JP5096384B2 - Atom capture device and atom capture method - Google Patents

Atom capture device and atom capture method Download PDF

Info

Publication number
JP5096384B2
JP5096384B2 JP2009015252A JP2009015252A JP5096384B2 JP 5096384 B2 JP5096384 B2 JP 5096384B2 JP 2009015252 A JP2009015252 A JP 2009015252A JP 2009015252 A JP2009015252 A JP 2009015252A JP 5096384 B2 JP5096384 B2 JP 5096384B2
Authority
JP
Japan
Prior art keywords
magnetic field
atom
trapping
atoms
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009015252A
Other languages
Japanese (ja)
Other versions
JP2010177249A (en
Inventor
哲哉 向井
富士夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009015252A priority Critical patent/JP5096384B2/en
Publication of JP2010177249A publication Critical patent/JP2010177249A/en
Application granted granted Critical
Publication of JP5096384B2 publication Critical patent/JP5096384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

本発明は、原子干渉計,原子および超伝導固体素子の量子状態の変換,および記憶・制御手段としての応用が可能となる、中性原子を捕捉する原子捕捉装置および原子捕捉方法に関するものである。   The present invention relates to an atom trapping apparatus and atom trapping method for trapping neutral atoms, which can be applied as an atomic interferometer, quantum state conversion of atoms and superconducting solid state devices, and storage / control means. .

中性原子は、内部状態を持つ複合粒子であり、電磁場を用いて内部状態を量子力学的に操作することが、比較的容易にできる。従って、将来の量子デバイスの材料として有力の候補となっているが、室温の原子は、時速千キロメートル程度で運動する非常に小さい粒子のため、この原子を冷却して限られた空間内に閉じ込める原子捕捉の技術が重要となっている。   A neutral atom is a composite particle having an internal state, and it is relatively easy to manipulate the internal state quantum mechanically using an electromagnetic field. Therefore, although it is a promising candidate as a material for future quantum devices, room temperature atoms are very small particles that move at a speed of about 1000 kilometers per hour, so they are cooled and confined in a limited space. Atomic capture technology is important.

ここで、磁気モーメントがゼロでない原子は、磁場の勾配から力を受ける。従って、磁場の強いところでエネルギーが高くなる状態の原子(中性原子)は、3次元的な極小点を持つ不均一磁場中に置くことで、空間的に閉じ込めることができる。例えば、固体の表面に微細な配線パターンを形成し、この配線を流れる電流の周りに発生する磁場により、原子を捕捉するマイクロ磁場トラップの技術が開発され、原子の捕捉を実現している(非特許文献1参照)。   Here, atoms whose magnetic moment is not zero receive force from the gradient of the magnetic field. Therefore, an atom (neutral atom) whose energy is high in a strong magnetic field can be spatially confined by placing it in a non-uniform magnetic field having a three-dimensional minimum point. For example, a fine magnetic field pattern is formed on a solid surface, and a micro magnetic field trap technology that captures atoms by a magnetic field generated around the current flowing through the wiring has been developed to realize the capture of atoms (non- Patent Document 1).

特開2008−173745号公報JP 2008-173745 A

R. Folman, et al. "MICROSCOPIC ATOM OPTICS: FROM WIRES TO AN ATOM CHIP", Advance in Atomic, Molecular, and Optical Physics, Vol.48, pp.263-356 ,2002.R. Folman, et al. "MICROSCOPIC ATOM OPTICS: FROM WIRES TO AN ATOM CHIP", Advance in Atomic, Molecular, and Optical Physics, Vol.48, pp.263-356, 2002. T.Mukai, et al. ,"Persistent Supercurrent Atom Chip", PHYSICAL REVIEW LETTERS 98,260407, pp.260407-1-260407-4, 2007.T. Mukai, et al., "Persistent Supercurrent Atom Chip", PHYSICAL REVIEW LETTERS 98,260407, pp.260407-1-260407-4, 2007.

しかしながら、上述したマイクロ磁場トラップでは、電流を駆動するための構造が必要となり、設計上の制約の1つとなっている(特許文献1,非特許文献2参照)。   However, the above-described micro magnetic field trap requires a structure for driving current, which is one of the restrictions on design (see Patent Document 1 and Non-Patent Document 2).

本発明は、以上のような問題点を解消するためになされたものであり、電流を駆動するための構造を用いることなしに、原子の閉じ込めが行えるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to enable atom confinement without using a structure for driving a current.

本発明に係る原子捕捉装置は、超伝導材料から構成されて平板状に形成された捕捉部と、この捕捉部を超伝導転移温度以下に冷却する冷却手段と、捕捉部に均一な磁場を印加する磁場印加手段とを少なくとも備え、磁場印加手段は、捕捉部の平面に対して垂直から45°の範囲の中より選択したいずれかの角度の方向に磁場を印加するものである。 The atom trapping apparatus according to the present invention includes a trapping portion formed of a superconducting material and formed in a flat plate shape, a cooling means for cooling the trapping portion to a superconducting transition temperature or less, and applying a uniform magnetic field to the trapping portion. And a magnetic field applying means for applying the magnetic field in the direction of any angle selected from the range of 45 ° from the vertical to the plane of the capturing part.

上記原子捕捉装置において、磁場印加手段は、捕捉部の平面に対して垂直な方向に磁場を印加すればよい。また、捕捉部の近傍に捕捉対象の原子を供給する原子供給手段を備えるようにすればよい。   In the above atom trapping device, the magnetic field applying means may apply a magnetic field in a direction perpendicular to the plane of the trapping portion. Moreover, an atom supply means for supplying atoms to be captured may be provided in the vicinity of the capturing unit.

本発明に係る原子捕捉方法は、超伝導材料から構成されて平板状に形成された捕捉部を超伝導転移温度以下に冷却するステップと、捕捉部の近傍に捕捉対象の原子を供給するステップと、捕捉部が超伝導転移温度以下に冷却された状態で捕捉部に均一な磁場を印加するステップとを少なくとも備え捕捉部の平面に対して垂直から45°の範囲の中より選択したいずれかの角度の方向に磁場を印加する。なお、捕捉部には、捕捉部の平面に対して垂直な方向に磁場を印加するとよい。 An atom trapping method according to the present invention includes a step of cooling a trapping portion formed of a superconducting material and formed in a flat plate shape to a superconducting transition temperature or lower, and supplying atoms to be trapped in the vicinity of the trapping portion; At least a step of applying a uniform magnetic field to the trapping portion in a state where the trapping portion is cooled to a superconducting transition temperature or lower, and selected from the range of 45 ° perpendicular to the plane of the trapping portion Apply a magnetic field in the direction of the angle . Note that a magnetic field may be applied to the capturing unit in a direction perpendicular to the plane of the capturing unit.

以上の説明したように、本発明によれば、超伝導材料から構成されて平板状に形成された捕捉部と、この捕捉部を超伝導転移温度以下に冷却する冷却手段と、捕捉部に均一な磁場を印加する磁場印加手段とを少なくとも備え、捕捉部の平面に対して垂直から45°の範囲の中より選択したいずれかの角度の方向に磁場を印加するようにしたので、電流を駆動するための構造を用いることなしに、原子の閉じ込めが行えるようになるという優れた効果が得られる。 As described above, according to the present invention, the trap part made of a superconducting material and formed in a flat plate shape, the cooling means for cooling the trap part below the superconducting transition temperature, and the trap part are uniform. At least a magnetic field applying means for applying a magnetic field, and the magnetic field is applied in the direction of any angle selected from the range of 45 ° from the perpendicular to the plane of the capturing part, so that the current is driven. Thus, an excellent effect is obtained that atoms can be confined without using a structure for the purpose.

本発明の実施の形態における原子捕捉装置の構成を示す構成図である。It is a block diagram which shows the structure of the atom capture apparatus in embodiment of this invention. 捕捉部101の構成を示す断面図である。3 is a cross-sectional view showing a configuration of a capturing unit 101. FIG. 本発明の実施の形態における原子捕捉装置の構成を示す構成図である。It is a block diagram which shows the structure of the atom capture apparatus in embodiment of this invention. 本発明の実施の形態における原子捕捉方法を説明するためのフローチャートである。It is a flowchart for demonstrating the atom capture method in embodiment of this invention. マイスナー効果を説明するための説明図である。It is explanatory drawing for demonstrating the Meissner effect. 冷却部102に冷却される捕捉部101近傍に形成される不均一磁場の状態を側方より見た状態を模式的に示す構成図である。It is a block diagram which shows typically the state which looked at the state of the nonuniform magnetic field formed in the vicinity of the capture part 101 cooled by the cooling part 102 from the side. 冷却原子が捕捉部101表面近傍の限定された空間に捕捉されていることを観察した結果を示す写真である。It is a photograph which shows the result of having observed that the cooling atom is trapped in the limited space near the trap part 101 surface. 2箇所の捕捉部101aおよび捕捉部101bの各々近傍に形成される不均一磁場の状態を側方より見た状態を模式的に示す構成図である。It is a block diagram which shows typically the state which looked at the state of the non-uniform magnetic field formed in the vicinity of each of the two capture parts 101a and the capture parts 101b from the side.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における原子捕捉装置の構成を示す構成図である。この原子捕捉装置は、超伝導材料から構成されて平板状に形成された捕捉部101と、捕捉部101を超伝導転移温度以下に冷却する冷却部102と、捕捉部101に均一な磁場131を印加する磁場印加部103とを備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a configuration of an atom trapping apparatus according to an embodiment of the present invention. This atomic trapping device includes a trapping part 101 made of a superconducting material and formed in a flat plate shape, a cooling part 102 for cooling the trapping part 101 to a superconducting transition temperature or less, and a uniform magnetic field 131 on the trapping part 101. And a magnetic field application unit 103 for applying the magnetic field.

捕捉部101は、例えば、図2の断面図に示すように、酸化シリコンやコランダム(サファイア)などの絶縁性基板201の上に形成することで、他の構成に対し、超伝導電流に関して絶縁分離された状態とする。例えば、絶縁性基板201の上に、スパッタ法や蒸着法などにより超伝導材料の膜を形成することで、捕捉部101を形成することができる。例えば、捕捉部101は、厚さ1μm、100μm×数mmの平板状に形成すればよい。このように構成した場合、冷却部102による捕捉部101の冷却は、絶縁性基板201を介して行えばよい。また、基板は、超伝導性を示さない金属材料から構成することも考えられる。   For example, as shown in the cross-sectional view of FIG. 2, the capturing unit 101 is formed on an insulating substrate 201 such as silicon oxide or corundum (sapphire), so that it is insulated and separated with respect to the superconducting current with respect to other configurations. It is assumed that For example, the trap part 101 can be formed by forming a film of a superconducting material on the insulating substrate 201 by sputtering or vapor deposition. For example, the capturing unit 101 may be formed in a flat plate shape having a thickness of 1 μm and 100 μm × several mm. When configured in this manner, the cooling of the capturing unit 101 by the cooling unit 102 may be performed via the insulating substrate 201. It is also conceivable that the substrate is made of a metal material that does not exhibit superconductivity.

捕捉部101は、平面視矩形および円形であってもよく、また、短冊状に形成してもよい。捕捉部101を構成する超伝導材料としては、ニオブ(Nb),窒化ニオブ(NbN),ホウ化マグネシウム(MgB2),アルミニウム(Al),および,鉛(Pb)など、超伝導性を有するものを用いることができる。 The capturing unit 101 may be rectangular and circular in a plan view, or may be formed in a strip shape. Superconducting materials constituting the trap 101 include superconducting materials such as niobium (Nb), niobium nitride (NbN), magnesium boride (MgB 2 ), aluminum (Al), and lead (Pb). Can be used.

また、原子捕捉部101により原子を捕捉するためには、対象となる原子を原子捕捉部101の近傍にまで供給することになる。例えば図3に示すように、磁気光学トラップ(MOT)301により予め室温(20℃程度)から予備冷却(数百マイクロケルビン程度)した原子を、四重極磁場トラップ(QMT)302中に保持し、QMT302を移動させることで、保持した原子を原子捕捉部101の近傍にまで供給すればよい。なお、これらのことは、真空中で行う。   In addition, in order to capture atoms by the atom capturing unit 101, target atoms are supplied to the vicinity of the atom capturing unit 101. For example, as shown in FIG. 3, atoms preliminarily cooled (about several hundred microkelvin) from room temperature (about 20 ° C.) by a magneto-optical trap (MOT) 301 are held in a quadrupole magnetic field trap (QMT) 302. By moving the QMT 302, the held atoms may be supplied to the vicinity of the atom trapping unit 101. These things are performed in a vacuum.

次に、原子捕捉装置による原子捕捉方法について、図4のフローチャートを用いて説明する。まず、冷却部102を動作させて捕捉部101の冷却を開始する(ステップS401)。この冷却により、捕捉部101を超伝導転移温度以下に冷却したら(ステップ402)、捕捉部101の近傍に捕捉対象の原子を供給する(ステップ403)。例えば、捕捉部101が配置されている真空中で、原子を捕捉しているQMT302を、捕捉部101の中央部下部に移動させ、QMT302の電流を遮断してQMT302の閉じ込めポテンシャルを消去することで、原子の供給を行う。この後、磁場印加部103により捕捉部101に均一な磁場を印加する(ステップS404)。なお、QMT302の電流を遮断した直後(1ミリ秒以内)に、均一な磁場の印加を開始する。   Next, an atom trapping method by the atom trapping apparatus will be described using the flowchart of FIG. First, the cooling unit 102 is operated to start cooling the capturing unit 101 (step S401). When the trap 101 is cooled below the superconducting transition temperature by this cooling (step 402), atoms to be trapped are supplied in the vicinity of the trap 101 (step 403). For example, by moving the QMT 302 capturing atoms in the vacuum where the capturing unit 101 is disposed to the lower center of the capturing unit 101, the current of the QMT 302 is interrupted to erase the confining potential of the QMT 302. Supply atoms. Thereafter, the magnetic field applying unit 103 applies a uniform magnetic field to the capturing unit 101 (step S404). Note that application of a uniform magnetic field is started immediately after the current of QMT 302 is cut off (within 1 millisecond).

この磁場の印加により、超伝導体である捕捉部101には、マイスナー効果により内部に磁場を浸入させないようにマイスナー電流が誘起される。これにより、均一な磁場が印加されている捕捉部101においては、表面から法線方向および捕捉部101の中央部から周辺方向に向けて磁場の強さが増加する不均一な磁場が形成されるようになる。この不均一な磁場には、磁場の極小点(3次元的な極小点)が形成されるようになる。このことにより、供給された原子が、不均一な磁場により捕捉されるようになる。   By applying this magnetic field, a Meissner current is induced in the trapping unit 101, which is a superconductor, so that the magnetic field does not enter inside due to the Meissner effect. Thereby, in the capturing part 101 to which a uniform magnetic field is applied, a non-uniform magnetic field in which the strength of the magnetic field increases from the surface toward the normal direction and from the central part to the peripheral direction of the capturing part 101 is formed. It becomes like this. In this non-uniform magnetic field, a magnetic field minimum point (three-dimensional minimum point) is formed. This causes the supplied atoms to be captured by a non-uniform magnetic field.

次に、上述した磁場トラップの形成について、より詳細に説明する。超伝導体は、超伝導体転移温度以下にまで冷却すると、図5に示すように、印加される磁場を超伝導体内部に浸入させないように、マイスナー効果によりマイスナー電流が誘起される。このため、平板状に形成された超伝導体からなる捕捉部101の平面に対し、おおよそ垂直な方向の均一な磁場を加えると、図6に示すように、捕捉部101の表面から法線方向、および、捕捉部101の中央部から周辺方向に向けて磁場の強度が増加し、磁場の3次元的な極小点(磁場の極小点)をもつ不均一磁場が形成される。   Next, the formation of the magnetic field trap described above will be described in more detail. When the superconductor is cooled below the superconductor transition temperature, a Meissner current is induced by the Meissner effect so that the applied magnetic field does not enter the superconductor as shown in FIG. For this reason, when a uniform magnetic field in a direction approximately perpendicular to the flat surface of the trapping portion 101 made of a superconductor formed in a flat plate shape is applied, as shown in FIG. And the intensity of the magnetic field increases from the central part of the capturing part 101 toward the peripheral direction, and a non-uniform magnetic field having a three-dimensional local minimum point (a local minimum point of the magnetic field) is formed.

図6は、冷却部102に冷却される捕捉部101近傍に形成される不均一磁場の状態を側方より見た状態を模式的に示しており、また、不均一磁場の状態を曲線で示している。なお、捕捉部101の表面は、完全な平坦面である必要はなく、多少の凹凸があってもよい。   FIG. 6 schematically shows a state of the inhomogeneous magnetic field formed in the vicinity of the capture unit 101 cooled by the cooling unit 102 as viewed from the side, and shows the state of the inhomogeneous magnetic field with a curve. ing. Note that the surface of the capturing unit 101 does not have to be a completely flat surface and may have some unevenness.

また、捕捉部101を構成する超伝導体の表面から斥力を受ける原子は、上述した磁場の極小点に引き付けられて捕捉部101の表面に衝突し、弾性衝突により跳ね返される。従って、磁場の強いところでエネルギーが高くなる量子状態にあり、超伝導体の表面から斥力の相互作用を受ける中性原子であれば、これを冷却し、上述したように不均一な磁場が形成されている捕捉部101の表面の近傍に配置すれば、不均一磁場の勾配によるポテンシャルによる引き付けと、捕捉部101の表面からの弾性衝突とで、捕捉部101の近傍の空間(3次元空間)に原子を閉じ込めることができる。なお、超伝導体の表面との間に働く相互作用には、引力もあるが、引力を受ける原子は、超伝導体に吸着し、また、超伝導体を構成する原子と化学反応を起こす。   In addition, atoms receiving repulsive force from the surface of the superconductor constituting the capturing unit 101 are attracted to the above-described minimum magnetic field point, collide with the surface of the capturing unit 101, and are rebounded by elastic collision. Therefore, if a neutral atom is in a quantum state where the energy increases in the presence of a strong magnetic field and is subject to repulsive interaction from the surface of the superconductor, it is cooled and a non-uniform magnetic field is formed as described above. If it is arranged in the vicinity of the surface of the capturing unit 101, it is attracted by the potential due to the gradient of the inhomogeneous magnetic field and elastic collision from the surface of the capturing unit 101, and in the space (three-dimensional space) near the capturing unit 101. Can confine atoms. Note that the interaction acting with the surface of the superconductor also has an attractive force, but the atoms receiving the attractive force are adsorbed on the superconductor and cause a chemical reaction with the atoms constituting the superconductor.

不均一な磁場中に配置された冷却原子は、不均一磁場のポテンシャルにより、捕捉部101の表面へと加速されて表面に衝突する。この衝突が弾性衝突であれば、冷却原子は捕捉部101の表面で跳ね返され、不均一磁場のポテンシャルの中を捕捉部101の表面より離間する方向にある程度移動した後、再び、不均一磁場のポテンシャルにより捕捉部101の表面方向に引き付けられ、この方向に加速される。このような運動を繰り返すことで、原子は、捕捉部101の近傍の空間に閉じ込められる。磁場の高いところでエネルギーが高くなる量子状態の原子としては、例えば、87Rb(|F=2,mF=+2〉)がある。また、アルカリ土類金属や希ガスの原子でもよい。 The cooled atoms arranged in the non-uniform magnetic field are accelerated to the surface of the capturing unit 101 by the potential of the non-uniform magnetic field and collide with the surface. If this collision is an elastic collision, the cooling atoms are bounced back on the surface of the capturing unit 101, move to some extent in the direction of the nonuniform magnetic field in the direction away from the surface of the capturing unit 101, and then again The potential is attracted toward the surface of the trap 101 and accelerated in this direction. By repeating such a movement, atoms are confined in the space near the capturing unit 101. For example, 87 Rb (| F = 2, m F = + 2>) is an example of an atom in a quantum state in which the energy increases at a high magnetic field. Further, it may be an alkaline earth metal or a rare gas atom.

上述したように、不均一磁場による引き付けと、捕捉部101の表面からの弾性衝突とによって閉じ込められた原子は、衝突離散と引き付けとの運動を繰り返す中で、ある確率で非弾性な衝突をし、磁場ポテンシャルに捕捉されない状態へと遷移し、不均一磁場による引き付けから解放される。例えば、非弾性衝突により、原子が磁場の強いところに引き付けられるような状態に変化する場合がある。このような、非弾性衝突では、内部状態が変化した原子は、磁場の極小点には引き付けられず、捕捉部101より離散していく。   As described above, the atoms confined by the attraction by the inhomogeneous magnetic field and the elastic collision from the surface of the trapping part 101 collide with an inelastic collision with a certain probability while repeating the movement of the collision discrete and the attraction. , Transitions to a state that is not trapped by the magnetic field potential, and is released from being attracted by a non-uniform magnetic field. For example, an inelastic collision may change the state in which atoms are attracted to a strong magnetic field. In such an inelastic collision, atoms whose internal state has changed are not attracted to the minimum point of the magnetic field, but become discrete from the capturing unit 101.

以上のような、捕捉部101の表面との弾性衝突は、10回程度繰り返され、この間の20ミリ秒程度の間は、冷却原子が捕捉部101表面近傍の限定された空間に捕捉されていることが、発明者らの実験により確認されている。この状態を、図7の写真に示す。図7は、原子の吸収像を観察した結果を示しており、原子が共鳴する光を吸収する性質を利用した観察である。平板状の超伝導体を側方から観察している。紙面手前から奥に向けて延在している幅100μmと幅200μmの2箇所の超伝導体(捕捉部)の下に、各々原子集団1および原子集団2が捕捉されている状態が確認できる。光の吸収量の状態より、各々の捕捉領域において、数十万個の原子(原子集団)が捕捉されていることがわかる。   The elastic collision with the surface of the capture unit 101 as described above is repeated about 10 times, and for about 20 milliseconds during this period, cooling atoms are captured in a limited space near the surface of the capture unit 101. This has been confirmed by experiments by the inventors. This state is shown in the photograph of FIG. FIG. 7 shows a result of observing an absorption image of atoms, which is an observation using the property of absorbing light with which the atoms resonate. A flat superconductor is observed from the side. It can be confirmed that the atomic group 1 and the atomic group 2 are captured under two superconductors (capturing portions) each having a width of 100 μm and a width of 200 μm extending from the front to the back of the page. From the state of light absorption, it can be seen that hundreds of thousands of atoms (atom group) are trapped in each trapping region.

このように、一端が捕捉部101の表面との弾性衝突によって閉じられた原子のトラップは、準安定な状態であるが、電流を駆動するための特別な構造が不要であり、本実施の形態の原子捕捉装置は、設計上の自由度が極めて高いものとなる。   As described above, the trap of an atom whose one end is closed by elastic collision with the surface of the trap 101 is in a metastable state, but does not require a special structure for driving an electric current. This atom trapping device has extremely high design freedom.

ところで、上述したように、複数の捕捉部を近設配置し、各々独立に原子を捕捉させるようにすることも可能である。例えば、図8に示すように、捕捉部101aおよび捕捉部101bを近設して配置しても、各々が独立に磁場の極小点を持つ不均一磁場を発生させることができる。なお、複数の捕捉部を配置する場合、各々の間隔が、マイスナー効果が維持できる範囲であれば、近づけて配置することが可能である。   By the way, as described above, it is also possible to arrange a plurality of traps close to each other and trap atoms independently. For example, as shown in FIG. 8, even when the capturing unit 101a and the capturing unit 101b are arranged close to each other, it is possible to generate a non-uniform magnetic field having a minimum magnetic field point independently. In addition, when arrange | positioning a some capture | acquisition part, if each space | interval is the range which can maintain the Meissner effect, it can arrange | position close.

ところで、印加する磁場の方向は、捕捉部101の表面(平面)に対して完全に垂直な状態である必要はない。例えば、捕捉部101の表面に対して45°程度傾斜していても、上述同様に、不均一な磁場を形成することは可能である。ただし、印加する磁場の方向を捕捉部101の表面に対して垂直な方向とすることで、より安定した磁場の極小点が形成でき、より安定して原子を捕捉することが可能になるものと考えられる。   By the way, the direction of the magnetic field to be applied does not have to be completely perpendicular to the surface (plane) of the capturing unit 101. For example, it is possible to form a non-uniform magnetic field as described above even when the surface of the capturing unit 101 is inclined by about 45 °. However, by setting the direction of the magnetic field to be applied in a direction perpendicular to the surface of the capturing unit 101, a more stable minimum point of the magnetic field can be formed and atoms can be captured more stably. Conceivable.

本発明は、高い設計の自由度を利用し、高感度な原子干渉計を構成するための原子導波路として利用することが期待できる。上述したように、捕捉部を所定の方向に延在させれば、原子を捕捉する領域を導波路として用いることができるようになる。また、本発明の原子捕捉装置を用いることで、超伝導体の表面と中性原子との相互作用を計測する装置を構成することが可能となる。あるいは、捕捉している原子の状態を上述したように観測することで、超伝導体中を磁束が運動する状態を高感度に検出する測定器として利用することも可能である。   The present invention can be expected to be used as an atomic waveguide for constructing a highly sensitive atomic interferometer by utilizing a high degree of design freedom. As described above, if the trapping portion extends in a predetermined direction, a region for trapping atoms can be used as a waveguide. In addition, by using the atom trapping device of the present invention, it is possible to configure a device for measuring the interaction between the surface of the superconductor and the neutral atom. Alternatively, by observing the state of trapped atoms as described above, it can be used as a measuring device that detects the state in which the magnetic flux moves in the superconductor with high sensitivity.

101…捕捉部、102…冷却部、103…磁場印加部、131…均一な磁場。   DESCRIPTION OF SYMBOLS 101 ... Capture part, 102 ... Cooling part, 103 ... Magnetic field application part, 131 ... Uniform magnetic field.

Claims (5)

超伝導材料から構成されて平板状に形成された捕捉部と、
この捕捉部を超伝導転移温度以下に冷却する冷却手段と、
前記捕捉部に均一な磁場を印加する磁場印加手段と
を少なくとも備え、
前記磁場印加手段は、前記捕捉部の平面に対して垂直から45°の範囲の中より選択したいずれかの角度の方向に磁場を印加することを特徴とする原子捕捉装置。
A trapping portion formed of a superconducting material and formed in a flat plate shape;
A cooling means for cooling the trapping portion to a superconducting transition temperature or lower,
And at least magnetic field applying means for applying a uniform magnetic field to the capturing part,
The atom trapping device, wherein the magnetic field applying unit applies a magnetic field in a direction of any angle selected from a range of 45 ° perpendicular to the plane of the trapping unit.
請求項1記載の原子捕捉装置において、
前記磁場印加手段は、前記捕捉部の平面に対して垂直な方向に磁場を印加する
ことを特徴とする原子捕捉装置。
The atom trapping device according to claim 1, wherein
The atom trapping device, wherein the magnetic field applying unit applies a magnetic field in a direction perpendicular to a plane of the trapping unit.
請求項1または2記載の原子捕捉装置において、
前記捕捉部の近傍に捕捉対象の原子を供給する原子供給手段
を備えることを特徴とする原子捕捉装置。
The atom trapping device according to claim 1 or 2,
An atom trapping device comprising: an atom supply unit that supplies trapping target atoms in the vicinity of the trapping unit.
超伝導材料から構成されて平板状に形成された捕捉部を超伝導転移温度以下に冷却するステップと、
前記捕捉部の近傍に捕捉対象の原子を供給するステップと、
前記捕捉部が超伝導転移温度以下に冷却された状態で前記捕捉部に均一な磁場を印加するステップと
を少なくとも備え、
前記捕捉部の平面に対して垂直から45°の範囲の中より選択したいずれかの角度の方向に磁場を印加することを特徴とする原子捕捉方法。
Cooling the trapping portion formed of a superconducting material and formed in a flat plate shape to a superconducting transition temperature or less;
Supplying atoms to be captured in the vicinity of the capturing unit;
Applying at least a uniform magnetic field to the trapping portion in a state where the trapping portion is cooled to a superconducting transition temperature or lower,
A method of capturing an atom, wherein a magnetic field is applied in a direction of any angle selected from a range of 45 ° from perpendicular to the plane of the capturing unit.
請求項4記載の原子捕捉方法において、
前記捕捉部には、前記捕捉部の平面に対して垂直な方向に磁場を印加する
ことを特徴とする原子捕捉方法。
The atom trapping method according to claim 4, wherein
A method of capturing an atom, wherein a magnetic field is applied to the capturing unit in a direction perpendicular to a plane of the capturing unit.
JP2009015252A 2009-01-27 2009-01-27 Atom capture device and atom capture method Expired - Fee Related JP5096384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015252A JP5096384B2 (en) 2009-01-27 2009-01-27 Atom capture device and atom capture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015252A JP5096384B2 (en) 2009-01-27 2009-01-27 Atom capture device and atom capture method

Publications (2)

Publication Number Publication Date
JP2010177249A JP2010177249A (en) 2010-08-12
JP5096384B2 true JP5096384B2 (en) 2012-12-12

Family

ID=42707931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015252A Expired - Fee Related JP5096384B2 (en) 2009-01-27 2009-01-27 Atom capture device and atom capture method

Country Status (1)

Country Link
JP (1) JP5096384B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753069B2 (en) * 2011-12-09 2015-07-22 日本電信電話株式会社 Atom capture device and atom capture method
CN108267791B (en) * 2018-02-09 2023-10-20 中国科学技术大学 Magnetic field system for atomic interferometer probe
US12041864B2 (en) 2021-10-01 2024-07-16 Paul Scherrer Institut Method and device for storing free atoms, molecules and ions in a contact-less, albeit well-defined near surface arrangement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862202B2 (en) * 2006-03-08 2012-01-25 独立行政法人情報通信研究機構 Neutral atom trapping device
JP2008173745A (en) * 2007-01-22 2008-07-31 Nippon Telegr & Teleph Corp <Ntt> Atom trap element and atom trap method

Also Published As

Publication number Publication date
JP2010177249A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
Folman et al. Microscopic atom optics: from wires to an atom chip
Folman et al. Controlling cold atoms using nanofabricated surfaces: Atom chips
Reichel et al. Atom chips
Avasthi et al. Swift heavy ions for materials engineering and nanostructuring
US11291103B2 (en) Uniaxial counter-propagating monolaser atom trap
JP5096384B2 (en) Atom capture device and atom capture method
US20190348597A1 (en) Piezoelectricity-induced High Temperature Superconductor
Long et al. Long distance magnetic conveyor for precise positioning of ultracold atoms
JP2008173745A (en) Atom trap element and atom trap method
JP5475491B2 (en) Atom capture device and atom capture method
Kasper et al. A Bose–Einstein condensate in a microtrap
FR2764110A1 (en) DEVICE AND METHOD FOR ION ETCHING
Sahai et al. Approaching Petavolts per meter plasmonics using structured semiconductors
Singh et al. Efficient quantum state preparation using Stern–Gerlach effect on cold atoms
Dilmieva et al. Rapidly quenched ferromagnetic ribbons with shape memory for magnetically controlled micromechanic devices
Folman et al. Atom chip fabrication
WO2015026861A1 (en) Magnetic field guided crystal orientation system for metal conductivity enhancement
JP5753069B2 (en) Atom capture device and atom capture method
Zhang et al. Serial single molecule electron diffraction imaging: diffraction background of superfluid helium droplets
Graydon Axial super-resolution
JP5770826B2 (en) Charged particle trap using high temperature superconductor and method for trapping charged particle
CA2640037C (en) Propelling device by means of matter particles acceleration and applications thereof
Prakash Oxide-Based Novel Light Emitter and Tunable Absorber
CN117558485A (en) Device and method for preparing vortex electron beam based on high-coherence super-cold electron beam
Drndic Micro-electromagnets for particle control

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R151 Written notification of patent or utility model registration

Ref document number: 5096384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees