JP5097189B2 - Capacity degradation storage battery cell group detection method and storage battery group capacity degradation suppression control device - Google Patents
Capacity degradation storage battery cell group detection method and storage battery group capacity degradation suppression control device Download PDFInfo
- Publication number
- JP5097189B2 JP5097189B2 JP2009247336A JP2009247336A JP5097189B2 JP 5097189 B2 JP5097189 B2 JP 5097189B2 JP 2009247336 A JP2009247336 A JP 2009247336A JP 2009247336 A JP2009247336 A JP 2009247336A JP 5097189 B2 JP5097189 B2 JP 5097189B2
- Authority
- JP
- Japan
- Prior art keywords
- storage battery
- battery cell
- voltage
- capacity
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Description
本発明は、電気自動車に搭載される駆動用電池に関する。 The present invention relates to a driving battery mounted on an electric vehicle.
近年、環境対策、および燃費向上のために電気自動車(EV:Electric Vehicle)、ハイブリッド車(HEV:Hybrid Electric Vehicle)、プラグイン車(PHEV:Plug-in Hybrid Electric Vehicle)、さらには燃料電池自動車(FCEV:Fuel Cell Electric Vehicle)等が注目をあびている。
これらにおいて、重要な技術的要点のひとつは車に搭載する駆動用電池、および、その充電を含めた制御方法である。前記自動車においては数百Vといった高い電圧、かつ大容量での充放電可能な二次電池として蓄電池が必要であり、複数の蓄電池セルを組み合わせた組蓄電池から構成される。数多くの蓄電池セルを搭載することになるので、蓄電池セル間において特性のバラツキが生ずる。複数の蓄電池セルを直列に接続して組み合わせた場合における組蓄電池としての特性は、最も特性の悪い、もしくは劣化した蓄電池セルの特性が支配的となるので、蓄電池セル間の特性のバラツキが重要な問題となる。
また、前記電気自動車の商品性としては航続距離(電費)が重視される。この航続距離を伸ばすためには、蓄電池の様々な特性においても、特に組蓄電池、およびそれを構成する複数の蓄電池セルの蓄電容量特性は勿論のこと、その蓄電容量特性のバラツキを抑制することが重要となる。
この蓄電容量の特性バラツキは、製造時におけるバラツキもあれば、使用による経時変化で生ずる劣化のバラツキもある。さらに、この劣化は過充電や過放電、あるいは温度管理によって、進行する場合もある。したがって、組蓄電池全体と、それを構成する複数の蓄電池セルの蓄電状態であるSOC(State of charge :蓄電量、蓄電容量も表す。)の管理、および、それによる蓄電容量劣化の防止が重要な問題となる。
また、複数の蓄電池セルの蓄電容量バラツキを抑制することは、前記した航続距離(電費)の向上のみならず、早め出力制限の防止、動力性能、寿命向上の観点からも重要な要因である。
この二次電池の劣化状態を検出する従来技術としては特許文献1がある。特許文献1においては充電過程の電池電圧を連続的に計測して記憶する一方、その計測値の特性に基づいて蓄電が100%行われた状態(SOC100%と表すこともある。)を推定する方法をとっていた。
In recent years, electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in vehicles (PHEVs), and fuel cell vehicles (HEVs) have been developed for environmental measures and fuel efficiency improvements. FCEV (Fuel Cell Electric Vehicle) has attracted attention.
Among these, one of the important technical points is a driving battery mounted on a vehicle and a control method including charging thereof. The automobile requires a storage battery as a secondary battery that can be charged and discharged with a high voltage of several hundred volts and a large capacity, and is composed of an assembled battery that combines a plurality of storage battery cells. Since a large number of storage battery cells are mounted, characteristic variations occur between the storage battery cells. The characteristics of the assembled battery when a plurality of storage battery cells are connected in series are combined, and the characteristics of the storage battery cell with the worst or deteriorated characteristics are dominant. It becomes a problem.
In addition, cruising distance (electric cost) is regarded as important as the merchandise of the electric vehicle. In order to extend this cruising distance, it is possible to suppress variations in the storage capacity characteristics as well as the storage capacity characteristics of the assembled storage battery and the plurality of storage battery cells constituting the storage battery in various characteristics of the storage battery. It becomes important.
This characteristic variation of the storage capacity may be a variation at the time of manufacture or a variation of deterioration caused by a change over time due to use. Further, this deterioration may proceed due to overcharge, overdischarge, or temperature control. Therefore, it is important to manage the entire assembled battery and the SOC (State of charge), which is the power storage state of a plurality of storage battery cells constituting the battery, and to prevent the deterioration of the power storage capacity caused thereby. It becomes a problem.
Moreover, suppressing the variation in the storage capacity of the plurality of storage battery cells is an important factor not only from the viewpoint of improving the cruising distance (electricity cost) but also from the viewpoint of preventing early output limitation, power performance, and improving the service life.
There is Patent Document 1 as a conventional technique for detecting the deterioration state of the secondary battery. In Patent Document 1, the battery voltage during the charging process is continuously measured and stored, and on the basis of the characteristic of the measured value, a state in which the battery is charged 100% (may be expressed as SOC 100%) is estimated. I was taking the way.
蓄電容量−開放電圧特性(SOC−OCV特性、OCV:Open Circuit Voltage 開放電圧)が平坦(フラット)な電池系では、中間SOCを電圧で算出することが困難なため、中間SOC領域では蓄電池セル間にSOCバラツキが起きても、車両(蓄電池ECU)は認識することが難しい。したがって、従来技術である特許文献1では充電開始から電圧をサンプリングする必要があって、大きな記憶容量を確保しなくてはならなかった。
特に、複数の蓄電池セルを組み合わせた組蓄電池において、相対的に劣化している蓄電池セルを検出しようとすると、各々の蓄電池セルに対して電圧推移をサンプリングしなくてはならず、記憶容量が膨大になる。
In a battery system in which the storage capacity-open voltage characteristics (SOC-OCV characteristics, OCV: Open Circuit Voltage) are flat, it is difficult to calculate the intermediate SOC by voltage. Even if SOC variation occurs, the vehicle (storage battery ECU) is difficult to recognize. Therefore, in Patent Document 1, which is the prior art, it is necessary to sample the voltage from the start of charging, and a large storage capacity must be ensured.
In particular, in an assembled battery combining a plurality of storage battery cells, when trying to detect a relatively deteriorated storage battery cell, the voltage transition must be sampled for each storage battery cell, and the storage capacity is enormous. become.
そこで、本発明は前記した問題を解決するためになされたものであり、簡単な構成で容量劣化している蓄電池セル群を導きだすことを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and an object thereof is to derive a battery cell group whose capacity has deteriorated with a simple configuration.
前記の目的を達成するために、各発明を以下のような構成にした。
すなわち、請求項1に係る発明の容量劣化蓄電池セル群の検出方法は、蓄電容量の増加に対して電圧が追従して上昇する電圧特性を持つ複数の蓄電池セルにより構成された組蓄電池の容量劣化蓄電池セル群の検出方法であって、蓄電容量の増加に対して電圧が追従して上昇する電圧領域内で定められた上限電圧に前記組蓄電池のいずれかの蓄電池セルが達するまで充電し、該充電の後に前記上限電圧に達した蓄電池セルが前記上限電圧を維持するように充電を行い、充電電流値が所定の電流値以下となるまで充電を行った後に全蓄電池セルの電圧を検出し、前記蓄電池セルが配置されているエリアごとの電圧平均値を互いに比較して相対的に劣化している蓄電池セル群を検出する。
In order to achieve the above object, each invention is configured as follows.
That is, the capacity degradation storage battery cell group detection method of the invention according to claim 1 is the capacity degradation of the assembled battery composed of a plurality of storage battery cells having voltage characteristics in which the voltage follows the increase in the storage capacity. A method of detecting a storage battery group, wherein charging is performed until any storage battery cell of the assembled storage battery reaches an upper limit voltage determined in a voltage region in which the voltage rises following an increase in storage capacity, The storage battery cell that has reached the upper limit voltage after charging is charged so as to maintain the upper limit voltage, and after charging until the charging current value becomes a predetermined current value or less, the voltage of all the storage battery cells is detected, Storage battery cell groups that are relatively deteriorated are detected by comparing voltage average values for each area where the storage battery cells are arranged .
かかる構成により、最も容量劣化した蓄電池セルを過充電することなく、適正な範囲内の容量まで充電し、全蓄電池セルの電圧を検出し、エリアごとの電圧平均値を互いに比較して相対的に劣化している蓄電池セル群を検出する。 With this configuration, without overcharging the storage cell with the most deteriorated capacity, it is charged to a capacity within an appropriate range, the voltage of all the storage battery cells is detected, and the voltage average value for each area is compared with each other relatively. A deteriorated battery cell group is detected.
また、請求項2に係る発明の容量劣化蓄電池セル群の検出方法は、前記蓄電池セル群に対して、容量劣化蓄電池セル群を優先して冷却風分配する容量劣化抑制制御を行う。 According to a second aspect of the present invention, there is provided a method for detecting a capacity deterioration storage battery cell group, wherein the capacity deterioration storage battery cell group is subjected to capacity deterioration suppression control in which cooling capacity is distributed with priority given to the capacity deterioration storage battery cell group.
かかる構成により、低容量の劣化した蓄電池セル群の劣化の進行を防止する。 With this configuration, the progress of deterioration of the storage battery cell group having a low capacity is prevented.
また、請求項3に係る発明の容量劣化蓄電池セル群の検出方法は、前記容量劣化蓄電池セル群を優先して冷却風分配する容量劣化抑制制御において、角度が可変の整流板を備える。 According to a third aspect of the present invention, there is provided a capacity deterioration storage battery cell group detection method including a rectifying plate having a variable angle in the capacity deterioration suppression control for distributing cooling air with priority given to the capacity deterioration storage battery cell group.
かかる構成により、低容量の劣化した蓄電池セル群の劣化の進行を選択的に冷却することによって防止する。 With such a configuration, the progress of the deterioration of the low-capacity storage battery cell group is prevented by selectively cooling.
また、請求項4に係る発明の容量劣化蓄電池セル群の検出方法は、前記容量劣化蓄電池セル群を優先して冷却風分配する容量劣化抑制制御において、開閉もしくは移動が可変のスリットを備える。 According to a fourth aspect of the present invention, there is provided a capacity deterioration storage battery cell group detecting method comprising a slit that can be opened and closed or moved in capacity deterioration suppression control for distributing cooling air with priority given to the capacity deterioration storage battery cell group.
かかる構成により、低容量の劣化した蓄電池セル群の劣化の進行を選択的に冷却することによって防止する。 With such a configuration, the progress of the deterioration of the low-capacity storage battery cell group is prevented by selectively cooling.
また、請求項5に係る発明の容量劣化蓄電池セル群の検出方法は、前記充電が家庭用電源を用いたプラグイン充電である。 According to the capacity deterioration storage battery cell group detection method of the invention according to claim 5, the charging is plug-in charging using a household power source.
かかる構成により、前記充電が家庭用電源を用いたプラグイン充電の際に設定される。 With this configuration, the charging is set at the time of plug-in charging using a household power source.
また、請求項6に係る発明の容量劣化蓄電池セル群の検出方法は、急速充電器が接続されたときには行わない。 In addition, the capacity deterioration storage battery cell group detection method of the invention according to claim 6 is not performed when the quick charger is connected.
かかる構成により、急速充電の操作を阻害しない。 Such a configuration does not hinder the operation of rapid charging.
また、請求項7に係る発明の容量劣化蓄電池セル群の検出方法は、所定の温度より低いときには行わないことを特徴とする。 Moreover, the capacity deterioration storage battery cell group detection method of the invention according to claim 7 is not performed when the temperature is lower than a predetermined temperature .
かかる構成により、低温時の電池の内部抵抗増大による不具合を防止する。 With this configuration, problems due to an increase in the internal resistance of the battery at low temperatures are prevented.
また、請求項8に係る発明の容量劣化蓄電池セル群の検出方法は、所定の時期の時間帯には行わない。 In addition, the capacity deterioration storage battery cell group detection method according to the eighth aspect of the invention is not performed during a predetermined time period.
かかる構成により、温度計によらず、時計による計時によって不具合を防止する。 With this configuration, troubles are prevented by timekeeping with a clock, not with a thermometer.
また、請求項9に係る発明の蓄電池セル群容量劣化抑制制御装置は、家庭用電源を用いたプラグイン充電を行う電気自動車において、蓄電池セル群からなる組蓄電池に電気を充電する充電装置と、前記組蓄電池における前記蓄電池セル群の電圧を検出する電圧検出装置と、冷却風を分配する容量劣化抑制装置と、を備え、前記充電装置と前記電圧検出装置によって、前記組蓄電池を蓄電容量の増加に対して電圧が追従して上昇する電圧領域内で定められた上限電圧に前記組蓄電池のいずれかの蓄電池セルが達するまで充電し、該充電の後に前記上限電圧に達した蓄電池セルが前記上限電圧を維持するように充電を行い、充電電流値が所定の電流値以下となるまで充電を行った後に全蓄電池セルの電圧を検出し、前記蓄電池セルが配置されているエリアごとの電圧平均値を互いに比較して相対的に劣化している蓄電池セル群を検出し、前記電圧検出装置と前記容量劣化抑制装置とによって、前記組蓄電池における前記蓄電池セル群に対して、容量劣化蓄電池セル群を優先して冷却風分配する容量劣化抑制制御を行う。 Further, the storage battery cell group capacity deterioration suppression control device of the invention according to claim 9 is an electric vehicle that performs plug-in charging using a household power source, and a charging device that charges electricity to an assembled battery composed of storage battery cells. A voltage detection device that detects a voltage of the storage battery cell group in the assembled battery, and a capacity deterioration suppression device that distributes cooling air; and the storage battery increases the storage capacity by the charging device and the voltage detection device. The battery is charged until any storage battery cell of the assembled battery reaches an upper limit voltage determined within a voltage region in which the voltage follows and rises, and the storage battery cell that has reached the upper limit voltage after the charging was charged to maintain the voltage, detects the voltage of all the battery cells after the charging current value was charged until equal to or less than a predetermined current value, the battery cell is disposed Detecting a battery cell group is relatively deteriorated by comparing the average voltage of each area together by said voltage detecting device and the capacity deterioration prevention device, to the storage battery cell group in said set battery, Capacity deterioration suppression control is performed to distribute cooling air with priority given to the capacity deterioration storage battery cell group.
かかる構成により、容量劣化した蓄電池セルを過充電することなく、組蓄電池における前記蓄電池セル群を充電し、全蓄電池セルの電圧を検出し、前記蓄電池セルが配置されているエリアごとの電圧平均値を互いに比較して相対的に容量の劣化した蓄電池セル群を優先して冷却するので、さらなる容量劣化の進行を防止する。 With such a configuration, without overcharging the storage battery cells whose capacity has deteriorated, the storage battery cell group in the assembled battery is charged, the voltage of all the storage battery cells is detected, and the voltage average value for each area where the storage battery cells are arranged As a result, the storage battery cell group having a relatively deteriorated capacity is preferentially cooled, so that further deterioration of the capacity is prevented.
本発明によれば、簡単な構成で容量劣化している蓄電池セル群を導きだすことができる。 According to the present invention, it is possible to derive a storage battery cell group whose capacity has deteriorated with a simple configuration.
以下、本発明の実施の形態について詳細に説明する。
図1は本発明の実施形態の蓄電池をプラグイン充電するときの制御の仕方を示すフローチャートである。なお、家庭用電源を用いたプラグイン充電とは一般家庭の電源である100Vもしくは200Vの低容量の電流の電源を用いて行う充電である。
このフローチャートにおいては
(1)蓄電池の充電特性とバラツキ
(2)バラツキのある複数個の蓄電池セルの充電方法
(3)組蓄電池の温度バラツキと特性バラツキ
(4)冷却風と蓄電池セルの温度
(5)冷却風の制御方法(2方式)
等が重要な要点となるので、先にこれらを説明して、その後、再びフローチャートに戻り説明する。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a flowchart showing a control method when plug-in charging a storage battery according to an embodiment of the present invention. Note that plug-in charging using a household power source is charging performed using a power source with a low capacity of 100 V or 200 V, which is a general household power source.
In this flow chart, (1) charging characteristics and variation of storage battery (2) charging method for a plurality of storage battery cells with variation (3) temperature variation and characteristic variation of assembled battery (4) cooling wind and storage cell temperature (5 ) Cooling air control method (2 methods)
Since these are important points, these will be described first, and then the description will return to the flowchart again.
((1)蓄電池の蓄電特性とバラツキ)
図2は蓄電池を充電する際の特性を示す図であり、横軸は電池の蓄電過程における蓄電容量値を示し、縦軸は電池の電池電圧を示している。蓄電池セルを充電すると、蓄電池セルの蓄電容量は増加していくとともに、開放電圧は上昇していく。(なお、蓄電池の充電においては、充電電圧と、蓄電池の開放電圧は一般的には等しくはない。後記する図3の縦軸は充電電圧である。また、電池に蓄積されるのは電荷量であるが、この電荷量を何アンペア(A)で何時間(h)流せるかという蓄電容量(Ah)で表すのが通例である。また、ほぼ同義語として充電容量という用語もあるが、以下では「蓄電容量」という用語を使用する。)
複数個の蓄電池セルは製造時のバラツキや、使用状態、温度の状態によって特性はバラツキがある。記号◎のポイントの連続線による特性線201で表示したものは新品の蓄電池セルで、劣化が殆どないときの特性である。記号○ポイントの連続線による特性線202で表示したものは劣化がある程度進んだ蓄電池セルの特性である。特性線201を有する新品の蓄電池セルも経時変化などで劣化すると、特性線202に特性が移行する。所定の電圧の開放電圧210に達する蓄電容量値は新品蓄電池セルの特性線201に対して、劣化した蓄電池セルの特性線202は少ない蓄電容量値で達している。図2においてはほぼ2目盛りも少ない。
((1) Storage battery storage characteristics and variations)
FIG. 2 is a diagram showing characteristics when charging a storage battery, in which the horizontal axis indicates the storage capacity value in the battery storage process, and the vertical axis indicates the battery voltage of the battery. When the storage battery cell is charged, the storage capacity of the storage battery cell increases and the open circuit voltage increases. (In addition, in charging a storage battery, the charging voltage and the open-circuit voltage of the storage battery are generally not equal. The vertical axis of FIG. 3 to be described later is the charging voltage. Also, the amount of charge stored in the battery is However, it is customary to express this amount of charge by the storage capacity (Ah) of how many amperes (A) and how many hours (h) can flow. Then, the term “storage capacity” is used.)
The characteristics of the plurality of storage battery cells vary depending on variations during manufacture, usage conditions, and temperature conditions. What is indicated by the
蓄電池セルは充電が進むにつれ、開放電圧(OCV:Open Circuit Voltage)は上昇していき、蓄電がほぼ100%なされた状態において、開放電圧はある特性点で急速に上昇する。また、蓄電できる蓄電容量値が大きい新品の蓄電池セルに対して、劣化のある程度進んだ蓄電池セルは蓄電容量値が少ないため、開放電圧は高く、また急速に上昇を開始することも早めに起こる。これは蓄電できる容量値の劣化が進んだために、少ない蓄電容量値で蓄電容量が満杯状態となったために開放電圧が上昇するのである。
この開放電圧が急に上昇を開始する特性点において蓄電(もしくは充電)が100%なされた(SOC100%)と見なすこともある。前記したように、蓄電池セルの劣化時はこの急峻な立ち上がりは蓄電容量値が少ない特性点で起こる。
As the charging of the storage battery proceeds, the open circuit voltage (OCV) increases, and the open circuit voltage rapidly rises at a certain characteristic point in a state where the storage is almost 100%. In addition, since a storage battery cell having a certain degree of deterioration has a lower storage capacity value than a new storage battery cell having a large storage capacity value that can be stored, the open-circuit voltage is high, and it starts to rise rapidly. This is because the capacity value that can be stored has deteriorated and the storage capacity becomes full with a small storage capacity value, so that the open circuit voltage increases.
At the characteristic point where the open circuit voltage suddenly starts to rise, it may be considered that the storage (or charging) is 100% (SOC 100%). As described above, when the storage battery cell is deteriorated, this steep rise occurs at a characteristic point where the storage capacity value is small.
また、記号△のポイントの破線による特性線203で表示したものは充電中の特性である。蓄電池セルとしては△で示した特性線203のものと、○で示した特性線202ものとは同一のものであるが、蓄電池セルの内部抵抗があるため充電に流れる電流値と内部抵抗の積の分(例えば上昇圧分223)だけ特性線203は高い電圧を示している。また、同一の蓄電池セルに対して、特性線202は開放電圧の特性であり、特性線203は充電電圧の特性である。したがって、充電を行いながらもこの急峻な立ち上がりの特性点を把握することはできる。いずれにせよ、この急峻な立ち上がりの特性点を捉えてSOC100%に近づいたことをつかむのである。
Further, what is indicated by the
なお、この急峻な立ち上がりの特性を捉えるためには、中間SOC領域の開放電圧が平坦であり、かつ高SOC領域に急峻な開放電圧の立ち上がりがある蓄電池を使用すると、より効果的である。例えば正極にはLiFePO4、負極にはグラファイト系を使用すると、この特性が顕著となる。
ただし、急峻な開放電圧の立ち上がりがあればSOC100%が近づいたことは捉えられるので、中間SOC領域の開放電圧の特性は必ずしも平坦である必要はない。
In order to capture the characteristics of this steep rise, it is more effective to use a storage battery that has a flat open voltage in the intermediate SOC region and a sharp open voltage rise in the high SOC region. For example, when LiFePO4 is used for the positive electrode and a graphite system is used for the negative electrode, this characteristic becomes remarkable.
However, if there is a steep rise in the open circuit voltage, it can be grasped that the SOC has approached 100%. Therefore, the characteristics of the open circuit voltage in the intermediate SOC region do not necessarily have to be flat.
((2)バラツキのある複数個の蓄電池セルの充電方法)
図3(a)、(b)は複数個のバラツキのある蓄電池セルを一斉に充電する工程における充電電圧、充電電流、蓄電容量および充電時間の関連を示す図である。
図3(a)は各蓄電池セルの充電電圧と蓄電容量、および経過時間の関係を表し、図3(b)は蓄電池セルの充電電流と経過時間の関係を表している。
また、図3(a)、(b)の各特性が得られる充電は、図10に示すように蓄電池セル1011〜1016を直列にして、直列に接続された両端に充電装置1001によって電圧を加えて、一括して行う。なお、図10は図3(a)、(b)の各特性がどのような回路構成において、測定されるかの概略を示すものであって、蓄電池セル1011〜1016の個数や電圧計1021〜1026の配置は本発明の実施形態と必ずしも一致するものではない。また図10における充電装置1001は、本発明の実施形態においては後記する充電器813(図8)と接合ボード814(図8)に相当している。
((2) Charging method for a plurality of storage battery cells with variations)
FIGS. 3A and 3B are diagrams showing the relationship among a charging voltage, a charging current, a storage capacity, and a charging time in a step of charging a plurality of storage battery cells having variations at the same time.
FIG. 3A shows the relationship between the charging voltage of each storage battery cell, the storage capacity, and the elapsed time, and FIG. 3B shows the relationship between the charging current of the storage battery cell and the elapsed time.
3A and 3B, the battery cells 1011 to 1016 are connected in series as shown in FIG. 10, and a voltage is applied to both ends connected in series by the charging device 1001. Do it all at once. FIG. 10 schematically shows in what circuit configuration each characteristic of FIGS. 3A and 3B is measured. The number of storage battery cells 1011 to 1016 and voltmeters 1021 to 1021 are shown. The arrangement of 1026 does not necessarily match the embodiment of the present invention. Further, the charging device 1001 in FIG. 10 corresponds to a charger 813 (FIG. 8) and a joining board 814 (FIG. 8) described later in the embodiment of the present invention.
図3(a)において、縦軸は蓄電池セルに加わる充電電圧を表している。なお、充電電圧は各蓄電池セルの開放電圧と、各蓄電池セルの内部抵抗と蓄電池セルに流れる電流との積で起こる電圧上昇分との和となっている。したがって、縦軸の充電電圧は各蓄電池セルの開放電圧とは異なる。また、各蓄電池セルの特性と状態は一般的にはバラツキがあるので、各蓄電池セルに加わる充電電圧は蓄電池セルごとに若干、異なる。また、横軸は各蓄電池セルの蓄電容量、および充電を開始してからの時間をともに表している。 In Fig.3 (a), the vertical axis | shaft represents the charging voltage added to a storage battery cell. The charging voltage is the sum of the open voltage of each storage battery cell and the voltage increase caused by the product of the internal resistance of each storage battery cell and the current flowing through the storage battery cell. Therefore, the charging voltage on the vertical axis is different from the open circuit voltage of each storage battery cell. Moreover, since the characteristic and state of each storage battery cell generally vary, the charging voltage applied to each storage battery cell is slightly different for each storage battery cell. Moreover, the horizontal axis represents both the storage capacity of each storage battery cell and the time since the start of charging.
また、図3(b)の縦軸は充電が行われているときの充電電流を表している。各蓄電池セルは直列に接続されて充電されるので、各蓄電池セルの充電電流はすべて等しい。また、横軸は充電を開始してからの時間を表している。なお、図3(a)、(b)において、横軸の充電を開始してからの時間についてはそのまま対応している。 Moreover, the vertical axis | shaft of FIG.3 (b) represents the charging current when charging is performed. Since each storage battery cell is connected and charged in series, the charging currents of each storage battery cell are all equal. Moreover, the horizontal axis represents the time since the start of charging. In FIGS. 3A and 3B, the time from the start of charging on the horizontal axis corresponds as it is.
まず、放電して蓄電容量が少なくなった状態の組蓄電池を、充電器813(図8)と接合ボード814(図8)(充電装置1001(図10))を経由して充電を開始する。前記したように、充電は各蓄電池セルを直列にして、直列に接続された両端に電圧を加えて一括して行う。これが図3(a)、(b)において、t=0であり、図3(a)におけるポイント331である。
また、このときにかける電圧は充電器813(図8)と均一化回路を含む接合ボード814(図8)(充電装置1001(図10))によって、ほぼ所定の充電電流値IE(図3(b))となるように適正な電圧が調整されて加えられる。各蓄電池セルがそれぞれの蓄電容量を満たしていない間は、各蓄電池セルの開放電圧よりも充分に高い電圧で、かつ望ましくはほぼ一定の電流値IEで充電されるように調整されながら行われる。なお、充電器813(図8)と接合ボード814(図8)(充電装置1001(図10))は前記したように、各蓄電池セルを直列にして、直列に接続された両端に電圧を加えて一括して行うので高い電圧であるが、図3(a)では各蓄電池セルに加わる1個あたりの充電電圧を表記している。
First, charging of the assembled battery in a state where the storage capacity is reduced by discharging is started via the charger 813 (FIG. 8) and the joining board 814 (FIG. 8) (charging device 1001 (FIG. 10)). As described above, charging is performed in a lump by applying voltage to both ends connected in series with each storage battery cell in series. This is t = 0 in FIGS. 3A and 3B, which is a
Further, the voltage applied at this time is almost equal to a predetermined charging current value I E (FIG. 3) by the charger 813 (FIG. 8) and the joining board 814 (FIG. 8) (charging device 1001 (FIG. 10)) including a uniformizing circuit. An appropriate voltage is adjusted and applied so as to satisfy (b)). While each storage battery cell does not satisfy the respective storage capacity, it is performed while being adjusted so as to be charged with a voltage sufficiently higher than the open circuit voltage of each storage battery cell, and preferably with a substantially constant current value IE. . As described above, the charger 813 (FIG. 8) and the joining board 814 (FIG. 8) (charging device 1001 (FIG. 10)) connect each storage battery cell in series and apply a voltage to both ends connected in series. However, in FIG. 3A, the charging voltage per unit applied to each storage battery cell is shown.
この充電過程において、各蓄電池セルは蓄電され、蓄電容量値が増加していくとともに、開放電圧も高くなる。それにしたがって、充電器813(図8)と接合ボード814(図8)(充電装置1001(図10))は充電電圧を上昇させていく。なお、各蓄電池セルのなかで製造上のバラツキや、劣化が進んだ等の理由で、特性は様々である。図3(a)では劣化が最も進み充電電圧が高い蓄電池セルの特性316と、劣化のあまりなく充電電圧が低い蓄電池セルの特性(線)311を例示している。また、この区間を(E)領域と表す。
In this charging process, each storage battery cell is charged, the storage capacity value increases, and the open circuit voltage also increases. Accordingly, the charger 813 (FIG. 8) and the junction board 814 (FIG. 8) (charging device 1001 (FIG. 10)) increase the charging voltage. It should be noted that the characteristics vary due to manufacturing variations among the storage battery cells and deterioration. FIG. 3A illustrates the
やがて、各蓄電池セルのなかで製造上のバラツキや、劣化が進んだ等の理由で、蓄電容量が最も小さく、充電電圧が最も高い(VMAX)特性線316を有する蓄電池セルの充電電圧が所定の充電電圧に達する。これは蓄電容量が最も小さい蓄電池セルのSOCが100%に近づいたことを意味する。SOC100%からさらに充電していくと、さらに蓄電し、ある限界を超えると電解液の分解や活物質の結晶構造変化など反応を誘発して連鎖的に熱が発生して、さらなる電池の劣化を招く。接合ボード814(図8)(充電装置1001(図10))がこのVMAXが所定の充電電圧に達したことを検出したら、所定の充電電圧以上の電圧を蓄電池セルにかけないように充電器813(図8)と均一化回路を含む接合ボード814(図8)(充電装置1001(図10))の機能によって、充電電圧を調整する。ここで、「定電圧充電」に移行する。なお、この移行点が図3(a)のポイント332である。
Eventually, the storage voltage of the storage battery cell with the
また、これ以降の区間を(C)領域と表す。(C)領域は「定電圧充電」を行う区間と仮称するが、この「定電圧充電」の意味は充電器813(図8)と接合ボード814(図8)(充電装置1001(図10))が高圧の組蓄電池811(図8)に定電圧をかけるという意味ではなく、「蓄電容量が最も小さく、充電電圧が最も高い(VMAX)特性線326(特性線316)を有する蓄電池セルに加わる電圧が所定の充電電圧を保ち続ける」ように調整して電圧をかけるという意味である。 Further, the subsequent section is represented as (C) area. The area (C) is tentatively referred to as a section for performing “constant voltage charging”, and the meaning of this “constant voltage charging” is the charger 813 (FIG. 8) and the joining board 814 (FIG. 8) (charging device 1001 (FIG. 10)). ) Does not mean that a constant voltage is applied to the high-voltage assembled battery 811 (FIG. 8), “the storage battery cell having the characteristic line 326 (characteristic line 316) having the smallest storage capacity and the highest charging voltage (V MAX ) This means that the applied voltage is adjusted so that the applied voltage keeps a predetermined charging voltage.
「定電圧充電」の区間である(C)領域においては、所定の充電電圧以上の電圧を加えることはしない。これは、また図3(a)において、特性線326に相当してもいる。
しかしながら、蓄電池セルの充電電圧は前記したように、開放電圧と、内部抵抗と蓄電電流の積による電圧上昇分との和であるので、所定の充電電圧と開放電圧とは差があり、所定の充電電圧の「定電圧充電」に移行しても、蓄電電流は少なくなるが、電流は流れ続ける。その電流によって、蓄電容量に余裕がある間は充電を続け、蓄電容量を徐々に増やしていく。それにともない、開放電圧がさらに徐々に上昇し、所定の充電電圧との差が少なくなる分だけ蓄電電流はさらに減少していく。以上が図3(b)のIc(t)の時間とともに減少していく状況を表している。なお、図3(a)において、特性線326で表した電圧は充電電圧であって、開放電圧は表していない。
In the (C) region, which is the section of “constant voltage charging”, a voltage higher than a predetermined charging voltage is not applied. This also corresponds to the
However, as described above, since the charging voltage of the storage battery cell is the sum of the open voltage and the voltage increase due to the product of the internal resistance and the storage current, there is a difference between the predetermined charging voltage and the open voltage. Even when the charging voltage shifts to “constant voltage charging”, the stored current decreases, but the current continues to flow. With this current, charging is continued while there is room in the storage capacity, and the storage capacity is gradually increased. Accordingly, the open circuit voltage further gradually increases, and the stored current further decreases by the amount that the difference from the predetermined charging voltage decreases. The above represents a situation where the time decreases with the time of Ic (t) in FIG. In FIG. 3A, the voltage represented by the
充電電圧が最も高い(VMAX)特性線316を有する蓄電池セルは、蓄電容量に関して最も劣化が進んだ蓄電池セルであるが、充電電圧が最も低い(VMIN)特性線311を有する蓄電池セルは蓄電容量に関して最も劣化が進んでいない蓄電池セルである。このように蓄電容量に関して相対的に小さいものも、大きいものも混在しているが、これらの蓄電池セルはすべて直列に接続されているので、蓄電電流は同一であり、その結果、蓄電容量はすべての蓄電池セルで同じ量が増加していく。これは図3(a)、(b)における(E)領域、(C)領域でも成立している。各蓄電池セルの劣化による容量特性のバラツキは、この各蓄電池セルをすべて直列に接続した場合において、蓄電される容量が同一であり、その代わりに、開放電圧の差となって表れる。この結果、図3(a)の(E)領域において、充電電圧が最も高い(VMAX)特性線316を有する蓄電池セルは(C)領域において、特性線326を示す。また、(E)領域において、充電電圧が最も低い(VMIN)特性線311を有する蓄電池セルは(C)領域において、特性(線)321を示す。また、それらの中間の特性を有する蓄電池セルの各特性を特性線322〜325と、充電電圧が低い順に表している。
The storage battery cell having the
前記したように(C)領域においても、各蓄電池セルは同一の蓄電電流によって同じ量の蓄電容量が増えていく。各蓄電池セルはこの蓄電容量の増加とともに開放電圧が上昇していくが、(C)領域では前記した「定電圧充電」であるために、各蓄電池セルの開放電圧の上昇は蓄電電流の減少による内部抵抗との積による内部電圧の減少と相殺して充電電圧としては殆ど変化がない。この状況は(C)領域の開始であるポイント332においても、蓄電電流が減少して殆ど流れなくなるポイント333においても同様である。したがって、図3(a)に示すように、(C)領域では各蓄電池セルの特性バラツキはあっても、各蓄電池セルはすべて同じように蓄電容量を徐々に増加していき、各蓄電池セルの充電電圧は(C)領域の開始であるポイント332の電圧をほぼ保ち続ける。以上により、図3(a)の(C)領域の各蓄電池セルの充電電圧−蓄電容量特性、または充電電圧−蓄電時間特性が得られる。
As described above, also in the region (C), each storage battery cell has the same amount of storage capacity due to the same storage current. The open circuit voltage of each storage battery cell increases as the storage capacity increases. However, in the (C) region, because of the above-described “constant voltage charging”, the increase of the open circuit voltage of each storage battery cell is due to the decrease of the storage current. There is almost no change in the charging voltage, offsetting the decrease in the internal voltage due to the product with the internal resistance. This situation is the same at the
図3(a)の(C)領域において、充電電圧が最も高い(VMAX)特性線326を有する蓄電池セルが、僅かであっても蓄電電流を流し続けて、蓄電容量を徐々に増加し、開放電圧が上昇し、ついに所定の充電電圧に到達すると、電圧差はなくなるので、蓄電電流は流れなくなる。なお、所定の電流値IS以下になることで「蓄電電流は流れなくなる」と判定する。なお、これ以降の区間を(S)領域とする。
この結果、直列に接続された各蓄電池セルはすべて蓄電電流が流れなくなる。図3(a)の(C)領域における特性線321〜325の各蓄電池セルは蓄電容量に余力を残しているが、「定電圧充電」では、もはや蓄電容量は増加しない。このときの特性線321〜326の特性をそれぞれ有する各蓄電池セルの蓄電容量は、すべて、ほぼ同じ容量である。つまり、最も蓄電容量の小さい、いわば最も劣化した蓄電池セルと同一の蓄電容量しか確保できていない。
In the region (C) of FIG. 3 (a), the storage battery cell having the
As a result, the storage current does not flow in all the storage battery cells connected in series. Each storage battery cell of the
以上から、複数個の蓄電池セルを直列に接続して組蓄電池として用いる場合には最も劣化した蓄電池セルの蓄電容量特性が支配的となるので、最も劣化が進みつつある蓄電池セルの検出と管理が重要であり、かつ、それ以上の劣化の防止策が必要となる。
なお、組蓄電池とは前記したように複数個の蓄電池セルを直列に接続して構成したものであるが、このように構成した組蓄電池を複数個用いて、さらに組み合わせ、より蓄電池セルの数の多い組蓄電池を構成することもある。このような場合において、どちらも組蓄電池と称することにする。
From the above, when a plurality of storage battery cells are connected in series and used as an assembled storage battery, the storage capacity characteristics of the most deteriorated storage battery cells become dominant. Important and further measures to prevent deterioration are required.
The assembled battery is configured by connecting a plurality of storage battery cells in series as described above, but by using a plurality of assembled batteries configured in this way, the number of storage battery cells is further increased. Many battery packs may be configured. In such a case, both will be referred to as assembled batteries.
ちなみに、劣化が進んで蓄電容量値が少なく、かつ開放電圧や充電電圧が高い蓄電池セルに充電をつづけた場合は、劣化が少なくて蓄電容量値が大きく、かつ開放電圧や充電電圧が低い蓄電池セルの場合と比較すると、温度上昇が起こりやすくなっている。したがって、劣化が進んだ蓄電池セルがさらなる劣化を防ぐためにも、冷却して温度上昇を避けることが望ましい。
また、(S)領域の状態において、蓄電容量値が大きく、劣化の進んでいない蓄電池セルは(S)領域にいたっても、蓄電容量に余裕があり、かつ開放電圧も低い。(S)領域において、劣化の進んだ単体セル電池と進んでいない蓄電池セルにおいては、開放電圧において、差が生じている。したがって、劣化の進んだ蓄電池セルを見つけ、対処するために、全蓄電池セル毎の電圧検出を行う。
なお、劣化の進んでいない蓄電池セルは、蓄電容量に余裕を残したまま使用することになるが、蓄電池セルを直列にして用いる際には、最も劣化の進んだ蓄電池セルの特性が支配的になるので、劣化の進んだ蓄電池セルに対して優先的に処置をするのが最も効果的である。
By the way, if you continue to charge a storage battery cell that has deteriorated and has a low storage capacity value and a high open-circuit voltage or charge voltage, the storage battery cell has a low storage capacity value and a low open-circuit voltage or charge voltage. Compared with the case, the temperature rise is more likely to occur. Therefore, in order to prevent further deterioration of the storage battery cell that has been deteriorated, it is desirable to cool the battery cell and avoid an increase in temperature.
Further, in the state of the (S) region, even if the storage battery cell having a large storage capacity value and having not deteriorated is in the (S) region, the storage capacity is sufficient and the open circuit voltage is low. In the (S) region, there is a difference in open-circuit voltage between the unit cell battery that has deteriorated and the storage battery cell that has not progressed. Therefore, in order to find and deal with a battery cell that has deteriorated, voltage detection is performed for every battery cell.
In addition, storage battery cells that have not deteriorated are used with a margin in the storage capacity, but when the storage battery cells are used in series, the characteristics of the storage battery cells that are most deteriorated are dominant. Therefore, it is most effective to preferentially treat storage battery cells that have deteriorated.
((3)組蓄電池の温度バラツキと特性バラツキ)
組蓄電池に複数個の蓄電池セルを配置して使用したときに、負荷が多くなるにしたがって蓄電池の温度は上昇する。このとき周囲からファンによって冷却風を送った場合においても、冷却風がよく当たる場所と、当たりにくい場所とが生ずるために、組蓄電池内の各蓄電池セル間に温度のバラツキが生じる。したがって、このような状態で使用していると初期はほぼ同じ特性の蓄電池セルであっても、長い間には劣化の度合いも異なり、蓄電容量値等において、特性のバラツキが生ずる。そして、冷却方法に特に工夫がなされなければ、このバラツキは次第に大きくなる。前記したように、蓄電池セルを直列にして組蓄電池とする場合には最も劣化した蓄電池セルの特性が支配的になるので、前記特性バラツキが大きな影響を及ぼす。なお、蓄電池セルには丸型電池や角型電池等の形状の差異もあるが、前記した温度バラツキや特性バラツキが生じるという状況はいずれの場合でも同じように起こる。
((3) Temperature variation and characteristic variation of battery pack)
When a plurality of storage battery cells are arranged and used in the assembled storage battery, the temperature of the storage battery rises as the load increases. At this time, even when the cooling air is sent from the surroundings by a fan, there are places where the cooling air hits well and places where it is difficult to hit, and therefore, temperature variation occurs between the storage battery cells in the assembled battery. Therefore, when used in such a state, even storage battery cells having substantially the same characteristics in the initial stage have different degrees of deterioration over a long period of time, resulting in variations in characteristics such as storage capacity values. If the cooling method is not particularly devised, this variation gradually increases. As described above, when the storage battery cells are connected in series to form an assembled storage battery, the characteristics of the most deteriorated storage battery cells become dominant, and the characteristic variation has a great influence. In addition, although there are differences in the shape of the storage battery cell such as a round battery or a square battery, the situation in which the above-described temperature variation or characteristic variation occurs is the same in any case.
((4)冷却風と蓄電池セルの温度)
図4は組蓄電池40に複数個の蓄電池セル46A、46Bを配置し、かつ各蓄電池セルのSOCや劣化の状態が異なる状況において、組蓄電池40に冷却風を当てた場合の冷却効果の状況を組蓄電池40の上面から見た模式図として示している。
組蓄電池40はダクト45のなかに配設され、ダクト45の間から冷却風41が複数個の蓄電池セル46A、46Bに供給され、排気42となってダクト45の外部へと換気されている。なお、支持体47によって、各蓄電池セル46A、46Bは固定されている。
複数個の蓄電池セル46A、46Bは電気的に直列に接続され、組蓄電池40を構成していて、各蓄電池セルの特性や劣化の状況がほぼ同じ場合は、充電電流(蓄電電流でもある。)が同一なので、充電の際における各蓄電池セルの発熱の状態はほぼ同じである。
((4) Cooling air and battery cell temperature)
FIG. 4 shows the state of the cooling effect when cooling air is applied to the assembled battery 40 in a situation where a plurality of
The assembled battery 40 is disposed in a
The plurality of
以上の状況において、図4に示した各蓄電池セルの配置では冷却風41は中央に位置した蓄電池セル46Aに当たりやすく、端に位置した蓄電池セル46Bに当たりにくい。したがって、蓄電池セル46Aは「よく冷える」ので蓄電池セルの特性は劣化が少ない。また、蓄電池セル46Bは逆に冷えにくいので蓄電池セルの特性は劣化が進みやすい。
なお、図4は模式図であって、蓄電池セル46A、46Bの個数や、ダクト45の形状は様々にとりうる。
In the above situation, in the arrangement of the storage battery cells shown in FIG. 4, the cooling air 41 is likely to hit the storage battery cell 46 </ b> A located at the center and is difficult to hit the storage battery cell 46 </ b> B located at the end. Therefore, since the
FIG. 4 is a schematic diagram, and the number of
図5は図4と同じ構成の組蓄電池40に複数個の蓄電池セル46A、46Bを配置した場合の領域を、エリア1(51)、エリア2(52)、エリア3(53)と分けた例を示している。冷却風の当たり具合が各蓄電池セルを設置する場所によって変わり、それによって対処の仕方が変わるならば、各蓄電池セルの設置場所を番号等で識別されるエリアという観点で検知や管理することが効果的である。
FIG. 5 shows an example in which a region where a plurality of
図5と図4において、組蓄電池40、蓄電池セル46A、46B、ダクト45、支持体47、冷却風41、排気42は同一のものを表しているので、さらなる説明は省略する。図5において、符号51、52、53はそれぞれエリア1、エリア2、エリア3を表している。また、温度計541、542、543はそれぞれエリア1、エリア2、エリア3の温度を必要に応じて計測するものであり、各エリアの温度を検知する際に用いる。
後記するように、蓄電池セル電圧の検出や、冷却風を当てる場合において、エリアに分け、エリア毎に電圧の平均値をだし、高い電圧を示しているエリアを集中的に冷却することが効果的である。
5 and 4, the assembled battery 40, the storage battery cells 46 </ b> A and 46 </ b> B, the
As described later, when detecting storage battery voltage or applying cooling air, it is effective to divide into areas, average the voltage for each area, and intensively cool areas showing high voltage It is.
なお、エリア1、2、3との間に隔壁を設ける場合もあり、またエリアとしての認識は分けて行うが、特に隔壁は設けない場合もある。
なお、図5は模式図であって、エリアの分け方やエリア数、また温度計の個数や設置位置は様々にとりうる。
In some cases, a partition wall is provided between the areas 1, 2, and 3, and recognition as an area is performed separately, but a partition wall is not particularly provided.
Note that FIG. 5 is a schematic diagram, and the method of dividing areas, the number of areas, the number of thermometers, and installation positions can be variously taken.
((5−1)冷却風の第1の制御方法、可変整流板方式)
図6(a)、(b)は冷却風の第1の制御方法を示す図である。図6(a)、(b)において、組蓄電池40、蓄電池セル46A、46B、ダクト45、支持体47、冷却風41、排気42は図4、図5と同一のものを表しているので、さらなる説明は省略する。
図6(a)、(b)においては組蓄電池40を納めたダクト45内で、整流板69(69A、69B)で冷却風41を制御する方式を示している。
((5-1) Cooling air first control method, variable rectifying plate method)
FIGS. 6A and 6B are diagrams showing a first control method of cooling air. 6 (a) and 6 (b), the assembled battery 40, the
6A and 6B show a system in which the cooling air 41 is controlled by the current plate 69 (69A, 69B) in the
図6(a)は特に制御をしない通常時を示し、整流板69(69A)は冷却風41に対して作用しない向きとなっている。したがって、冷却風41は中央に位置した蓄電池セル46Aに当たりやすく、端に位置した蓄電池セル46Bに当たりにくい。その結果、蓄電池セル46Aは「よく冷える」ので、蓄電池セル46Aの特性は劣化が少ない。また、蓄電池セル46Bは逆に冷えにくいので、蓄電池セル46Bの特性は劣化が進みやすい状態である。
FIG. 6A shows a normal time when no control is performed, and the rectifying plate 69 (69 </ b> A) is oriented so as not to act on the cooling air 41. Therefore, the cooling air 41 is likely to hit the
図6(b)は整流板69(69B)をある程度、開いた状態にしている。その結果、冷却風41は端の方に位置する蓄電池セル46Bに当たりやすく、中央に位置した蓄電池セル46Aには当たりにくくなっている。これは全蓄電池セルの電圧を検出して、端の方に位置する蓄電池セル46Bの方が相対的に劣化が進んでいると判定された場合に、蓄電池セル46Bに冷却風が当たりやすくするように制御した場合を示している。
なお、整流板69(69A、69B)の角度により、冷却風が当たりやすい位置は変えることができる。また、整流板69(69A、69B)の枚数や形状、あるいは設置位置は様々にとりうる。
In FIG. 6B, the current plate 69 (69B) is opened to some extent. As a result, the cooling air 41 is likely to hit the
Note that the position where the cooling air can easily hit can be changed depending on the angle of the current plate 69 (69A, 69B). Further, the number and shape of the rectifying plates 69 (69A, 69B), or the installation positions can be variously taken.
((5−2)冷却風の第2の制御方法、スリット開閉方式)
図7は冷却風41の第2の制御方法を示す図である。図7において、組蓄電池40、蓄電池セル46A、46B、ダクト45、支持体47、冷却風41、排気42は図4、図5、図6と同一のものを表しているので、さらなる説明は省略する。
図7において、組蓄電池40の側面に複数個からなるスリット79を設けている。スリット79を開閉するか、もしくはどの位置に移動するかによって、冷却風41の流れ方が変わり、重点的に冷却する蓄電池セルを選択する制御方式となっている。
なお、スリット79の枚数や形状、あるいは設置位置は様々にとりうる。
((5-2) Cooling air second control method, slit opening / closing method)
FIG. 7 is a diagram showing a second control method of the cooling air 41. In FIG. 7, the assembled battery 40, the
In FIG. 7, a plurality of
It should be noted that the number and shape of the
(本実施形態における蓄電池の充電方法のフローチャート)
図1のフローチャートの説明に必要な蓄電池の特性や充電方法あるいは冷却風の制御方法等を前記(1)から(6)で個別に概略を説明したので、再び、図1に戻り、本発明の実施形態の電池を充電するときの制御の仕方を示すフローチャートについて説明する。
このフローチャートにしたがって、家庭用電源を用いたプラグイン充電が行われる。
[0]まず、車の充電口に充電器具が接続されることから開始される(ステップS0)。
(Flowchart of storage battery charging method in this embodiment)
Since the characteristics of the storage battery, the charging method, the cooling air control method, and the like necessary for the description of the flowchart of FIG. 1 have been individually outlined in the above (1) to (6), returning to FIG. The flowchart which shows the method of control when charging the battery of embodiment is demonstrated.
According to this flowchart, plug-in charging using a household power source is performed.
[0] First, it starts from connecting a charging device to the charging port of the car (step S0).
[1]充電器具が接続されたときに、家庭用電源を用いたプラグイン充電か、専用機器を用いた急速充電かを、接続器具の規格、形状から判定する(ステップS1)。
なお、前記したように、家庭用電源を用いたプラグイン充電とは一般家庭の電源である100Vもしくは200Vの低容量の電流の電源を用いて行う充電である。これに対して、急速充電とは家庭用電源とは別の専用の機器を用いて行うものである。蓄電池に対しては、家庭用電源を用いたプラグイン充電に比較して、高い電圧をかけ、大きな電流で短時間に充電を完了させるために行う急速な充電方式である。
ステップS1においては、急速充電と判定された場合(No)は以下のプラグイン充電は行わず、フロー処理を終了する。
また、ステップS1においてプラグイン充電のための充電器具が充電口に接続されたと判定された場合(Yes)には、ステップS2に進む。
[1] When the charging device is connected, it is determined from the standard and shape of the connecting device whether it is plug-in charging using a household power source or rapid charging using a dedicated device (step S1).
As described above, plug-in charging using a household power source is charging performed using a low-capacity power source of 100 V or 200 V, which is a general household power source. On the other hand, rapid charging is performed using a dedicated device different from the home power supply. Compared to plug-in charging using a household power supply, the storage battery is a rapid charging method in which a high voltage is applied and charging is completed in a short time with a large current.
In step S1, when it is determined that rapid charging is performed (No), the following plug-in charging is not performed, and the flow process is terminated.
If it is determined in step S1 that a charging device for plug-in charging is connected to the charging port (Yes), the process proceeds to step S2.
[2]ステップS2では組蓄電池811(図8)を充電器813(図8)と接合ボード814(図8)によって適正な電圧で充電を開始する。したがって組蓄電池を構成する各蓄電池セルに対して一斉に充電を開始する。各蓄電池セルは充電されるにしたがい、それぞれ蓄電容量は増加し、かつ開放電圧が高まっていく。 [2] In step S2, charging of the battery pack 811 (FIG. 8) is started at an appropriate voltage by the charger 813 (FIG. 8) and the joining board 814 (FIG. 8). Therefore, charging is started for all the storage battery cells constituting the assembled storage battery all at once. As each storage battery cell is charged, the storage capacity increases and the open circuit voltage increases.
[3]各蓄電池セルのなかで最も劣化した蓄電池セルは開放電圧、あるいは充電電圧が最も先に高くなっていく。そして、各蓄電池セルのなかで最も高い充電電圧VMAXのセルが所定の充電電圧に到達しているか否かを判定する(ステップS3)。なお、この判定は充電器813(図8)と接合ボード814(図8)によって行う。
到達していなければ(No)、前記した充電を続ける。到達したならば(Yes)、ステップS4に進む。
[3] Among the storage battery cells, the most deteriorated storage battery cell has the highest open-circuit voltage or charge voltage first. Then, it is determined whether or not the cell having the highest charging voltage V MAX among the storage battery cells has reached a predetermined charging voltage (step S3). This determination is made by the charger 813 (FIG. 8) and the joining board 814 (FIG. 8).
If not reached (No), the above-described charging is continued. If it has reached (Yes), the process proceeds to step S4.
[4]各蓄電池セルのなかで最も高い充電電圧VMAXの蓄電池セルが、所定の充電電圧に到達したときには、この蓄電池セルはすでに蓄電容量がSOC100%に近づいたことを意味している。それ以上、同じような方法で充電を続けると、最も高い充電電圧VMAXの蓄電池セルは温度上昇が激しくなるとともに、蓄電池セルの劣化が促進される。
したがって、最も高い充電電圧VMAXの蓄電池セルの充電電圧を、前記所定の充電電圧を維持するような「定電圧充電」に切り替える(ステップS4)。
[4] accumulator cells of the highest charge voltage V MAX among the battery cells, when reaching the predetermined charging voltage, battery capacity the battery cell already means that approached SOC 100%. If the charging is continued in the same manner, the temperature of the storage battery cell having the highest charging voltage V MAX increases rapidly, and the deterioration of the storage battery cell is promoted.
Therefore, the charging voltage of the storage battery cell having the highest charging voltage V MAX is switched to “constant voltage charging” that maintains the predetermined charging voltage (step S4).
[5]所定の充電電圧を維持した「定電圧充電」を続けていくと、各蓄電池セルの各開放電圧と、「定電圧充電」における各蓄電池セルの各充電電圧には差があるので、充電電流(蓄電電流)はある程度、引き続き流れる。やがて、各蓄電池セルの開放電圧は高まり、「定電圧充電」における各蓄電池セルに加わった各充電電圧に近づくので、充電電流(蓄電電流)は減少していく。最も劣化し、最も高い充電電圧VMAXを持つ蓄電池セルがほぼSOC100%になったときに、蓄電電流(充電電流)はほぼ0に近づく。実際にはその判定基準として、充電電流を所定電流値と比較する(ステップS5)。
所定電流値に到達していなければ(No)、前記した「定電圧充電」を続ける。到達したならば(Yes)、SOC100%に達したとして、ステップS6に進む。
[5] If "constant voltage charging" is maintained while maintaining a predetermined charging voltage, there is a difference between each open voltage of each storage battery cell and each charging voltage of each storage battery cell in "constant voltage charging". The charging current (storage current) continues to flow to some extent. Eventually, the open-circuit voltage of each storage battery cell increases and approaches each charging voltage applied to each storage battery cell in “constant voltage charging”, so that the charging current (storage current) decreases. When the storage battery cell that is most deteriorated and has the highest charging voltage V MAX becomes approximately SOC 100%, the storage current (charging current) approaches approximately zero. Actually, as the determination criterion, the charging current is compared with a predetermined current value (step S5).
If the predetermined current value has not been reached (No), the above-described “constant voltage charging” is continued. If it has reached (Yes), it is determined that the SOC has reached 100%, and the process proceeds to step S6.
[6]充電を終了し、各蓄電池セル、もしくはエリア別の蓄電池セルの温度(TBAT)を温度計541〜543(図5)等で検出する(ステップS6)。
[6] Charging is terminated, and the temperature (T BAT ) of each storage battery cell or each storage battery cell is detected by
[7]各蓄電池セル、もしくはエリア別の蓄電池セルのなかで最も温度が低いセルの温度をTBATMINとして、TBATMINと所定の温度とを比較する(ステップS7)。
TBATMINと所定の温度とを比較して、TBATMINが所定の温度より低くなっていれば(No)、外気の温度が非常に低く、蓄電池セルの内部抵抗が異常に高くなっている可能性が高い。すると、以下のステップS8以降のフロー処理において、誤判定と、それによる誤処理をする可能性が高くなるので、ステップS8以降のフローには進まず、全体のフロー処理を終了する。
また、TBATMINと所定の温度とを比較して、TBATMINが所定の温度より高ければ(Yes)、外気の温度に起因する誤判定の可能性は少ないとして、次のステップS8へと進む。
[7] The temperature of the battery cell having the lowest temperature among the storage battery cells or the storage battery cells in each area is set as T BATMIN , and T BATMIN is compared with a predetermined temperature (step S7).
If T BATMIN is compared with the predetermined temperature, and T BATMIN is lower than the predetermined temperature (No), the temperature of the outside air is very low, and the internal resistance of the storage battery cell may be abnormally high Is expensive. Then, in the following flow processing after step S8, there is a high possibility of erroneous determination and erroneous processing thereby, so the flow after step S8 does not proceed and the entire flow processing ends.
If T BATMIN is compared with a predetermined temperature and T BATMIN is higher than the predetermined temperature (Yes), it is determined that there is little possibility of erroneous determination due to the temperature of the outside air, and the process proceeds to the next step S8.
[8]全蓄電池セルの電圧を検出する(ステップS8)。なお、これは全蓄電池セルの特性劣化の状況を把握するためである。そして、次のステップS9に進む。 [8] The voltage of all the storage battery cells is detected (step S8). In addition, this is for grasping | ascertaining the condition of the characteristic deterioration of all the storage battery cells. Then, the process proceeds to next Step S9.
[9]ステップS8で検出した各蓄電池セル電圧を冷却エリア毎に平均処理を行う(ステップS9)。そして、次のステップS10に進む。 [9] Each storage battery cell voltage detected in step S8 is averaged for each cooling area (step S9). Then, the process proceeds to the next step S10.
[10]蓄電池セル電圧のエリア最低値とエリア毎の平均値を比較する処理を行う(ステップS10)。そして、次のステップS11に進む。 [10] A process of comparing the area minimum value of the storage battery cell voltage with the average value for each area is performed (step S10). Then, the process proceeds to the next step S11.
[11]ステップS10で得た、蓄電池セル電圧のエリア最低値とエリア毎の平均値との比較の処理において、所定値以上の差が有るか否かの判定を行う(ステップS11)。
所定値以上の差がなければ(No)、容量劣化抑制制御を新たに調整する必要がないと判断して、全体のフロー処理を終了する。
所定値以上の差があれば(Yes)、次のステップS12に進む。
[11] In the comparison process between the area minimum value of the storage battery cell voltage obtained in step S10 and the average value for each area, it is determined whether or not there is a difference of a predetermined value or more (step S11).
If there is no difference equal to or greater than the predetermined value (No), it is determined that there is no need to newly adjust the capacity deterioration suppression control, and the entire flow process is terminated.
If there is a difference greater than or equal to the predetermined value (Yes), the process proceeds to the next step S12.
[12]所定の差以上のエリアを検出して、検出電圧が高いエリア(領域)には多くの冷却風が供給され、検出電圧が低いエリア(領域)には供給が少なくともよいように流路を変更する(ステップS12)。これは蓄電池セルの電圧が高いものは劣化が進んでいるとして、優先的に冷却することによって、さらなる劣化を防止、もしくは少なくするためのものである。
以上で、全体のフロー処理を終了する。
[12] By detecting an area that is greater than or equal to a predetermined difference, the flow path is such that a large amount of cooling air is supplied to an area (region) where the detection voltage is high and at least the supply is good to an area (region) where the detection voltage is low Is changed (step S12). This is to prevent or reduce further deterioration by preferentially cooling, assuming that the battery cell with a high voltage has been deteriorated.
This completes the overall flow process.
以上のフローチャートは、劣化している蓄電池セルを検出して、エリアを分けながら、劣化の進んでいるものを優先して、集中的に冷却する制御方式である。
以上を行うことにより、劣化した蓄電池セルのさらなる劣化の進行を防ぎつつ、余力のある蓄電池セルの冷却は簡略化することによって、特性、性能の均等化を図る。したがって、電気自動車を使用する過程において、蓄電池セルのSOCバラツキが低減されていくと考えられる。
The above flowchart is a control method for detecting concentrated storage battery cells and cooling them in a concentrated manner with priority given to those that are progressing while dividing areas.
By performing the above, it is possible to equalize the characteristics and performance by simplifying the cooling of the remaining storage battery cells while preventing further deterioration of the deteriorated storage battery cells. Therefore, it is considered that the SOC variation of the storage battery cells is reduced in the process of using the electric vehicle.
なお、プラグイン充電を行うときに、充電器の定格条件(電圧、電流)によって、蓄電池がSOC100%付近まで充電できないときは、VMAX等の検知を行わない。これは車両制御としてSOC100%まで充電する仕様が前提であるからである。 When plug-in charging is performed, V MAX or the like is not detected if the storage battery cannot be charged to near SOC 100% due to the rated conditions (voltage and current) of the charger. This is because the specification for charging to SOC 100% as a vehicle control is premised.
また、前記フローチャートにおけるステップS6において、各蓄電池セルの温度、もしくはエリア毎の蓄電池セル温度を測定し、ステップS7において、最も低い蓄電池セル温度が所定の温度以下であるか否かを判定している。このステップS6、S7が必要である理由を補足説明する。これは、季節によっては外気温の影響により、電池温度が非常に低く(例えば冬において、0℃以下の状態)なり、蓄電池の内部抵抗が異常に高くなるときがある。この場合は各蓄電池セルの劣化の状態による特性差よりも、各蓄電池セルのそのときの温度による電池の内部抵抗の差によって、ステップS8以降の蓄電池セルの電圧による劣化の判定がなされることがあり、判定を誤る可能性が高くなる。したがって、ステップS6、S7によって、最も蓄電池セル温度が低いものが所定の温度よりも低いと判定された場合には、蓄電池セルの電圧では誤判定の可能性が高いとして、ステップS8以降には進まず、蓄電池セルの検出を行わず、全体のフロー処理を終了する。 In step S6 in the flowchart, the temperature of each storage battery cell or the storage battery cell temperature for each area is measured. In step S7, it is determined whether or not the lowest storage battery cell temperature is equal to or lower than a predetermined temperature. . The reason why steps S6 and S7 are necessary will be supplementarily described. Depending on the season, the battery temperature may be very low (for example, in a state of 0 ° C. or lower in winter) due to the influence of the outside air temperature, and the internal resistance of the storage battery may be abnormally high. In this case, the deterioration due to the voltage of the storage battery cell after step S8 may be determined by the difference in the internal resistance of the battery due to the current temperature of each storage battery cell rather than the characteristic difference due to the deterioration state of each storage battery cell. Yes, there is a high possibility of erroneous determination. Therefore, if it is determined in steps S6 and S7 that the battery cell temperature is lowest is lower than the predetermined temperature, it is determined that there is a high possibility of erroneous determination in the battery cell voltage, and the process proceeds to step S8 and subsequent steps. First, the whole flow process is complete | finished, without detecting a storage battery cell.
また、ステップS8以降には進まず、蓄電池セルの検出を行わない条件としては、前記した温度を直接計測する方法のみならず、寒冷時の明け方など、あらかじめ低温が予測される場合には時間帯によって蓄電池セルの電圧検出を行わない方式をとることがある。 In addition to the method of directly measuring the temperature described above, the condition that does not proceed to step S8 and thereafter and does not detect the storage battery cell is not only the method of directly measuring the temperature, but also the time zone when a low temperature is predicted in advance, such as the dawn at the time of cold. Depending on the situation, the battery cell voltage may not be detected.
(本実施形態における高圧の組蓄電池を含む電気系統)
図8は本実施形態における高圧の組蓄電池811を含む電気系統の機能ブロック図である。高圧の組蓄電池811は、複数の蓄電池セルが直列に接続されていて、高電圧の入出力を行う組蓄電池となっている。プラグ入力器812は100Vもしくは200Vの低蓄電容量の家庭用電源903(図9)から電源プラグ902(図9)を挿入されて100Vもしくは200Vの交流電源を受ける。充電器813はプラグ入力器812から交流電力を受けて、100Vか200Vか、またプラグ入力か急速充電かを判断し、それに応じて、所定の適切な直流電圧(直流電力)に変換する。充電器813から出力される直流電圧(直流電力)は接合ボード(Junction Board)814を経て高圧の組蓄電池811に供給される。なお、接合ボード814には高圧の組蓄電池811を構成する複数の蓄電池セルが同じような特性となるように均等化回路が入っている。高圧の組蓄電池811に蓄えられた高圧の直流電力は電気自動車901(図9)の電気系統の各種の装置のエネルギー源となる。
(Electric system including high-voltage assembled battery in this embodiment)
FIG. 8 is a functional block diagram of an electric system including the high-voltage assembled
PDU(Power Drive Unit)815は3相交流モータなどの走行用モータ816と高圧蓄電池811の間に備えられる。PDU815は高圧の組蓄電池811から直流電力を得るとともに、この直流電力を三相の交流電力に変換して走行用モータ816を駆動する。また、PDU815は、走行用モータ816の回生制動時において回収する回生電力を直流電力に変換して、高圧の組蓄電池811の充電を行う。PDU815はこのように高圧蓄電池811からの電力の入出力を制御する。
また、高圧の組蓄電池811からはエアコン用のヒータやコンプレッサ等(不図示)の各種の負荷817に高圧の直流電力が供給される。
A PDU (Power Drive Unit) 815 is provided between a traveling
In addition, high-voltage direct current power is supplied from the high-voltage assembled
また、低電圧(概ね12V)が必要な電気系統には降圧回路(実際にはDC/DCコンバータ)818を経て低電圧の直流電力を蓄電池ファン819(高圧蓄電池811の冷却用)、蓄電池ECU(Electronic control Unit)821に供給している。また、12V蓄電池820に降圧回路818の低電圧の直流電力を供給して、12V蓄電池820を経てECU関連負荷(モータECU、A/C(Air Conditioner)ECU、統括ECU等(不図示))822に安定した12Vの低電圧の直流電力を供給している。なお、これらの12V蓄電池820を経た装置は本願の発明とは直接には関係がないので、詳細な説明は省略する。
In addition, in an electric system that requires a low voltage (approximately 12V), a low-voltage DC power is supplied to a storage battery fan 819 (for cooling the high-voltage storage battery 811) via a step-down circuit (actually a DC / DC converter) 818, and a storage battery ECU ( Electronic control unit) 821. Further, the low-voltage DC power of the step-down
図9は図8において示した電気システムの各装置の主なものを電気自動車901のなかにどのように搭載配置され、かつ家庭用の電源から充電されるかの概要を示したものである。
電気自動車901の中央から後方部に高圧蓄電池811が備えられ、その周辺に充電器813、接合ボード814、プラグ入力器812、降圧回路818、および蓄電池ファン819が配置されている。また、電気自動車901の車体の前部には走行用モータ816とPDU815が配置されている。以上の各装置は図8で示した電気系統によって接続され、関連づけられている。
FIG. 9 shows an outline of how the main devices of the electric system shown in FIG. 8 are mounted and arranged in the electric vehicle 901 and charged from a household power source.
A high-
図9において、側壁904に設置された交流100Vもしくは200Vの家庭用電源903から引き出された電源プラグ902を、自動車901のプラグ入力器812に挿入して、電気的に接続し、充電するようすを示している。
In FIG. 9, a
以上、本発明の実施形態によれば、簡単な構成で相対的に容量劣化している蓄電池セル群を導きだすことができる。
このため、SOCのばらついている蓄電池セルによって、車両(電気自動車)で算出したSOCで制限するよりも早く出力制限がかかりはじめることを防止できる。
また、蓄電池セル電圧均等化に要する消費電流(消費エネルギー)を抑制できる。
また、本発明により、容量バラツキ抑制による早め出力制限が防止され、ドライバビリティ(動力性能)、航続距離(電費向上)、寿命向上につながる。
また、相対的に容量劣化している蓄電池セル群に対して集中的な冷却などの対処ができるため、さらなる劣化の進行と拡大が防止でき、電気自動車を使用している間に各蓄電池セル間のバラツキが減少するという均等化の効果がある。
また、相対的にどこが劣化したかを知る方法であるので、過去の履歴を記憶する必要がなく、大容量のメモリは不要となる。
以上の様々な効果がある。
As described above, according to the embodiment of the present invention, it is possible to derive a storage battery cell group having relatively simple capacity deterioration with a simple configuration.
For this reason, it is possible to prevent the output restriction from starting to be applied earlier than the restriction by the SOC calculated by the vehicle (electric vehicle) due to the storage battery cells in which the SOC varies.
Moreover, the consumption current (consumption energy) required for storage battery cell voltage equalization can be suppressed.
In addition, according to the present invention, early output limitation due to capacity variation suppression is prevented, leading to improved drivability (power performance), cruising distance (improves power consumption), and life.
In addition, since it is possible to deal with intensive cooling and the like for storage battery groups that have relatively deteriorated capacity, it is possible to prevent further progress and expansion of deterioration, and between each storage battery cell while using an electric vehicle. This has the effect of equalizing that the variation in
Further, since it is a method of knowing where the deterioration has occurred relatively, it is not necessary to store past history, and a large-capacity memory becomes unnecessary.
There are various effects as described above.
なお、本願の発明は、家庭用電源からのプラグイン充電の場合のみを対象としている。急速充電時や、前記した回生電力の回収時においても、高圧蓄電池811に充電する過程があるが、本願の発明の対象外である。
The invention of this application is intended only for the case of plug-in charging from a household power source. There is a process of charging the high-
また、本願の発明は電気自動車を主眼としているが、PHEV車(Plug-in Hybrid Electric Vehicle)等のハイブリッド車、あるいは燃料電池自動車においても、蓄電池の容量バラツキ防止や、寿命向上の観点から有効な手法である。
また、自動車のみならず、船舶、航空機、鉄道車両等へも適用可能である。
The invention of the present application focuses on electric vehicles, but it is effective from the viewpoint of preventing capacity variation of a storage battery and improving the life of a hybrid vehicle such as a PHEV vehicle (Plug-in Hybrid Electric Vehicle) or a fuel cell vehicle. It is a technique.
Moreover, it can be applied not only to automobiles but also to ships, airplanes, railway vehicles and the like.
40 組蓄電池
45 ダクト
46A、46B、1011、1012、1013、1014、1015、1016、 蓄電池セル
47 支持体
51、52、53 エリア
541、542、543 温度計
69A、69B 整流板
79 スリット
811 高圧の組蓄電池(組蓄電池)
812 プラグ入力器
813、1001 充電器、充電装置
814 接合ボード(電圧検出装置を含む)
815 PDU
816 走行用モータ
817 負荷
818 降圧回路
819 蓄電池ファン(容量劣化抑制装置)
820 12V蓄電池
821 蓄電池ECU
822 ECU関連負荷
901 電気自動車
902 電源プラグ
903 家庭用電源
904 側壁
1021、1022、1023、1024、1025、1026 電圧計、(電圧検出装置)
40
812
815 PDU
816 Motor for driving 817
820
822 ECU-related load 901
Claims (9)
蓄電容量の増加に対して電圧が追従して上昇する電圧領域内で定められた上限電圧に前記組蓄電池のいずれかの蓄電池セルが達するまで充電し、
該充電の後に前記上限電圧に達した蓄電池セルが前記上限電圧を維持するように充電を行い、
充電電流値が所定の電流値以下となるまで充電を行った後に全蓄電池セルの電圧を検出し、
前記蓄電池セルが配置されているエリアごとの電圧平均値を互いに比較して相対的に劣化している蓄電池セル群を検出する
ことを特徴とする容量劣化蓄電池セル群の検出方法。 A method for detecting a capacity-degraded storage battery cell group of an assembled storage battery composed of a plurality of storage battery cells having a voltage characteristic in which the voltage rises following the increase in the storage capacity,
Charge until any storage battery cell of the assembled battery reaches the upper limit voltage determined in the voltage region where the voltage rises following the increase in the storage capacity,
The storage battery cell that has reached the upper limit voltage after the charge is charged so as to maintain the upper limit voltage,
After charging until the charging current value becomes a predetermined current value or less, the voltage of all the storage battery cells is detected,
A method for detecting a capacity-degraded storage battery cell group, comprising comparing a voltage average value for each area in which the storage battery cells are arranged with each other to detect a relatively degraded storage battery cell group.
蓄電池セル群からなる組蓄電池に電気を充電する充電装置と、
前記組蓄電池における前記蓄電池セル群の電圧を検出する電圧検出装置と、
冷却風を分配する容量劣化抑制装置と、を備え、
前記充電装置と前記電圧検出装置によって、前記組蓄電池を蓄電容量の増加に対して電圧が追従して上昇する電圧領域内で定められた上限電圧に前記組蓄電池のいずれかの蓄電池セルが達するまで充電し、
該充電の後に前記上限電圧に達した蓄電池セルが前記上限電圧を維持するように充電を行い、
充電電流値が所定の電流値以下となるまで充電を行った後に全蓄電池セルの電圧を検出し、
前記蓄電池セルが配置されているエリアごとの電圧平均値を互いに比較して相対的に劣化している蓄電池セル群を検出し、
前記電圧検出装置と前記容量劣化抑制装置とによって、前記組蓄電池における前記蓄電池セル群に対して、容量劣化蓄電池セル群を優先して冷却風分配する容量劣化抑制制御を行う
ことを特徴とする蓄電池セル群容量劣化抑制制御装置。 In an electric vehicle that performs plug-in charging using a household power supply,
A charging device for charging electricity to an assembled battery composed of storage battery cells; and
A voltage detection device for detecting a voltage of the storage battery cell group in the assembled battery;
A capacity deterioration suppressing device that distributes cooling air, and
Until any storage battery cell of the assembled storage battery reaches the upper limit voltage determined in the voltage region where the voltage rises following the increase in the storage capacity of the assembled storage battery by the charging device and the voltage detection device Charge
The storage battery cell that has reached the upper limit voltage after the charge is charged so as to maintain the upper limit voltage,
After charging until the charging current value becomes a predetermined current value or less, the voltage of all the storage battery cells is detected,
Detecting a battery cell group that is relatively deteriorated by comparing voltage average values for each area where the battery cells are arranged,
Storage battery and performing by said voltage detecting device and the capacity deterioration prevention device, to the storage battery cell group in the set battery, the capacity deterioration suppression control of cooling wind distribution in favor of capacity deterioration battery cell group Cell group capacity deterioration suppression control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009247336A JP5097189B2 (en) | 2009-10-28 | 2009-10-28 | Capacity degradation storage battery cell group detection method and storage battery group capacity degradation suppression control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009247336A JP5097189B2 (en) | 2009-10-28 | 2009-10-28 | Capacity degradation storage battery cell group detection method and storage battery group capacity degradation suppression control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011095023A JP2011095023A (en) | 2011-05-12 |
JP5097189B2 true JP5097189B2 (en) | 2012-12-12 |
Family
ID=44112112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009247336A Expired - Fee Related JP5097189B2 (en) | 2009-10-28 | 2009-10-28 | Capacity degradation storage battery cell group detection method and storage battery group capacity degradation suppression control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5097189B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013190610A1 (en) * | 2012-06-18 | 2013-12-27 | 株式会社 日立製作所 | Power supply system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007205883A (en) * | 2006-02-01 | 2007-08-16 | Ntt Facilities Inc | Secondary battery capacity estimation device, program, and secondary battery capacity estimation method |
JP4670831B2 (en) * | 2007-04-27 | 2011-04-13 | 三菱自動車工業株式会社 | Battery capacity detection method and apparatus for electric vehicle and electric vehicle maintenance method |
JP2008282548A (en) * | 2007-05-08 | 2008-11-20 | Mazda Motor Corp | Cooling device of battery |
JP2009225632A (en) * | 2008-03-18 | 2009-10-01 | Panasonic Corp | Charging control circuit, battery pack, and charging system |
-
2009
- 2009-10-28 JP JP2009247336A patent/JP5097189B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011095023A (en) | 2011-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108081978B (en) | Battery pre-heating prior to fast charging | |
Wang et al. | A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles | |
US8655524B2 (en) | Power supply system, vehicle provided with the same and control method of power supply system | |
JP5862631B2 (en) | Power storage system | |
JP5570782B2 (en) | POWER SUPPLY DEVICE, VEHICLE EQUIPPED WITH THE SAME, AND CHARGING / DISCHARGE CONTROL METHOD FOR POWER SUPPLY DEVICE | |
US20170203654A1 (en) | Closed loop feedback control to mitigate lithium plating in electrified vehicle battery | |
JP7100104B2 (en) | Battery control device and electric vehicle | |
US20130027048A1 (en) | Method and system for controlling a vehicle battery | |
JP6329930B2 (en) | DRIVE DEVICE, TRANSPORTATION DEVICE, AND CONTROL METHOD | |
US10608291B2 (en) | Battery pack having a supplemental power supply | |
US11097634B2 (en) | Start control system of vehicle and vehicle having the same | |
US20110115435A1 (en) | Charge control device and vehicle equipped with the same | |
US10207596B2 (en) | Adaptive identification of the wiring resistance in a traction battery | |
US20170166078A1 (en) | Battery charge equalization system | |
CN113016099B (en) | Battery control device | |
JP6711155B2 (en) | Control device and moving body | |
JP2020156119A (en) | Management device and electrical power system | |
US20170113560A1 (en) | Energy storage device, transport apparatus, and control method | |
US11603011B2 (en) | Lithium plating detection and mitigation in electric vehicle batteries | |
JP2017070077A (en) | Power storage device, transportation equipment, and control method | |
JP6713283B2 (en) | Power storage device, transportation device, and control method | |
JP5097189B2 (en) | Capacity degradation storage battery cell group detection method and storage battery group capacity degradation suppression control device | |
Medora et al. | Battery management for hybrid electric vehicles using supercapacitors as a supplementary energy storage system | |
Baronti et al. | Smart LiFePO 4 battery modules in a fast charge application for local public transportation | |
JP2013216257A (en) | Charge/discharge control device of electric storage means |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120911 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5097189 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |