG. 8, it was found that the center wavelength slightly changed to about 10 cycles, but the change was smaller than the result of the preliminary experiment 2 performed with the combination of Dyneema and glass fiber (FIG. 6). The reason why the center wavelength slightly changes in each of the FBGs D to F is that residual stress when processing Dyneema, Zylon, and resin into FRP, and in an ultraviolet curable adhesive that fixes the optical fiber and the FRP substrate. It is considered that the residual stress of is released.
From this experiment, it was found that long-term reliability can be ensured by performing about 10 cycles in advance in the FBG of this example.

従来の温度補償型FBGの一例を示す側面図である。It is a side view which shows an example of the conventional temperature compensation type FBG. 本発明の温度補償型FBGの第1実施形態を示す側面図である。It is a side view which shows 1st Embodiment of the temperature compensation type FBG of this invention. 本発明の温度補償型FBGの第2実施形態を示す側面図である。It is a side view which shows 2nd Embodiment of the temperature compensation type FBG of this invention. 本発明の温度補償型FBGの第3実施形態を示す側面図である。It is a side view which shows 3rd Embodiment of the temperature compensation type FBG of this invention. 従来技術に基づく予備実験1の結果を示すグラフである。It is a graph which shows the result of the preliminary experiment 1 based on a prior art. 従来技術に基づく予備実験2の結果を示すグラフである。It is a graph which shows the result of the preliminary experiment 2 based on a prior art. 本発明に係る実施例の結果を示し、−20℃の温度を基準とした場合の温度特性の測定結果を示すグラフである。It is a graph which shows the result of the Example which concerns on this invention, and shows the measurement result of the temperature characteristic at the time of making a temperature of -20 degreeC into a reference | standard. 本発明に係る実施例の結果を示し、60℃における中心波長のヒートサイクル回数依存度の測定結果を示すグラフである。It is a graph which shows the result of the Example which concerns on this invention, and shows the measurement result of the heat cycle frequency | count dependence degree of the center wavelength in 60 degreeC.

符号の説明Explanation of symbols

1…FBG、2…光ファイバ、3…グレーティング部、4…負膨張基材、5…接着剤、10A〜10C…温度補償型FBG、11…FRP基材。   DESCRIPTION OF SYMBOLS 1 ... FBG, 2 ... Optical fiber, 3 ... Grating part, 4 ... Negative expansion base material, 5 ... Adhesive, 10A-10C ... Temperature compensation type FBG, 11 ... FRP base material.

Claims (6)

光ファイバの一部にグレーティング部が形成され、該グレーティング部を含む光ファイバが基材に固定された光ファイバブラッググレーティングにおいて、
異なる負の線膨張係数を有する2種類以上の負膨張繊維を組み合わせて含む基材にグレーティング部を含む光ファイバが固定されたことを特徴とする温度補償型光ファイバブラッググレーティング。
In an optical fiber Bragg grating in which a grating part is formed in a part of an optical fiber, and the optical fiber including the grating part is fixed to a base material,
A temperature-compensated optical fiber Bragg grating, wherein an optical fiber including a grating portion is fixed to a base material including a combination of two or more types of negative expansion fibers having different negative linear expansion coefficients .
負膨張繊維が2種類であり、これらの負膨張繊維の線膨張係数の差が5×10−6以下であることを特徴とする請求項1に記載の温度補償型光ファイバブラッググレーティング。 2. The temperature-compensated optical fiber Bragg grating according to claim 1, wherein there are two types of negative expansion fibers, and the difference between the linear expansion coefficients of these negative expansion fibers is 5 × 10 −6 or less. 2種類の負膨張繊維の線膨張係数がそれぞれ−10×10−6、−6×10−6であることを特徴とする請求項1又は2に記載の温度補償型光ファイバブラッググレーティング。 Two negative linear expansion coefficient of the expansion fiber -10 × 10 -6, respectively, the temperature-compensated optical fiber Bragg grating according to claim 1 or 2, characterized in that it is -6 × 10 -6. 2種類の負膨張繊維が超高分子量ポリエチレン繊維とポリパラフェニレンベンゾビスオキサゾール繊維であることを特徴とする請求項1〜3のいずれかに記載の温度補償型光ファイバブラッググレーティング。  The temperature-compensated optical fiber Bragg grating according to any one of claims 1 to 3, wherein the two types of negative expansion fibers are an ultrahigh molecular weight polyethylene fiber and a polyparaphenylene benzobisoxazole fiber. 基材が2種類の負膨張繊維を樹脂で固定したFRP基材であることを特徴とする請求項1〜4のいずれかに記載の温度補償型光ファイバブラッググレーティング。  The temperature-compensated optical fiber Bragg grating according to any one of claims 1 to 4, wherein the base material is an FRP base material in which two types of negative expansion fibers are fixed with a resin. 2種類の負膨張繊維を固定する樹脂がビニルエステル樹脂であることを特徴とする請求項5に記載の温度補償型光ファイバブラッググレーティング。  6. The temperature-compensated optical fiber Bragg grating according to claim 5, wherein the resin for fixing the two types of negative expansion fibers is a vinyl ester resin.
JP2008218412A 2008-08-27 2008-08-27 Temperature compensated optical fiber Bragg grating Expired - Fee Related JP5097646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218412A JP5097646B2 (en) 2008-08-27 2008-08-27 Temperature compensated optical fiber Bragg grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218412A JP5097646B2 (en) 2008-08-27 2008-08-27 Temperature compensated optical fiber Bragg grating

Publications (2)

Publication Number Publication Date
JP2010054715A JP2010054715A (en) 2010-03-11
JP5097646B2 true JP5097646B2 (en) 2012-12-12

Family

ID=42070725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218412A Expired - Fee Related JP5097646B2 (en) 2008-08-27 2008-08-27 Temperature compensated optical fiber Bragg grating

Country Status (1)

Country Link
JP (1) JP5097646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843668B2 (en) * 2012-01-23 2016-01-13 株式会社豊田自動織機 Optical fiber for sensor and power device monitoring system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448415B2 (en) * 2004-09-08 2010-04-07 株式会社フジクラ Fiber grating type optical element
JP4626535B2 (en) * 2006-02-22 2011-02-09 日立電線株式会社 Tape optical fiber cable

Also Published As

Publication number Publication date
JP2010054715A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
Fan et al. Humidity sensor based on a graphene oxide-coated few-mode fiber Mach-Zehnder interferometer
Dong et al. Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings
CA2353452C (en) Fused tension-based fiber grating pressure sensor
EP2597500A1 (en) Polarization maintaining fiber and optical fiber sensor using same
Zhang et al. Temperature-independent FBG-type torsion sensor based on combinatorial torsion beam
US20120044971A1 (en) Polarization-maintaining fiber and optical fiber sensor using same
Zubel et al. Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches
Htein et al. Bragg gratings in two-core rectangular fiber for discrimination of curvature, strain, and temperature measurements
Dong et al. Single core-offset Mach-Zehnder interferometer coated with PVA for simultaneous measurement of relative humidity and temperature
CN108318060B (en) 2-micron-waveband three-parameter optical fiber sensor based on inclined optical fiber Bragg grating
Dash et al. Fabry–Perot cavity-based contact force sensor with high precision and a broad operational range
JP6864375B2 (en) Fiber optic sensor
Wei et al. High pressure sensor based on fiber Bragg grating and carbon fiber laminated composite
Dou et al. High-temperature high-sensitivity AlN-on-SOI Lamb wave resonant strain sensor
Chen et al. Nano-optomechanical resonators for sensitive pressure sensing
JP5097646B2 (en) Temperature compensated optical fiber Bragg grating
Ranjbar-Naeini et al. Measurement of milli-Newton axial force and temperature using a hybrid microsilica sphere Fabry–Perot sensor
Sun et al. A new sensor for simultaneous measurement of strain and temperature
Cheng et al. Humidity and temperature sensor based on GOQDs-PVA coated tapered no-core fiber combined with FBG
Bélanger et al. Long-term stable device for tuning fiber Bragg gratings
Zhang et al. Temperature-insensitive optical fiber strain sensor fabricated by two parallel connection Fabry–Perot interferometers with air-bubbles
Vorathin et al. Temperature-insensitive pressure transducer based on reflected broadened spectrum with enhanced sensitivity
Parmentier et al. Substrate-strain-induced tunability of dense wavelength-division multiplexing thin-film filters
JP6736044B2 (en) Strain sensor and jig for mounting the strain sensor
Yao et al. Compact tri-FFPI sensor for measurement of ultrahigh temperature, vibration acceleration, and strain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees