JP5097360B2 - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
JP5097360B2
JP5097360B2 JP2006135554A JP2006135554A JP5097360B2 JP 5097360 B2 JP5097360 B2 JP 5097360B2 JP 2006135554 A JP2006135554 A JP 2006135554A JP 2006135554 A JP2006135554 A JP 2006135554A JP 5097360 B2 JP5097360 B2 JP 5097360B2
Authority
JP
Japan
Prior art keywords
fuel cell
cell stack
fuel
gas
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006135554A
Other languages
Japanese (ja)
Other versions
JP2007305539A (en
Inventor
仁英 大嶋
正明 小畑
良雄 松崎
顕二郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Tokyo Gas Co Ltd
Original Assignee
Kyocera Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Tokyo Gas Co Ltd filed Critical Kyocera Corp
Priority to JP2006135554A priority Critical patent/JP5097360B2/en
Publication of JP2007305539A publication Critical patent/JP2007305539A/en
Application granted granted Critical
Publication of JP5097360B2 publication Critical patent/JP5097360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池セルを複数配列してなる燃料電池スタックに関し、特に固体電解質形燃料電池セルの燃料電池スタックに関する。   The present invention relates to a fuel cell stack formed by arranging a plurality of fuel cells, and more particularly to a fuel cell stack of a solid oxide fuel cell.

近年、次世代エネルギーとして、燃料電池セルを複数接続されてなるセルスタックを、収納容器に収容した燃料電池が種々提案されている。このような燃料電池セルとしては、固体高分子形燃料電池セル、リン酸形燃料電池セル、溶融炭酸塩形燃料電池セル、固体電解質形燃料電池セルなど、各種のものが知られている。とりわけ、固体電解質形燃料電池セルは、発電効率が高く、また、作動温度が700℃〜1000℃と高いため、その排熱を利用ができるなどの利点を有しており、研究開発が推し進められている。   In recent years, various types of fuel cells in which a cell stack formed by connecting a plurality of fuel cells is accommodated in a storage container have been proposed as next-generation energy. As such a fuel cell, various types such as a polymer electrolyte fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, and a solid electrolyte fuel cell are known. In particular, solid electrolyte fuel cells have advantages such as high power generation efficiency and high operating temperatures of 700 ° C to 1000 ° C, so that the exhaust heat can be used, and research and development are being promoted. ing.

固体電解質形燃料電池セルは、例えば、燃料極層の表面に固体電解質層、空気極層を順次形成して構成されており、燃料極層側に燃料(水素)を流し、空気極層側に空気(酸素)を流して600〜1000℃程度で発電される。
このように固体電解質形燃料電池セルは、2種のガスを用い、しかも高温に曝されるため、高温においてもガスが漏出しないように、ガスの供給管やセルにおけるシール性について種々の改良がなされている。例えば、従来、合金製のガスマニホールドの側面に合金製のガス供給管を接合し、上面が開口した直方体形状のガスマニホールド本体の前記開口部に、セルスタックの支持板を接合したセルスタック装置が知られている(例えば、特許文献1参照)。
この燃料電池では、セルスタックは、多数のセル挿入孔が形成された合金製支持板の前記セル挿入孔に燃料電池セルを挿入し、その隙間にガラス材料を充填し、支持板が気密にガスシールされた状態でガスマニホールドに接合されていた。
このような燃料電池では、例えば、水素等の燃料ガスがガス供給管を介してガスマニホールド内に供給され、この燃料ガスが、セルスタックを構成する燃料電池セル内部に形成されたガス通路に供給され、一方で、燃料電池セルの外部には空気が供給され、固体電解質層が燃料極層と空気極層で挟持された発電部において発電することができる。
また、前記合金製のマニホールドを用いないで、燃料電池セルの端部にガスを供給する孔をあけ、孔同士をリング形状のスペーサーを介して接続し、ガラス等のシール部材にて接着、封止した燃料電池スタックが提案されている(特許文献2参照)。このような燃料電池スタックでは、例えば、水素等の燃料ガスがスペーサー内に供給され、この燃料ガスが、セルスタックを構成する燃料電池セル内部に形成されたガス通路に供給され、一方で、燃料電池セルの外部には空気が供給され、固体電解質層が燃料極層と空気極層で挟持された発電部において発電することができる。
The solid electrolyte fuel cell is configured by, for example, sequentially forming a solid electrolyte layer and an air electrode layer on the surface of the fuel electrode layer, and flowing fuel (hydrogen) to the fuel electrode layer side, Electric power is generated at about 600 to 1000 ° C. by flowing air (oxygen).
As described above, since the solid oxide fuel cell uses two kinds of gas and is exposed to high temperature, various improvements have been made to the sealing performance in the gas supply pipe and the cell so that the gas does not leak even at high temperature. Has been made. For example, conventionally, a cell stack apparatus in which an alloy gas supply pipe is joined to the side surface of an alloy gas manifold, and a support plate of the cell stack is joined to the opening of a rectangular parallelepiped gas manifold body having an upper surface opened. It is known (see, for example, Patent Document 1).
In this fuel cell, the cell stack is configured such that a fuel cell is inserted into the cell insertion hole of an alloy support plate in which a number of cell insertion holes are formed, a glass material is filled in the gap, and the support plate is gastight. It was joined to the gas manifold in a sealed state.
In such a fuel cell, for example, a fuel gas such as hydrogen is supplied into a gas manifold via a gas supply pipe, and this fuel gas is supplied to a gas passage formed inside the fuel cell constituting the cell stack. On the other hand, air is supplied to the outside of the fuel cell, and power can be generated in the power generation unit in which the solid electrolyte layer is sandwiched between the fuel electrode layer and the air electrode layer.
Also, without using the alloy manifold, a hole for supplying gas is formed at the end of the fuel cell, the holes are connected to each other through a ring-shaped spacer, and bonded and sealed with a sealing member such as glass. A stopped fuel cell stack has been proposed (see Patent Document 2). In such a fuel cell stack, for example, a fuel gas such as hydrogen is supplied into the spacer, and this fuel gas is supplied to a gas passage formed inside the fuel cell constituting the cell stack, Air is supplied to the outside of the battery cell, and power can be generated in a power generation unit in which the solid electrolyte layer is sandwiched between the fuel electrode layer and the air electrode layer.

特開2005−216620号公報JP 2005-216620 A 特開2006−79974号公報JP 2006-79974 A

しかしながら、上記した特許文献1に開示された燃料電池では、合金製支持板のセル挿入孔に燃料電池セルを挿入し、その隙間にガラス材料を充填し、燃料電池セルをガラス材料により合金製支持板に気密に接合していたため、合金製支持板とガラス材料との熱膨張係数差により、作製時や発電時においてガラス材料にクラックや剥離等が生じるおそれがあり、ガスマニホールドのシール性が未だ低いという問題があった。
このため、複数の燃料電池セルの軸長方向一端部をガラス材料により一体化し、複数の燃料電池セルをガラス材料からなる矩形状のセル支持板に立設してセルスタックを形成し、このセルスタックを、上面が開口した合金製マニホールドの開口部にガラス材料により接合することも考えられるが、この場合においても、ガラス材料からなるセル支持板と合金製マニホールドとの熱膨張係数差により、燃料電池作製時や発電時においてガラス材料からなるセル支持板にクラックや剥離等が生じるおそれがあり、ガスマニホールドのシール性および強度に問題がある。
However, in the fuel cell disclosed in Patent Document 1 described above, the fuel cell is inserted into the cell insertion hole of the alloy support plate, the glass material is filled in the gap, and the fuel cell is supported by the glass material with the alloy. Because it was airtightly bonded to the plate, there is a risk that the glass material may crack or peel off during manufacturing or power generation due to the difference in thermal expansion coefficient between the alloy support plate and the glass material, and the gas manifold still has a sealing property There was a problem of being low.
For this reason, one end in the axial length direction of a plurality of fuel cells is integrated with a glass material, and a plurality of fuel cells are erected on a rectangular cell support plate made of a glass material to form a cell stack. It is conceivable that the stack is joined to the opening of the alloy manifold with the upper surface opened by a glass material. In this case, however, the fuel expansion is caused by the difference in the thermal expansion coefficient between the cell support plate made of the glass material and the alloy manifold. There is a risk that cracks or peeling will occur on the cell support plate made of a glass material during battery production or power generation, and there is a problem in the sealing performance and strength of the gas manifold.

一方、上記した特許文献2に開示された燃料電池スタックでは、リング形状のスペーサーと燃料電池セルとの接合部に隙間などが形成しやすく、そのためガスリークの発生や接合強度が弱くなり破損しやすいといった問題があった。
本発明の目的は、金属部材や接続用のリング等のスペーサーを用いることなく、ガスの耐リーク性に優れるとともに、強度にも優れた燃料電池スタックを提供することにある。
On the other hand, in the fuel cell stack disclosed in Patent Document 2 described above, a gap or the like is likely to be formed at the joint between the ring-shaped spacer and the fuel cell, and therefore, gas leaks are generated and the joint strength is weakened and easily damaged. There was a problem.
An object of the present invention is to provide a fuel cell stack that is excellent in gas leakage resistance and excellent in strength without using a spacer such as a metal member or a connecting ring.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、燃料電池スタックを構成する燃料電池セルのガスを供給する部位をシール部材により一体化して被覆封止することにより、耐リーク性に優れるとともに、強度にも優れる燃料電池スタックを提供できることを見出して、本発明を完成させるに至った。   As a result of intensive research to solve the above-mentioned problems, the present inventors have integrated a sealing member to cover and supply the gas supply portion of the fuel cell constituting the fuel cell stack. The present invention has been completed by finding that a fuel cell stack having excellent properties and strength can be provided.

即ち、本発明における燃料電池スタックは、以下の構成を有する。
(1)細長基板状の燃料電池セルの長手方向の一端部に、該燃料電池セルの一方の面から他方の面まで貫通した貫通孔を有し、前記貫通孔が一方向に並ぶように複数の前記燃料電池セルを束ねた燃料電池スタックにおいて、前記複数の燃料電池セルの内部にはそれぞれ長手方向にガス流路を有するとともに、前記複数の燃料電池セルの貫通孔を有する一端部がシール部材にて一体化され被覆封止されており、前記シール部材の内部に前記貫通孔同士が連通したガス供給路を形成し、該ガス供給路に前記ガス流路が連通していることを特徴とする燃料電池スタック。
(2)前記燃料電池セルの一端部底面まで前記シール部材にて被覆封止されていることを特徴とする(1)に記載の燃料電池スタック。
)ガス導入パイプが、前記ガス供給路に連通するように前記シール部材に接合されていることを特徴とする(または(2)に記載の燃料電池スタック。
)複数の前記燃料電池セルが、長手方向の向きを交互に変えて配設されていることを特徴とする(1)〜()のいずれかに記載の燃料電池スタック。
)前記シール部材は、無機材料からなることを特徴とする(1)〜()のいずれかに記載の燃料電池スタック。
円形の前記貫通孔から、発電する領域を介した長手方向の他方の先端部までのガス流路の距離がそれぞれ略同一になるように、前記他方の先端部が膨出した形状を有することを特徴とする(1)〜()のいずれかに記載の燃料電池スタック。
That is, the fuel cell stack in the present invention has the following configuration.
(1) A long substrate-like fuel cell unit has a through hole penetrating from one surface of the fuel cell to the other surface at one end in the longitudinal direction, and the plurality of the through holes are arranged in one direction. In the fuel cell stack in which the fuel cells are bundled, the plurality of fuel cells each have a gas flow path in the longitudinal direction, and one end portion having the through holes of the plurality of fuel cells is a sealing member And a gas supply path in which the through holes communicate with each other is formed inside the seal member , and the gas flow path communicates with the gas supply path. And fuel cell stack.
(2) The fuel cell stack according to (1), wherein the fuel cell is covered and sealed with the seal member up to a bottom surface of one end portion of the fuel cell.
( 3 ) The fuel cell stack according to ( 1 ) or (2) , wherein a gas introduction pipe is joined to the seal member so as to communicate with the gas supply path.
( 4 ) The fuel cell stack according to any one of (1) to ( 3 ), wherein the plurality of fuel cells are arranged with their longitudinal directions alternately changed.
( 5 ) The fuel cell stack according to any one of (1) to ( 4 ), wherein the seal member is made of an inorganic material.
(6) from a substantially circular said through-hole, so that the distance of the gas flow path to the other longitudinal tip through the area of the power generation is substantially the same, respectively, the shape of the other tip portion is bulged The fuel cell stack according to any one of (1) to ( 5 ), comprising:

本発明の燃料電池スタックは、(1)〜()によれば、ガス供給にかかる部位がシール部材により一体化して被覆封止された構造であるため、シール部位におけるリークを防止できるとともに、強度にも優れ、信頼性および発電性能の良好な燃料電池スタックを提供できる。
上記()によれば、外部からのガスを導入するパイプはシール部材により被覆接合されているため、シール部位が耐リーク性に優れる。
上記()によれば、貫通孔が一方向に並ぶように複数の前記燃料電池セルを束ねる際、長手方向の向きを交互に変えて配設することにより、発電性能の向上した燃料電池スタックを効率よくコンパクトな容積に収容でき、単位体積当たりの出力を向上させることができる。
上記()によれば、シール部材が無機材質からなるため、シール部位が耐リーク性に優れるとともに、強度にも優れ、高い信頼性を得られる。
上記()によれば、燃料電池セル内のガス流路において、貫通孔の境界部分から、発電する領域を介した他方の先端部までのガス流路の距離を同一距離とすることにより、各ガス流路の圧損を等しくできるので、均一な流量を保持でき、発電性能を向上できる。
According to (1) to ( 2 ), the fuel cell stack according to the present invention has a structure in which a portion for gas supply is integrated and sealed by a sealing member, so that leakage at the sealing portion can be prevented. It is possible to provide a fuel cell stack that is excellent in strength, excellent in reliability and power generation performance.
According to the above ( 3 ), since the pipe for introducing the gas from the outside is covered and joined by the seal member, the seal portion is excellent in leak resistance.
According to the above ( 4 ), when the plurality of fuel cells are bundled so that the through holes are aligned in one direction, the fuel cell stack with improved power generation performance is arranged by alternately changing the direction in the longitudinal direction. Can be efficiently accommodated in a compact volume, and the output per unit volume can be improved.
According to the above ( 5 ), since the sealing member is made of an inorganic material, the sealing part is excellent in leak resistance, excellent in strength, and high reliability can be obtained.
According to the above ( 6 ), in the gas flow path in the fuel cell, by making the distance of the gas flow path from the boundary portion of the through hole to the other tip through the power generation region the same distance, Since the pressure loss of each gas flow path can be made equal, a uniform flow rate can be maintained and power generation performance can be improved.

本発明の燃料電池スタックの一実施形態について、図1および図2を参照して、説明する。図1は、本発明に係る燃料電池スタックの一形態を示すもので、燃料電池スタック10は、長手方向にガス流路41aを有する板状の固体電解質形燃料電池セル40を複数配列して、該燃料電池セル40の一端部をシール部材11で被覆し、立設固定して構成されている。なお、図1で燃料電池セル40は一部省略し簡略化して記載した。
燃料電池セル40は、例えば、断面が扁平状で、全体的に見て楕円柱状(中空平板型)であり、細長基板状とされており、その内部には複数のガス流路41aが長さ方向に貫通して形成されている。燃料電池セル40については後述する。
燃料電池スタック10は、燃料電池セル40を、その側面同士が対向するようにしてセル厚み方向に配列され、その燃料電池セル40間には、燃料電池セル40同士を直列に電気的に接続する集電部材14が配置されている。
一方、シール部材11は、絶縁性無機材料、例えば結晶化ガラスからなり、図1(b)に示すように、前記シール部材11内部には燃料電池セル40の一端部にある貫通孔12同士が円柱状の空間をなして連通しているガス供給路13が形成されている。ガス流路41aはガス供給路13と連通している。前記シール部材11の一方の側面は、前記ガス供給路13にガスを供給するガス導入パイプ15が接合されており、該ガス導入パイプ15は、パイプ部15bと、このパイプ部15bの先端に形成されたフランジ部15aからなり、フランジ部15aがシール部材11に接合されている。なお、フランジ部15aは前記シール部材11と同一材料もしくはガス導入パイプ15の構成部材とシール部材11との中間の熱膨張係数を有する材料により一体化して被覆封止されることが望ましい。
なお、フランジ部15aは必ずしも被覆されている必要はない。また、ガス導入パイプ15は耐熱性合金により形成するのが好ましいが、フランジ部15aをセラミックまたはガラス等の無機材料で形成することができ、この場合には、フランジ部15aをシール部材11に当接した状態で接合することができる。
An embodiment of the fuel cell stack of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 shows an embodiment of a fuel cell stack according to the present invention. A fuel cell stack 10 includes a plurality of plate-shaped solid electrolyte fuel cell cells 40 each having a gas flow path 41a in the longitudinal direction. One end of the fuel cell 40 is covered with a seal member 11 and is fixed upright. In FIG. 1, a part of the fuel cell 40 is omitted and simplified.
The fuel battery cell 40 has, for example, a flat cross section, an elliptical columnar shape (hollow flat plate type) as a whole, and an elongated substrate shape, and a plurality of gas flow paths 41a are long in the inside thereof. It is formed to penetrate in the direction. The fuel battery cell 40 will be described later.
In the fuel cell stack 10, the fuel cells 40 are arranged in the cell thickness direction so that the side surfaces thereof face each other, and the fuel cells 40 are electrically connected in series between the fuel cells 40. A current collecting member 14 is disposed.
On the other hand, the sealing member 11 is made of an insulating inorganic material, for example, crystallized glass. As shown in FIG. 1B, the through holes 12 at one end of the fuel cell 40 are formed inside the sealing member 11. A gas supply path 13 is formed which communicates in a cylindrical space. The gas flow path 41 a communicates with the gas supply path 13. A gas introduction pipe 15 for supplying gas to the gas supply path 13 is joined to one side surface of the seal member 11, and the gas introduction pipe 15 is formed at a pipe portion 15 b and a tip of the pipe portion 15 b. The flange portion 15 a is joined to the seal member 11. It is desirable that the flange portion 15a be integrally covered and sealed with the same material as the seal member 11 or a material having a thermal expansion coefficient intermediate between the constituent member of the gas introduction pipe 15 and the seal member 11.
The flange portion 15a is not necessarily covered. The gas introduction pipe 15 is preferably formed of a heat resistant alloy, but the flange portion 15a can be formed of an inorganic material such as ceramic or glass. In this case, the flange portion 15a is abutted against the seal member 11. Can be joined in contact.

上記のように、本発明の燃料電池スタック10では、ガス導入パイプ15から導入されたガスは、ガス供給路13を介して各セルのガス流通路41aを通過し、余剰のガス及び発電により生じたガスが上端から排出される。ガス供給に係る部位がシール部材11により一体化して被覆封止されマニホールドを形成しているため、ガスの耐リーク性が高く、また強度においても優れており、高信頼性の燃料電池スタック10が得られる。また、金属部材や接続用リングを使用することなく、低コストで燃料電池スタック10を製造することができる。   As described above, in the fuel cell stack 10 of the present invention, the gas introduced from the gas introduction pipe 15 passes through the gas flow path 41a of each cell via the gas supply path 13, and is generated by surplus gas and power generation. Gas is discharged from the top. Since the gas supply part is integrally covered and sealed by the seal member 11 to form a manifold, the gas leakage resistance is high and the strength is excellent, and the highly reliable fuel cell stack 10 is provided. can get. Further, the fuel cell stack 10 can be manufactured at a low cost without using a metal member or a connection ring.

(製造方法)
以上のように構成された燃料電池スタック10は、図2に示すようにして作製することができる。なお、図2では、燃料電池セル40の一部を省略し、また、集電部材14も省略した。
先ず、図2(a)に示すように、上面が開口した有底直方体状のシール部材11の成形型31を準備する。この成形型31内に無機材質からなるペースト、例えばガラスペーストを流し込み、自然放置、あるいは乾燥機にて100℃程度の温度で乾燥させ、所定の厚さの接合層11aを形成しておく。流し込んだガラスペーストを仮焼しても良い。また、ガラスペーストを流し込む代わりに板状ガラスを配置しても良い。
(Production method)
The fuel cell stack 10 configured as described above can be manufactured as shown in FIG. In FIG. 2, a part of the fuel cell 40 is omitted, and the current collecting member 14 is also omitted.
First, as shown to Fig.2 (a), the shaping | molding die 31 of the bottomed rectangular parallelepiped shaped sealing member 11 with which the upper surface opened is prepared. A paste made of an inorganic material, such as glass paste, is poured into the mold 31 and allowed to stand naturally or dried at a temperature of about 100 ° C. with a dryer to form a bonding layer 11a having a predetermined thickness. The poured glass paste may be calcined. Moreover, you may arrange | position plate-shaped glass instead of pouring glass paste.

次に、燃料電池セル40下端部の所定の位置に所定の径の貫通孔12を形成した複数の燃料電池セル40を、前記貫通孔12が一方向に並ぶように、かつ前記燃料電池セル40間に集電部材14を配置して束ね、それらを貫通孔12のある下端部を下にして前記成形型31に入れる。成形型31の側壁には、貫通孔12とほぼ同じ大きさの貫通孔29が形成されており、成形型31の外側からこの貫通孔29および燃料電池セル40の貫通孔12に、貫通孔12、29とほぼ同一寸法および形状の中子30を嵌入する。このとき、中子30の一方の先端は前記成形型31の側壁内面から1〜10mm離れた位置になるよう嵌入する。こうすることにより、後に中子30を成形型31の外側に引き抜いたときに形成される空間には、一方の端部に閉塞部が、他の一方の端部に開口部が形成される。   Next, a plurality of fuel cells 40 each having a through hole 12 having a predetermined diameter formed at a predetermined position at the lower end of the fuel cell 40 are arranged so that the through holes 12 are aligned in one direction and the fuel cell 40 The current collecting member 14 is arranged and bundled between them, and they are put into the mold 31 with the lower end portion having the through hole 12 facing down. A through hole 29 having substantially the same size as that of the through hole 12 is formed on the side wall of the mold 31, and the through hole 12 extends from the outside of the mold 31 to the through hole 29 and the through hole 12 of the fuel cell 40. 29, a core 30 having substantially the same size and shape as that of 29 is inserted. At this time, one end of the core 30 is inserted so as to be located at a position 1 to 10 mm away from the inner surface of the side wall of the mold 31. By doing so, a closed portion is formed at one end and an opening is formed at the other end in the space formed when the core 30 is later pulled out of the mold 31.

前記成形型31は、例えば、セラミック繊維成形体のように、スラリーの溶媒を吸収し、かつ濡れ性が悪い材料にて形成されており、また、中子30も同様の材料にて形成されている。中子30は、貫通孔12同士が連通しているガス供給路13の空間を形成するものであり、前記ガス供給路13の内部空間の形状は、貫通孔12と同じ形状をした中子30の形状にて決定される。例えば、中子30が円柱状であれば、この中子30を燃料電池セル40の貫通孔12に嵌入し、スラリーを流し込むことにより、前記ガス供給路13の内部空間も円柱状となる。   The mold 31 is formed of a material that absorbs the solvent of the slurry and has poor wettability, such as a ceramic fiber molded body, and the core 30 is also formed of the same material. Yes. The core 30 forms a space of the gas supply path 13 in which the through holes 12 communicate with each other. The shape of the internal space of the gas supply path 13 is the same as that of the through hole 12. It is determined by the shape. For example, if the core 30 is cylindrical, the inner space of the gas supply path 13 is also cylindrical by inserting the core 30 into the through hole 12 of the fuel cell 40 and pouring slurry.

そして、この後、図2(b)に示すように、成形型31と中子30との間に、絶縁性無機材料からなるシール部材11を形成する。例えば、結晶化ガラスまたはセラミック粉末と、有機バインダ、溶媒等の有機成分を含有するスラリーを、少なくとも中子30の上面が覆われるまで流し込み、自然放置したり、あるいは乾燥機にて100℃程度の温度で乾燥して溶媒を揮発させた後、焼成する。焼成温度は、セラミック粉末の場合には、セラミックの焼結温度以上で焼成し、ガラス粉末の場合には、ガラス軟化点以上の温度、結晶化ガラス粉末では結晶化温度以上の温度で焼成する。   Thereafter, as shown in FIG. 2B, the sealing member 11 made of an insulating inorganic material is formed between the mold 31 and the core 30. For example, a slurry containing crystallized glass or ceramic powder and an organic component such as an organic binder and a solvent is poured until at least the upper surface of the core 30 is covered, and is allowed to stand naturally, or about 100 ° C. in a dryer. After drying at a temperature to volatilize the solvent, baking is performed. In the case of a ceramic powder, the firing temperature is fired at a temperature equal to or higher than the sintering temperature of the ceramic. In the case of a glass powder, the fire is performed at a temperature equal to or higher than the glass softening point.

その後、図2(c)に示すように、中子30をガス供給路13より引き抜いた後、接合層11aを残して成形型31を取り外し、ガス供給路13が開口した側面にフランジ部15aを接合する。このフランジ部15aをシール部材11と同じ材質の無機材料で厚み0.5〜5mmの厚さで一体的に被覆封止することもできる。そして、その後乾燥させて、焼成する。
なお、成形体の取り扱いが可能になる程度に仮焼した後、中子30を引きだし、成形型31を取り外し、この後に焼成しても良い。
Thereafter, as shown in FIG. 2C, after the core 30 is pulled out from the gas supply path 13, the molding die 31 is removed leaving the bonding layer 11a, and the flange portion 15a is attached to the side surface where the gas supply path 13 is opened. Join. The flange portion 15a can be integrally covered and sealed with an inorganic material of the same material as the seal member 11 with a thickness of 0.5 to 5 mm. Then, it is dried and fired.
In addition, after calcining to such an extent that the molded body can be handled, the core 30 may be pulled out, the molding die 31 may be removed, and then the firing may be performed.

即ち、ガス供給路13が開口した側面に合致する形状のフランジ部15aを有するガス導入パイプ15を準備する。該ガス導入パイプ15は、セラミックまたはガラス等からなるフランジ部15aに設けた貫通孔内に耐熱金属製のパイプ部15bを挿通して構成してもよい。なお、該パイプ部15bは燃料電池セル40もしくはシール部材11との熱膨張係数が近い材料でかつ高強度の無機材料で形成することができる。
そして、図1(c)に示すように、ガス供給路13が開口した側面に、前記フランジ部15aを当接し、フランジ部15aをシール部材11と同じ材質のスラリーで被覆封止する。そして、乾燥させて焼成し、本発明の燃料電池スタック40を作製することができる。
That is, the gas introduction pipe 15 having the flange portion 15a having a shape matching the side surface where the gas supply path 13 is opened is prepared. The gas introduction pipe 15 may be configured by inserting a pipe portion 15b made of a heat-resistant metal into a through hole provided in a flange portion 15a made of ceramic or glass. The pipe portion 15b can be formed of a material having a thermal expansion coefficient close to that of the fuel battery cell 40 or the seal member 11 and a high-strength inorganic material.
Then, as shown in FIG. 1C, the flange portion 15 a is brought into contact with the side surface where the gas supply path 13 is opened, and the flange portion 15 a is covered and sealed with the same material slurry as the seal member 11. And it can be made to dry and bake and the fuel cell stack 40 of this invention can be produced.

なお、シール部材11の材質としては、絶縁性無機材料が好ましく、シール性と耐高温変形性の点から、結晶化ガラスが好ましい。この場合、焼成は結晶化ガラスの軟化点温度以上で加熱して成形型31に合わせた一体成形とシール機能を持たせた後、結晶化温度以上として結晶化し、除冷をして得る。使用する結晶化ガラスとしては、燃料電池スタック10との熱膨張率が近いものであれば特に制限するものでないが、耐高温性の点で、シリカ系の結晶化ガラスを好適に用いることができる。
シール部材11の熱膨張係数は、燃料電池セル中で占める割合が大きい多孔質支持基板41の熱膨張係数に対して±1ppm以内とすることが望ましい。このように、熱膨張係数を燃料電池セルに近づけるという点では、シール部材11を構成する結晶化ガラスとして、多孔質支持基板41を構成する材料を10〜30質量%添加することが望ましい。
In addition, as a material of the sealing member 11, an insulating inorganic material is preferable, and crystallized glass is preferable from the viewpoint of sealing performance and high temperature deformation resistance. In this case, the firing is performed by heating at a temperature equal to or higher than the softening point temperature of the crystallized glass to provide integral molding and a sealing function in accordance with the mold 31 and then crystallizing at a temperature equal to or higher than the crystallization temperature and removing the cooling. The crystallized glass to be used is not particularly limited as long as it has a thermal expansion coefficient close to that of the fuel cell stack 10, but silica-based crystallized glass can be suitably used in terms of high temperature resistance. .
The thermal expansion coefficient of the sealing member 11 is preferably within ± 1 ppm with respect to the thermal expansion coefficient of the porous support substrate 41 that occupies a large proportion in the fuel cell. Thus, in terms of bringing the coefficient of thermal expansion closer to the fuel cell, it is desirable to add 10 to 30 mass% of the material constituting the porous support substrate 41 as the crystallized glass constituting the seal member 11.

また、成形型31および中子30の材質としては、上記したように、シール部材11のスラリーの溶媒が吸収され易いもので、前記スラリーとの濡れ性が悪い材料からなるものが望ましい。溶媒が吸収されやすいと、スラリー中の原料粉の充填が良くなり、乾燥、焼成時の割れが起こりにくく、強度が強く、ガスシール性に優れたシール部材11が得られるからである。また、濡れ性が悪いと、乾燥、焼成時の収縮に伴う拘束力が弱くなるため、割れ難い。このような性質を有するものとしては、セラミック製断熱材が好ましい。このセラミック製断熱材は耐高温性にも優れ、スラリーと共に焼成が可能で、焼成後は簡単に取り除くことができるため、工程も容易となる。セラミック製断熱材としては、加工の容易さ、コストの点からアルミナ系繊維、あるいはアルミナ−シリカ系繊維からなる断熱材が好適である。   Further, as described above, the material of the mold 31 and the core 30 is preferably made of a material that can easily absorb the solvent of the slurry of the seal member 11 and has poor wettability with the slurry. This is because if the solvent is easily absorbed, the raw material powder in the slurry is well filled, cracking during drying and firing hardly occurs, the strength is high, and the sealing member 11 having excellent gas sealing properties can be obtained. In addition, when the wettability is poor, the restraining force accompanying the shrinkage during drying and firing becomes weak, so that it is difficult to break. A ceramic heat insulating material is preferable as such a material. This ceramic heat insulating material is also excellent in high temperature resistance, can be fired together with the slurry, and can be easily removed after firing, thus facilitating the process. As the ceramic heat insulating material, a heat insulating material made of alumina fiber or alumina-silica fiber is preferable from the viewpoint of ease of processing and cost.

(他の実施形態)
本発明の燃料電池スタックの他の実施形態について、図を参照して、説明する。図3は、本発明に係る燃料電池スタックの他の形態を示すものである。前記燃料電池スタック10は、長手方向にガス流路41aを有する板状の固体電解質形燃料電池セル40を複数配列して、前記貫通孔12が一方向に並ぶように複数の前記燃料電池セル40を束ねる際、図3に示すように、長手方向の向きを交互に変えて配設し、複数の前記貫通孔12を有する一端部がシール部材11にて一体化して被覆封止されて構成されている。なお、図3で燃料電池セル40は一部省略し簡略化して記載した。
(Other embodiments)
Another embodiment of the fuel cell stack of the present invention will be described with reference to the drawings. FIG. 3 shows another embodiment of the fuel cell stack according to the present invention. The fuel cell stack 10 includes a plurality of plate-shaped solid electrolyte fuel cells 40 having gas flow paths 41a in the longitudinal direction, and the plurality of fuel cells 40 so that the through holes 12 are aligned in one direction. As shown in FIG. 3, the longitudinal direction is alternately changed, and one end portion having a plurality of the through holes 12 is integrated and sealed with a seal member 11 as shown in FIG. ing. In FIG. 3, some of the fuel cells 40 are omitted and simplified.

即ち、シール部材11内のガス供給路13を中心として、隣接するセル40がそれぞれ反対側に向けて延設され突出している。上記のように、燃料電池セル40を長手方向の向きを交互に変えて配設することにより、発電性能の向上した燃料電池スタックを効率よくコンパクトな容積に収容できる。なお、前記長手方向の一方の向きと他方の向きとがなす角度は、特に限定されるものでないが、180度であるのがよい。
また、前記燃料電池スタック10は、上記した一実施形態と同様の方法にて作製することができる。
例えば、予め燃料電池セル40のガス流路41a一端部へのシール部材11の侵入を防止するため焼成にて消失するパラフィンワックス等の有機物を充填する。燃料電池セル40の貫通孔12に予め中子30を嵌入する。そして、それらを燃料電池セル40の厚み分の切り込みを燃料電池セル40の挿入位置に合わせて形成された有底成形型31に、切り込みの底がセル側面R部に接触するまで挿入する。そしてシール部材11のスラリーを燃料電池セル40側面の他の一方のR部上面を覆うまで流し込む。
That is, with the gas supply path 13 in the seal member 11 as the center, the adjacent cells 40 extend and protrude toward the opposite side. As described above, by arranging the fuel cells 40 with the longitudinal directions alternately changed, the fuel cell stack with improved power generation performance can be efficiently accommodated in a compact volume. The angle formed by one direction of the longitudinal direction and the other direction is not particularly limited, but is preferably 180 degrees.
The fuel cell stack 10 can be manufactured by the same method as in the above-described embodiment.
For example, in order to prevent the sealing member 11 from entering one end of the gas flow path 41a of the fuel battery cell 40, an organic substance such as paraffin wax that disappears by firing is filled in advance. The core 30 is inserted into the through hole 12 of the fuel cell 40 in advance. Then, they are inserted into a bottomed mold 31 formed by making a cut corresponding to the thickness of the fuel battery cell 40 in accordance with the insertion position of the fuel battery cell 40 until the bottom of the cut comes into contact with the cell side surface R portion. Then, the slurry of the seal member 11 is poured until the other one upper surface of the R portion of the side surface of the fuel cell 40 is covered.

(燃料電池セル)
本発明で用いられる燃料電池セル40について、図を参照して、説明する。燃料電池セル40は、図5に示すように中空平板状であり、断面が扁平状で、全体的に見て棒状で細長基板状の多孔質支持基板(支持体)41を備えている。支持基板41の内部には、適当な間隔で4個の燃料ガス流路41a(ガス流路を形成する)が長さ方向(軸長方向)に貫通して形成されており、燃料電池セル40は、この支持基板41上に各種の部材が設けられた構造を有している。このような燃料電池セル40の複数を、図1に示すように、一列に配列して燃料電池スタック10を形成することができる。
(Fuel battery cell)
The fuel cell 40 used in the present invention will be described with reference to the drawings. As shown in FIG. 5, the fuel battery cell 40 has a hollow flat plate shape, has a flat cross section, and includes a porous support substrate (support) 41 having a rod shape and an elongated substrate shape as a whole. Inside the support substrate 41, four fuel gas passages 41a (forming gas passages) are formed penetrating in the length direction (axial direction) at appropriate intervals. Has a structure in which various members are provided on the support substrate 41. A plurality of such fuel cells 40 can be arranged in a line as shown in FIG. 1 to form the fuel cell stack 10.

支持基板41は、平坦部Aと平坦部Aの両端の弧状部Bとからなっており、平坦部Aは主面を構成する。平坦部Aの両主面は互いにほぼ平行に形成され、平坦部Aの一方の主面と両側の弧状部Bを覆うように燃料極層42が設けられ、さらに、この燃料極層42を覆うように、緻密質な固体電解質層43が積層されており、この固体電解質層43の上には、燃料極層42と対向するように、平坦部Aの一方側の主面に空気極層44が積層されている。燃料極層42及び固体電解質層43は、平坦部Aの一方側の主面に、ガス流路形成方向Gに連続して形成されている。
また、燃料極層42及び固体電解質層43が積層されていない平坦部Aの他方側の主面には、インターコネクタ45が形成されている。図5から明らかな通り、燃料極層42及び固体電解質層43は、インターコネクタ45の両サイドにまで延びており、支持基板41の表面が外部に露出しないように構成されている。
The support substrate 41 includes a flat portion A and arc-shaped portions B at both ends of the flat portion A, and the flat portion A constitutes a main surface. Both main surfaces of the flat portion A are formed substantially parallel to each other, and a fuel electrode layer 42 is provided so as to cover one main surface of the flat portion A and the arc-shaped portions B on both sides, and further covers the fuel electrode layer 42. Thus, a dense solid electrolyte layer 43 is laminated, and an air electrode layer 44 is formed on the main surface on one side of the flat portion A so as to face the fuel electrode layer 42 on the solid electrolyte layer 43. Are stacked. The fuel electrode layer 42 and the solid electrolyte layer 43 are continuously formed on the main surface on one side of the flat portion A in the gas flow path forming direction G.
Further, the other side of the major surface of the flat portion A of the fuel electrode layer 42 and the solid conductive Kaishitsu layer 43 is not laminated, the interconnector 45 is formed. As is clear from FIG. 5, the fuel electrode layer 42 and the solid electrolyte layer 43 extend to both sides of the interconnector 45 and are configured so that the surface of the support substrate 41 is not exposed to the outside.

上記のような構造の燃料電池セル40では、燃料極層42の空気極層44と対向している部分が燃料極として作動して発電する。即ち、空気極層44の外側に空気等の酸素含有ガスを流し、かつ支持基板41内のガス通路41aに燃料ガス(水素)を流し、所定の作動温度まで加熱することにより、空気極層44で下記式(1)の電極反応を生じ、また燃料極層42の燃料極となる部分では例えば下記式(2)の電極反応を生じることによって発電する。
空気極層44: 1/2O2+2e- → O2- …(1)
燃料極層42: O2-+H2 → H2O+2e- …(2)
かかる発電によって生成した電流は、支持基板41に取り付けられているインターコネクタ45を介して集電される。
In the fuel cell 40 having the above-described structure, the portion of the fuel electrode layer 42 facing the air electrode layer 44 operates as a fuel electrode to generate electric power. That is, an oxygen-containing gas such as air is allowed to flow outside the air electrode layer 44, and a fuel gas (hydrogen) is allowed to flow through the gas passage 41a in the support substrate 41 and heated to a predetermined operating temperature. Then, an electrode reaction of the following formula (1) is generated, and power is generated by generating an electrode reaction of the following formula (2), for example, in the portion that becomes the fuel electrode of the fuel electrode layer.
Air electrode layer 44: 1 / 2O 2 + 2e → O 2− (1)
Fuel electrode layer 42: O 2− + H 2 → H 2 O + 2e (2)
The current generated by such power generation is collected via an interconnector 45 attached to the support substrate 41.

なお、燃料電池セル40は、図4に示すように、円形の前記貫通孔12から、発電する領域を介した長手方向の他方の先端部までのガス流路41aの距離がそれぞれ略同一になるように、前記他方の先端部が膨出した形状を有するのが好ましい。このように燃料電池セル40内の複数のガス流路41aにおいて、貫通孔12の境界部分から、発電する領域を介した他方の先端部までのそれぞれのガス流路41aの距離を同一距離とすることにより、各ガス流路41aの圧損を等しくできるので、各ガス流路41aを流れるガスが均一な流量となり、発電性能を向上できる。 The fuel cell 40, as shown in FIG. 4, from substantially circular the through hole 12, the distance of the gas flow path 41a to the other longitudinal tip through the area of power generation, each substantially the same Thus, it is preferable that the other tip end has a bulging shape. As described above, in the plurality of gas flow paths 41a in the fuel cell 40, the distances of the gas flow paths 41a from the boundary portion of the through hole 12 to the other tip end portion through the power generation region are the same distance. Thus, the pressure loss of each gas flow path 41a can be made equal, so that the gas flowing through each gas flow path 41a has a uniform flow rate, and the power generation performance can be improved.

なお、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、上記形態では、図5に示したように、支持基板41の一方の主面に発電素子部が、他方の主面にインターコネクタ45を配設した、所謂縦縞型の燃料電池セル40を示したが、横縞型燃料電池セルであってもよい。即ち、前記支持基板41の表面に、内側電極としての燃料極層42、固体電解質43および外側電極としての空気極層44が順次積層された多層構造の発電素子部を、支持基板41の軸長方向に所定間隔をおいて複数形成することにより構成されている。互いに隣接する発電素子部は、それぞれインターコネクタにより電気的に直列に接続されている In addition, this invention is not limited to the said form, A various change is possible in the range which does not change the summary of invention. For example, in the above embodiment, as shown in FIG. 5, the so-called vertical stripe fuel cell 40 in which the power generation element portion is disposed on one main surface of the support substrate 41 and the interconnector 45 is disposed on the other main surface. Although shown, a horizontal stripe fuel cell may be used. That is, the power generation element portion having a multilayer structure in which the fuel electrode layer 42 as the inner electrode, the solid electrolyte 43 and the air electrode layer 44 as the outer electrode are sequentially laminated on the surface of the support substrate 41 is used as the axial length of the support substrate 41. It is configured by forming a plurality at predetermined intervals in the direction. The power generating element portions adjacent to each other are electrically connected in series by respective interconnectors .

幅26mm、厚み3mm、長さ150mmの縦縞形燃料電池セル40の下端部を切削することにより直径20mmの貫通孔12をあけた。次に、前記貫通孔12の部位を合わせて、貫通孔12をあけた10個の燃料電池セル40間に集電部材14をはさみ、積層して、燃料電池スタック10とした。このとき、前記貫通孔12には予め貫通孔12と同じ大きさに合わせた円柱状の中子30を挿入した。前記中子30は、アルミナ系繊維からなる断熱材を用いた。
一方、アルミナ系繊維からなる断熱材を用いて、縦100mm×横40mm×高さ50mmの容積を有する厚さ5mmの箱形状の成形型31を形成した。そしてその成形型31の底面に厚さ5mmになるよう硼珪酸ガラスからなるガラスペーストを流入し、乾燥させた。
次に、前記燃料電池セル40を積層した燃料電池スタック10を、貫通孔12部を下にして前記成形型31上に載置した。そして、ガラスペーストを中子30の上2mmの高さまで流し込み、乾燥させた後、900℃で焼成した。焼成後、前記成形型31および中子30を除去した。
A through hole 12 having a diameter of 20 mm was formed by cutting a lower end portion of the vertical stripe fuel cell 40 having a width of 26 mm, a thickness of 3 mm, and a length of 150 mm. Next, the current collecting member 14 was sandwiched between the 10 fuel cells 40 having the through holes 12 and the portions of the through holes 12 were aligned, and the fuel cell stack 10 was formed. At this time, a cylindrical core 30 having the same size as the through hole 12 was inserted into the through hole 12 in advance. For the core 30, a heat insulating material made of alumina fiber was used.
On the other hand, a box-shaped mold 31 having a thickness of 100 mm × width 40 mm × height 50 mm and having a thickness of 5 mm was formed using a heat insulating material made of alumina fiber. And the glass paste which consists of borosilicate glass was poured into the bottom face of the shaping | molding die 31 so that it might become thickness 5mm, and it was made to dry.
Next, the fuel cell stack 10 in which the fuel cells 40 were stacked was placed on the mold 31 with the through-hole 12 part facing down. And after pouring glass paste to the height of 2 mm above the core 30, it was baked at 900 degreeC after making it dry. After firing, the mold 31 and the core 30 were removed.

そして、前記成形型31および中子30を除去した後の燃料電池スタック10の開口部のある一端面に合わせて、耐熱合金製からなるパイプ部15bを接合したフランジ部15aをガラスシールにて接合し、フランジ部15aを硼珪酸ガラスにて被覆しそれを900℃で焼成して本発明の燃料電池スタック10を作製した。   Then, the flange portion 15a joined with the pipe portion 15b made of a heat-resistant alloy is joined with a glass seal in accordance with one end face with the opening of the fuel cell stack 10 after the mold 31 and the core 30 are removed. Then, the flange portion 15a was covered with borosilicate glass and fired at 900 ° C. to produce the fuel cell stack 10 of the present invention.

(耐リーク性)
得られた燃料電池セルスタック10の燃料電池セル40のシール材11に埋設された他方のガス流路41aをテープ等にて塞ぎ、ガス導入パイプ15より、20kPaに加圧された空気を導入した。そして、シール部分およびガス導入パイプ15接合部に石鹸水を塗布し、泡の発生の有無を目視により測定し、ガスリークのないことを確認した。
(Leakage resistance)
The other gas flow path 41a embedded in the sealing material 11 of the fuel battery cell 40 of the obtained fuel battery cell stack 10 was closed with tape or the like, and air pressurized to 20 kPa was introduced from the gas introduction pipe 15. . And soap water was apply | coated to the seal | sticker part and the gas introduction pipe 15 junction part, and the presence or absence of generation | occurrence | production of a bubble was measured visually and it confirmed that there was no gas leak.

本発明の一実施形態に係る燃料電池スタックであり、(a)は一部分解斜視図、(b)は断面図、(c)は(b)のX−X線断面図である。1 is a fuel cell stack according to an embodiment of the present invention, in which (a) is a partially exploded perspective view, (b) is a sectional view, and (c) is a sectional view taken along line XX of (b). 本発明に係る燃料電池スタックの製造工程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing process of the fuel cell stack based on this invention. 本発明の他の実施形態に係る燃料電池スタックの縦断面図である。It is a longitudinal cross-sectional view of the fuel cell stack which concerns on other embodiment of this invention. 本発明に係る燃料電池セルの一例を示す平面図である。It is a top view which shows an example of the fuel cell concerning this invention. 本発明で用いる燃料電池セルの一実施例を示す(a)横断面図および(b)縦断面図である。It is (a) horizontal cross-sectional view and (b) longitudinal cross-sectional view which show one Example of the fuel cell used by this invention.

符号の説明Explanation of symbols

10 燃料電池スタック
11 シール部材
11a 接合層
12 貫通孔
13 ガス供給路
14 集電部材
15 ガス導入パイプ
15a フランジ部
15b パイプ部
30 中子
31 成形型
40 燃料電池セル
41a ガス流路

DESCRIPTION OF SYMBOLS 10 Fuel cell stack 11 Seal member 11a Joining layer 12 Through-hole 13 Gas supply path 14 Current collection member 15 Gas introduction pipe 15a Flange part 15b Pipe part 30 Core 31 Molding die 40 Fuel cell 41a Gas flow path

Claims (6)

細長基板状の燃料電池セルの長手方向の一端部に、該燃料電池セルの一方の面から他方の面まで貫通した貫通孔を有し、前記貫通孔が一方向に並ぶように複数の前記燃料電池セルを束ねた燃料電池スタックにおいて、前記複数の燃料電池セルの内部にはそれぞれ長手方向にガス流路を有するとともに、前記複数の燃料電池セルの貫通孔を有する一端部がシール部材にて一体化され被覆封止されており、前記シール部材の内部に前記貫通孔同士が連通したガス供給路を形成し、該ガス供給路に前記ガス流路が連通していることを特徴とする燃料電池スタック。 A plurality of the fuels having a through hole penetrating from one surface of the fuel cell to the other surface at one end in the longitudinal direction of the elongated substrate-like fuel cell, and the through hole being aligned in one direction In the fuel cell stack in which the battery cells are bundled, each of the plurality of fuel cells has a gas flow path in the longitudinal direction, and one end portion having the through holes of the plurality of fuel cells is integrated with a seal member A gas supply path in which the through holes communicate with each other inside the seal member , and the gas flow path communicates with the gas supply path. Battery stack. 前記燃料電池セルの一端部底面まで前記シール部材にて被覆封止されていることを特徴とする請求項1記載の燃料電池スタック。   2. The fuel cell stack according to claim 1, wherein the fuel cell is covered and sealed with the sealing member up to a bottom surface of one end portion of the fuel cell. ガス導入パイプが、前記ガス供給路に連通するように前記シール部材に接合されていることを特徴とする請求項1または2記載の燃料電池スタック。 Gas introduction pipe, according to claim 1 or 2 fuel cell stack according to characterized in that it is joined to the sealing member so as to communicate with the gas supply passage. 複数の前記燃料電池セルが、長手方向の向きを交互に変えて配設されていることを特徴とする請求項1〜のいずれかに記載の燃料電池スタック。 The fuel cell stack according to any one of claims 1 to 3 , wherein the plurality of fuel cells are arranged by alternately changing the direction of the longitudinal direction. 前記シール部材は、無機材料からなることを特徴とする請求項1〜のいずれかに記載の燃料電池スタック。 The sealing member, the fuel cell stack according to any one of claims 1 to 4, characterized in that it consists of an inorganic material. 円形の前記貫通孔から、発電する領域を介した長手方向の他方の先端部までのガス流路の距離がそれぞれ略同一になるように、前記他方の先端部が膨出した形状を有することを特徴とする請求項1〜のいずれかに記載の燃料電池スタック。 A substantially circular said through-hole, so that the distance of the gas flow path to the other longitudinal tip through the area of the power generation is substantially the same, respectively, having a shape that the other tip portion is bulged the fuel cell stack according to any one of claims 1 to 5, wherein.
JP2006135554A 2006-05-15 2006-05-15 Fuel cell stack Active JP5097360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006135554A JP5097360B2 (en) 2006-05-15 2006-05-15 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006135554A JP5097360B2 (en) 2006-05-15 2006-05-15 Fuel cell stack

Publications (2)

Publication Number Publication Date
JP2007305539A JP2007305539A (en) 2007-11-22
JP5097360B2 true JP5097360B2 (en) 2012-12-12

Family

ID=38839281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006135554A Active JP5097360B2 (en) 2006-05-15 2006-05-15 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP5097360B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5175527B2 (en) * 2007-11-27 2013-04-03 京セラ株式会社 Cell stack and fuel cell
KR101007942B1 (en) * 2008-12-22 2011-01-14 한국에너지기술연구원 Solid Oxide Fuel Cell Stack Device
JP5469959B2 (en) * 2009-08-24 2014-04-16 株式会社ノリタケカンパニーリミテド Oxygen ion conduction module, sealing material for the module, and use thereof
JP5613852B1 (en) * 2013-04-04 2014-10-29 日本碍子株式会社 Fuel cell
JP6120252B2 (en) * 2013-06-27 2017-04-26 Toto株式会社 Solid oxide fuel cell device
DE102014209758A1 (en) * 2014-05-22 2015-11-26 Robert Bosch Gmbh fuel cell device
JP6178534B1 (en) * 2016-05-10 2017-08-09 日本碍子株式会社 Fuel cell stack
JP6267300B1 (en) * 2016-09-12 2018-01-24 日本碍子株式会社 Fuel cell
JP6348558B2 (en) * 2016-11-08 2018-06-27 日本碍子株式会社 Manifold
JP6378742B2 (en) * 2016-12-06 2018-08-22 日本碍子株式会社 Fuel cell stack

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894817B2 (en) * 2002-03-22 2007-03-22 京セラ株式会社 Fuel cell
JP3894860B2 (en) * 2002-07-30 2007-03-22 京セラ株式会社 Fuel cell
JP4412986B2 (en) * 2003-12-04 2010-02-10 京セラ株式会社 Cell stack and fuel cell
JP4578114B2 (en) * 2004-01-28 2010-11-10 京セラ株式会社 Fuel cell
JP4704696B2 (en) * 2004-03-24 2011-06-15 東京瓦斯株式会社 Power generator
JP4465248B2 (en) * 2004-09-10 2010-05-19 京セラ株式会社 Cell stack

Also Published As

Publication number Publication date
JP2007305539A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP5097360B2 (en) Fuel cell stack
JP4969880B2 (en) Fuel cell
JP4790577B2 (en) Solid oxide fuel cell module, fuel cell using the same, and manufacturing method thereof
JP5175527B2 (en) Cell stack and fuel cell
JP4587659B2 (en) Manufacturing method of fuel cell stack
JP5015452B2 (en) Cell stack device and fuel cell
JP2005183376A (en) Fuel cell assembly
JP3894860B2 (en) Fuel cell
JP5188218B2 (en) Solid oxide fuel cell sub-module and solid oxide fuel cell module
JP5173052B1 (en) Fuel cell stack structure
JP5176079B2 (en) Solid oxide fuel cell sub-module and solid oxide fuel cell composite module
KR101487569B1 (en) Thermo-Mechanical Robust Solid Oxide Fuel Cell Device Assembly
JP2007149508A (en) Method of manufacturing cell stack device
JP2002329511A (en) Stack for solid electrolyte fuel cell and solid electrolyte fuel cell
JP4594035B2 (en) Fuel cell and fuel cell
JP6237983B2 (en) Manufacturing method and manufacturing apparatus for solid oxide fuel cell device
KR101435974B1 (en) Flat-tubular solid oxide cell and sealing apparatus for the same
JP5164334B2 (en) Fuel cell assembly
JP6207420B2 (en) FUEL CELL STACK STRUCTURE AND METHOD FOR PRODUCING FUEL CELL STACK STRUCTURE
KR102158384B1 (en) Flat tubular solid oxide fuel cell or water electrolysis apparatus with integrated current collector and manufacturing method using the same
KR101188672B1 (en) Integrated Unit Cell and Monolithic Stack of Solid Oxide Fuel Cell and Fabrication Method of the Same
JP2012049148A (en) Cell stack device and fuel battery
KR101694144B1 (en) Flat tubular solid oxide fuel cell and method of manufacturing the same
DK1665431T3 (en) Interconnector for a high temperature fuel cell unit
JP7305752B2 (en) Cell stack device, module and module housing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Ref document number: 5097360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250